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Abstract The quantum adiabatic algorithm solves problems by evolving a
known initial state towards the ground state of a Hamiltonian encoding the
answer to a problem. Although continuous- and discrete-time quantum al-
gorithms exist capable of evaluating tree graphs consisting of N vertexes in
O(

√
N ) time, a quadratic improvement over their classical counterparts, no

quantum adiabatic procedure is known to exist. In this work we present a study
of the main issues and challenges surrounding quantum adiabatic evaluation
of NAND trees. We focus on a number of issues ranging from: (i) mapping
mechanisms; (ii) spectrum analysis and remapping; (iii) numerical evaluation
of spectrum gaps and (iv) algorithmic procedures. These concepts are then

used to provide numerical evidence for the existence of a N2

logN2 gap.
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1 Introduction

A diverse number of relevant computational problems can be specified through
NAND tree evaluation, e.g. from calculating the value of boolean expres-
sions [21] to determining the outcome of games [12]. This type of problems
consist of a binary tree with: (i) 2d leaf nodes representing a binary string of
length 2d, respectively i.e. x1, . . . , x2d ; (ii) where d = log2N is the depth of
the tree; and (iii) for each depth level 0 ≤ k ≤ log2N there exists a total of 2k

internal nodes representing a NAND logical gate over its respective children.

The root evaluates to function fd(x1, . . . , x2d), where fd : {0, 1}2d → {0, 1} is
defined recursively as presented in Equation (1) [10].

fd(x1, . . . , x2d) =

{
¬(fd−1(x1, . . . , x2d−1) ∧ fd−1(x2d−1+1, . . . , x2d)) , d > 0
x , d = 0

(1)

The problem of evaluating graphs is closely related to computational search.
Graph evaluation distinguishes itself by the need to determine the value of
a node that is a function of other nodes. Classicall evaluation requires O(N)
time [20] whilst randomized algorithms are capable running in O(N0.753) [21].
Traditional approaches to quantum search focus on finding marked states [18].
This is optimal since there is a known lower bound ofΩ(

√
N ) [6]. A continuous-

time algorithm for evaluating NAND trees in O(
√
N ) was provided in [16].

In [10] the authors showed that it was possible to convert the continuous-time

algorithm to the discrete quantum oracle query usingN
1
2+o(1) queries. A quan-

tum walk based method for evaluating every NAND formula in bounded-error
N

1
2+o(1)-time was presented in [11]. These outcomes were complemented in [3]

which presented a nearly optimal discrete query quantum algorithm for evalu-
ating arbitrary formulas of depth d using O(

√
N logd−1N) queries. A discrete

quantum walk version, specifically tailored to an AND-OR formulas of size N
requiring N

1
2+o(1) queries was presented in [4]. These methods stimulated the

development of quantum algorithms for discrete-time minimax evaluation. A
bounded-error quantum algorithm for evaluating minimax trees with N

1
2+o(1)

queries was introduced in [12].

Recently, advances in quantum devices that focus on solving optimization
problems, has led to a renewed interest in the range of potential applications
of adiabatic quantum computation. This paradigm of computation differs sub-
stantially from the methods that were previously discussed. Thus, it is natural
to question how to perform NAND tree evaluation in an adiabatic context,
more specifically: (i) how to develop an adequate approach?; (ii) is it possible
to capitalize on existing methods?; (iii) what are the main advantages and
disadvantages associated with each procedure?; (iv) what are the potential
running times of potential methods?; amongst other issues.
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1.1 Organization

The remainder of this work is organized as follows. Section 2 presents an
overview of adiabatic quantum computation; Section 3 describes current meth-
ods to quantum NAND tree evaluation .Section 4 discusses how to develop an
adiabatic mapping. Section 5 presents the main conclusions of this work and
potential implications.

2 Adiabatic Computation

Adiabatic quantum computation was first introduced in [17]. This computa-
tional paradigm was later shown to be equivalent to standard model of quan-
tum computation in [1]. The adiabatic procedure evolves a quantum system in
a state |ψ(t)〉 according to the Schrödinger equation i~ d

dt |ψ(t)〉 = H(t)|ψ(t)〉.
The Hamiltonian is a Hermitian matrix that can be perceived from a compu-
tational perspective as mapping a state to an energy value. The lowest value
of the Hamiltonian’s energy spectrum is referred to as its ground state. The
adiabatic theorem [8] states that a quantum system with a time-dependent
Hamiltonian that is initially in a certain energy level tends to stay at the same
level, provided that the Hamiltonian is evolved slowly enough. H(t) is a linear
interpolation of Hamiltonians H0 and HP , as illustrated in Equation (2) [17].
H0 is an initial Hamiltonian with a simple to prepare ground-state. HP is a
problem-specific Hamiltonian whose ground-state encodes a solution.

