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 A B S T R A C T

This study presents an adaptive framework for dynamic preventive maintenance optimization based on the 
Double Deep Q-Network (DDQN) algorithm. The objective is to learn cost-optimal preventive maintenance 
policies under stochastic and partially observable failure behavior, relying solely on observed failure and 
maintenance events rather than condition-monitoring data or known degradation models. Equipment hazard 
function is modeled using non-homogeneous Poisson processes, including power-law and bathtub models, while 
maintenance actions follow variable restoration levels defined through the proportional age-reduction model. 
Training is performed on simulated failure trajectories using a standard workstation in under two hours, and 
the trained agent performs inference nearly instantaneously.

Results demonstrate that the DDQN-based adaptive policy consistently outperforms analytical periodic 
and static benchmarks, as well as a dynamic genetic algorithm and a standard reinforcement learning 
implementation, by achieving lower average maintenance costs and reduced variability across a wide range 
of corrective-to-preventive cost ratios. The method remains robust under perturbed and uncertain hazard 
conditions, maintaining stable performance without retraining.

These findings highlight the potential of the proposed DDQN approach as a computationally efficient and 
generalizable tool for reliability-centered maintenance optimization, capable of adapting to stochastic cost 
structures and cumulative corrective effects while operating effectively in data-limited industrial environments.
1. Introduction

The industrial sector, which is characterized by complex machinery 
and equipment, requires rigorous maintenance to ensure operational 
efficiency, cost control, and safety. However, maintenance activities 
often involve substantial expenses. According to Harudin and Yusof 
(2014), the U.S. industry spends nearly 80% of its maintenance budget 
for correcting chronic failures. In the United Kingdom, Kumar and 
Parida (2008) found that maintenance spending in the manufacturing 
sector ranges from 12 to 23% of total factory operating costs. These 
figures highlight the need for effective cost-reduction strategies, making 
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optimal maintenance scheduling crucial for the efficient allocation of 
resources across industries.

As argued by Swanson (2001), maintenance plays a critical role in 
extending equipment lifespan and enhancing productivity in industrial 
environments. The significant impact of maintenance on the opera-
tional expenditure of a facility and its overall performance has been 
extensively documented in the literature (see e.g. Pintelon and Parodi-
Herz (2008)). One of the key mechanisms through which these effects 
are achieved is the maintenance scheduling process, which involves 
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systematic planning and resource allocation to optimize equipment 
availability while minimizing downtime (Duffuaa et al., 1999).

Different forms of maintenance, namely preventive, predictive
(condition-based maintenance), and corrective, play distinct roles in 
maintenance strategies (Tsang, 2002). Preventive maintenance, based 
on routine and scheduled interventions, serves as a proactive ap-
proach to avoid unscheduled breakdowns and reduce costs. Predictive 
maintenance, in turn, leverages advanced analytical techniques to 
identify potential failures in advance, reducing repair expenses and 
downtime (Levitt, 2003). Moreover, efficient resource optimization, 
including the careful allocation of personnel and assets to mainte-
nance tasks, remains essential for achieving cost-effectiveness (Kister 
& Hawkins, 2006).

Despite advances in predictive and condition-based maintenance, 
many industrial settings operate with limited or no access to condition-
monitoring data owing to cost, feasibility, or technological constraints. 
In such contexts, existing data-driven or dynamic maintenance methods 
that rely heavily on continuous sensor information cannot be directly 
applied. This limitation highlights a critical challenge in reliability 
engineering: designing adaptive maintenance scheduling strategies that 
minimize costs when the decision-making agent has no direct infor-
mation regarding the equipment condition or its underlying hazard 
function.

Recent studies in reinforcement learning (Bukhsh et al., 2025; 
Huang et al., 2020) have shown that RL-based agents can be effectively 
applied to maintenance optimization. However, these approaches often 
assume the availability of extensive condition-monitoring data to guide 
decision-making. As a result, their applicability in data-sparse industrial 
environments remains limited. Addressing this limitation is essential, 
since many industrial systems operate without full state observability 
or comprehensive condition feedback.

