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Abstract—Computer models have been an important tool to
determine soil bulk density. This soil property is fundamental to
estimate soil carbon reserves and consequently to understand the
global carbon cycle. The estimation of soil bulk density is not a
trivial task since it demands an intensive and often impractical
work. The purpose of this paper is to evaluate the performance
of a pedotransfer function against an Artificial Neural Networks
to estimate soil bulk density for soils at Brazilian biomes. The
first one consists of a linear model composed of a Least Square
method. The latter employs a robust committee of multilayer
perceptron networks and a model selection procedure based
on k-fold cross-validation. The data are composed of 3404 soil
layers distributed in different Brazilian regions and with different
uses. The proposed non-linear regressor presents higher precision
when compared to the linear model, and requires less information
to do so. Additionally, the developed solution brings to light the
assumed relationship between soil bulk density and some soil
chemical properties.

Index Terms—Soil properties, Soil bulk density, Pedotransfer
functions, Multilayer perceptron artificial neural network.

I. INTRODUCTION

Increasingly, there is a demand for information to assist

sustainable agriculture and improve the land quality. Accord-

ing to Budiman et al. [1] the usefulness of soil survey is

not limited to producing data on inventories and geographical

distribution of soil classes, but also to provide the quantitative

spatial distribution of soil properties (such as clay content, soil

density, saturated hydraulic conductivity, and available water

capacity).

Among these properties, one of the most important is soil

bulk density. This property is a physical characteristic that

allows the determination of: soil hydraulic potential, root

growth and particularly the specification of the amount of Soil

Organic Carbon (SOC) stock [2]–[4], so that it can act as

a source of atmospheric CO2 and influence the draining of

greenhouse gases [5], [6].

The determination of soil bulk density (Ds) is a hard task

that requires time-consuming laboratory analysis [2]. Another

difficulty is related to the fact that Ds presents high spatial

and temporal variability [7]. Accordingly, in general, Ds is

not included in soils databases.

Since Ds is difficult to measure, inferential modeling pro-

vides an interesting alternative that surmises the variable of

interest using other more easily measurable ones [8]. Pe-

dotransfer functions (PTFs), based on easily measured soil

attributes, show strong potential to replace Ds measurements

when their direct measurement is not feasible [3].

PTFs are predictive mathematical functions of certain soil

properties, including soil bulk density, which allows estimating

Ds from other soil features more easily measured and routinely

obtained at lower costs. The PTFs fulfill the demands for data

normally available in soil surveys and databases.

According to Qinna et al. [4], PTFs models can be divided

into four types: (1) physical-conceptual modeling approaches;

(2) linear or non-linear regression models; (3) multiple regres-

sion methods and (4) advanced models, such as artificial neural

networks (ANNs). More details on the development and use

of PTFs can be found at [9] and [10].

Some studies tested the performance of available PTFs and

noticed that these functions are somewhat inaccurate when

applied to different environments [11] and [2]. Physical

models need a detailed database and a priori knowledge about

how each soil property affects other properties [6]. Qinna

et al. [4] showed that linear models have low prediction

capabilities in some problems and the non-linear models were

able to significantly enhance the accuracy of the prediction

in comparison to linear models. Advanced models, such as

ANNs, demonstrate a great power of generalization, which

is an attractive characteristic to determine Ds in the different

Brazilian biomes.

This paper proposes to evaluate the performance of linear

and non-linear PTFs to estimate Ds for soils in the Brazilian

territory. Linear and nonlinear regressions are compared. The

latter employs a robust committee of multilayer perceptrons

networks and a model selection procedure based on k-fold

cross-validation.

The paper is organized as follows. Related works are

described in Section II. The notation employed in this paper

is presented in Section III. Section IV describes the Least

Squares Regression model. The proposed solution based on

Multilayer Perceptron ANN is presented in Section V. Section

VI gives the computational experiments and the analysis of the

results. Conclusions and final remarks follow in Section VII.



II. RELATED WORKS

PTFs are an important technique to determine soil proper-

ties. In this context, several works were developed using PTFs

to determine Ds [4], [12]–[15]. In particular, concerning the

Brazilian case, the main works were developed by [2], [3], [6]

[16], [17] and [11].

Benites et al. [3] proposed in their paper a simplified

regression model to predict Ds from available soil properties

present in most biomes. The authors used two data sets: the

first one constructed from the Soil Archives of Embrapa Solos

in Rio de Janeiro, Brazil and the second being an independent

soil dataset organized from the International Soil Classification

Workshops. The proposed model was compared with three

existing estimating models present in the literature. The results

showed that the proposed simplified regression model was

less biased and more accurate compared to the three existing

regression equations.