H(t) = (1− t

T
)H0 +

t

T
HP

s= t
T= H̃(s) = (1− s)H0 + sHP (2)

If a parameter s = t
T with s ∈ [0, 1] is introduced then it is possible the

right hand side of Equation (2). The introduction of such a parameter allows
for the Schrödinger equation to be expressed in terms of s as described in
Equation (3), where the fraction dt

ds is usually described as a delay factor ̺(t)
that controls the Hamiltonian’s rate of change [13].

d

ds
|ψ((s))〉 = −i dt

ds
H̃(s)|ψ(s)〉 = −i̺(s)H̃(s)|ψ(s)〉 (3)

Let the instantaneous eigenstates and eigenvalues of H̃(s) be defined as de-
scribed in Equation (4) [17], where |l; s〉 denotes the instantaneous eigenstate
associated with energy level l at time s and with E0(s) ≤ E1(s) ≤ · · · ≤
EN−1(s) (index l = 0 represents the lowest energy level of the system, i.e. the
ground state).

H̃(s)|l; s〉 = El(s)|l; s〉 (4)



4 Lúıs Tarrataca

The adiabatic theorem states that if the gap g(s) = E1(s) − E0(s) is greater
than zero ∀s ∈ [0, 1], then evolving the system for time s will produce a state

|ψ(s)〉 that is very close to the instantaneous ground state of H̃(s), provided
that limT→+∞ |〈l = 0; s = 1||ψ(T )〉| = 1. 1 However, practical computation
is not compatible with infinite running times. As a result, it is crucial to
determine an appropriate lower bound for the evolution time allowing for
adiabacity. The adiabatic theorem states that choosing a delay schedule ̺(s)

with the form ̺(s) ≫ || d
ds H̃(s)||2
g(s)2 is sufficiently slow for the evolution to remain

adiabatic. Unfortunately, g(s) is often a difficult task for most Hamiltonians.
In those cases the minimum gap gmin = min0≤s≤1(E1(s) − E0(s)) is used
instead. As noted in [13,17] the numerator is proportional to N , as a result,
it is often customary to consider a time T ≫ 1

g(s)2 or T ≫ 1
g2
min

.

3 Current approaches to quantum NAND tree evaluation

Given the adiabatic theorem, a natural question arises: how can the value of
a NAND tree be assessed. One possibility would be to try to devise a method
based on the corresponding adjacency matrix H . In the case of undirected
graphs, such as trees, this type of matrices are symmetric which also implies
that the operator is hermitian. This method would require a formal analysis
of the operator in order to try to determine if any kind of useful information
could be encoded into the eigenstates. Specifically, we would need to consider
how the spectrum of operator H̃(s) with HP = H would be affected depending
on whether the tree evaluated to true or false.

As illustrated by the current literature ([16,4]), there is no trivial method to
do this. Furthermore, it is often a complex task to determine which eigenstates
convey useful information. Consequently, it is preferable to try to capitalise
on existing methods for quantum NAND tree evaluation and assess their re-
spective potentials for adiabatic mappings. There are essentially two methods:
one based on discrete-time [4] and another relying on continuous-time [16] .
Section 3.1 focuses on the former whilst Section 3.2 discusses the latter.

3.1 Discrete-time NAND Trees

The discrete procedure is based on a random walk on an extended graph
containing a binary NAND tree and two additional nodes besides the root r,
respectively, r′ and r′′. Leaf vertices evaluating to 1 act as probability sinks
and the transition probabilities at r′ are biased towards the rest of the tree.

1 Although this formulation requires a strictly greater than zero gap, subsequent version
of the theorem were developed without the traditional gap condition [5]. The remainder of
this work focuses on the well-established original method.
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Controlling these transitions is operatorH |v〉 = hpv|p〉+
∑

c hvc|c〉 representing
a symmetric, weighted adjacency matrix of the graph of the tree and the two
additional nodes [4], where p is the parent of node v and the c represent a child
of v. The weights for most part of the graph depend on the structure of the tree
and have value hpv = (sv/sp)

1/4, where sk represents the number of inputs
of the sub formula under node k. The authors are able to demonstrate that
when the tree evaluates to zero, then there exists a zero-energy eigenvector
|a〉 with an overlap on r′′, i.e. 〈r′′|a〉 ≥ 1/

√
2 . If the tree evaluates to 1 then

any zero-energy eigenstates have no overlap with r′′. However, there may still
exist other zero-energy eigenstates supported on other nodes. After

√
N steps

of the quantum walk it is possible to perform quantum phase estimation to
determine the value of the tree. The tree has value zero iff if the measured
phase is 0 or π.

Although this method is able to encode information regarding the value of
the tree on zero-energy eigenstates, at any specific point in time there may
be several of such states, with not all of them conveying useful information
regarding the value of the tree. Accordingly, basing any adiabatic method on
such a procedure would be inherently problematic. This means that it is better
to consider other alternatives to such a procedure.

3.2 Continuous-time NAND Trees

The continuous-time algorithm of [16] employs a wave-packet alongside a graph
pathway with r labelling sites. The inverted NAND tree is connected to the
pathway at index r = 0. An additional line of nodes is attached alongside
the leafs. If an input has value one, a connection is established between the
corresponding leaf and the additional node. Otherwise, the leaf remains un-
connected. The algorithm constructs a plane wave packet |ψ(0)〉 corresponding
to a right-moving packet that starts on the left of the pathway, with energy
E(θ) = −2 cosθ, for θ > 0, and that propagates with speed two. By employ-
ing quantum scatter theory the authors were able to characterize the energy
eigenstates, |E〉, of |ψ(0)〉. This led to the conclusion that the packet contin-
ues moving to the right if the transmission coefficient of the scatter process,
respectively T (E), is approximately zero.