In this context, the present study aims to bridge this research gap 
by proposing a Deep Reinforcement Learning (DRL) framework capa-
ble of dynamically scheduling preventive maintenance actions solely 
based on observed failure events. Specifically, it employs a Double 
Deep Q-Network (DDQN) architecture that supports adaptive decision-
making in the absence of condition-monitoring data. The agent was 
trained using simulated failure information derived from theoretical 
hazard models, including the power-law and bathtub profiles. This 
approach advances the field of reliability-centered maintenance toward 
more generalizable and realistic applications in which uncertainty and 
incomplete information are intrinsic.

This study introduces a Deep Reinforcement Learning approach for 
dynamically scheduling preventive maintenance, contributing to reli-
ability engineering and reliability-centered maintenance by reducing 
overall maintenance costs.

1.1. Motivation

In industrial production, machines deteriorate at different rates 
owing to variations in usage, environmental conditions, and inher-
ent system complexity (Jardine et al., 2006). This variability creates 
significant challenges in defining maintenance schedules that balance 
operational efficiency, cost, and reliability. Unexpected failures can dis-
rupt production, cause financial losses, and reduce system dependabil-
ity. Traditional fixed-interval maintenance policies, although simple 
to implement, are not flexible enough to adapt to stochastic changes 
in failure behavior, costs, or operating conditions. Consequently, they 
often lead to excessive maintenance or unforeseen breakdowns. This 
limitation highlights the need for strategies that are both optimized and 
dynamically responsive to real-time events.

In many industrial settings, maintenance personnel often operate 
without access to continuous condition-monitoring data, a situation 
that remains common across several sectors. Many systems still rely 
exclusively on preventive or periodic maintenance actions, without 
2 
real-time assessment of equipment health. For instance, Saraygord Af-
shari et al. (2022) notes that aircraft engine components, particularly in 
legacy fleets, follow preventive replacement cycles determined by flight 
hours rather than sensor-based degradation analysis. In the mining 
industry, large mechanical assets such as excavator shovels (Javadnejad 
et al., 2022) and dump trucks (Moniri-Morad & Sattarvand, 2023) are 
serviced at pre-defined intervals because of harsh operating conditions. 
Even in infrastructure systems such as railways (Sedghi et al., 2022), 
condition data are frequently unavailable or unreliable. Consequently, 
operators rely on historical failure statistics rather than real-time health 
indicators. These examples support the central premise of our study: it 
is both realistic and necessary to design adaptive maintenance frame-
works that can perform effectively even when condition-monitoring 
data are not available. By addressing this common yet underexplored 
scenario, the proposed approach increases the practical relevance of 
reinforcement learning in industrial applications.

Existing dynamic and reinforcement learning based maintenance 
frameworks aim to enable decision-making by learning from expe-
rience. However, many of these models, including those proposed 
by Huang et al. (2020), Tanhaeean et al. (2025) and Bukhsh et al. 
(2025), assume access to condition monitoring data, known failure 
distributions, risk-free corrective maintenance actions, or explicit infor-
mation on degradation states. Such assumptions restrict their practical 
use in industrial environments where direct condition data are unavail-
able, expensive to collect, or unreliable due to sensor limitations or 
infrastructure constraints. As a result, these models often fail to gen-
eralize to partially observable environments where only failure events 
can be observed. This limitation defines a key research challenge: 
developing a reinforcement learning framework capable of learning 
adaptive maintenance policies without condition monitoring data or 
predefined failure models.

In this study, we propose a Double Deep Reinforcement Learning 
(DDRL) framework to dynamically optimize preventive maintenance 
schedules based exclusively on observable failure and maintenance 
events. The DDRL structure builds on the Double Q-learning tech-
nique introduced by van Hasselt (2010) and later extended as Double 
Deep Q-Networks by van Hasselt et al. (2015). It is adapted here to 
a maintenance optimization setting characterized by stochastic fail-
ures, uncertain recovery effects, and incomplete information. DDRL is 
well-suited to this problem because it reduces the overestimation bias 
associated with standard DQN methods. This bias reduction is essential 
in maintenance optimization, since inaccurate value estimation may 
result in premature or suboptimal decisions. In addition, the decou-
pled evaluation and selection networks improve learning stability in 
sparse-reward and high-dimensional environments, which are typical 
in industrial maintenance scenarios where feedback is event driven and 
infrequent.

