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ARTICLE INFO ABSTRACT

Keywords: This study presents an adaptive framework for dynamic preventive maintenance optimization based on the
Maintenance optimization Double Deep Q-Network (DDQN) algorithm. The objective is to learn cost-optimal preventive maintenance
Deep reinforcement learning policies under stochastic and partially observable failure behavior, relying solely on observed failure and

Reliability engineering

Dynamic scheduling

Artificial intelligence
Reliability-centered maintenance

maintenance events rather than condition-monitoring data or known degradation models. Equipment hazard
function is modeled using non-homogeneous Poisson processes, including power-law and bathtub models, while
maintenance actions follow variable restoration levels defined through the proportional age-reduction model.
Training is performed on simulated failure trajectories using a standard workstation in under two hours, and
the trained agent performs inference nearly instantaneously.

Results demonstrate that the DDQN-based adaptive policy consistently outperforms analytical periodic
and static benchmarks, as well as a dynamic genetic algorithm and a standard reinforcement learning
implementation, by achieving lower average maintenance costs and reduced variability across a wide range
of corrective-to-preventive cost ratios. The method remains robust under perturbed and uncertain hazard
conditions, maintaining stable performance without retraining.

These findings highlight the potential of the proposed DDQN approach as a computationally efficient and
generalizable tool for reliability-centered maintenance optimization, capable of adapting to stochastic cost
structures and cumulative corrective effects while operating effectively in data-limited industrial environments.

1. Introduction optimal maintenance scheduling crucial for the efficient allocation of
resources across industries.

The industrial sector, which is characterized by complex machinery As argued by Swanson (2001), maintenance plays a critical role in
and equipment, requires rigorous maintenance to ensure operational

efficiency, cost control, and safety. However, maintenance activities
often involve substantial expenses. According to Harudin and Yusof
(2014), the U.S. industry spends nearly 80% of its maintenance budget
for correcting chronic failures. In the United Kingdom, Kumar and
Parida (2008) found that maintenance spending in the manufacturing Herz (2008)). One of the key mechanisms through which these effects
sector ranges from 12 to 23% of total factory operating costs. These are achieved is the maintenance scheduling process, which involves
figures highlight the need for effective cost-reduction strategies, making

extending equipment lifespan and enhancing productivity in industrial
environments. The significant impact of maintenance on the opera-
tional expenditure of a facility and its overall performance has been
extensively documented in the literature (see e.g. Pintelon and Parodi-
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systematic planning and resource allocation to optimize equipment
availability while minimizing downtime (Duffuaa et al., 1999).

Different forms of maintenance, namely preventive, predictive
(condition-based maintenance), and corrective, play distinct roles in
maintenance strategies (Tsang, 2002). Preventive maintenance, based
on routine and scheduled interventions, serves as a proactive ap-
proach to avoid unscheduled breakdowns and reduce costs. Predictive
maintenance, in turn, leverages advanced analytical techniques to
identify potential failures in advance, reducing repair expenses and
downtime (Levitt, 2003). Moreover, efficient resource optimization,
including the careful allocation of personnel and assets to mainte-
nance tasks, remains essential for achieving cost-effectiveness (Kister
& Hawkins, 2006).

Despite advances in predictive and condition-based maintenance,
many industrial settings operate with limited or no access to condition-
monitoring data owing to cost, feasibility, or technological constraints.
In such contexts, existing data-driven or dynamic maintenance methods
that rely heavily on continuous sensor information cannot be directly
applied. This limitation highlights a critical challenge in reliability
engineering: designing adaptive maintenance scheduling strategies that
minimize costs when the decision-making agent has no direct infor-
mation regarding the equipment condition or its underlying hazard
function.

Recent studies in reinforcement learning (Bukhsh et al., 2025;
Huang et al., 2020) have shown that RL-based agents can be effectively
applied to maintenance optimization. However, these approaches often
assume the availability of extensive condition-monitoring data to guide
decision-making. As a result, their applicability in data-sparse industrial
environments remains limited. Addressing this limitation is essential,
since many industrial systems operate without full state observability
or comprehensive condition feedback.

In this context, the present study aims to bridge this research gap
by proposing a Deep Reinforcement Learning (DRL) framework capa-
ble of dynamically scheduling preventive maintenance actions solely
based on observed failure events. Specifically, it employs a Double
Deep Q-Network (DDQN) architecture that supports adaptive decision-
making in the absence of condition-monitoring data. The agent was
trained using simulated failure information derived from theoretical
hazard models, including the power-law and bathtub profiles. This
approach advances the field of reliability-centered maintenance toward
more generalizable and realistic applications in which uncertainty and
incomplete information are intrinsic.

This study introduces a Deep Reinforcement Learning approach for
dynamically scheduling preventive maintenance, contributing to reli-
ability engineering and reliability-centered maintenance by reducing
overall maintenance costs.

1.1. Motivation

In industrial production, machines deteriorate at different rates
owing to variations in usage, environmental conditions, and inher-
ent system complexity (Jardine et al., 2006). This variability creates
significant challenges in defining maintenance schedules that balance
operational efficiency, cost, and reliability. Unexpected failures can dis-
rupt production, cause financial losses, and reduce system dependabil-
ity. Traditional fixed-interval maintenance policies, although simple
to implement, are not flexible enough to adapt to stochastic changes
in failure behavior, costs, or operating conditions. Consequently, they
often lead to excessive maintenance or unforeseen breakdowns. This
limitation highlights the need for strategies that are both optimized and
dynamically responsive to real-time events.

In many industrial settings, maintenance personnel often operate
without access to continuous condition-monitoring data, a situation
that remains common across several sectors. Many systems still rely
exclusively on preventive or periodic maintenance actions, without
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real-time assessment of equipment health. For instance, Saraygord Af-
shari et al. (2022) notes that aircraft engine components, particularly in
legacy fleets, follow preventive replacement cycles determined by flight
hours rather than sensor-based degradation analysis. In the mining
industry, large mechanical assets such as excavator shovels (Javadnejad
et al., 2022) and dump trucks (Moniri-Morad & Sattarvand, 2023) are
serviced at pre-defined intervals because of harsh operating conditions.
Even in infrastructure systems such as railways (Sedghi et al., 2022),
condition data are frequently unavailable or unreliable. Consequently,
operators rely on historical failure statistics rather than real-time health
indicators. These examples support the central premise of our study: it
is both realistic and necessary to design adaptive maintenance frame-
works that can perform effectively even when condition-monitoring
data are not available. By addressing this common yet underexplored
scenario, the proposed approach increases the practical relevance of
reinforcement learning in industrial applications.

Existing dynamic and reinforcement learning based maintenance
frameworks aim to enable decision-making by learning from expe-
rience. However, many of these models, including those proposed
by Huang et al. (2020), Tanhaeean et al. (2025) and Bukhsh et al.
(2025), assume access to condition monitoring data, known failure
distributions, risk-free corrective maintenance actions, or explicit infor-
mation on degradation states. Such assumptions restrict their practical
use in industrial environments where direct condition data are unavail-
able, expensive to collect, or unreliable due to sensor limitations or
infrastructure constraints. As a result, these models often fail to gen-
eralize to partially observable environments where only failure events
can be observed. This limitation defines a key research challenge:
developing a reinforcement learning framework capable of learning
adaptive maintenance policies without condition monitoring data or
predefined failure models.

In this study, we propose a Double Deep Reinforcement Learning
(DDRL) framework to dynamically optimize preventive maintenance
schedules based exclusively on observable failure and maintenance
events. The DDRL structure builds on the Double Q-learning tech-
nique introduced by van Hasselt (2010) and later extended as Double
Deep Q-Networks by van Hasselt et al. (2015). It is adapted here to
a maintenance optimization setting characterized by stochastic fail-
ures, uncertain recovery effects, and incomplete information. DDRL is
well-suited to this problem because it reduces the overestimation bias
associated with standard DQN methods. This bias reduction is essential
in maintenance optimization, since inaccurate value estimation may
result in premature or suboptimal decisions. In addition, the decou-
pled evaluation and selection networks improve learning stability in
sparse-reward and high-dimensional environments, which are typical
in industrial maintenance scenarios where feedback is event driven and
infrequent.

A preventive maintenance optimization problem aims to determine
the most cost-effective schedule for performing maintenance actions on
a system. The objective is to identify the optimal timing of preventive
interventions in order to minimize total maintenance cost while ensur-
ing acceptable reliability (Wang, 2002). However, the combinatorial
nature of the planning task, particularly under uncertainty, makes it
computationally demanding. The complexity results from the exponen-
tial growth of possible sequences of maintenance actions and failure
occurrences over time, as illustrated below.

The combinatorial space of a perfect preventive maintenance op-
timization problem is vast and highly intricate. In a 60-day planning
window, for instance, each day can represent a potential point for the
first failure before the initial preventive maintenance. The complexity
increases further because the first preventive maintenance can also
occur on any of those 60 days, introducing an additional decision
dimension.

The first branching of the search space occurs when the model
considers whether a failure happens before the first preventive mainte-
nance. This event creates a decision tree, where each branch represents
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Fig. 1. Tree search example up to level 1.

a distinct system trajectory. Once the first preventive maintenance is
executed, the search space bifurcates again, forming new branches that
represent different possible days for the second preventive mainte-
nance.

The problem becomes progressively more complex because each
preventive maintenance restores the system to a condition in which
new failures can arise. Therefore, every node in the decision tree
that represents a preventive maintenance event generates several new
branches, each corresponding to one or more possible failures within
the 60-day horizon. This process repeats after every maintenance ac-
tion, producing an exponentially expanding decision tree.

Fig. 1 illustrates this behavior. For clarity, only the first level of the
search tree is shown. The root node (level 0) generates all possible con-
figurations associated with Day O (Level 1). In our application, seven
state variables are evaluated at each node, resulting in a branching
factor of b = 7. Each resulting leaf node then expands into a subtree of
identical structures that represent the next day. This recursive process
continues until all 60 days have been explored, producing a tree of
depth d = 60. The total number of computational paths from the
root to any leaf node equals 7%, which implies an exponential time
complexity. Combinatorial optimization and scheduling problems of
this nature are known to be NP-hard. Classic examples include single-
machine scheduling with deadlines (Garey & Johnson, 1979), job-shop
scheduling (Lenstra & Rinnooy Kan, 1978) and resource-constrained
scheduling (Blazewicz et al., 1983).

Furthermore, the variability of the recovery factor, represented by
the symbol p in this study, introduces an additional layer of complexity.
Different p values modify system dynamics, affecting both the failure
rate and the efficiency of preventive maintenance actions. When re-
covery factors and cost ratios are modeled as stochastic rather than
deterministic variables, the optimization space becomes even more
nonlinear and uncertain.

As discussed by Zio (2009), dynamically scheduling maintenance
actions in response to evolving failure patterns is considerably more
challenging than defining static policies, even in condition-based sce-
narios. Nevertheless, most existing approaches still rely on extensive
condition monitoring data or pre-assumed degradation models. The
proposed DDRL-based framework addresses this limitation by using
reinforcement learning to derive maintenance strategies directly from
stochastic failure event data, without the need for prior knowledge of
the hazard function or underlying reliability parameters.
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1.2. Problem statement and hypothesis

The core problem examined in this study concerns the limitations of
maintenance scheduling methods in handling real-time failure dynam-
ics and system variability under informational constraints. Standard
strategies are predetermined and therefore unable to adapt to stochastic
and evolving degradation patterns. As a result, they often lead to either
premature preventive actions or delayed interventions, both of which
increase maintenance costs and reduce system availability.

In practical industrial contexts, systems frequently operate under
partial observability, where direct condition monitoring or sensor-
based data are unavailable or impractical to obtain owing to economic
or technical constraints. Under these circumstances, maintenance de-
cisions must rely solely on indirect information, such as the timing
and frequency of observed failures. This study considers a partially
observable environment in which the maintenance agent has access
only to failure event data, without explicit knowledge of the underlying
hazard function, degradation trajectory, or system health state.

Based on these assumptions, the central research question addressed
in this work is as follows: How can a reinforcement learning framework
learn an optimal preventive maintenance policy that minimizes total
maintenance cost when only stochastic failure events and maintenance
actions, and not condition monitoring data, are available? To answer
this question, the proposed model formulates the maintenance pro-
cess as a Markov Decision Process (MDP) with a state representation
restricted to observable failure-related variables. The objective is to de-
sign an adaptive scheduling policy using a deep reinforcement learning
algorithm that is capable of dynamically adjusting preventive actions
according to the probabilistic patterns inferred from these observable
events, thereby achieving greater cost-effectiveness and adaptability
than traditional static strategies.

1.3. Contribution

This study advances the field of industrial maintenance optimization
by introducing a reinforcement learning framework that addresses the
main limitations of the existing methods, particularly their reliance
on risk-free maintenance actions, fully observable system states, and
predefined degradation models. In contrast to most prior RL-based
maintenance frameworks, which assume access to complete condition
monitoring data or known hazard parameters, the proposed approach
operates under informational constraints and learns optimal mainte-
nance policies directly from observed failure and maintenance events.
This formulation explicitly targets the research gaps highlighted by
Zhang et al. (2024), who observed that “the inherent limitation of obser-
vation methods and precision in engineering contexts often renders system
states partially observable” and that “traditional MDP models assume
precise knowledge of system dynamics, which is rarely the case in real-
world applications”. By formulating maintenance decision-making as a
partially observable problem, this study contributes to the development
of more realistic and practical reinforcement learning solutions for
industrial environments.