Further examination revealed that the transmission coefficient is a function
of the amplitude ratio between the nodes r = 0 and the root of the tree as
described in Equation (5).

T (E) =
2i sin θ

2i sin θ + y(E)
, y(E) =

〈root|E〉
〈r = 0|E〉 (5)

The authors were also able to demonstrate that for states with energy close
to zero, respectively E → 0+, y(E) assumes one of two possible values, either
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y(E) = 0 or y(E) = −∞. At the core of such an analysis of the tree is a
subgraph where each node is connected to two nodes above and one below, with
the exception of the top and the bottom of the overall graph. This subgraph
is illustrated in Figure 1.

D

CB

A

Fig. 1: The core subgraph of the binary NAND tree where every node is
connected to two nodes above and to one below, with the exemption of the
top and bottom layers (adapted from [16]).

Let a, b, c and d be the amplitudes of, respectively, the nodes |A〉, |B〉, |C〉
and |D〉 at an eigenvector |E〉. Furthermore, let H be the negative adjacency
matrix [19]. Applying H at node A results in the value Ea = −b − c − d.
From these equations it is possible to derive Equation (6) which represents a
recursion based on the ratios Y = a/d, Y ′ = b/a and Y ′′ = c/a.

a

d
= − 1

E + b
a + c

a

(6)

The connections between input variables x1 and x2 alongside their respec-
tive implications on the transmission factor are illustrated in Table 1. Notice
that the transmission coefficient of Equation (5) assumes a behaviour that is
identical to the NAND gate

x1 x2 Y ′ Y ′′ limE→0+ Y T (E) x1 ∧ x2
0 0 − 1

E
− 1

E
0 1 1

0 1 − 1
E

E

1−E2 0 1 1

1 0 E

1−E2 − 1
E

0 1 1

1 1 E

1−E2
E

1−E2 −∞ 0 0

Table 1: The different connections between binary inputs, amplitude ratio
y(E), transmission coefficient and the equivalence to the NAND gate.

This method has better potential for an adiabatic mapping since zero-energy
states, or at least those “close enough” to them, contain pertinent information
regarding the value of the tree. This contrasts with the discrete method where
zero-energy states also contain important information, but there could be a
large number of them at the end of the procedure.
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4 Adiabatic mapping

The continuous-time method offers the best potential for a successful mapping.
However, a significant number of issues need to be addressed. The first of
these issues is to consider what happens with the spectrum of the adjacency
matrix representing the extended graph. Section 4.1 discusses these matters
and also presents arguments for a spectrum remapping, which is presented in
Section 4.2; Section 4.3 discusses why such a mapping is still in agreement with
the NAND gate; Section 4.4 discusses the case where H̃(s) ≈ H2

P ; Section 4.5
presents arguments for not performing the complete time evolution. Section 4.6
discusses the numerical analysis of the gap. The overall details of the adiabatic
mapping procedure are presented in Section 4.7.

4.1 Tree Spectrum

The Hamiltonian NAND tree quantum algorithm relies on computational and
scattering properties. However, it is not clear how one should go about mim-
icking the quantum scattering that occurs in the original method in an adia-
batic fashion. With the adiabatic procedure we have the possibility to either
minimise or maximise an energy function, depending on how the problem is
formulated. This means that it is important to be able to encode in these states
practical information. As a result, any possible adiabatic method for NAND
tree evaluation needs to consider the spectrum of the associated Hamiltonian
and how it is influenced by the results of the evaluation. From Section 3.2 we
know that the extended adjacency matrix allows for the amplitudes to recurse
down the tree in accordance with NAND logic. Accordingly, rather than try-
ing to mimic the exact behaviour of the continuous-time method we will focus
instead on what happens with energy levels close to zero.

Doing this requires a careful examination of the spectrum of the tree. Trees
are bipartite graphs which have the interesting property that its spectrum is
symmetric around zero. More specifically, suppose that the bipartite graph τ
has an eigenvalue λ of multiplicity m(λ). Then −λ is also an eigenvalue of τ ,
and m(−λ) = m(λ) [7]. The addition of the auxiliary node r = 0 connected
to the root does not alter these properties since the graph remains bipartite.
Let S denote the spectrum of the tree. An adequate representation of S is
S = {−λk,−λk−1, . . . , λ0, . . . , λk−1, λk}, where k is some constant and λ0
represents the middle of the spectrum. The existence of λ0 depends on whether
or not the tree has zero-energy eigenstates.

From the perspective of adiabatic quantum computation this raises an impor-
tant issue. Namely, the adiabatic procedure will return a λ-energy state that is
different than zero, either maxλ S or minλ S, depending on how the problem is
formulated. However, in the context of NAND tree evaluation we are interested
in examining those states with energy zero or close to zero. This involves two
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important aspects: (i) the existence of zero-energy eigenstates and (ii) how to
obtain those zero-energy eigenstates at the end of the adiabatic procedure. We
will address the former immediately and leave the latter to Section 4.2. The
existence of zero-energy eigenstates can be demonstrated given the extended
adjacency matrix of the tree plus node r = 0.