A preventive maintenance optimization problem aims to determine 
the most cost-effective schedule for performing maintenance actions on 
a system. The objective is to identify the optimal timing of preventive 
interventions in order to minimize total maintenance cost while ensur-
ing acceptable reliability (Wang, 2002). However, the combinatorial 
nature of the planning task, particularly under uncertainty, makes it 
computationally demanding. The complexity results from the exponen-
tial growth of possible sequences of maintenance actions and failure 
occurrences over time, as illustrated below.

The combinatorial space of a perfect preventive maintenance op-
timization problem is vast and highly intricate. In a 60-day planning 
window, for instance, each day can represent a potential point for the 
first failure before the initial preventive maintenance. The complexity 
increases further because the first preventive maintenance can also 
occur on any of those 60 days, introducing an additional decision 
dimension.

The first branching of the search space occurs when the model 
considers whether a failure happens before the first preventive mainte-
nance. This event creates a decision tree, where each branch represents 
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Fig. 1. Tree search example up to level 1.

a distinct system trajectory. Once the first preventive maintenance is 
executed, the search space bifurcates again, forming new branches that 
represent different possible days for the second preventive mainte-
nance.

The problem becomes progressively more complex because each 
preventive maintenance restores the system to a condition in which 
new failures can arise. Therefore, every node in the decision tree 
that represents a preventive maintenance event generates several new 
branches, each corresponding to one or more possible failures within 
the 60-day horizon. This process repeats after every maintenance ac-
tion, producing an exponentially expanding decision tree.

Fig.  1 illustrates this behavior. For clarity, only the first level of the 
search tree is shown. The root node (level 0) generates all possible con-
figurations associated with Day 0 (Level 1). In our application, seven 
state variables are evaluated at each node, resulting in a branching 
factor of 𝑏 = 7. Each resulting leaf node then expands into a subtree of 
identical structures that represent the next day. This recursive process 
continues until all 60 days have been explored, producing a tree of 
depth 𝑑 = 60. The total number of computational paths from the 
root to any leaf node equals 760, which implies an exponential time 
complexity. Combinatorial optimization and scheduling problems of 
this nature are known to be NP-hard. Classic examples include single-
machine scheduling with deadlines (Garey & Johnson, 1979), job-shop 
scheduling (Lenstra & Rinnooy Kan, 1978) and resource-constrained 
scheduling (Blazewicz et al., 1983).

Furthermore, the variability of the recovery factor, represented by 
the symbol 𝜌 in this study, introduces an additional layer of complexity. 
Different 𝜌 values modify system dynamics, affecting both the failure 
rate and the efficiency of preventive maintenance actions. When re-
covery factors and cost ratios are modeled as stochastic rather than 
deterministic variables, the optimization space becomes even more 
nonlinear and uncertain.

As discussed by Zio (2009), dynamically scheduling maintenance 
actions in response to evolving failure patterns is considerably more 
challenging than defining static policies, even in condition-based sce-
narios. Nevertheless, most existing approaches still rely on extensive 
condition monitoring data or pre-assumed degradation models. The 
proposed DDRL-based framework addresses this limitation by using 
reinforcement learning to derive maintenance strategies directly from 
stochastic failure event data, without the need for prior knowledge of 
the hazard function or underlying reliability parameters.
3 
1.2. Problem statement and hypothesis

The core problem examined in this study concerns the limitations of 
maintenance scheduling methods in handling real-time failure dynam-
ics and system variability under informational constraints. Standard 
strategies are predetermined and therefore unable to adapt to stochastic 
and evolving degradation patterns. As a result, they often lead to either 
premature preventive actions or delayed interventions, both of which 
increase maintenance costs and reduce system availability.

In practical industrial contexts, systems frequently operate under 
partial observability, where direct condition monitoring or sensor-
based data are unavailable or impractical to obtain owing to economic 
or technical constraints. Under these circumstances, maintenance de-
cisions must rely solely on indirect information, such as the timing 
and frequency of observed failures. This study considers a partially 
observable environment in which the maintenance agent has access 
only to failure event data, without explicit knowledge of the underlying 
hazard function, degradation trajectory, or system health state.

Based on these assumptions, the central research question addressed 
in this work is as follows: How can a reinforcement learning framework 
learn an optimal preventive maintenance policy that minimizes total 
maintenance cost when only stochastic failure events and maintenance 
actions, and not condition monitoring data, are available? To answer 
this question, the proposed model formulates the maintenance pro-
cess as a Markov Decision Process (MDP) with a state representation 
restricted to observable failure-related variables. The objective is to de-
sign an adaptive scheduling policy using a deep reinforcement learning 
algorithm that is capable of dynamically adjusting preventive actions 
according to the probabilistic patterns inferred from these observable 
events, thereby achieving greater cost-effectiveness and adaptability 
than traditional static strategies.