The specific contributions of this study are summarized as follows:

1. Dynamic Maintenance Strategies

This paper introduces an algorithm that enables the agent to au-
tonomously plan maintenance actions in response to stochastic
failure events and variable cost ratios. Unlike existing DRL-based
models, which learn fixed policies assuming known degradation
distributions, risk-free corrective maintenance actions, and fully
observable system states, the proposed approach allows the pol-
icy to evolve dynamically as new failure information becomes
available.
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2. DDRL Framework
The adoption of Double Deep Reinforcement Learning in this
study is not merely an architectural preference but a method-
ological necessity for reliable decision-making in uncertain, par-
tially observable environments. Traditional Deep Q-Networks
are prone to overestimation bias when value estimates are de-
rived from sparse or noisy rewards, a situation common in
maintenance systems, where feedback occurs only after failures
or preventive actions. By decoupling the action selection and
target evaluation networks, the DDRL framework mitigates this
bias, yielding more stable convergence and robust policy learn-
ing. Whereas previous studies have applied RL to deterministic
systems, this study extends DDRL to inherently stochastic set-
tings characterized by uncertain costs, imperfect maintenance
effects, and unobservable degradation states. This methodolog-
ical extension establishes the DDRL as a bias-correcting and
stability-enhancing mechanism for maintenance learning tasks.

3. Adaptive Learning under Partial Observability
A novel adaptive learning framework is introduced in which
the agent operates under partial observability, without access
to system condition, hazard rate, or failure distribution. The
agent is trained with a belief representation of the environment
through continuous rewards, relies solely on discrete failure and
maintenance events as feedback (observation space), and incre-
mentally constructs an internal policy that generalizes across
different hazard patterns (e.g., power-law and bathtub models).
This design directly addresses the challenges identified by Zhang
et al. (2024), who emphasize the need for decision-making
methods capable of handling uncertain parameters and hidden
system states. Training the agent under such conditions enables
robust adaptation to unseen operating regimes and stochastic
cost variations.

4. Cost-Oriented Formulation
This study formulates the optimization objective explicitly as
the minimization of the total stochastic maintenance cost. The
reward function integrates preventive and corrective costs, as
well as recovery factor variability and cumulative failure costs,
allowing the agent to learn cost-optimal policies across diverse
operational scenarios. This cost-centric formulation enhances the
practical relevance of the proposed policy for industries seeking
to balance reliability and financial performance.

5. Exploration of the Unseen Hazard Function
This study demonstrates that the DDRL agent can infer opti-
mal preventive maintenance strategies without observing the
underlying hazard or degradation function. The agent receives
no information about the functional form or parameters of the
risk model during inference, relying exclusively on the temporal
patterns of failures and maintenance events. This represents a
departure from prior DRL and reliability-centered maintenance
studies that depend on predefined hazard models. By showing
that effective maintenance decisions can be learned from event
data alone, the proposed framework contributes both theoret-
ical and practical advancements to reinforcement learning in
reliability engineering.

Together, these contributions address a key gap in the literature
by introducing a robust, cost-oriented, and dynamically adaptive rein-
forcement learning framework capable of operating under uncertainty
and limited observability. The proposed DDRL approach strengthens
both the theoretical understanding and the practical applicability of
maintenance optimization in real-world industrial environments where
condition monitoring data are scarce or unavailable.
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1.4. Article outline

The remainder of this paper is structured as follows. Section 2
reviews the relevant literature on maintenance optimization and rein-
forcement learning. Section 3 presents the proposed cost model and
reliability formulations, defines the problem within a Markov Decision
Process framework, and details the implementation of the Double Deep
Q-Network algorithm. Section 4 discusses the main results, beginning
with the analysis of algorithmic hyperparameters and proceeding to
the evaluation of maintenance cost performance for the trained agents.
Finally, the last section concludes the paper and outlines directions for
future research.

2. Literature review

Optimization of maintenance scheduling has been a central theme
in industrial engineering, operations research, and computational
science for decades. Classical optimization approaches, ranging from
dynamic programming (Bellman, 1958) to genetic algorithms (Berrichi
et al., 2009), integer linear programming, and algebraic formulations,
have provided the foundation for preventive maintenance modeling
and cost optimization. Subsequent studies such as Baek (2007) and
Castro et al. (2014) extended these formulations to address reliability,
availability, and cost trade-offs. However, these traditional optimiza-
tion techniques are computationally intensive and require explicit
knowledge of system failure models, which limits their adaptability
in complex, uncertain, and data-scarce industrial environments.

Recent studies have explored the use of metaheuristic algorithms,
particularly GA-based frameworks, to dynamically allocate mainte-
nance activities and reduce downtime under uncertainty. For example,
the study presented by Ruiz-Rodriguez et al. (2024) proposed a RL
and a GA approach to optimize downtime assignment and workforce
scheduling. Although this model successfully minimizes the mean time
to repair through efficient labor allocation, its objective function fo-
cuses narrowly on downtime reduction rather than the minimization
of total stochastic maintenance costs. Moreover, the model does not
incorporate stochastic variability in cost structures or recovery fac-
tors, nor does it generalize the failure dynamics beyond simplified
distributions. Ruiz-Rodriguez et al. (2024) acknowledged the high com-
putational burden of GA optimization and the limitations of scaling
such methods to larger problem spaces, which underscores the need
for more sample-efficient and adaptive approaches such as deep rein-
forcement learning (DRL). Our study extends this direction by directly
targeting total cost minimization under stochastic costs and failure
behavior, rather than only reducing downtime.

The integration of DRL into maintenance optimization has shown
promising results in terms of cost reduction and decision adaptability.
The framework proposed by Bukhsh et al. (2025) introduced main-
tenance planning models with online and offline DRL to minimize
maintenance costs of the water pipes network over time. Although
effective, this approach relies on the assumption that the failure pro-
cess follows an exponential distribution, with the failure rate and
probability known to the agent. Consequently, the agent’s decision-
making is guided by prior knowledge of the degradation law, which
simplifies the state representation but restricts generalization to real-
world scenarios where the failure rate follows realistic distributions and
is not completely known. Furthermore, the reward structure is based on
deterministic or expected costs, rather than stochastic variations, which
limits robustness against uncertainty or nonlinearities in maintenance
costs or repair outcomes. Such characteristics can also be observed
in Tanhaeean et al. (2025). By contrast, our proposed DDRL framework
relaxes these assumptions by training under informational constraints,
where only failure events, not their underlying rates or hazard param-
eters, are observable, and by incorporating stochastic cost structures
directly into the learning process.
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Recent contributions further illustrate both the potential and con-
straints of MDPs and RL algorithms in maintenance and reliability
engineering in general. Yuan et al. (2025) proposed a DRL formula-
tion that jointly optimizes maintenance cost and reliability through a
hybrid Gamma-Wiener degradation model and a reshaped, explicitly
multi-objective reward, achieving strong performance in safety-critical
applications. Zhu et al. (2025) investigated joint condition-based main-
tenance and spare-parts sourcing under supply uncertainty, formulating
the problem as an MDP and using DQN primarily as a scalable alter-
native to value iteration. Yang et al. (2025) addressed the coordina-
tion between dispatching and preventive maintenance in multi-product
manufacturing systems via a continuous-time MDP formulation and
structural analysis, establishing the existence of an optimal control-
limit policy for PM decisions. da Silva et al. (2025) demonstrated
the applicability of reinforcement learning in a distinct domain of
reliability engineering by framing accelerated life test planning as a
sequential parameter-estimation problem rather than a maintenance
task. In their framework, a DDQN agent was trained to dynamically
configure stress levels, test durations, and sample allocations in order
to minimize the statistical uncertainty of a key reliability parameter.

Another relevant strand of research applies DRL to manufactur-
ing systems, emphasizing production efficiency and loss minimiza-
tion. Huang et al. (2020) developed a Double Deep Q-Network (DDQN)
model to determine optimal preventive maintenance intervals in a
serial production line with intermediate buffers. The model effectively
captures the interaction between production flow and maintenance
actions, but assumes that the component lifetimes follow a known
Weibull distribution and that the exact virtual age of the system is
observable to the agent. As a result, the framework depends on an
accurate degradation model and are not extended to cases where the
equipment condition is unobservable. Moreover, the reward function
proposed by Huang et al. (2020) emphasizes minimizing production
loss rather than explicitly minimizing the total maintenance cost under
uncertainty. Hence, although it demonstrates the potential of DRL in
complex manufacturing contexts, it remains limited to fully observable
settings.

It is also important to note that the DDQN architecture of Huang
et al. (2020) does not incorporate an adaptive policy capable of re-
sponding to stochastic variations in the operational environment. The
learned policy in their work was derived under fixed, deterministic
conditions, assuming stable production dynamics and a known failure
distribution. Consequently, it does not adapt online to unexpected
changes or to the emergence of new degradation patterns inferred
from data. By contrast, the DDRL framework proposed in this study
is designed to operate under intrinsic uncertainty, where failure oc-
currences, repair effect and cost parameters vary stochastically. The
agent continuously interacts with an environment that evolves accord-
ing to random failures and variable maintenance costs, learning an
adaptive policy that dynamically reschedules maintenance actions in
response to real-time events. This distinction highlights that, while
the study by Huang et al. (2020) leverages the learning capability
of DRL to optimize a predefined structure, our approach explicitly
extends the paradigm toward responsive and adaptive maintenance
decision-making under uncertainty.

Several other studies have similarly employed RL or metaheuristic
algorithms to optimize maintenance actions in predictive contexts,
such as (Tanhaeean et al., 2025), and including power generation
scheduling (El-Sharkh & El-Keib, 2003), wind turbine systems (Zhong
et al., 2019), and railway infrastructure (Sresakoolchai & Kaewunruen,
2023). Despite their methodological diversity, most rely on explicit
knowledge of degradation laws or condition-monitoring data, such as
vibration or temperature signals, to guide decision-making. As noted
by Sikorska et al. (2011) and Ren et al. (2019), such reliance on sensor
data limits the applicability of Al-based maintenance frameworks in
environments where the monitoring infrastructure is incomplete or
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prohibitively costly. Furthermore, cost structures are frequently sim-
plified to deterministic values, neglecting the stochastic nature of real
maintenance operations, where cost ratios and recovery factors vary
with time and context.

In light of these limitations, the present study advances the state
of the art by addressing the challenge of cost-minimizing, event-driven
maintenance dynamic scheduling under informational constraints.
Specifically, the proposed DDRL method operates without access to
condition-monitoring or hazard data, relying solely on observed failure
events and maintenance actions to infer optimal maintenance policies.
Unlike the GA-based method in Ruiz-Rodriguez et al. (2024), our
approach circumvents the computational overhead of population-based
search, yielding an inference that is nearly instantaneous.

3. Methodology
3.1. Reliability fundamentals

Reliability engineering has evolved to become an integral part
of ensuring efficiency, availability, maintainability, safety, and cost-
effectiveness in diverse sectors ranging from aviation to manufacturing
(see e.g. Zio et al, 2019 and Nor et al., 2021). This discipline is
responsible for identifying requirements, analyzing, designing, veri-
fying, validating, assuring quality, and maintaining various systems
to guarantee their reliability under prescribed conditions and time-
frames (Zio et al., 2019). The significance of reliability engineering is
highlighted by its irreplaceable role in promoting progress across major
industries, and improving the quality of a wide range of products and
systems (Zuo, 2021).

Modern multidisciplinary maintenance programs in reliability en-
gineering aim to enhance system reliability by considering the op-
erational characteristics, production necessity, and other vital fac-
tors (Patifno-Rodriguez & Carazas, 2019). This field is particularly
relevant in the development and production of sophisticated equipment
and systems, which must be achieved within shorter timespans and
under stringent costs and legal constraints (Birolini, 1996).

The following mathematical definitions of reliability engineering
relevant to this study can be found in Meeker and Escobar (2014) and
in Elsayed (2021). Let f(¢) be the failure probability density function
such that

S0 =0,

and
/°° f(s)ds =1.
0

The corresponding probability of failure from time O to time 7 is given
by:

vt >0,

t
F@) =/ f(s)ds, (€8]
0

and the survival or reliability function is given by
Cty=1-F@)= / f(s)ds. (2)
1

The following function

L CWO-Cu+ay 1 d
ho = fim —co - co [ dr C(’)] &)
_fo
0

is known as the hazard function. The hazard function in reliability
engineering refers to the instantaneous failure rate of a system at a
specific time, given that it has survived up to that time (Esary et al.,
1970). This is a fundamental concept used to model the probability of
a system failing at a given moment, thereby providing insights into the
system’s reliability over time.



A.J. da Silva et al.

Suppose that, in failure event, minimal repairs are executed. Thus,
according to Elsayed (2021), the expected number of failures in [0, ] is
given by:

t
H@) = / h(s)ds. (C))
0

3.2. Reliability-centered maintenance

Following Pham (2003) and da Silva (2023), maintenance encom-
passes measures taken to manage the deterioration process that could
potentially result in system failure. They can be categorized into two
types: maintenance and corrective maintenance. Preventive mainte-
nance focuses on preventing system failures by conducting periodic in-
spections and repairs, whereas corrective maintenance involves restor-
ing the system to its functional state after a failure occurs through
appropriate actions. The effectiveness of equipment post-repair is con-
tingent upon the type of repair executed. In this study, we address the
scheduling problem in terms of cost minimization.