Proof: In order to prove that there will exist a zero-energy state please consider
an Hilbert space, as described in [16], of dimension

∑d
k=0 b

k + bd + 1 capable
of accommodating the original tree, a base node r = 0 and an auxiliary line of
input nodes. Figure 2 exemplifies: (i) the extended graph of a NAND tree asso-
ciated with an additional line of nodes representing the input set {0, 1, 0, 1} and
evaluating to False; and (ii) the corresponding 12×12 adjacency matrix whose

magnitude is

{√
1
2

(
5 +

√
21
)
, 12
(
1 +

√
5
)
, 1, 12

(√
5 − 1

)
,
√

1
2

(
5−

√
21
)
, 0

}
.

r = 0

2

3 4

5 6

10

7 8

129 11 


0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0




Fig. 2: A tree example alongside the respective adjacency matrix

Let H represent the adjacency matrix of the subgraph of Figure 1. This sub-
graph is important since every tree ultimately funnels the recursion amplitudes
through a similar structure. In addition, it also serves to demonstrate the ex-
istence of zero-energy eigenstates. Let HC = |A〉 (〈B|+ 〈C|+ 〈D|), then it
is possible to construct an eigenstate in such a way as to cancel amplitudes
resulting in a zero energy state, e.g.:

• HC(|B〉 − |C〉) = (|A〉〈B| + |A〉〈C| + |A〉〈D|)(|B〉 − |C〉) = |A〉 − |A〉 = 0;

• HC(|B〉 − |D〉) = (|A〉〈B| + |A〉〈C| + |A〉〈D|)(|B〉 − |D〉) = |A〉 − |A〉 = 0;

• HC(|C〉 − |D〉) = (|A〉〈B| + |A〉〈C| + |A〉〈D|)(|C〉 − |D〉) = |A〉 − |A〉 = 0;

Furthermore, the same type of analysis can be performed when dealing with
input states. Let S := {xk = 0, ∀k ∈ [0, 2n − 1]} denote the set of input
states xk with zero value. Recall that the input nodes are connected to the
corresponding parents if they have an input value of 1, otherwise no connection
is made in the corresponding indexes of the adjacency matrix. As a result, the



Challenges of adiabatic quantum evaluation of NAND trees 9

corresponding adjacency matrix will have |S| lines and rows of zeros which,
in the presence of the appropriate eigenstates, will guarantee the existence of
zero-energy states. This can be perceived by considering the adjacency matrix
HG of a graph G with the form described in Equation (7), where E represents
the set of edges of the tree.

HG|xk〉 =




∑

(u,v)∈E

|u〉〈v|


 |xk〉 (7)

Assuming |S| > 0, then for ∀xk ∈ S the inner product 〈v|xk〉 present in
each individual term of the summation will be zero. This is a consequence of
∀(u,v)∈E v 6= xk, thus resulting in zero-energy states. Evidently, this condi-
tion does not hold when all inputs have value one. Determining whether or
not all inputs are set would require O(N) time. Theoretically, this posses a
problem. There are two approaches that can be taken regarding this issue.
First, most graph-based quantum algorithms work on the assumption that
the adjacency matrix encoding the edges of the graph is somehow provided.
Building such a structure has an inherent computational cost of O(N). As
a result, the methods developed so far have focused on evaluating the cor-
responding adjacency matrix after it has somehow been obtained. Verifying
whether all inputs are one could be factored in whilst constructing the corre-
sponding adjacency matrix, thus having negligible implications in overall time
execution. Alternatively, the costs associated with such a verification could be
mitigated by assuming that the algorithm would output a correct answer with
high probability for large N .

4.2 Spectrum Remapping

Given the wide spectrum of HP and the fact that the relevant information is
contained in E = 0 it is natural to question how exactly is it possible to devise
an adiabatic method that focuses specifically on those states. The main issue
with the adiabatic procedure is how exactly to “zoom in” on certain states that
are known to contain important information but do not necessarily correspond
to either minimums or maximums. Unfortunately, there is no trivial way to
develop such a mechanism since it requires a spectrum remapping.

However, it is possible to focus precisely on those cases where we are interested
in obtaining the zero-energy states. Ideally, it would be desirable to formulate
a method where the negative eigenvalues λ would be mapped to the positive
spectrum by some η, i.e. |ηλ|, ∀λ < 0. The same procedure could also be
applied to positive values, i.e. |ζλ|, ∀λ > 0. The outcome of such a procedure
would be a remapping of the spectrum. This would result in the set of non-
negative real values, including zero, i.e. R+

0 assuming a real-valued spectrum.
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(a) H̃(s) = sH0 + (1− s)HP

0.2 0.4 0.6 0.8 1.0
s

1

2

3

4

EHsL

(b) H̃(s) = sH0 + (1− s)H2
P

Fig. 3: Spectrum differences for a randomly generated NAND tree (N = 4).