Barros et al. [16] presented stepwise regression models to

estimate soil bulk density using data on soil carbon and clay

content and pH in water. The results were compared with

those present in the literature and showed that local-based

regressions are the most accurate for estimating Ds upland

forests in the Manaus region.

Boschi et al. [2] evaluate the predictive capability of 25
PTFs available in the literature to estimate Ds in different

regions of Brazil with different metrics. The results showed

that when the observed and estimated bulk density values are

compared, the best results were found with BEN-C and M&J-

B models.

Serqueira et al. [17] investigated the performance of new

PTFs in predicting soil bulk density. The PTFs were created

considering the direction of prediction in the soil profile

(upward and downward) using a tree-based algorithm for

developing the PTFs. The authors showed that the proposed

PTFs are reasonably accurate and have the potential to help

researchers and other users to fill gaps in their database without

complicated data acquisition.

Gomes et al. [11] developed one PTF to estimate Ds in

soils of the Brazilian Central Amazon region. Their model

outperformed the other knowledge literature models. Moreira

et al. [6] proposed a Least-Squares ANN to estimate Ds for

soils in the Amazon Forest area. Although the LS regression is

not robust against perturbations on data, the method presented

enhanced precision when compared with results obtained using

PTFs based on some works present in the literature that use

the same database.

III. NOTATION

The notation employed in this paper is defined as follows.

The input data points are concatenated in the vectors {xi}
n
i=1,

where xi ∈ R
N0×1. The target/output variable is defined by

{di}
n
i=1. The estimated target value is defined as {yi}

n
i=1. The

number of training and test samples is given by ntrain and ntest,

respectively. The operator (·)T denotes transposition.

IV. LEAST-SQUARES REGRESSION

Least squares (LS) regression is a technique widely em-

ployed in the machine learning area, due to its simple formu-

lation, compact form, and efficient closed-form solution [18].

Such features give to LS regression a fundamental status in

data processing and classification [19]. In short, LS prediction

aims to estimate the parameters of a linear model in order

to best fit the observed data, minimizing the sum of squared

residual errors [20], [21]. A popular point of view regards LS

regression as a special case of the more general method of

maximum likelihood [22]. Let X train ∈ R
ntrain×N0 be the data

matrix defined as:

X train ,
[
x1,x2, . . . ,xntrain

]T
. (1)

The purpose of LS prediction is to learn a regression vector

w ∈ R
N0×1 and an offset b ∈ R in order to express

approximately the target vector dtrain ∈ R
ntrain×1 as:

dtrain ≈X trainw + enb, (2)

where en ∈ R
ntrain×1 is a vector whose elements are equal to

one [23].

Although the LS regression is a powerful method provided

with closed-form solution [24], it fails when the input-output

relationship is nonlinear, there are several outliers and/or the

measurement noise is not Gaussian [25]. The former issue is

caused by the misleading assumption of linear relationships

modeling the potential association between the dependent

variable and each independent variable [26]. In order to

overcome such constraint, ANNs could be employed. The

neural architecture employed in this paper is described in the

following section.

V. MULTILAYER PERCEPTRON

A multilayer perceptron (MLP) ANN is a bioinspired ma-

chine learning approach widely employed in a variety of fields,

such as gait recognition [27], long-term forecast of electricity

demand [28], obesity prediction [29], drought forecasting [30],

just to mention a few. An ANN is able to model complex non-

linear relations between the input data and the quantity one is

interested in estimating [31]. The MLP architecture includes

one or more hidden layers, one output, and one input layer.

Each ANN layer presents multiple neurons, connected to other

neurons through synaptic weights (see Figure 1). The state of

each neuron is evaluated by a multiplication and accumulation

procedure, which performs a weighted summation of the

outputs of neurons from the previous layer using synaptic

weights [32].

Let’s define a shallow MLP as a network that presents three

layers: the input one (layer 0), the hidden one (layer 1) and the

output one (layer 2). The excitation vector z(1) of the hidden

layer is defined by:

z(1) , W (1)x+ b(1), (3)

where x ∈ R
N0×1 is the feature (or observation) vector,

W (i) ∈ R
Ni×Ni−1 is the weight matrix, b(i) ∈ R

Ni×1 is the
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Fig. 1. A functional block diagram of a shallow neural network with 3 input
data (in blue), 5 hidden neurons (in red) and one output (in green). Typically,
the output layer is linear in regression tasks, such as the one addressed in this
paper.

ith-layer bias vector, and Ni is the number of neurons at the

ith layer. The activation vector v(1) ∈ R
N1×1 of the hidden

layer can be evaluated from:

v(1) = f
(

z(1)
)

, (4)

where f(·) : R
N1×1 → R

N1×1 is the activation function

applied in an element-wise way. It must be stressed that the

activation function should be nonlinear, otherwise the MLP

degenerates into a LS prediction [33]. Some popular choices

for f(·) are the hyperbolic tangent function, the sigmoid

function, and the rectified linear unit (ReLU) function [34].