Consider a scenario in which the equipment is only minimally
repaired when it fails, and the impact of imperfect preventive main-
tenance is modeled using the Proportional Age Reduction (PAR) cri-
terion (Malik, 1979). If the maintenance was perfect, the equipment
would be restored to its original state. The PAR approach, used by Pham
(2003) and da Silva (2023), assumes that each preventive maintenance
action reduces the equipment’s age by a proportionate amount to
the operating time that has elapsed since the most recent scheduled
maintenance.

A Nonhomogeneous Poisson process (Elsayed, 2021) was used to
describe the failure patterns in each maintenance cycle. In this process,
the age of the equipment in the kth cycle is decreased by a fraction p of
the most recent scheduled maintenance action z,_,. Following da Silva
(2023), the hazard function (3) at time ¢ is

h(t) = h(t — p1y_y), T4 <t <T4. 5)

Shin et al. (1996) proposed the following hypotheses to model min-
imal repairs interspersed with scheduled imperfect preventive mainte-
nance actions:

1. Suppose that / units are observed until 7;, i = 1, ..., .

2. Suppose that each equipment i is subjected to m; scheduled
maintenance actions at 7;; < t;,, <T;.

3. The ith equipment experiences r;; failures during the kth pre-
ventive maintenance cycle (k=1,...,m; + 1)

4. Let t;, ; be the time of the jth failure of the ith equipment that
occurs in the kth maintenance cycle.

The maintenance model adopted in this study considers that pre-
ventive actions with possibly varied recovery factors are executed
periodically. Let

- ¢, be the preventive maintenance cost;
- ¢, be the corrective maintenance cost.

Following Pham (2003), the expected maintenance costs for periods
[tps1>tmsn] are given by.
CpH (i1, tme2) + ¢
Vit tmsa) = o mkl w7 6)
D2 = Ul

where H(t 1> tmen) = f,;”:z h(s)ds. The static maintenance strategy is
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determined by finding the preventive maintenance intervals [7,,.t,.,1;
[*ppsis tmyiz1]... which minimizes the expected overall maintenance cost

V given by Eq. (6).

To model the failure behavior of systems over time, we employed

two forms for the hazard function in this study: the power law model

given by
p-1
no=L2(5"7 a0 @
a [v4

and the bathtub model is given by

-1 A1
h(t)=ﬁ<L> +&<L> sy, Bz, fy > 0. ®
1

a \«a a \ a

The parameters « and # control the level and slope of the risk function,
respectively. The latter represents the class of non-monotonic phenom-
ena hazard functions, as discussed by Diamoutene et al. (2021). Inter-
estingly noted by Gaonkar et al. (2021) is that, the bathtub function is
inappropriate for predicting the hazard rates of electronic components,
products, and systems. The authors provided several case studies of
electronic equipment where the hazard function is given by the power
law model (7), which is derived from the Weibull distribution via Eq.

3.

In reliability engineering, estimating the parameters of hazard func-
tions is crucial for modeling the failure behavior of systems. The
maximum likelihood estimation (MLE) method is commonly used to
derive these parameters from observed failure data (reliability appli-
cations can be found in Khan & King, 2012 and Murthy, 1979). MLE
aims to identify the values of parameters that maximize the likelihood
of the observed data occurring given a specific probability distribution

or model.

Following Pham (2003), the likelihood function for a set of m
preventive maintenance actions, r failures of / identical machines, is

given by

1 mi+1 [ rik
L :H{ H [H h(t,-,j‘k - pTi,k—l):| X 9)
=1

i=1 k=1
mi+1 Tik

exp [— Z / h(x = pt;4y) — dx] }
k=1 Y Tik-1

The methodology encompasses the simulation of failure times using
bathtub model (8) to emulate the deterioration of the system. This func-
tion enables the modeling of failure patterns, especially for repairable

systems, as observed in practical scenarios.

The bathtub function models the initial higher failure rates (early
failures) followed by a period of lower (random failures) relatively
constant failure rates which is subsequently followed by an increasing
failure rate. The power law function captures only the increasing failure

pattern as systems age (wear-out failures).

In order to simulate corrective maintenance action times, Algorithm

1 was used to generate random failures:
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Algorithm 1 Failure Time Generation under PAR and Risk Factor

Model

Require: Current time 7}, last failure time F,, last preventive mainte-
nance time M,, age reduction factor p, risk multiplier §, maximum
risk 60,,,., Weibull parameters («,, §;)

Ensure: Real failure time T{"j:ll and failure indicator fail € {0, 1}

1: function LocaLDELTAH(T ), My, p, B, a;)

2 Compute effective age interval under PAR:
a=max((T, —1)—pM,,0), b =max(T;, — pM,,0)

3: Compute hazard increment:

AH = (b/a))Pt — (a/a)

4: return max(4H,0)
5: end function

: function LocALFAILURETIME(T, Fy,, My, p, 6, 0,0k, Br» @)

Compute hazard increment AH = LocaLDELTAH(T), M, p, By, ;)
Compute capped risk: 6* = min(max(, 1076),6,,,,)

Compute instantaneous failure probability:

p=1—exp(-6*AH)

10: Draw u ~ Uniform(0, 1)
11: if u < p then

12: Tlf‘f} « T > Failure occurs in the current step
13: fail « 1

14: else

15: Tlfil{ « F, > No new failure in (T} — 1,T}]
16: fail « 0

17: end if

18:  return (T% fail)

Mk
19: end function

20: function FALUREGENERATOR(Ty, H, My, p, 0,0, a1, B)
21: Initialize F, < 0
22: for k=1,2,...,H do

23: (Fy, fail) « LocALFAILURETIME(T}, Fy_y, My_1, p, 0, 0ax- Brs @)
24: if fail = 1 then

25: Record failure event at time T},

26: end if

27: end for
28: end function

Elsayed (2021) defined the cost incurred by the system during
period 1, comprising the sum of the corrective maintenance action cost
times the number of failures and the preventive maintenance action
cost, called the total maintenance cost, as follows:

V(ty) = c.H(ty) + ¢, (10)

where ¢, represents the cost of each corrective maintenance action,
H(ty) denotes the number of failures encountered up to time ¢, and c,
signifies the preventive maintenance cost incurred per action. Then, the

reward function R to be minimized is given by:
R(t;) = ¢, x condition(t;) + ¢, X PM action(t,), (11

fori=1,2,...,n, where ‘condition’ is a binary variable representing the
actual status of the equipment, and ‘PM action’ is a binary variable that
describes if a preventive maintenance action was performed or not.

3.3. Markov decision process

We propose the model exhibited in Fig. 2, which integrates the
DDOQN algorithm with a preventive maintenance framework. By ob-
serving state variables, interacting with the environment through main-
tenance actions, and receiving penalties in the form of maintenance
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costs, the agent schedules preventive maintenance actions aiming at
minimizing the costs.

In order to formalize the reinforcement learning framework, the
preventive maintenance optimization problem is cast as a Markov
Decision Process (MDP) (see Sutton & Barto, 2018). The MDP is defined
by the tuple

M=(S, AP, R, ),

where S is the state space, A the action space, P the transition kernel,
R the reward function, and y € (0, 1) the discount factor.

State space. The state representation was designed to capture all ob-
servable aspects of the system’s operational history while intentionally
excluding condition-based variables, since the proposed framework
explicitly addresses partially observable environments where no direct
condition-monitoring data are available (see Zhang et al., 2024). At de-
cision epoch k € N, the system state is represented by the 7-dimensional
vector

s = (Fy, Tio Ags [PV £ @iy, My) €S,

where:

— F, € N is the last failure time (days),

- T, € N is the current time,

- M, € N is the time of the last preventive maintenance.

- A, € R* is the effective age of the equipment after the most
recent preventive action, computed under the PAR model as A, =
max(Ty — py_1 M., 0),

- f ,f M ¢ N is the number of failures since the last preventive
maintenance,

- f ]:‘" € N is the cumulative number of failures up to epoch k,

- a,_; € A €]0,1] is the previous preventive maintenance action,

All state variables are normalized in the environment to the unit
interval using problem-specific scales (e.g., T,,/60, ff™/2, f°'/10),
ensuring numerical stability during training. This representation en-
ables the process to remain Markovian under imperfect maintenance
conditions, since the variables (4, f: M M,) preserve sufficient infor-
mation about system history to characterize its degradation trajectory.
Furthermore, these choices enable the agent to be responsive and act
dynamically to the current environmental condition.

It is assumed that following each event occurring at T}, either a
failure or a preventive maintenance action, the equipment resumes op-
eration, and consequently its evaluation, only at T} ;. This assumption
renders the proposed approach a discrete-event simulation framework.

Formally, the state space is endowed with the product c-algebra

3= B(R+)®6 ® 2{0,025,0‘50,0,75.1)’

ensuring measurability of both transition probabilities and reward map-
pings.

Following the taxonomy proposed by Powell (2019), the compo-
nents of s, are predominantly informational state variables that sum-
marize the observable operational history of the system. Quantities
such as the last failure time (F)), the last preventive maintenance
time (M), the effective age (A4,), and the accumulated failure counts
(f ,f M ¢ ,E"t) encode sufficient information about past events to infer the
unobserved degradation state. The current time T} represents the only
physical variable, whereas previous action g,_; provides a control-
related historical marker. Although the belief variables are not explic-
itly modeled, the agent’s value function implicitly infers probabilis-
tic expectations about future failures conditioned on these historical
summaries.
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Fig. 2. Maintenance optimization RL model.

Action space. At each epoch the agent selects an action a;, € A = {0,1}
for the perfect maintenance case, and

a, € A=1{0,0.25,0.50,0.75,1},

for the imperfect maintenance case, where a, = 0 represents no
preventive maintenance, and a, > 0 corresponds to a preventive action
with proportional age reduction factor p = g;. Whenever a failure
occurs, corrective maintenance is automatically performed, regardless
of the chosen q,.

Transition kernel. The system evolves stochastically according to the
underlying hazard function and the selected action. Given (s, a;), the
environment computes the hazard increment AH; between T} and T} +
At based on the PAR-adjusted virtual age, and defines the instantaneous
failure probability as

pr =1 —exp(—6, AH)), 12)

where 0 = 1 + &g 1(F, > n, ) Tepresents the additional risk introduced
by corrective repairs since the last preventive action. A failure indicator
is then sampled as Flfaﬂ ~ Bernoulli(p).

If a; > 0, a preventive maintenance action is executed, the variable
M, is updated to T} + At, and the local failure counter f]f}rv{ is reset
to zero. Otherwise, the system continues to age normally. Whenever
Flfaﬂ = 1, a corrective repair is applied (without age reduction), and
both counters fPM and ft°t are incremented. This defines the transition
kernel P(s;,; | 54, a;) on (S, X).

Reward function. During training, at each epoch, the environment com-
putes a dense-shaped normalized step cost that provides continuous
feedback even in the absence of failures. Let ¢, and ¢, denote the
base average normalized preventive and corrective maintenance costs,
respectively, and let k.. > 0 be a sensitivity factor penalizing consec-
utive failures since the last preventive action. The instantaneous cost is
defined as follows:

Cp &% + Ce (l + Kcostf;fM)pk

C(sy,ay) = s (13)
max(c,, ¢, (1 + Kcostf,fM))

and the reward is given by its negative value,

R(sy,ap) = —=C(sy, ay). (14)

This formulation ensures a normalized and bounded reward signal,
improving learning stability in sparse-failure environments.

It is important to note that, during training, the agent interacts with
the environment through the shaped instantaneous cost C(s, a; ), which

ensures the presence of a dense and continuous reward signal even
in failure-free trajectories. However, the agent is evaluated using the
true cumulative cost function defined in Eq. (11), which is consistent
with the economic formulation of the maintenance problem and the
analytical benchmarks. This design choice allows the policy to learn
efficiently under a smoother optimization scenario while still being
assessed according to the actual operational performance criterion. Fur-
thermore, by relying on the term p, within the shaped cost during the
training, the agent implicitly develops a belief about the current hazard
rate through the estimated increment AH,, enabling it to infer and act
upon the underlying risk dynamics even when the true degradation
process deviates from the nominal model.

Bellman equations. In the present maintenance optimization setting, the
Bellman recursion formalizes the trade-off between immediate main-
tenance costs and the expected future deterioration risk. Let V7 (s;)
denote the expected discounted return starting from state s, under a
policy . The corresponding Bellman equation is

V(s;) = E[=C(spo m(s ) + ¥ V(sia) | k)]s Sear ~ PC | sg, w(sp)

(15)

Here, the first term captures the instantaneous maintenance expen-
diture, either preventive, proportional to the restoration factor p, or
corrective, conditional on a stochastic failure, whereas the second
term expresses the expected future operational cost under continued
degradation. The optimal state-action value function Q* (s, a,) satisfies

O (s> ar) = =Clsi, a) + ¥ Eg, L op(isap) ukmi(rElA O (sgq1-ar41)| > (16)

+1

where the minimization reflects the cost-minimization formulation of
the problem (as opposed to reward maximization). Therefore, the
optimal preventive maintenance policy is obtained as

7*(sy) = arg min Q" (s, ap), aa7)
a€A

which yields the restoration level p € [0, 1] that minimizes the expected

long-term maintenance cost.