The minimum energy of the spectrum would thus be zero, which is precisely
the set of eigenstates we are interested in analysing. This can be performed if
instead of applying operator HP = H we apply H2

P = H2 which will perform
the aforementioned remapping but with η = ζ = λ. More specifically, given an
operator H with eigenvector |ψ〉 and associated eigenvalue λ, then |ψ〉 is also
an eigenvector of H2 with corresponding eigenvalue λ2. Furthermore, because
H is Hermitian H2 will also have this property. The results of using HP and
H2

P in the interpolation H̃ for an adjacency matrix representing a binary tree
of depth 2 are presented, respectively, in Figure 3a and Figure 3b. For the
full evolution time, s = 1, the spectrum of the interpolation for Figure 3a is
symmetric since at this time H̃(s) = HP = H .

Let H0 have the form H0 = I − |ψ〉〈ψ|. It is also interesting to point out that
in the case of Figure 3a there are several energy levels that cross, which would
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immediately pose a problem in the traditional formulation of the adiabatic
theorem. However, in this specific case |E1(s) − E0(s)| > 0, which is not
always the case. Furthermore, at the end of the evolution procedure illustrated
in Figure 3a the spectrum exhibits the characteristic symmetry of bipartite
graphs. Although it is not possible to determine a general expression for E0(s),
simulations for search spaces up to 32 input bits appear to indicate that in
most cases E1(s) = 1 − s. In addition, it should also be stated that, in a
general manner, the spectrum for H2

P appears to follow curves similar to the
ones illustrated in Figure 3b.

One should also be careful to mention that in the case of Figure 3b the two
lowest eigenvalue curves coincide with each other only at s = 1. This is rem-
iniscent of the case studied in [2] where it was shown that it was possible to
devise a spectrum where an exponentially small gap existed very close to s = 1.
Such a gap would preclude the existence of an efficient adiabatic algorithm.
This problem was solved in [14] by randomising the choice of H0.

4.3 NAND Evaluation for H2
P

Although employing H2
P succeeds in remapping the spectrum to a set of non-

negative values one still needs to consider if the amplitudes continue to recurse
down the tree in accordance with the NAND gate. This can be performed by
first demonstrating that the overall recursion is still maintained for H2

P when
applied to node A from Figure 1 by studying how the different amplitudes
behave in regard to the eigenvectors. Equation (6) illustrates this procedure,
which follows the same methodology from [16].

〈A|H2
P |E〉 =

{
(−〈B| − 〈C| − 〈D|)HP |E〉 = E(−b− c− d)

〈A|HPE|E〉 = E〈A|HP |E〉 = E2a

⇔ E(−b− c− d) = E2a

⇔ a

d
=

−1

E + b
a + c

a

(8)

Equation (8), describes the overlap existing between the eigenvector |E〉 and
the state that results from applying operator H2

P to state A. There are two
possible ways to describe such a transition, which enables us to characterize
the recursion behaviour, which is the same of Equation (6). Once the over-
all recursion is obtained one merely needs to show that the overall values for
Y ′ and Y ′′ described in Table 1 are still observed. This procedure can be
performed by focusing on either node |B〉 or |C〉 and demonstrating demon-
strating whether the input node is connected or not. Accordingly, lets consider
what happens with node B in the absence of the corresponding edge to the
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associated input node. This procedure is illustrated by Equation (9), matching
the original behaviour of HP .

〈B|H2
P |E〉 =

{
〈B|HPHP |E〉 = −|A〉HP |E〉 = −Ea
〈B|HPE|E〉 = E|B〉HP |E〉 = E2b

⇔ E2b = −Ea

⇔ b

a
= − 1

E
(9)

The same rational can be applied to verify the behaviour when an input node
I1 is connected to node B yielding Equation (10) and Equation (11).

〈B|H2
P |E〉 =

{
〈B|HPHP |E〉 = (−|I1〉 − |A〉)HP |E〉 = (−i1 − a)E
〈B|HPE|E〉 = E|B〉HP |E〉 = E2b

⇔ E2b = (−i1 − a)E

⇔ b

a
= − 1

E + i1
b

(10)

〈I1|H2
P |E〉 =

{
〈I1|HPHP |E〉 = −|B〉HP |E〉 = −Eb
〈I1|HPE|E〉 = E|I1〉HP |E〉 = E2i1

⇔ −Eb = E2i1

⇔ i1
b
= − 1

E
(11)

By combining both of these expression it is possible to derive the E
1−E2 fraction

associated with a connection to an input node. Thus the overall behaviour for
H2

P is the same as for HP and the amplitudes continue to recurse down the
tree in accordance with the NAND gate. As a result, the ratio Y = a/d, whose
values will be present in the eigenstate, will continue to encode information
about the value of the tree in H2

P .

4.4 The case for H̃(s) ≈ H2
P

Fortunately, we do not need to perform full adiabatic evolution since [16]
proved that the system starts exhibiting its properties when E ∈]0, 1

256N [.
Accordingly, this means that it is possible to stop the adiabatic evolution as
soon as the ground state of H̃(s), respectively E0(s), reaches the required
threshold. Notice that there are two possible cases when E0(s) ≤ T , namely,
at the beginning and end of the evolution. Intuitively, the former will exhibit
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mostly behaviour associated with hamiltonian H0, whilst the latter, will result
in an interpolation that is closer to H2

P (for s > 1/2). This intuition can be
demonstrated from a mathematical perspective by proving that the overall
interpolation remains close enough to the behaviour of the NAND gate when
s approaches value 1, i.e. s → 1−. Initially, the interpolation H̃(s) starts out
with the n-dimension Hamiltonian H0 = I − |ψ0〉〈ψ0|, which can be expressed
as presented in Equation (12), where δ = 1− 1√

N
and σ = 1√

N
.