For regression problems, a popular empirical training crite-

rion for the model parameters (i.e., weighting matrices W (i)

and bias vectors b(i)) is the mean square error (MSE). Such

criterion is typically minimized by means of classical back-

propagation algorithm (which can be derived from the chain

rule for gradient computation) and its variants [35]. Two dif-

ferent phases (the forward - see Alg. 1 - and the backward one)

compose the classical back-propagation algorithm1 (see Alg.

2), which is based on first-order gradient information [36].

Algorithm 1 Shallow ANN Forward Computation

1: procedure FORWARDCOMPUTATION(X)

⊲ Each column of X is a feature vector

2: Z(1) ←W (1)X +B(1)

⊲ Each column of B(i) is b(i)

3: V (1) ← f
(

Z(1)
)

⊲ The ith column of V (1) is the activation vector

associated to the ith observation vector

4: Y ←W (2)V (1) +B(2)

5: Return Y

⊲ The output vector related to the ith observation

vector is the ith column of Y

6: end procedure

1The algorithms descriptions focus on regression tasks.

Algorithm 2 Shallow ANN Backpropagation Batch Algorithm

1: procedure BACKPROPAGATION(X,D)

⊲ Each column of D consists of target values

2: k ← 0
3: while stopping criterion not met do

4: Call ForwardComputation(X)

5: G
(2)
k ←D − Y

6: ∇
W

(2)
k

JMSE ←
1

#T

∑#T

m=1(dm − ym)
(

v
(1)
m

)T

⊲ #T is the cardinality of the training set

7: ∇
b
(2)
k

JMSE ←
1

#T

∑#T

m=1(dm − ym)

8: W
(2)
k+1 ←W

(2)
k + β∇

W
(2)
k

JMSE

⊲ β is the adjustable step-size

9: b
(2)
k+1 ← b

(2)
k + β∇

b
(2)
k

JMSE

10: E
(1)
k ←

(

W
(2)
k

)T

G
(2)
k

11: G
(1)
k ← f ′

(

Z(1)
)

⊙E
(1)
k

⊲ f ′(·) is the derivative of f(·)
⊲ ⊙ is the element-wise product

12: ∇
W

(1)
k

JMSE ←
1

#T

∑#T

m=1 g
(1)
k,mxT

m

⊲ xm is the mth observation vector

⊲ g
(1)
k,m is the mth column of G

(1)
k

13: ∇
b
(1)
k

JMSE ←
1

#T

∑#T

m=1 g
(1)
k,m

14: W
(1)
k+1 ←W

(1)
k + β∇

W
(1)
k

JMSE

15: b
(1)
k+1 ← b

(1)
k + β∇

b
(1)
k

JMSE

16: k ← k + 1
17: end while

18: end procedure

A. Model Selection Criterion

Since a shallow MLP is chosen for regression purposes,

determining the number of neurons situated in the hidden layer

is a crucial question for its ability to generalize on future data

outside the training set. Such a problem is intrinsically related

to the bias/variance dilemma [37] and to the selection of the

best fitting model from a set of candidate models [8]. The

usage of an excessive number of basis functions will cause

over-fitting, and it is well known that the addition of more

hidden neurons is equivalent to adding more basis functions

in function approximation settings [38]. In short, one must

balance between the complexity of the model and performance

of fit in order to obtain a good generalization [39].

The interesting geometric interpretation described in [40]

provides several useful guidelines for the problem of deter-

mining the number of hidden neurons, but such method can

be only employed to problems with input data dimensionality

inferior to three. Introducing noise to the training vectors

may improve the generalization capability of a network, but

this approach was only demonstrated with preset network

parameters [38], [41].

Cross-validation is a robust statistical technique for esti-

mating the generalization error (or, equivalently, the true risk

function [42]), the most important operational performance of



a trained network [43]. In this paper, k-fold cross-validation

is employed for model selection (i.e., determination of the

number of hidden neurons) purposes [44].

B. Committee Machine

Heuristic and simple ANN design procedures do not exploit

the full potential of neural networks [45]. A committee ma-

chine is able to reduce the performance degradation that may

occur due to the dependency of a specific initialization of an

ANN (which may lead it to a suboptimal local minimum).