Unlike conventional MDP formulations, the transition operator P
here implicitly encodes both the degradation law and the stochas-
tic occurrence of failures through the hazard increment 4H,, whose
dependence on p links the preventive decision to future system relia-
bility. This coupling makes the Bellman operator domain-specific: each
action not only incurs an immediate cost but also alters the virtual
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age distribution that determines the subsequent failure probability. In
this sense, the Bellman equation captures the recursive propagation
of maintenance effectiveness over time, providing a dynamic balance
between short-term expenditure and long-term reliability.

3.4. Double deep reinforcement learning algorithm

In order to find the optimal maintenance policies, the reinforcement
learning method applied in this study utilizes the double deep Q-
learning algorithm, which is a variation of the Q-learning approach,
that can be found in the reference book of Sutton and Barto (2018).
Szepesvari (2010) presents some reinforcement learning algorithms.

The Double Deep Q-Network (DDQN) algorithm, an advancement
in reinforcement learning introduced by van Hasselt et al. (2015), is
essential in addressing the overestimation bias of Q-values and stabiliz-
ing training. This is achieved through a novel approach of decoupling
action selection from target Q-value estimation by employing two
distinct neural networks: policy and target networks.

The efficacy of DDQN extends across various domains, as demon-
strated by a variety of applications, such as enhancing driving safety
and fuel economy in autonomous vehicles through vehicle-to-
infrastructure communication networks (Liu et al., 2020), optimizing
timeslot scheduling in network traffic (Ryu et al., 2023), control-
ling hysteresis phenomena in mode-locked fiber lasers (Kokhanovskiy
et al., 2022), improving relay selection and power allocation in secure
cognitive radio networks (Huang et al., 2021), optimizing hospital oc-
cupancy (Rajendran & Geetha, 2021), financial trading strategies (Brim,
2020), and dynamic planning of transmission networks (Wang et al.,
2021).

The key details of DDQN implementation, which can be found
in Ravichandiran (2020), include the following:

— Double Q-Value Estimation: Two separate Q-value networks are
employed, one for selecting the best action and the other for
evaluating its value. This decoupling mitigates the overestimation
bias inherent to traditional Q-learning and improves robustness
when learning from sparse and noisy maintenance cost signals.

— Target Q-Network Updates: The target network parameters are
updated periodically to stabilize learning. By keeping the target
network fixed for several steps and updating it incrementally
with the online network parameters, this mechanism reduces
oscillations in the target estimates and enhances the convergence
stability under stochastic failure dynamics.

— Neural Network Configuration: A feed-forward neural network
architecture with fully connected hidden layers, followed by an
activation function.

— Exploration-Exploitation Strategy: Implements an e—greedy ex-
ploration strategy to balance exploration and exploitation in ac-
tion selection.

— Experience Replay: A replay buffer stores and samples past tran-
sitions to break temporal correlations between consecutive main-
tenance decisions. This improves sample efficiency and ensures
more stable convergence by allowing the agent to learn from a
representative mix of past experiences rather than from sequen-
tially correlated episodes.

The output of the neural networks exhibits variability based on the
specific application context. In scenarios where the agent’s decision-
making is limited to a binary choice between perfect maintenance or
non-maintenance of the equipment, the neural network architecture is
configured with two distinct output nodes, as shown in Fig. 3. Con-
versely, in more complex decision-making situations where the agent is
tasked with determining whether maintenance is performed and spec-
ifying the corresponding restoration level, the neural network output
encompasses Q-values for a range of five discrete values associated with
the recovery factor p, which were evenly distributed between 0 and 1,
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as shown in Fig. 4. This dichotomy in the neural network output con-
figuration is influenced by the specific decision-making requirements
of a given application: perfect or imperfect maintenance, reflecting the
need for adaptability and precision in different operational contexts.
Figs. 3 and 4 provide visual representations of the neural network
outputs corresponding to these distinct decision scenarios.
Algorithm 2 Double Deep Q-Network (DDQN) for Preventive Mainte-
nance with 7-State PAR Model

1: Initialize online network QO(s,a;0) and target network O(s,a;67)
with random weights

: Initialize replay buffer D

: for episode = 1,2,..., E do

Initialize environment using resetFcn, obtaining:

AW N

so = (FailTime,, Tj, AgeEffy, fomos fioro: a-1» PMtime)

5: for step k =0, 1,... until episode horizon H do
With probability e, select random action a4, € A, otherwise
select greedy action g, = arg max, Q(s, a; 0)

>

7: Apply action g, in environment via stepFcn:
8: if @, > 0 then
9: Set preventive maintenance level p = a;,
10: Reset fails_since PM « 0
11: Update PM_last « T} + At
12: Add preventive cost c,
13: end if
14: Compute effective risk factor § = 1 + kyigc = 1 fail since last PM}
15: Sample failure occurrence F; ~ Bernoulli(l — e~?4#)
16: if F; =1 then
17: fails_since_PM « fails_since_PM + 1,
18: total_fails « total_fails + 1
19: Apply corrective maintenance (minimal repair)
20: Add corrective cost ¢, (1 + ko - fails_since_PM)
21: Update last failure time FailTime « T} + 4t
22: end if
23: Update effective age: AgeEff = max((T}, + 4r) — p - PM_last, 0)
24: Normalize new state:

Syt = (FailTime,, T,, AgeEff,, fpmus frotn» 9> PMtime,)

25: Compute dense-shaped cost
cp; + e (1 + Keost for)Pail
step_cost= —M8 ——————
max(c,, ¢,(1 + KeostSpm))
26: Reward r, = —step_cost
27: Store (sy,a;, ry, Sp41) in replay buffer D
28: Sample minibatch {(s;,a;,7;,5,,1)} from D
29: for each sample (555;,7;,8)41) do
30: a* = argmax, O(s;41,4d';0)
31: YjDDQN =rj+yQ(s,+l,a*;9’)
32: Compute loss L; = (Yj””Q” ~0(s.a;3))
33: end for
34 Update 0 < 0 —VyL;
35: if k mod 7 = 0 then
36: Update target network: 6~ < 6
37: end if
38: Sk < Spp
39: end for
40: end for

The simulations of this study were performed using MATLAB (The
MathWorks Inc., 2022). The reinforcement learning toolbox provides
appropriate functions for training reinforcement learning algorithms
and achieving optimal policies. The rIDQNAgent function was used in
this study.

3.4.1. Double deep Q-learning update rule

To learn the optimal policy in the proposed MDP, we propose the
DDON Algorithm 2. At each training step, the agent samples a transition
(s> ay, 1y, Sgq1) from the replay buffer, where s, is the current state,
a, is the selected preventive maintenance intensity, r, = —R(sy,q;)
is the immediate reward (negative of the maintenance cost), and s,
is the next state sampled according to the kernel P(|s;,a;), with
failure indicator drawn from a Bernoulli distribution with parameter
ptrue(sk’ ak)

The DDQN target value is defined as

YkDDQN =r+ yQ<Sk+1,arg max O(sp41,4d'50); 6”), (18)

where:
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Fig. 3. Neural network architecture for the perfect maintenance case.
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Fig. 4. Neural network architecture for the imperfect maintenance case.

— QO(-; 0) is the online network with parameters 6,
— Q(-;07) is the target network with parameters 6,
— 0~ is updated by 0 every r steps to stabilize learning.

The corresponding loss function is
DDQN

2
Li(®) = By, aprsi~D [(Yk — 051943 0)) ]’

where D is the experience replay memory distribution. Stochastic gra-
dient descent is used to update # by minimizing L,(6), whereas 6~ is
synchronized with 6 at fixed intervals.

19

10

This update rule incorporates the stochasticity of the environment:
failures are sampled according to F, ~ Bernoulli(p™®(s,a;)), and
corrective costs may follow a random distribution C.(N,) ~ D(c,,c?).
Hence, the DDQN update naturally accounts for both probabilistic fail-
ures and random cost realizations in the Bellman target. The decoupling
of action selection and evaluation ensures stable convergence despite
the noisy and non-stationary reward structure of the maintenance

environment.
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3.5. Evaluation methodology and cost simulation framework

To ensure a fair comparison between the RL-based agent and the
analytical maintenance policies, a unified evaluation framework was
implemented. All simulations were conducted over a 60-day horizon
(T = 60) with a daily decision step, and each policy was evaluated
across N, = 1000 independent Monte Carlo episodes using shared
random sequences to guarantee identical sampling of failure events.

Three types of policies were evaluated for each corrective-to-
preventive cost ratio c,/c, € {8,4,2,1,0.5,0.25}: (i) the single-action
policy, in which a single preventive action is scheduled at an optimal
day within the horizon given by the minimum of Eq. (6), (ii) the
periodic policy, with an analytically optimized maintenance interval *
by searching optimal maintenance intervals that minimizes Eq. (6); and
(iii) the RL-based policy, represented by the greedy deterministic policy
derived from the trained DDQN agent. All three policies were tested
under identical stochastic realizations of the failure process, generated
by the same matrix of random draws. This guarantees that differences
in total cost arise solely from the decision policy, not from randomness
in the environment.

The underlying base degradation process follows a non-
homogeneous Poisson process (NHPP) with a Weibull (power-law)
intensity where the shape and scale parameters were set to §; = 1.065
and a; = 4.721, values consistent with reliability data reported for
a die-casting machinery (see de Souza & da Silva, 2024). A similar
order of magnitude for the parameters can also be observed in other
contexts, for instance in the estimates reported by Saraygord Afshari
et al. (2022) and Moniri-Morad and Sattarvand (2023). Preventive
maintenance actions reduce the virtual age according to the PAR model
with factor p, whereas corrective maintenance is minimally restorative.
To represent imperfect repairs and the risk accumulation observed in
industrial practice, the instantaneous failure probability incorporates a
multiplicative post-failure risk factor 0, defined as

with 0 <0 (20)

0 =1+ K 1(fai1ure since last PM}» ‘max

The probability, as shown in 12, of at least one failure occurring within
the step (¢,7 + 4r] is then

Prail = 1 —exp(—=0 AH), (21)

where AH is the cumulative hazard increment under the PAR-adjusted
age. The parameter «,;y = 0.25 controls the magnitude of the temporary
increase in failure rate following a corrective event, and 6,,, = 3.0
defines its saturation limit.

The total cost accumulated within each episode is computed by
combining preventive and corrective costs while accounting for the
sensitivity of corrective maintenance to repeated failures. Whenever a
preventive action of magnitude p € [0, 1] is taken, a cost proportional
to its intensity is incurred:

max

Cpy = ¢ p. (22)

If a failure occurs, the corrective cost increases with the number of
consecutive failures since the last preventive action:

Cem = €y (1 + Keost fPM)’

where f™ is the number of failures accumulated since the previous PM
and k. = 0.25 quantifies the cost amplification effect due to repeated
unplanned interventions. This structure reflects both operational risk
escalation and the rising indirect costs associated with equipment
downtime.

For each policy, the environment evolves deterministically in time,
whereas the occurrence of failures follows the sampled probabilities
Praii- The total episode cost is then obtained by summing the instan-
taneous preventive and corrective components across all time steps:

(23)

T
Cota = Z (CPM,r + CCM,t)'

t=1

(24)

11
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The average and standard deviation of C,,, over all episodes are re-
ported as performance metrics for each policy and cost regime. Because
all methods share the same random seeds and hazard realizations,
the comparison isolates the effect of the decision logic rather than
stochastic variability.

This evaluation methodology extends classical reliability-based cost
simulations by incorporating post-failure risk escalation (x,;, ) and cost
sensitivity to repeated failures (x,.), both of which were present
during RL training. Therefore, the performance of the trained DDQN
agent can be assessed under conditions that faithfully reproduce the
stochastic environment and cost dynamics to which it was exposed,
allowing a direct and statistically rigorous comparison with periodic
and single-action analytical policies.

3.6. Comparison methods

To assess the performance of the RL-based maintenance policy,
three alternative optimization strategies were implemented and eval-
uated under identical stochastic environments. All methods were sim-
ulated using the same random failure sequences and cost parameters,
ensuring that differences in performance reflected only the decision-
making approach.

3.6.1. Static analytical policies.

Two classical maintenance strategies were adopted as analytical
baselines. The first is the periodic policy, in which preventive mainte-
nance is executed at fixed intervals z* that minimize the expected cost
per unit time. The optimal interval is obtained by solving

c,H(t)+ ¢
¥ = arg min = - 7 (25)
T T
where H(r) = /OT h(s)ds is the cumulative hazard function of the

Weibull failure model, and ¢, and c,, are the preventive and corrective
maintenance costs, respectively. The second is the single-action policy,
in which exactly one preventive maintenance operation is scheduled
within the horizon at the time * that minimizes the total expected cost
over the period [0, T].

3.6.2. Dynamic genetic algorithm (GA-S).

As a non-learning, model-based method, a dynamic Genetic Al-
gorithm (GA-S) was implemented. At each decision epoch, the GA
re-optimizes a sequence of future preventive actions over the remaining
horizon by simulating the stochastic failure process as a black-box
environment. Each chromosome encodes a binary sequence of mainte-
nance actions (perform or skip) for the remaining days, and its fitness
is evaluated as the expected total cost obtained from Monte Carlo
simulations of the same Weibull-PAR process, including the post-failure
risk amplification (k) and corrective cost escalation (k). Selection,
crossover, and mutation operators evolve the population over several
generations, and the best individual’s first action is applied to the
system before the process repeats for the next day. This re-optimization
scheme allows the GA to approximate a dynamic decision process
without learning an explicit policy or state-value function.