H0 =




δ σ . . . σ
σ δ . . . σ
...
...
. . .

...
σ σ . . . δ


 (12)

Please consider the core graph element from Figure 1 but with an additional
line of input nodes i1 and i2. At any given point in time s the interpolation
can be perceived as adding a certain amount of noise to HP . Since our target
Hamiltonian is an adjacency matrix, the noise introduced can be perceived
as altering the connections of the tree by introducing certain edges that were
not initially present. As a result, the overall behaviour of H̃(s) when applied
to eigenstates can be described as illustrated in Equation (13), where: (i) the
lower-case letters represent the amplitudes at the respective nodes; and (ii)
E(s) represents the energy at time s of eigenstate |E〉.

lim
s→1

〈A|H̃(s)|E〉 =
{
lims→1[(1 − s)σ − s](b+ c+ d) + (1− s) (δa+ σ (i1 + i2))
lims→1E(s)a

=

{
−(b+ c+ d)
E(1)a

⇔ a

d
= − 1

E(1) + b
a + c

a

(13)

In the specific case of our adiabatic evolution procedure where H2
P = H2 then

E(1) = E0(1) = 0+, i.e. given that the system will remain in the ground state,
the energy E(s) will be the energy E0(1) which will be close to zero. Thus,
Equation (13) exhibits the same behaviour as Equation (6), despite using an
interpolation Hamiltonian. Accordingly for s → 1 the amplitudes continue to
recurse down the tree in accordance with NAND logic.

4.5 The case for s ≈ 1

The adjacency matrix H starts exhibiting its NAND properties when E ∈
]0, 1

16
√
N

[. As a result we want to try to determine what is the gap when
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E0(s) reaches 1
256N for s ≈ 1. Because it is not possible to determine an

overall expression for g(s) the only viable route is to perform some type of
numerical analysis. In this case we opted to examine the average gap. The
overall approximate results for the minimum gap gmin obtained when E0(s)
reaches 1

256N for s ≈ 1 are presented in Table 2. Also included in the table
are: (i) the values for the respective minimum gap g′min that is observed in
the standard adiabatic search procedure; and (ii) the ratio between minimum
gaps for our procedure and the general search mechanism in difference.

N = 2 N = 4 N = 8 N = 16

gmin 0.000586502 0.000259816 0.000138516 0.0000486609

g′min 0.707107 0.5 0.000138516 0.25

g′min
gmin

1205.63 1924.44 2552.43 5137.59

Table 2: The minimum gaps when considering several search space dimensions,
respectively N = {2, 4, 8, 16} for: (i) HP when E0(s) reaches 1

256N for s ≈ 1
respectively gmin; and (ii) the standard adiabatic search procedure, respec-
tively g′min. Also included is the ratio between both minimum gaps in order
to demonstrate the growth between instances.

The first thing that draws immediate attention is the fact that the minimum
gaps are very small, which was to be expected when one considers the original
curve from Figure 3b. In the original quantum adiabatic search procedure the
minimum gap was N− 1

2 . This contrasts sharply with the values obtained for
gmin which are significantly smaller and appear to be getting smaller with
each instance of the dimensions considered. Given the reduced number of data
points attempting to perform a fit will not produce a convincing result. There-
fore, it is important to investigate other dimensions in order to determine if
anything can be said about the impact of gap on performance.

4.6 Analysing the gap for H2
P

Analysing the gap is crucial in order to determine an appropriate running time.
Unfortunately, performing simulations is enough to demonstrate that there is
no clear general expression for the gap condition. This can be exemplified by
presenting the minimum gaps for the interpolations consisting of the bits {0, 0}
and {1, 1} which are described in Table 3.

Lengthier bit sequences, and the associated increase in the number of dimen-
sions, result in more complex expressions. This contrasts with the local adia-
batic quantum search algorithm where the gap expression could be determined
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x1 x2 g(s)

0 0 1
2

(√
12s2 − 4s+ 1 − 2s− 1

)
− s+ 1

1 1 1
6

(√
3
√
55s2 − 22s+ 3 − 9s− 3

)
−

√
3 s+ s+ 1

Table 3: Illustration of the gaps for two different bit sequences.

in a simple manner. As a result, the most that can be performed is a set of
numerical simulations that try to give an overview of the minimum gap. How-
ever, given the exponential growth, in time and space, that is associated with
Hilbert spaces of dimension 2n, where n is the number of bits, we were only able
to evaluate search spaces up to and including 16 bits. Furthermore, for n = 16
we opted to evaluate 50 random instances. This decision was made given the
already considerable dimensions involved and their respective implications on
computational time (similar to the one performed in [17] and [15]).

The data results from this procedure are illustrated in Figure 4 which plots
the average gap condition gN (s), where N is the number of inputs along-
side the overall average gap condition for all the input instances considered,
respectively, gavg(s).
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Fig. 4: Results for gavg for all inputs consisting of 2, 4, 8 and 16 bits.