This idea can be traced back to 1965 and can be classified

into two major categories depending on whether the final

output involves the input signal or not [46]. In this paper,

a static committee machine for the soil density prediction is

proposed. The algorithm we focus on is classified as static

because it relies on an average-type learning mechanism to

do the integration [46]. The intuition behind the approach

consists of recognizing that a better regressor is formed by

combining multiple weaker regressors and such a combination

is the subject of ongoing intense research [47]. Although an

average or convex combination of the individual estimates of

the regressors can be employed [48], [49], the robustness and

simplicity provided by the median statistic have proven to

excel in robustness against outliers [50]. Accordingly, in this

paper the median of the estimates of P concurrent ANNs will

be employed as the global ensemble estimate2 - see Figure 2.

xi

ANN #1

ANN #2

...

ANN #P

A
g
g
re

g
at

io
n

yi

︸ ︷︷ ︸

committee

Fig. 2. Block diagram of the proposed committee machine. Note that the
aggregation step consists of the median operator.

VI. RESULTS

The data collection used in this paper consists of 3404
soil layers distributed in different Brazilian regions and with

different uses (pasture, native vegetation, etc). The data were

obtained with Soil Department of UFRRJ. The data presented

2Note that the number of hidden neurons of each neural regressor will be
chosen from the k-fold cross-validation technique.

Fig. 3. Map with the location of points sampled. Adapted from [2], [3]
and [6].
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Fig. 4. Correlation matrix of the data.

soil properties obtained from a soil survey conducted in the

Oil Province of Urucu River [6] and from the Soil Archives

of Embrapa Solos in Rio de Janeiro [2], [3]. Figure 3 shows

data distribution in the Brazilian territory.

Figure 4 shows the correlation matrix of the collected

data. This figure reveals that there is a significant correlation

(absolute value of approximately 0.5) between:

• ds and {sand, clay, h, corg}
• sand and {silt, clay}
• phh2o and {sb}
• h and {corg}

The LS solution obtained the following PTF:



yi =1.0959 + 0.0005x1,i + 0.0002x2,i + 0.0001x3,i

+ 4.2895× 10−5x4,i + 0.0007x5,i + 0.0003x6,i

− 0.0013x7,i − 0.0095x8,i,

where the physical meaning of input data xj(i) is described

in Table I, where “Basic Cations” consist of Ca2+, Mg2+, K+

and Na+.

TABLE I
INPUT DATA SOIL PROPERTIES.

Variable Specification Description

x1 Sand Comprising sand (2.00− 0.05 mm)
x2 Silt Soil particle silt (0.05− 0.002 mm)
x3 Clay Soil particle clay (< 0.002 mm)
x4 pH Chemical attribute pH (Water)

x5 Sb Sum of Basic Cations (cmolc dm−3)

x6 Al3+ Chemical attribute Aluminum cation (cmolc dm−3)

x7 H+ Chemical attribute Hydrogen cation (cmolc dm−3)

x8 SOC Soil Organic Carbon (g.kg−1)

The number of hidden neurons (chosen by 10-fold cross-

validation procedure aiming at minimizing the mean square

training error) is set to 6. This number was selected by

inspection of the minimum mean-square errors in the training

set. We chose P = 7 ANNs in parallel because of such a value

was the most stable against initialization issues.

Each ANN is initialized with different weight values at

random and trained with the LM (Levenberg-Marquardt) batch

method with momentum [51], [52] and 200 epochs3. The

hidden layer employs hyperbolic tangent activation functions

and the output layer is a linear one.

The ith predicted value of one specific model is denoted by

yi. To assess the performance of the proposed regressors, the

mean-squared prediction error (MSE, Equation (5)), the mean

absolute error (MAE, Equation (6)) and the mean absolute

percentage error (MAPE, Equation (7)) are employed. For

a test set with target values di (for i ∈ {1, · · · , ntest}), the

definitions of these metrics are the following:

MSE ,
1

ntest

ntest∑

i=1

(yi − di)
2, (5)

MAE ,
1

ntest

ntest∑

i=1

|yi − di|, (6)

MAPE ,
100%

ntest

ntest∑

i=1

∣
∣
∣
∣

yi − di

yi

∣
∣
∣
∣
. (7)

Table II presents the MSE, MAE and MAPE results for the

LS, LS′ and committee regressors. We distinguish between

LS and LS′ where the former encompasses all the available

variables described in the correlation matrix whereas the latter

dispenses with the two least correlated variables with Ds,

namely Sb and Al. The rationale being that the acquisition

3Note that the fixed number of epochs attenuates the overfitting issues due
to the employed cross-validation method.

of fewer variables translates to less effort not only in terms

of measurement but also regarding computational complexity

and overfitting issues. The committee also employs the same

set of variables used by LS′. In this way, both the LS′ and

committee methods are in an equal standing.