4. Results and analysis

This section presents the experimental results obtained using the
proposed DDQN-based preventive maintenance algorithm presented
in Section 3. The analysis was divided into two main parts. First,
a comprehensive sensitivity study was conducted to evaluate the in-
fluence of key hyperparameters on learning performance and policy
stability, including the target network update frequency, replay buffer
size, neural network architecture, mini-batch size, learning rate, look-
ahead parameter, and discount factor. These experiments aimed to
identify configurations that yield robust convergence and consistent
value estimation under a stochastic maintenance environment.
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In the second part, the trained agent is evaluated under multiple
corrective-to-preventive cost ratios, with both perfect and imperfect
maintenance actions, illustrating how the learned policies adapt to
different economic trade-offs between corrective and preventive main-
tenance. The performance of the reinforcement learning agent is then
compared against benchmark maintenance strategies, including an-
alytical static schedules and periodic policies, to assess its relative
efficiency and generalization capability.

The simulations employed reliability parameters consistent with the
failure data reported in the literature for die-casting machinery. The
power-law (Weibull) parameters used in this study, g, = 1.065 and
a; = 4.721, are of the same order of magnitude commonly found across
various types of industrial equipment, such as jet engine parts and
mining trucks, ensuring that the experimental results reflect realistic
degradation and failure dynamics.

4.1. Analysis of hyperparameters

This subsection presents a systematic evaluation of the influence of
key hyperparameters on the performance and stability of the Double
Deep Q-Network algorithm. Each parameter was varied independently
around the baseline configuration defined in Section 4.2, whereas
all others were held constant. The results are discussed in terms of
mean and variance of the total cost, convergence behavior or other
quantitative characteristics of the learned policies.

4.2. Training configuration and baseline hyperparameters

The reinforcement learning agent was trained using an e-greedy
exploration strategy, with the exploration rate (¢) linearly decaying
from 1.0 to 0.01 over 10,000 timesteps, corresponding to a decay rate
of 8 x 107° per step and the random seed fixed at rng(3). This schedule
ensures a gradual transition from an exploratory to an exploitative
behavior, as shown in Fig. 5, allowing the agent to initially sample
the environment widely before focusing on the exploitation of the most
promising actions. The full training process required approximately two
hours on a standard workstation equipped with an Intel Core i5 proces-
sor (3.2 GHz) and 8 GB of RAM. Within the same computational setup,
the inference process of the trained agent is effectively instantaneous.

The baseline configuration adopted for the analyses was established
after extensive sensitivity testing across the main hyperparameters. The
set of values found to produce stable and consistent convergence across
independent runs is summarized below:

— Target Update Frequency: 1000;

— Look-Ahead Parameter: 3;

— Discount Factor (y): 0.99;

— Network Architecture: Two hidden layers of 64 neurons each with
ReLU, and a linear activation in the output layer;

— Batch Size: 64;

— Learning Rate: 0.00005;

- Replay Buffer Length: 3 x 10°;

- L, Regularization Factor: 1 x 1073;

The inclusion of an L, regularization term was found to play an
important role in stabilizing the learning dynamics. By penalizing
large network weights, this term helps control overfitting to tran-
sient fluctuations in the value function estimates, promoting smoother
convergence and improved generalization when exposed to unseen
operational conditions.

Fig. 5 illustrates the evolution of the training process under this
baseline configuration. The learning curve shows the progressive re-
duction and subsequent stabilization of the cumulative cost across
episodes, indicating the agent’s ability to extract a consistent policy
from the simulated experience. The steady convergence trend observed
supports the selection of this configuration as the reference setup for
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the subsequent hyperparameter analyses. In the following subsections,
the parameters above will be individually varied to assess its influ-
ence on learning efficiency, convergence stability, and overall policy
performance.

4.3. Analysis of hyperparameters

4.3.1. Analysis of target network update frequency: DQN vs. DDQN

The first set of experiments was conducted to evaluate the influence
of the target network update frequency on the performance of the
Double Deep Q-Network (DDQN) compared with the standard Deep
Q-Network (DQN). The action space in this experiment was binary,
consisting of either performing a perfect preventive maintenance action
or taking no action. The hyperparameter configuration followed the
base setup described earlier, with the target network update frequency
varying in 1, 10, 60, 100, 1000 and the random seed fixed at rng(3).

The experiments were performed with kg = ko5 = 0.25, Weibull
parameters f; = 1.065 and a; = 4.721, a time horizon of 60 days,
and 1,000 simulation trials per configuration. The case ¢ /c, = | was
of particular interest, since it represents the most sensitive decision
region where the choice between performing preventive maintenance
or accepting a corrective cost is least obvious.

For the baseline case (c, fe, = 1), the DDQN consistently achieved
lower mean cost values than the DQN, with average reductions exceed-
ing 20% relative to the standard agent. This improvement remained
stable across different values of Target Update Frequency, with no clear
performance gap among 1, 10, 60, or 100 updates.

4.3.2. Influence of the look-ahead parameter in DDQN learning

A complementary set of experiments was conducted to investigate
the influence of the ‘number of steps to look-ahead’ parameter on the
performance and stability of the DDQN agent. This parameter controls
the number of future steps considered when computing the target
return during the Bellman update. In standard one-step Q-learning, the
target is defined as

Y =1, 470 .0, 67), (26)

where af | = argmax, O(s.,;,a;0) is the greedy action according to the
current online network. When the look-ahead parameter is extended to
n steps, the target becomes

Yr(n) =g Y T sy 7" 0C g 0,3 07), @7

propagating the influence of near-future rewards into the update.
In the DDQN algorithm described in Algorithm 2, the lines corre-
sponding to the target computation are modified as follows:
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i=0
This adjustment affects only the target generation step, leaving the
remaining parts of the training loop unchanged. Conceptually, the
parameter n controls the temporal depth of reward propagation and
balances bias and variance in value estimation. The parameter was
tested for n € {1,2,3,5}, keeping all the other hyperparameters fixed.
The results show that setting n = 3 produced the lowest mean mainte-
nance cost and the smallest standard deviation across 1,000 simulated
episodes, outperforming both shorter and longer look-ahead horizons.
With n = 1 or n = 2, the agent converged faster but exhibited higher cost
variability and evidence of premature stabilization of the Q(s, a) values,
indicating a bias toward short-term rewards and suboptimal policies.
For n = 5, convergence became slower and less stable, as longer look-
ahead returns incorporated higher variance due to stochastic failure
events.

These observations are consistent with the theoretical trade-off
between bias and variance in n-step methods. A smaller »n leads to
faster but biased updates that rely heavily on noisy one-step transitions,
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Fig. 5. Episode reward (blue) and 10-episode moving average reward (bold blue) during he training of a DDQN agent for maintenance scheduling.

whereas a larger n reduces bias at the expense of amplifying vari-
ance and slowing convergence. In this preventive maintenance context,
where each maintenance action influences the risk and cost structure
for a few subsequent days, a look-ahead horizon of n = 3 provides
an effective compromise. It captures the short-term delayed effect
of preventive maintenance actions on equipment reliability without
excessively propagating stochastic noise from future failures.

4.3.3. Sensitivity to the discount factor

A sensitivity analysis was also conducted to assess the effect of the
discount factor y on the learning performance of the DDQN agent.
The discount factor regulates the relative importance assigned to future
rewards in the Bellman update, and therefore determines how strongly
the agent values long-term outcomes with respect to immediate costs.

The parameter was tested for y € {1.0, 0.999, 0.99, 0.95, 0.9}, keep-
ing all other hyperparameters fixed to the baseline configuration, but
using with n = 3. Across 10,000 training episodes, no significant
differences in performance were observed for y > 0.95. The resulting
mean costs and standard deviations were statistically indistinguishable,
indicating that the learned policy and value estimates were robust
to small variations in the discount factor within this range. Only
the configuration with y = 0.9 showed a noticeable degradation in
performance, producing higher average maintenance costs.

This outcome is consistent with the expected behavior of sequential
decision processes with moderately long horizons. Given that each
episode spans 60 decision steps (days) and maintenance actions have
delayed but bounded effects, high values of y near unity appropriately
preserve the temporal dependencies between actions and their future
costs. When y is reduced to 0.9, the agent becomes overly myopic,
prioritizing immediate cost minimization over preventive decisions that
yield benefits several steps ahead. Consequently, the learned policy
tends to underperform by deferring maintenance actions too long.

4.3.4. Effect of network size on learning performance

The neural network architecture used by both the online and target
critics in the DDQN agent consists of two fully connected hidden layers
with ReLU activation functions. To evaluate the influence of network
capacity on learning performance, several configurations were tested
by varying the number of neurons in each hidden layer while keeping
the network depth fixed at two layers. The number of neurons per layer
was set to {32, 64, 128, 256, 512}.

The decision to restrict the analysis to two hidden layers follows
from the universal approximation theorem (Chen & Chen, 1995), which
establishes that a feed-forward neural network with a single hidden
layer and a sufficient number of units can approximate any continuous
function on a compact domain to arbitrary precision. In practice, deeper
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Table 1
Performance of DDQN agents with different numbers of neurons
per hidden layer.

Neurons Mean cost Std. deviation
32 57.17 5.44
64 25.67 5.94
128 39.53 5.77
256 28.51 6.40
512 27.83 7.97

networks often increase training complexity and variance without pro-
portional gains in representational power for problems of moderate
dimensionality such as the present seven-state MDP. Therefore, ex-
ploring different network widths provides a more relevant measure of
model capacity than varying the number of layers.

The ReLU activation function was adopted because of its well-
established advantages in stabilizing gradient propagation and acceler-
ating convergence in deep Q-learning frameworks, as widely reported
in the reinforcement learning literature, and it was therefore selected
as a standard choice without further empirical comparison.

The results of this analysis are summarized in Table 1. Each con-
figuration was trained under identical conditions and evaluated across
1,000 simulation trials using the same random seed. The mean main-
tenance cost and its standard deviation were computed during the
inference phase of the trained policies.

The results indicate that the configuration with 64 neurons in
each hidden layer achieved the lowest mean cost while maintaining
one of the smallest standard deviations. Smaller networks (e.g., 32
units) were unable to capture the nonlinear structure of the value
function, leading to systematically higher costs. Larger networks (128
units or more) did not improve the average performance and tended to
exhibit slightly higher variability, suggesting overparameterization and
increased sensitivity to stochastic fluctuations during training.

4.3.5. Effect of mini-batch size on training stability

Another hyperparameter evaluated in this study was the mini-batch
size used for stochastic gradient descent during the critic updates. The
mini-batch size determines the number of experience tuples randomly
sampled from the replay buffer at each training iteration. This parame-
ter directly affects the bias-variance trade-off of the gradient estimates
and, consequently, the stability of the learning process.

Three configurations were tested, with batch sizes of {64, 128, 256}
samples per update, while keeping all other training parameters fixed.
Each configuration was trained for the same number of episodes under
identical random seeds. The performance of the resulting agents was
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Table 2
Performance of DDQN agents with different mini-batch sizes.

Batch size Mean cost Std. deviation
64 25.67 5.94
128 45.45 16.58
256 44.42 16.23
Table 3

Performance of DDQN agents with different learning rates.

Learning Rate Mean cost Std. deviation
0.05000 45.38 16.72
0.00500 45.38 16.72
0.00050 43.56 18.17
0.00005 25.67 5.93

assessed using the mean and standard deviation of the maintenance cost
over 1,000 inference episodes.

As shown in Table 2, the configuration using a mini-batch of 64 sam-
ples achieved the lowest mean cost and the smallest standard deviation
among all tested values. Increasing the batch size to 128 or 256 did
not improve convergence; instead, both resulted in higher variability
and worse average performance. This behavior can be attributed to the
reduced stochasticity of the gradient updates when using large batches,
which limits exploration in parameter space and slows the adaptation
of the Q-network to the nonstationary reward landscape.

Conversely, smaller batches introduce moderate noise in the gradi-
ent estimation, which helps the optimization escape local minima and
better capture the underlying structure of the value function. In this
context, a mini-batch size of 64 offered a favorable balance between
learning stability and representational generalization. Therefore, this
configuration was adopted as the standard setting for all the subsequent
DDQN training experiments.

4.3.6. Influence of the learning rate on convergence behavior

The learning rate is one of the most critical hyperparameters in
deep reinforcement learning, as it determines the step size of the
gradient descent updates during network training. Excessively large
values can lead to unstable oscillations or divergence, whereas values
that are too small can result in slow convergence and poor adaptation to
nonstationary environments. To assess its effect, four values of the critic
learning rate were tested: {0.05, 0.005, 0.0005, 0.00005}, while keeping
all other hyperparameters identical to the baseline configuration.

Each configuration was trained under identical conditions and eval-
uated using 1000 inference episodes. Table 3 summarizes the resulting
mean and standard deviation of the maintenance cost for each learning
rate.

The results clearly show that lower learning rates produced substan-
tially better outcomes. For LR = 0.00005, the agent achieved the lowest
mean cost and the smallest standard deviation, indicating both superior
convergence and higher stability of the learned policy. In contrast,
larger learning rates (0.05 and 0.005) resulted in nearly identical and
significantly worse performance, reflecting the characteristic oscillatory
behavior and loss of precision typical of overly aggressive gradient
updates. An intermediate value (0.0005) slightly improved the average
cost but still exhibited high variance.