A number of observations can be immediately performed. First, the numerical
plots exhibit relatively small variation with each increase in problem space
size. Secondly, there exists a close resemblance between the data points and
the exponential function with a negative power. This behaviour hints at the
possibility of performing some-type of fitting. As is the case with any type of
fitting procedure there may be multiple hypothesis which may not necessarily
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correspond to the original function. One possibility is to attempt to perform a
fit based on a polynomial gap decrease. However, finding a successful polyno-

mial fit would have implications for the P
?
=NP question. As a consequence, an

exponential decay represents a more realistic scenario for potential fits.

More specifically, given gap gk(s) it is possible to contemplate a fit based on
function a+b−s where a and b are constants and s is the variable. The specific
numerical results for such a fit are described in Table 4 (alongside fits for
a+b−

s
2 and a+b−

s
3 ), whilst Figure 5 plots the fit of gavg(s) against the average

data points for the dimensions considered. As a result, given the apparent good
correlation between data points and the fit function, one possible hypothesis
is for the gap function to exhibit this type of exponential decay.

a + b−s a + b
−

s
2 a + b

−
s
3

a b a b a b

g2(s) 0.0118293 89.2008 0.0118293 7956.79 0.0140743 11313.5

g4(s) 0.0165725 97.3933 0.0165725 9485.46 0.0212065 10241.4

g8(s) 0.0168446 100.754 0.0168446 10151.3 0.0365949 4285.37

g16(s) 0.0041261 141.183 0.00412613 19932.6 0.0310915 7252.96

gavg(s) 0.0117078 103.268 0.0117078 10664.4 0.023929 8150.41

Table 4: Different fit values for functions a+ b−s, a+ b−
s
2 and a+ b−

s
3 .

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

gavg

a + b-
s

3

a + b-
s

2

a + b-s

Fig. 5: The fit for gavg(s) for based on: (i) functions a + b−s, a + b−
s
2 and

a+ b−
s
3 , where a and b are constants and s is the variable; and (ii) the average

data points for the dimensions considered.

From [9] we know that adapting the evolution rate of each infinitesimal time
interval such that the evolution remains adiabatic allows one to obtain the
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original quadratic speedup. Applying the same principle to our gap fits allows
us to obtain a general expression for time t, respectively Equation (14).

t =

∫ 1

0

1

g(s)2
ds =

1
ab+1 + log (ab+ 1)− 1

a+1 − log (a+ 1)

a2 log (b)
(14)

Notice that the overall time t is a function of terms a and b. As a result, this
expression can be further simplified since we know from the numerical data
in Table 4 that the values for a are close to zero. Accordingly, by determining
the appropriate limit for a → 0 it is possible to find a simpler form for the
overall time, as illustrated by Equation (15).

t ≈ lim
a→0

(
1

ab+1 + log (ab+ 1)− 1
a+1 − log (a+ 1)

a2 log (b)

)
=
b2 − 1

2 log b
⇒ O

(
b2

log b

)

(15)

We opted to take into account only the most factors of Equation (15) since
these are the ones that matter the most from a computational complexity
perspective. The end result is a function of b, which, from Table 4, appears to
be the most relevant variable in the exponential fit. Accordingly, determining
an appropriate end result requires an adequate evaluation of how b is growing.
Intuitively, for the instances considered, the data from Table 4 appears to be
showing that b is growing quicker than linearly but less than the square power.
As a result, in a worst-case scenario, if parameter b is modelled as a function
of N then this would mean that b would be growing quadratically with N . Our
choice for modelling b as a function ofN is based on the fact that the dimension
of the search space is the most relevant factor from a computational complexity
perspective. Consequently, the final complexity of the adiabatic evolution is

O
(

N4

logN2

)
, which represents an overall performance penalty of N3/(2 logN)

when compared against the classical O(N) time.

This penalty is mostly a consequence of the term N4, which itself is a conse-
quence of the g(s)2 factor employed during local adiabatic evolution. Clearly,
the choice of exponent for the gap function has a crucial impact on the per-
formance of the algorithm. As a result, if a fit of the type a + b−s/2 is used
instead (please refer to Table 4) then this would mean an overall complexity of

O
(

N2

logN2

)
. This value is still worse than the classical method, but represents

an improvement over the initial bound.

The same type of reasoning can be used to assess the viability of any fit of
the type a+ b−

s
k with k ∈ Z

+
1 . Figure 5 for the set illustrates the fits for the

set of gaps {a+ b−s/2, a+ b−s/3, a+ b−s/4}, which would result, respectively,

in complexities O(N), O( N2

logN2 ), O(
N4/3

logN2 ) and O(
N

logN2 ). Figure 6 illustrates
how these complexities fare against each other. Notice that for k = 3 the



18 Lúıs Tarrataca

quantum fit starts exhibiting slightly better performance. However, as Table 4
demonstrates, for k = 3 it becomes difficult to interpret how the base of the
exponent, respectively b, might be growing as a function of the dimension of
the search space N . Increasing k beyond this point only serves to exacerbate
the problem, with numerical simulations demonstrating the same type of dif-
ficulties with interpreting how b might be a function of N . Consequently, it
may be conjectured that this behaviour could be indicative that the fit is no
longer valid, which would imply worse than classical performance.