Notice that the LS approach behaves best when all the

variables are used. However, even when using all variables the

committee still outperforms the LS approach. If we consider

LS′, i.e., when on an equal footing in terms of the variable set

used, the committee also presents better performance. This is

relevant since we are obtaining better results and at the same

time requiring less information to do so.

It is also important to mention that there exists an additional

metric, respectively the mean prediction error MPE [6]. The

MPE metric enables the evaluation of an average tendency for

underestimation (negative value) or overestimation (positive

values), which indicates the signal of the predictor bias. The

committee and LS solutions present very similar MPEs (-

0.0144 and -0.014, respectively). Such values are slightly

outperformed by the LS′ method (0.0133).

When the MPE metric is calculated for these methods

the LS approach slightly outperforms the LS′ and committee

methods.

TABLE II
EVALUATION OF THE LS REGRESSORS AND THE COMMITTEE.

Metric LS LS′ Committee

MSE 0.0218 0.0230 0.0197
MAE 0.1199 0.1239 0.1131

MAPE 9.48% 9.81% 8.95%

The next set of figures present a visual depiction of the

behavior of the methods developed and is intended to com-

plement the information provided in Table II.

The first set of images, constituted by Figure 5a, Figure 5b

and Figure 5c, presents, respectively, the comparisons between

target d and estimated values y for the LS, LS′, and the

committee methods. This first set illustrates that there is indeed

some overlap between the targets and the estimates, as should

be expected. Figure 6 illustrates the difference between curves

of the previous data. All plots are normalized for both axes in

order to show that the committee errors are more restricted in

range. Although we get a better understanding of the behavior

of the methods it is still desirable to look at the data from

another perspective.

The second set of pictures, encompassing Figure 7a, Figure

7b and Figure 7c, presents, respectively, the scatter plots

between target d and estimated values y for the LS, LS′ and

the committee methods. Notice that although there is some

tendency for over- and under-estimation the committee method

is the one that is able to provide the closest approximation.

We conclude by presenting a description of the histogram

counts of the errors. The third set of images includes Fig-

ure 8a, Figure 9a, Figure 8b, Figure 9b, Figure 8c and

Figure 9c, which present, respectively, histograms of both



100 200 300 400 500 600

Index

0.8

1

1.2

1.4

1.6

1.8
T

a
rg

e
t 

/ 
E

s
ti
m

a
te

d
 V

a
lu

e
s

(a) Comparison against LS method.
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(c) Comparison against committee method.

Fig. 5. Comparison between target values d (red solid line) and the y values estimated (blue solid line) for each method.
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Fig. 6. Errors for the different regressors.
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Fig. 7. Scatter plots for the different regression methods.

errors and absolute errors for the LS, LS′ and committee

methods. Notice that non-absolute errors tend to follow a

Gaussian distribution, with most errors accumulating around

zero or its vicinity, which is the desired behavior. One-

sample Kolmogorov-Smirnov test [53] reveals p-values of

0.7184, 0.6575 and 0.9496 for, respectively, LS, LS′ and

the committee. This reinforces the normality of the errors

distribution of the committee.

VII. FINAL REMARKS

In this work, we presented several techniques for estimating

soil bulk density (Ds), a difficult metric to measure. We

developed two methods based on least-squares regression, one

using all the available correlation data and another discarding

the two variables least correlated with Ds. An additional

method was constructed based on a static committee of ANNs,

which combines multiple regressors. Our results show that we

are able to increase precision against the original least-squares

method by using less information but also by employing a

committee of regressors.

Our results emphasize that it is not clear the relationship

between Ds and certain chemical attributes (such as pH,

Sb and Al+3). This result corroborates those in the existing

literature, where a direct physical link between these properties

is not clearly presented. In general, these attributes are inserted

into the model due to their availability in most datasets,

because of chemical attributes present low-cost acquisition [5].



(a) LS errors(µ = −0.0140, σ = 0.1470). (b) LS′ errors (µ = −0.0133, σ = 0.1512). (c) Committee errors (µ = −0.0144, σ =
0.1395).

Fig. 8. Committee errors histogram (left y-axis) with superimposed Gaussian distribution (right y-axis).

(a) LS absolute errors. (b) LS′ absolute errors. (c) Committee absolute errors.

Fig. 9. Committee absolute errors histogram (left y-axis) with superimposed Gaussian distribution (right y-axis).

Gomes et al. [11] hypothesized that Al+3 and H availability

increases as the pH is lowered, increasing soil porosity and

decrease soil bulk density.
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