These findings are consistent with the sensitivity of DDQN algo-
rithms to the magnitude of parameter updates, particularly in environ-
ments with dense but noisy rewards such as the present maintenance
optimization problem. A small learning rate ensures smoother adjust-
ments of the Q-network weights, preventing overreaction to stochastic
variations in the replayed transitions and promoting gradual, stable
convergence. Based on these observations, a learning rate of 5 x 107>
was adopted as the default configuration in subsequent experiments.
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Table 4
Comparison of replay buffer sizes and corresponding performance
metrics.
Buffer size Mean Cost Standard Deviation
3x 10* 38.26 6.74
3x10° 25.67 5.94
3x 100 26.34 6.31

4.3.7. Effect of replay buffer size

To assess the influence of experience replay on training stability,
additional experiments were conducted with three replay buffer sizes:
3 x 10% 3 x 10°, and 3 x 10° transitions. The results, summarized
in Table 4, indicate that the intermediate configuration with 3 x 10°
samples produced the lowest mean total cost and the smallest variabil-
ity, representing the most stable and cost-efficient policy. Empirically,
small replay buffers (10*) tend to limit the diversity of past expe-
riences available for training, causing the agent to overfit to recent
transitions and leading to oscillatory learning behavior. Conversely,
excessively large buffers (10°) dilute the relevance of recent expe-
riences, slowing convergence and introducing outdated samples that
reduce learning responsiveness. These observations are consistent with
established reinforcement learning literature, which emphasizes that
experience replay improves convergence by breaking temporal corre-
lations, provided that the stored experiences remain representative of
the current policy distribution. Therefore, a buffer size of 3 x 10° was
adopted as a practical compromise, ensuring sufficient sample diversity
for stable learning while maintaining adequate sensitivity to recent
environmental dynamics.

4.3.8. Evolution of the Q-values during training

The convergence properties of value-based Deep Reinforcement
Learning algorithms are inherently influenced by the stochastic nature
of the training process, the bootstrapped construction of target values,
and the use of neural function approximation. In the present study, both
the classical Deep Q-Network (DQN) and the Double Deep Q-Network
(DDQN) were trained under identical conditions, employing a Target
Update Frequency of 1000 steps.

As shown in Fig. 6, the DDQN produced higher converged QO(s, a)
values (less negative in the cost-based formulation) and a more efficient
policy compared with the DQN, as described in Section 4.3.1, despite
exhibiting slightly greater variance during the final training episodes.
The DDQN agent clearly differentiates the value of ‘not maintain’ action
from ‘maintain’ action in the first step of the training process. This
difference can be attributed to the distinct bias characteristics of each
algorithm. The DQN tends to overestimate its target values due to the
correlation between action selection and evaluation within the same
estimator. Such coupling introduces a persistent maximization bias that
can destabilize the value updates and drive the learning process toward
suboptimal local attractors. This effect is evidenced in the DQN results
(left panel), where the agent converged prematurely to a lower Q(s, a)
plateau and failed to escape from it in the later stages of training.

In contrast, the DDQN mitigates this maximization bias by decou-
pling action selection from target evaluation, employing two decorre-
lated estimators that generate more consistent and less correlated target
values. This modification results in smoother updates and allows the
DDOQN agent to explore a broader portion of the value-function space,
leading to a policy that achieves a lower expected maintenance cost.
Because the target and online networks evolve asynchronously and are
periodically synchronized, each target update introduces small discon-
tinuities in the learning dynamics. The resulting oscillations represent
bounded fluctuations around a stationary point rather than evidence of
divergence.
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Fig. 6. Q(s,a) estimation during training. (Left) DQN algorithm. (Right) DDQN algorithm with target network update frequency equal to 1000.

4.4. Agent results

This subsection reports the performance of the trained agents under
different maintenance cost structures and risk models. The results
include comparisons with analytical benchmark policies, with an or-
dinary RL algorithm as well as with heuristic optimization baselines.
Both robustness and generalization are examined by evaluating the
agents under perturbed failure dynamics and stochastic maintenance
environments, providing insight into the learned policy’s adaptability
and stability.

4.4.1. Genetic algorithm and standard RL configuration and comparative
performance

For benchmarking purposes against the periodic, static, and reinforce-
ment learning (RL) policies, a genetic algorithm (GA) was implemented
with fixed evolutionary parameters and a dynamic stopping criterion
proportional to the RL inference time. The GA employed a population
of 10 individuals, up to 50 generations, a crossover probability of
p. = 0.8, a mutation probability of p, = 0.1, and 30 internal Monte
Carlo simulations (ng,, = 30) to estimate the expected cost of each
chromosome under the agent’s internal (belief) model, which neglected
the second Weibull hazard component.

Unlike the RL agent, the GA performs an on-line stochastic search
during inference, evolving binary sequences of maintenance actions
over the remaining decision horizon. To ensure computational fairness
in the comparison, a time-based stopping criterion was introduced: the
GA is interrupted when its total inference time for a given episode
exceeds k times the average inference time of the RL agent under
the same evaluation conditions. The parameter k thus represents the
available computational budget, where larger values allow a broader
search over the decision space at the cost of higher inference time.

For comparative purposes, an additional Double Deep Q-Network
(DDQN) agent adapted from Huang et al. (2020) was also implemented
using the reward function defined in Eq. (11). The state space of this
implementation was composed of four variables: the elapsed operating
time, the time since the last failure, the cumulative age effect resulting
from maintenance actions, and the total number of failures observed.
This configuration mirrors the structure proposed by Huang et al.
(2020), enabling a fair comparison between the standard DDQN formu-
lation and the proposed DDRL framework in terms of cost minimization
performance and learning stability.

When evaluating the baseline DDQN under the simplified condition
of Kyisk Keost = 0, that is, when corrective maintenance actions
produce no cumulative effects on either the risk or the cost structure,
the standard model achieved slightly better performance than the pro-
posed DDRL framework. In this static environment, where adaptation
offers no clear advantage, the baseline DDQN, due to its reduced state
space and non-adaptive policy, obtained an average cost of 13.003 with
a standard deviation of 3.1798, whereas the proposed RL approach
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Table 5
Comparison of average and standard deviation of episode costs
for different decision policies.

Policy Mean Cost Std. Deviation
Periodic 30.6645 9.84

Single PM 30.6645 9.84
Proposed RL 25.2350 5.85

Standard RL 45.3750 16.72

GA (k=5) 43.8595 16.21

GA (k =10) 43.4565 15.97

GA (k =100) 30.7145 11.46

reached an average cost of 15.608 and a standard deviation of 3.6745.
Even under perturbed conditions, the standard DDQN maintained a
marginally better performance, with a mean cost of 30.478 and a stan-
dard deviation of 3.797, compared to 35.248 and 4.116, respectively,
for the proposed DDRL agent. However, once any cumulative effect
from corrective maintenance is introduced, through either the risk or
cost terms, the standard DDQN’s performance deteriorates, similarly to
analytical static policies, while the proposed model remains stable and
continues to adapt effectively to the changing environment.

The results presented in Table 5 and in Table 6 correspond to
the case of practical interest in which the corrective and preventive
maintenance costs are equal (c, = ), the restoration factor p is
equal to 1 and kg = ks # 0. In Table 5 the agents model’s belief
matches the real baseline hazard function. Conversely, in Table 6, the
real hazard function differs from the baseline belief. The single-term
Weibull process is enhanced with a two-component model defined by
the parameters g, = 1.065 + 0.25, «; = 4.721 — 1, f, = 0.875, and
a, = 8. For each method, the tables report the average cost and
its standard deviation across 1000 simulated episodes. The periodic
and single preventive maintenance policies yield identical results, as
expected from their analytical equivalence under constant intervals.
The proposed RL agent clearly outperforms both analytical policies, the
standard RL agent and the GA algorithm, achieving a lower mean cost
and a smaller variance. The GA results, shown for three values of k,
reveal the impact of the time budget on solution quality: for k = 5
and k = 10, the GA produces significantly higher costs and dispersion
(approximately 75%), while for k = 100 the mean cost approaches that
of the RL policy (approximately 20% higher for the first case and 25%
higher for the second), although with considerably larger variability
(approximately 97% higher for the first case and 171% for the second).

As the value of k increases, the GA is granted more time to ex-
plore the decision space, allowing for a more thorough search and
a greater likelihood of discovering cost-efficient sequences. This be-
havior aligns with the exploratory nature of evolutionary algorithms,
where additional generations and evaluations expand the coverage of
potential action plans. However, this improvement is achieved solely by
allocating more computational resources rather than through inherent
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Table 6
Comparison of average and standard deviation of episode costs
for different decision policies with perturbed environment.

Policy Mean Cost Std. Deviation
Periodic 111.06 19.03

Single PM 111.06 19.03

RL 61.96 7.87
Standard RL 186.12 36.55

GA (k=5) 181.59 34.91

GA (k= 10) 176.50 35.95

GA (k = 100) 77.57 19.76

decision efficiency. Even with k = 100, the standard deviation of the
GA'’s results remains more than twice that of the RL agent, indicating
persistent inconsistency across independent runs.

4.4.2. Comparative evaluation of the RL policy trained with fixed model
parameters

Given the high computational cost of the genetic algorithm (GA),
which makes it unsuitable for real-time or large-scale applications, and
the limited adaptability of the standard RL, whose policy fails to re-
spond effectively to environments with corrective maintenance effects
or stochastic costs, the comparative analysis in this section focuses
solely on the proposed RL agent relative to the analytical maintenance
policies. Two analytical baselines are considered: a static policy and a
periodic policy, both derived from the power-law failure model used in
the RL training.

In the first part of the analysis, the RL agent is evaluated under
the same baseline environment used for training, corresponding to a
single-term Weibull failure model with fixed parameters. The preven-
tive maintenance cost is normalized to ¢, = 1, and several values
of the corrective-to-preventive cost ratio c,,/c, are examined. For the
representative case c,, = c,, both analytical policies identify the same
optimal preventive interval * = 30, yielding identical performance
statistics with a mean episode cost of 31.05 and a standard deviation
of 9.87 across 1000 Monte Carlo simulations. The RL policy achieves a
lower mean cost of 25.53 and a standard deviation of 5.89.

A two-sample Student’s t-test rejects the null hypothesis of equal
means with a p-value of 3 x 10~%, and the Brown-Forsythe test
(see Brown & Forsythe, 1974) for equality of variances also rejects
the null hypothesis with a p-value of 4 x 10~%0. These results confirm
that the RL policy not only achieves lower average cost but also yields
more stable outcomes within the baseline model. However, when the
same policy and analytical baselines are evaluated under environments
consistent with their respective belief models, the RL advantage does
not extend across all cost ratios.

To better understand the operational logic of the learned policy,
three random trajectories were analyzed under the nominal failure
model. These trajectories correspond to distinct Monte Carlo realiza-
tions in which the same RL policy interacts with independent sequences
of stochastic failures. Despite being generated under identical model
parameters, each trajectory exhibits a different temporal pattern of
failures and preventive maintenance actions, reflecting the adaptive
nature of the learned policy. The corresponding outcomes for the three
realizations are summarized as follows:

1. Total cost = 22.50, number of failures = 13, number of PMs = 2;
2. Total cost = 36.25, number of failures = 20, number of PMs = 2;
3. Total cost = 15.00, number of failures = 9, number of PMs = 1.

Table 7 shows the evolution of the actions and failure occurrences
over the 60-day horizon for each episode.

From these trajectories, one can observe clear signs of adaptive
behavior in the learned policy. Although the complete policy relies
on a multidimensional state representation, including variables such as
effective age, time since last PM, and cumulative number of failures,
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the partial information reported in Table 7 is sufficient to illustrate
the agent’s responsiveness to changing maintenance conditions. The RL
agent reacts to local degradation patterns, triggering maintenance only
when the recent failure history or inferred operational risk becomes
significant.

The following results refer to the perturbed environment, in which
the agent was trained under the baseline model but later evaluated in
an uncertain setting where the failure rate parameter $ varies uniformly
within the interval [g, g+ 0.3]. This configuration introduces stochastic
variability into the hazard function, allowing the assessment of the
model’s adaptability. The results presented in Table 8 demonstrate
that the RL agent maintained competitive performance under these
perturbations, confirming its robustness and capacity to generalize
beyond the nominal training conditions.

A second evaluation scenario, on the other hand, introduces a
deliberate perturbation to the failure model, replacing the single-term
Weibull process with a two-component model defined by the parame-
ters f; = 1.065 + 0.25, a; = 4.721 — 1, B, = 0.875, and a, = 8. Under
this perturbed environment, shown in Fig. 7, the analytical policies
continue to rely on the baseline failure model, whereas the RL agent
operates without modification. In this case, the RL policy demonstrates
a significant relative reduction in both the mean and variance of the
total cost across all values of ¢, /c,, as can be seen in Fig. 8, indicating
improved robustness when the underlying failure dynamics deviate
from those assumed during training.

Table 9 summarizes the results of hypothesis testing between the RL
policy and the periodic analytical policy for each cost ratio. In all eval-
uated cases, the r-tests indicate statistically significant differences in
the mean costs between the RL and the analytical policies (p < 0.001).
Similarly, the Brown-Forsythe tests reveal significant differences in the
variances.