20 30 40 50 60
N

50

100

150

OHNL

N

log N2

N
4

3

log N2

N2

log N2

N

Fig. 6: Complexity functions plotted against N ∈ [0, 64].

4.7 The overall procedure

Notice that although we know that H2
P behaves in accordance with the NAND

gate for E = 0+ we have yet to specify how could a potential adiabatic map-
ping be performed. In particular, once the final measurement of the quantum
register is performed how does this translate to an evaluation value? In order
to answer this question we would like to draw attention again to Table 1 and
right hand side of Equation (5). In particular if the tree evaluates to:

– True then 〈root|E〉
〈r=0|E〉 = 0, which means that |〈r = 0|E〉|2 ≫ |〈root|E〉|2. This

means that the probability of measuring the node r = 0 is far greater than
that of the root node.

– Alternatively, if the tree has False value then 〈root|E〉
〈r=0|E〉 = −∞. As a result

this implies that |〈root|E〉|2 ≫ |〈r = 0|E〉|2.
The overall procedure for adiabatic tree evaluation is described in Algorithm 1
which receives as input a graph τ , consisting of: node r = 0, the original in-
verted tree and an additional line of nodes, alongside the values T and R
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representing, respectively, the adiabatic evolution time and the number of
times to repeat the experiment. The algorithm starts out by building the ad-
jacency matrix employed in [16] in Line 2 and determining the corresponding

dimension in Line 3. If everything is built correctly then l =
∑d

k=0 b
k + bd+1.

The algorithm then proceeds to building the initial superposition state |ψ0〉
(Line 4) followed by the H0 operator, respectively Line 5. The overall inter-
polation is built in Line 6. The subspace operator is constructed in Line 7.
In order to evaluate the result of the multiple experiments we also define and
initialise to zero variables δroot and δr=0 in Lines 8-9.

Due to the probabilistic nature of quantum computation there is the need
to repeat the experiment R times in order to assess with reliability the end
result of the procedure. The path to obtain a good result for R can be found
in [15]. However, given the set of possible values for Y (either −∞ or 0) and the
corresponding impact on the behaviour of the amplitudes for the root node and
the r = 0 a fair assessment is that small values of R will produce a sufficiently
good result. Each experiment iteration described in Line 10 covers a sample s
of the experiment and evolves the system for time T in Line 11.

Once the evolution is concluded a measurement is performed on the subspace
of the root node and node r = 0. This action is described in Line 12, where M
refers to the measurement operator. Each sample s requires one to register the
outcome of the experiment in the appropriate δ variable (Lines 13-16). The
procedure concludes by performing a test in order to determine which node
was obtained the most and outputting the appropriate result for the evaluation
procedure (Lines 17-20).

Algorithm 1 Adiabatic Evaluation of the NAND tree
function f(τ, T, R)

HP = adjacencyMatrix[τ ]
l = Length[H]

|ψ0〉 = 1√
l

∑l−1
x=0 |x〉

H0 = Il×l − |ψ0〉〈ψ0|
H[t] = (1− t)H0 + tH2

P

P = |root〉〈root|+ |r = 0〉〈r = 0|
δroot = 0
δr=0 = 0
for s = 1 to R

|ψT 〉 = e−i
∫ T
0 H[t]dt.|ψ0〉

ξ = MP |ψT 〉
if ξ == |root〉

δroot = δroot + 1
else

δr=0 = δr=0 + 1
if δr=0 ≫ δroot

return TRUE
if δroot ≫ δr=0

return FALSE
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5 Conclusions

In this work we presented a numerical study of the evaluation of NAND trees
for up to 16 bit inputs through adiabatic quantum computation. Although
the question of how to evaluate trees in an adiabatic manner efficiently, at
least in comparison with existing quantum methods, remains an open one
it is interesting to observe that there exist significant viability issues with
developing mappings based on known algorithms. Of the issues encountered,
perhaps the most important is the exponential gap decrease that is associated
with the Hamiltonian composed of the adjacency matrix. This rapid decrease
in gap is of such an order that even adapting the rate of evolution at each
infinitesimal time interval is not enough to yield an improvement, or for that
matter, even an equal running time. This assumes an exponential decrease
whose basis can be expressed as a function of the dimension of the search
space.

This seems to provide further evidence to the informal argument that compu-
tationally hard problems appear to have exponentially small gaps. Although,
in this case, the gap derived from H2

P is even smaller than what would have
been expected. In spite of the fact that, theoretically, it is possible to devise
exponential fits that are able to outperform the classical variants the plausi-
bility of these can be questioned. The exponential space required to represent
the adjacency matrix also constitutes an inherent problem that is often times
neglected to be referred. This sharply contrasts with Grover’s algorithm that
requires O(log2N) space.

Finally, we would like to emphasize that none of the aforementioned argu-
ments rule out the theoretical possibility of devising an adiabatic quantum
NAND tree evaluation algorithm more efficient than its classical counterparts.
It only means that attempting to leverage existing methods does not appear
to represent a viable strategy and may therefore require a completely different
approach.
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