To evaluate the adaptability of the proposed DDRL framework to
variations in the underlying failure dynamics, two perturbation scenar-
ios were tested after training the agent under the baseline power-law
hazard function with an increasing failure rate. As shown in Fig. 9, the
trained agent was subsequently exposed to failure processes governed
by two distinct bathtub-shaped hazard functions. The first perturbation
was defined by parameters g, = 2.565, «; = 22.721, §, = 0.6, and
a, = 2.5, while the second used g, = 1.715, a; = 22.721, p, = 0.9,
and a, = 4. Despite being trained exclusively under a monotonically
increasing risk assumption, the DDRL agent successfully adapted its
policy to these non-monotonic failure behaviors. As illustrated in Fig.
10, the model exhibited robustness not only to changes in the slope of
the hazard function but also to its overall shape. In both perturbation
cases, the reinforcement learning approach achieved a reduction in
both the mean and variance of the total maintenance cost compared to
the baseline, demonstrating its capacity for generalization and stable
decision-making under differing reliability conditions.

These findings suggest that the RL policy adapts to the stochastic
variability inherent in the maintenance environment and retains sta-
ble performance when evaluated under unseen operating conditions.
The absence of degradation in policy effectiveness under model per-
turbations indicates that the learned strategy generalizes beyond the
training distribution and does not exhibit signs of overfitting. In the
next subsection, this aspect is further investigated by analyzing an RL
agent trained with randomized model parameters, in order to explicitly
assess its generalization and robustness across heterogeneous failure
dynamics.

4.4.3. Evaluation under imperfect preventive maintenance

In this analysis, the preventive maintenance action is modeled as
imperfect, such that each intervention partially restores the system
depending on the selected restoration factor p € [0,0.25,0.50,0.75,1]. A
value of p = 1 corresponds to perfect maintenance, fully rejuvenating
the system to an ‘“as-good-as-new” state, whereas smaller values of
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Table 7
Full trajectories of three RL realizations under the nominal model.
Day Episode 1 Episode 2 Episode 3
PM Action Fail Flag Fails Count PM Action Fail Flag Fails Count PM Action Fail Flag Fails Count

1 0 0 0 0 1 1 0 0 0
2 0 0 0 0 0 1 0 0 0
3 0 1 1 0 0 1 0 1 1
4 0 0 1 0 0 1 0 0 1
5 0 0 1 0 0 1 0 0 1
6 0 1 2 0 0 1 0 0 1
7 0 0 2 0 0 1 0 0 1
8 0 1 3 0 0 1 0 1 2
9 0 0 3 0 0 1 0 0 2
10 0 0 3 0 0 1 0 1 3
11 0 1 4 0 1 2 0 0 3
12 0 0 4 0 0 2 0 1 4
13 0 0 4 0 1 3 0 0 4
14 0 0 4 0 0 3 0 0 4
15 0 0 4 0 1 4 0 0 4
16 0 0 4 0 0 4 0 0 4
17 0 0 4 0 0 4 0 0 4
18 0 0 4 0 1 5 0 0 4
19 0 0 4 1 1 6 0 0 4
20 0 0 4 0 0 6 0 0 4
21 0 1 5 0 0 6 0 0 4
22 1 0 5 0 0 6 0 0 4
23 0 0 5 0 1 7 0 0 4
24 0 0 5 0 0 7 0 0 4
25 0 0 5 0 0 7 0 0 4
26 0 0 5 0 1 8 0 0 4
27 0 0 5 0 1 9 0 1 5
28 0 0 5 0 1 10 0 0 5
29 0 0 5 0 0 10 0 0 5
30 0 0 5 0 1 11 0 0 5
31 0 0 5 0 1 12 0 0 5
32 0 0 5 0 0 12 0 0 5
33 0 1 6 1 1 13 0 0 5
34 0 1 7 0 0 13 0 0 5
35 0 0 7 0 0 13 0 0 5
36 0 0 7 0 0 13 0 0 5
37 0 1 8 0 0 13 0 0 5
38 0 0 8 0 0 13 0 0 5
39 0 0 8 0 0 13 0 0 5
40 0 0 8 0 1 14 0 0 5
41 0 0 8 0 0 14 0 1 6
42 0 1 9 0 0 15 0 0 6
43 0 0 9 0 0 15 0 0 6
44 0 0 9 0 1 16 0 0 6
45 0 0 9 0 0 16 0 0 6
46 0 1 10 0 0 17 0 0 6
47 1 0 10 0 0 17 0 0 6
48 0 0 10 0 0 17 0 0 6
49 0 0 10 0 0 17 0 0 6
50 0 0 10 0 0 17 0 0 6
51 0 0 10 0 0 17 0 0 6
52 0 0 10 0 1 18 0 0 6
53 0 1 11 0 0 18 0 0 7
54 0 1 12 0 0 19 0 1 8
55 0 1 13 0 1 20 0 1 9
56 0 0 13 0 0 20 1 0 9
57 0 0 13 0 0 20 0 0 9
58 0 0 13 0 1 20 0 0 9
59 0 0 13 0 0 20 0 0 9
60 0 0 13 0 0 20 0 0 9

p represent partial restorations. The PM cost is assumed to increase
linearly with p, reflecting a proportional trade-off between restoration
efficacy and expenditure. The RL agent is thus required to learn not
only when to perform maintenance but also how much restoration
effort to apply, given its impact on long-term costs.

The first set of experiments evaluates the agent trained under the
baseline power-law model used throughout previous sections. The per-
formance of the learned policy was compared against the optimal
periodic and single-PM analytical benchmarks. The resulting average
and standard deviation of the total costs per episode are summarized in
Table 10. In all cases, two-sample #-tests and Brown-Forsythe variance
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tests indicated statistically significant differences between the RL and
the analytical policies (p < 10™), confirming that the RL policy con-
sistently achieves lower mean and variance of costs. Fig. 11 illustrates
the results.

The results demonstrate that, even when the agent must choose
among multiple levels of imperfect restoration, the learned policy
consistently yields lower costs and reduced variability compared to
the analytical baselines. This indicates that the RL framework success-
fully captures the nonlinear interaction between restoration intensity,
accumulated hazard, and long-term cost.
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Table 8

Comparison of average total costs under the perturbed environment with
stochastic variation of g € [f, f + 0.3].
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Fig. 8. Total cost per episode comparison among static, periodic and RL policies.

Table 9

Comparison between RL and Periodic policies for different values
of ¢,. Reported are the p-values for the two-sample #-test and the

¢, Toeriotic Voeriodic  Operiodic  Tingle  Vaingle Oringle Vs omL Brown-Forsythe test for equality of variances.

8 9 237.54  49.04 30 398.22 108.75 230.28 29.93 Cm p-value p-value

4 15 14385 3379 30 198.58 5327  144.09 14.57 (r-test) (Brown-Forsythe)

2 30 100.81 2632 30 101.33 26.83 9435  7.84 8.000 0 1.075 x 1080

1 30 51.35  13.82 30 50.76 ~ 13.56  35.94  6.54 4.000 0 3.376 x 107130

0.5 30 25.84  6.84 30 2578  6.89 29.96  4.97 2.000 0 1911 x 107174

0.25 30 13.57 3.37 30 13.58 3.34 12.38 2.03 1.000 0 2.149 x 107102
0.500 0 7.935x 1078
0.250 0 4.401 x 10716

These results also reveal an additional behavioral insight into the
agent’s decision-making process under imperfect maintenance condi-

tions. When the corrective maintenance cost (c,) is lower than the
preventive cost, the agent behaves responsively to the environment,
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strategically waiting for actual failure events before deciding for main-

tenance interventions, thereby exploiting the lower corrective cost
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Fig. 10.
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regime and the post-maintenance age effect (see Table 11 for the

¢, = ¢, case). Conversely, in scenarios where the corrective cost equals

or exceeds the preventive cost, the agent adopts a more proactive

stance, executing at least the minimal nonzero preventive action (p =
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Inference results of perturbed power-law models: lower risk convex hazard shape (left panel) and higher risk convex hazard shape (right panel).

0.25) on a daily basis (see Table 12). The table presents the same
simulated sequence of failures subjected to different policies, that is,
policies learned for distinct cost ratios. Although the failure occurrences
are identical across simulations (see Fail Flag columns), the resulting



A.J. da Silva et al.

Computers & Industrial Engineering 213 (2026) 111813

Total cost per episode — Boxplots by corrective cost
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Table 10
Comparison of average total costs under imperfect preventive maintenance
(p € [0,1]) for the evaluated model.

Cm Tperiodic  Vperiodic ~ Operiodic ~ Tsingle  Vsingle Ogingle VAL ORL

8 9 132.58 39.26 30 224.47 77.56 117.74 27.72
4 15 81.45 24.73 30 114.43 38.69 70.11 13.76
2 30 56.82 18.94 30 56.82 18.94 50.07 6.60
1 30 28.88 9.52 30 28.88 9.52 23.47 5.33
0.5 30 14.95 4.93 30 14.95 4.93 10.63 2.35
0.25 30 8.05 2.41 30 8.05 2.41 6.49 1.32

effective ages differ due to the varying levels of restoration applied by
each agent (see Age Eff. columns). Each policy exhibits a unique pattern
of preventive intensity, with all agents performing some level of daily
intervention to minimize long-term costs. This behavior illustrates that
the DDRL agent dynamically adapts its restoration decisions according
to the cost structure, balancing reactivity and proactivity in a manner
consistent with cost-optimal decision-making.

A second evaluation was performed using a perturbed environment
that follows a two Weibull components with parameters a; = 4.721,
11, p, = 0.85, and a stochastic f; drawn from a uniform
distribution with mean 1.065 and variation of +0.05. The agent was
evaluated assuming its mean value as the belief model, while the true
environment was generated using the random realizations of ;. The
corresponding results are summarized in Table 13.

The results obtained under this configuration show that the RL
policy maintains its superior performance even when evaluated in a
simplified environment, where the degradation follows the mean value
of the parameter f;, used during training. In this case, the agent had
been trained under heterogeneous conditions with randomly sampled
p, values, yet was evaluated under a single, nominal model that co-
incides with its belief. The consistently low mean and variance of the
resulting costs suggest that the policy learned from a diverse training
environment is able to retain its effectiveness when applied to a specific
and less variable scenario. This indicates that exposure to a broader
range of dynamics during training enhances the agent’s ability to form
stable and robust decision rules, rather than overfitting to particular
degradation trajectories.

Moreover, when the same agent trained under randomized g, val-
ues was evaluated in environments that also exhibited random g,

A =
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realizations, its performance remained statistically indistinguishable
from the case where the evaluation used the nominal (mean) .
Both the mean and variance of the total cost distributions showed
no significant deviation according to the t-test and Brown-Forsythe
results. This consistency indicates that the agent effectively internalized
the variability of the degradation dynamics during training, achieving
stable performance across both deterministic and stochastic instances
of the failure model. Such behavior reinforces the interpretation that
the learned policy is not sensitive to small parameter fluctuations and
demonstrates an inherent capacity to generalize within the same family
of degradation processes.

4.5. Further discussions

We present additional points related to the results that supplement
and extend the previously mentioned findings. By highlighting these
points, we aim to enrich academic literature and establish a more
robust foundation for future research in this field.

Notably, by considering the power-law hazard model with g = 1,
or any other combination of §; parameters of the bathtub model that
reflect a constant failure rate, the RL agent did not predict any preven-
tive maintenance intervals (see Pham (2003) and da Silva (2023)). In a
scenario where the risk function remains constant, preventive mainte-
nance is ineffective, as predicted by reliability engineering theory. The
RL agent astutely recognized the impracticality of preventive actions
in situations where the risk remained unaltered, showing a nuanced
understanding of the underlying system dynamics.

Interestingly as in the previous case, the RL agent learned that
when the recovery factor is set to zero, no preventive maintenance
is necessary. It is important to remember that the RL agent does
not have information regarding the post-maintenance effect on the
hazard function. The agent observes only the behavior of time between
the subsequent failures. This aligns with the logical expectation that
in the absence of any recovery from maintenance actions, the cost-
effectiveness of preventive measures vanishes, and the agent correctly
adapts its strategy accordingly.

An aspect observed during the simulations involves adaptive
rescheduling of preventive maintenance when an unexpected failure or
unscheduled maintenance occurs. The agent dynamically adjusts the
subsequent preventive maintenance schedule based on the occurrence
of these events.
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Table 11

Full trajectories of three RL realizations under imperfect actions for c,, = c,.
Day Episode 1 Episode 2 Episode 3

PM Action Fail Flag Age Eff. PM Action Fail Flag Age Eff. PM Action Fail Flag Age Eff.

1 0.25 0 0.75 0.25 0 0.75 0.25 1 0.75
2 0.25 0 1.3125 0.25 0 1.3125 0.25 0 1.3125
3 0 0 2.3125 0 1 2.3125 0 0 2.3125
4 0 0 3.3125 0 0 3.3125 0 0 3.3125
5 0 1 4.3125 0 0 4.3125 0 0 4.3125
6 0 1 5.3125 0 1 5.3125 0 0 5.3125
7 1 1 0 1 0 0 0 0 6.3125
8 0.25 1 0.75 0.25 1 0.75 0 0 7.3125
9 0.25 1 1.3125 0.25 0 1.3125 0 0 8.3125
10 0 1 2.3125 0 0 2.3125 0 0 9.3125
11 0 0 3.3125 0 1 3.3125 0 1 10.3125
12 0 0 4.3125 0 0 4.3125 1 0 0
13 0 0 5.3125 0 0 5.3125 0.25 0 0.75
14 0 0 6.3125 0 0 6.3125 0.25 0 1.3125
15 0 0 7.3125 0 0 7.3125 0 1 2.3125
16 0 1 8.3125 1 0 0 0 0 3.3125
17 1 1 0 0.25 0 0.75 0 0 4.3125
18 0.25 0 0.75 0.25 0 1.3125 0 1 5.3125
19 0 0 1.75 0 0 2.3125 1 1 0
20 0 0 2.75 0 0 3.3125 0.25 0 0.75
21 0 0 3.75 0 1 4.3125 0.25 0 1.3125
22 0 0 4.75 0 0 5.3125 0 1 2.3125
23 0 0 5.75 1 0 0 0 0 3.3125
24 0 0 6.75 0.25 0 0.75 0 0 4.3125
25 0 1 7.75 0.25 0 1.3125 0 0 5.3125
26 1 0 0 0 0 2.3125 1 1 0
27 0.25 0 0.75 0 0 3.3125 0.25 1 0.75
28 0 0 1.75 0 0 4.3125 0 0 1.75
29 0 0 2.75 0 0 5.3125 0 0 2.75
30 0 0 3.75 0 0 6.3125 0 1 3.75
31 0 0 4.75 0 0 7.3125 0 1 4.75
32 0 0 5.75 1 0 0 1 0 0
33 0 0 6.75 0.25 0 0.75 0.25 1 0.75
34 0 0 7.75 0.25 0 1.3125 0 0 1.75
35 0 1 8.75 0 0 2.3125 0 0 2.75
36 1 0 0 0 0 3.3125 0 0 3.75
37 0.25 0 0.75 0 1 4.3125 0 0 4.75
38 0 0 1.75 1 0 0 0 0 5.75
39 0 0 2.75 0.25 0 0.75 0 0 6.75
40 0 0 3.75 0.25 0 1.3125 0 1 7.75
41 0 0 4.75 0 0 2.3125 1 0 0
42 0 0 5.75 0 1 3.3125 0.25 0 0.75
43 0 0 6.75 1 0 0 0.25 0 1.3125
44 0 0 7.75 0.25 0 0.75 0 0 2.3125
45 0 0 8.75 0.25 0 1.3125 0 0 3.3125
46 1 1 0 0 0 2.3125 0 0 4.3125
47 0.25 0 0.75 0 0 3.3125 0 0 5.3125
48 0.25 0 1.3125 0 1 4.3125 0 1 6.3125
49 0 0 2.3125 0 0 5.3125 0.25 0 5.4844
50 0 0 3.3125 0 0 6.3125 0 0 6.4844
51 0 0 4.3125 0 0 7.3125 0 0 7.4844
52 0 0 5.3125 0 0 8.3125 0 0 8.4844
53 0 1 6.3125 0 1 9.3125 0 0 9.4844
54 0.25 0 5.4844 0.25 0 7.7344 0 0 10.484
55 0 0 6.4844 0 0 8.7344 0 0 11.484
56 0 0 7.4844 0 1 9.7344 0 1 12.484
57 0 0 8.4844 0.25 1 8.0508 0.25 0 10.113
58 0 0 9.4844 0 1 9.0508 0 1 11.113
59 0 0 10.4844 0 0 10.051 0 0 12.113
60 0 0 11.4844 0 0 11.051 0 0 13.113

Dynamic maintenance task scheduling allows for real-time adapta-
tion to changes, improves equipment reliability, and reduces mainte-
nance costs. As noted by Byon and Ding (2010), dynamic maintenance
strategies can lead to considerable improvements in reliability and
costs compared to static strategies. As industries continue to embrace
more data-driven and intelligent systems (see e.g. Wehbi et al. (2026)),
the ability to dynamically adapt to changing conditions and optimize
maintenance schedules will become increasingly valuable.

A comparison between the baseline configuration adopted in this
study and that proposed by van Hasselt et al. (2015) shows a close
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alignment in key hyperparameters. Both use ReLU activations, a dis-
count factor of y = 0.99, and target network updates at fixed intervals,
confirming their effectiveness in stabilizing DDQN learning. Despite
addressing problems of very different dimensionalities, the configura-
tions remain comparable. The main differences reflect adaptations to
the maintenance optimization context: a smaller replay buffer (3 x 10°
vs. 1M) improved responsiveness to recent experiences, and a shorter
training horizon proved sufficient for convergence in a low-dimensional
state space. Moreover, a higher target update frequency (every 1000
steps vs. 10,000) enhanced stability under sparse-reward conditions.
Overall, these adjustments preserve the core structure of the original
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Table 12
Full trajectories of three RL realizations under different maintenance costs.
Day ¢, =2 c, =4 c, =8
PM Action Fail Flag Age Eff. PM Action Fail Flag Age Eff. PM Action Fail Flag Age Eff.

1 0.25 0 0.75 0.25 0 0.75 0.25 0 0.75
2 0.25 0 1.31 0.25 0 1.31 0.25 0 1.31
3 0.5 0 1.16 0.25 0 1.73 0.25 0 1.73
4 0.5 0 1.08 0.25 0 2.05 0.25 0 2.05
5 0.5 0 1.04 0.25 0 2.29 0.25 0 2.29
6 0.5 0 1.02 0.25 0 2.47 0.25 0 2.47
7 0.5 1 1.01 0.25 1 2.60 0.25 1 2.60
8 0.25 0 1.51 0.5 0 1.80 0.25 0 2.70
9 0.5 1 1.25 0.25 1 2.10 0.25 1 2.77
10 0.5 0 1.13 0.5 0 1.55 0.25 0 2.83
11 0.5 1 1.06 0.25 1 1.91 0.25 1 2.87
12 0.25 0 1.55 0.5 0 1.46 0.25 0 291
13 0.5 0 1.27 0.25 0 1.84 0.25 0 2.93
14 0.5 0 1.14 0.25 0 213 0.25 0 2.95
15 0.5 0 1.07 0.5 0 1.57 0.25 0 2.96
16 0.5 0 1.03 0.25 0 1.92 0.25 0 2.97
17 0.5 1 1.02 0.25 1 2.19 0.25 1 2.98
18 0.25 0 1.51 0.5 0 1.60 0.25 0 2.98
19 0.5 0 1.26 0.5 0 1.30 0.25 0 2.99
20 0.5 0 1.13 0.25 0 1.72 0.25 0 2.99
21 0.5 0 1.06 0.25 0 2.04 0.25 0 2.99
22 0.25 0 1.55 0.5 0 1.52 0.25 0 2.99
23 0.5 0 1.27 0.25 0 1.89 0.25 0 2.99
24 0.5 1 1.14 0.25 1 2.17 0.25 1 3.00
25 0.5 0 1.07 0.5 0 1.58 0.25 0 3.00
26 0.25 0 1.55 0.5 0 1.29 0.25 0 3.00
27 0.5 0 1.28 0.25 0 1.72 0.25 0 3.00
28 0.5 0 1.14 0.25 0 2.04 0.25 0 3.00
29 0.5 0 1.07 0.5 0 1.52 0.25 0 3.00
30 0.25 0 1.55 0.25 0 1.89 0.25 0 3.00
31 0.5 0 1.28 0.25 0 2.17 0.25 0 3.00
32 0.5 0 1.14 0.5 0 1.58 0.25 0 3.00
33 0.5 0 1.07 0.25 0 1.94 0.25 0 3.00
34 0.25 0 1.55 0.25 0 2.20 0.25 0 3.00
35 0.5 0 1.28 0.5 0 1.60 0.25 0 3.00
36 0.5 1 1.14 0.25 1 1.95 0.25 1 3.00
37 0.25 0 1.60 0.25 0 2.21 0.25 0 3.00
38 0.5 0 1.30 0.25 0 2.41 0.25 0 3.00
39 0.5 0 1.15 0.5 0 1.71 0.25 0 3.00
40 0.25 0 1.61 0.25 0 2.03 0.25 0 3.00
41 0.5 0 1.31 0.25 0 2.27 0.25 0 3.00
42 0.5 0 1.15 0.25 0 2.45 0.25 0 3.00
43 0.25 0 1.62 0.5 0 1.73 0.25 0 3.00
44 0.5 0 1.31 0.25 0 2.05 0.25 0 3.00
45 0.5 0 1.15 0.25 0 2.28 0.25 0 3.00
46 0.25 0 1.62 0.25 0 2.46 0.25 0 3.00
47 0.5 0 1.31 0.5 0 1.73 0.25 0 3.00
48 0.25 0 1.73 0.25 0 2.05 0.25 0 3.00
49 0.75 0 0.68 0.25 0 2.29 0.25 0 3.00
50 0.25 0 1.26 0.5 0 1.64 0.25 0 3.00
51 0.25 0 1.70 0.25 0 1.98 0.25 0 3.00
52 0.75 0 0.67 0.5 0 1.49 0.25 0 3.00
53 0.25 0 1.26 0.25 0 1.87 0.25 0 3.00
54 0.25 1 1.69 0.5 1 1.43 0.25 1 3.00
55 0.75 0 0.67 0.25 0 1.83 0.25 0 3.00
56 0.25 0 1.25 0.25 0 212 0.25 0 3.00
57 0.75 0 0.56 0.5 0 1.56 0.25 0 3.00
58 0.5 0 0.78 0.25 0 1.92 0.25 0 3.00
59 0.5 0 0.89 0.25 0 2.19 0.25 0 3.00
60 0.25 0 1.42 0.25 0 2.39 0.25 0 3.00

DDOQN setup while optimizing it for faster and more stable learning in
this domain.

4.6. Limitations and future research

In this subsection, we critically evaluate the main limitations of the
proposed methodology. The discussion aims to clarify the scope of the
findings and identify promising directions for future work to overcome
these constraints.

1. Fixed Hazard Functions and Generalization
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Except for the last case examined, the agents were trained
under specific baseline hazard functions and evaluated across
variations of power law model. Although the results show ro-
bustness under perturbations, a systematic generalization study,
both during training and inference, was not conducted. Future
work should explore transfer learning and domain randomiza-
tion techniques to assess the model’s ability to generalize across
a broader range of failure dynamics and parameter uncertainties.

. Fixed Time Horizon

All experiments were conducted within a fixed planning horizon,
with the objective of minimizing the cumulative cost over this
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Table 13
Performance under imperfect maintenance and perturbed failure model with
random f,.

Cn Tperiodic ~ Vperiodic  Operiodic  Tsingle  Vsingle Osingle VL OR

8 9 208.28 47.45 30 335.59 98.72 64.27 18.61
4 15 123.61 30.25 30 167.91 47.37 39.48 9.31
2 30 83.55 24.64 30 83.55 24.64 26.98 4.60
1 30 42.40 12.44 30 42.40 12.44 20.92 2.28
0.5 30 21.87 6.23 30 21.87 6.23 12.88 2.08
0.25 30 11.55 3.04 30 11.55 3.04 8.67 1.42

predefined time window. Consequently, it remains uncertain
whether the learned policy can generalize to different time hori-
zons or maintain optimal behavior in long-term or continuous
operation settings. Future studies should investigate adaptive or
open-horizon formulations that allow the agent to optimize over
variable planning intervals.
3. Single-Component Assumption

The proposed model focuses on a single-component maintenance
problem with one failure process. As such, the agents were
trained to handle a single hazard function, which limits scalabil-
ity to systems composed of multiple interdependent components.
Extending the framework to multi-action or multi-agent rein-
forcement learning architectures could enable the coordination
of maintenance across multiple assets, where each component’s
state and cost dynamics influence the global decision-making
policy.

5. Conclusions

This study presented a Double Deep Q-Network (DDQN) framework
for the dynamic optimization of preventive maintenance policies under
stochastic failure conditions. The proposed method learns maintenance
decisions directly from failure-event and cost data, without requir-
ing explicit condition monitoring or health indicators. By formulating
maintenance as a Markov Decision Process with a structured state
representation and dense reward shaping, the approach effectively
learns adaptive preventive actions that minimize the total maintenance
costs across different cost ratios and maintenance regimes.

Empirical analyses demonstrated that the DDQN-based policy con-
sistently achieved lower expected costs and reduced cost variability
when compared with analytical periodic and static benchmarks, even
under model perturbations. These results confirm the capacity of the
method to adapt to imperfect or uncertain system behavior while
maintaining training stability through target-network synchronization,
experience replay, and L, regularization. Experiments with varying
restoration factors (p € [0, 1]) further showed that the learned policy
generalizes across both perfect and imperfect maintenance settings,
preserving the effectiveness when evaluated under perturbed hazard
models.

From a practical perspective, the proposed framework highlights
the feasibility of applying data-driven maintenance optimization in
industrial contexts where health condition data may be unavailable.
Integration with existing Computerized Maintenance Management Sys-
tems involves coupling the DDQN agent with modules that record
event-based maintenance data, taking decisions in real time. Such
integration enables the model to operate in closed-loop maintenance
decision environments.

Despite promising outcomes, several methodological limitations
should be acknowledged. Training and evaluation were conducted
in a single-component setting with stationary cost parameters, and
the reward function was shaped to provide dense learning feedback
rather than the true economic objective. Although this design choice
improves learning stability, it introduces an abstraction that may affect
the interpretability of the learned policies in practical deployments.

23

Computers & Industrial Engineering 213 (2026) 111813

Furthermore, the assumption of fully observable state variables, while
valid under simulation, may not hold in real settings where failure
indicators or maintenance histories are incomplete.

Future research should extend this framework to multi-component
systems, partially observable environments, and hybrid reliability mod-
els that combine real sensor data with stochastic hazard estimation.
Additionally, exploring transfer-learning could enhance adaptation to
heterogeneous fleets and evolving failure behaviors. These extensions
would further evaluate the generalization capacity of the proposed
DDQN architecture in complex industrial maintenance scenarios.
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