1.3. Contribution

This study advances the field of industrial maintenance optimization 
by introducing a reinforcement learning framework that addresses the 
main limitations of the existing methods, particularly their reliance 
on risk-free maintenance actions, fully observable system states, and 
predefined degradation models. In contrast to most prior RL-based 
maintenance frameworks, which assume access to complete condition 
monitoring data or known hazard parameters, the proposed approach 
operates under informational constraints and learns optimal mainte-
nance policies directly from observed failure and maintenance events. 
This formulation explicitly targets the research gaps highlighted by 
Zhang et al. (2024), who observed that ‘‘the inherent limitation of obser-
vation methods and precision in engineering contexts often renders system 
states partially observable’’ and that ‘‘traditional MDP models assume 
precise knowledge of system dynamics, which is rarely the case in real-
world applications’’. By formulating maintenance decision-making as a 
partially observable problem, this study contributes to the development 
of more realistic and practical reinforcement learning solutions for 
industrial environments.

The specific contributions of this study are summarized as follows: 

1. Dynamic Maintenance Strategies
This paper introduces an algorithm that enables the agent to au-
tonomously plan maintenance actions in response to stochastic 
failure events and variable cost ratios. Unlike existing DRL-based 
models, which learn fixed policies assuming known degradation 
distributions, risk-free corrective maintenance actions, and fully 
observable system states, the proposed approach allows the pol-
icy to evolve dynamically as new failure information becomes 
available.
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2. DDRL Framework
The adoption of Double Deep Reinforcement Learning in this 
study is not merely an architectural preference but a method-
ological necessity for reliable decision-making in uncertain, par-
tially observable environments. Traditional Deep Q-Networks 
are prone to overestimation bias when value estimates are de-
rived from sparse or noisy rewards, a situation common in 
maintenance systems, where feedback occurs only after failures 
or preventive actions. By decoupling the action selection and 
target evaluation networks, the DDRL framework mitigates this 
bias, yielding more stable convergence and robust policy learn-
ing. Whereas previous studies have applied RL to deterministic 
systems, this study extends DDRL to inherently stochastic set-
tings characterized by uncertain costs, imperfect maintenance 
effects, and unobservable degradation states. This methodolog-
ical extension establishes the DDRL as a bias-correcting and 
stability-enhancing mechanism for maintenance learning tasks.

3. Adaptive Learning under Partial Observability
A novel adaptive learning framework is introduced in which 
the agent operates under partial observability, without access 
to system condition, hazard rate, or failure distribution. The 
agent is trained with a belief representation of the environment 
through continuous rewards, relies solely on discrete failure and 
maintenance events as feedback (observation space), and incre-
mentally constructs an internal policy that generalizes across 
different hazard patterns (e.g., power-law and bathtub models). 
This design directly addresses the challenges identified by Zhang 
et al. (2024), who emphasize the need for decision-making 
methods capable of handling uncertain parameters and hidden 
system states. Training the agent under such conditions enables 
robust adaptation to unseen operating regimes and stochastic 
cost variations.

4. Cost-Oriented Formulation
This study formulates the optimization objective explicitly as 
the minimization of the total stochastic maintenance cost. The 
reward function integrates preventive and corrective costs, as 
well as recovery factor variability and cumulative failure costs, 
allowing the agent to learn cost-optimal policies across diverse 
operational scenarios. This cost-centric formulation enhances the 
practical relevance of the proposed policy for industries seeking 
to balance reliability and financial performance.

5. Exploration of the Unseen Hazard Function
This study demonstrates that the DDRL agent can infer opti-
mal preventive maintenance strategies without observing the 
underlying hazard or degradation function. The agent receives 
no information about the functional form or parameters of the 
risk model during inference, relying exclusively on the temporal 
patterns of failures and maintenance events. This represents a 
departure from prior DRL and reliability-centered maintenance 
studies that depend on predefined hazard models. By showing 
that effective maintenance decisions can be learned from event 
data alone, the proposed framework contributes both theoret-
ical and practical advancements to reinforcement learning in 
reliability engineering.

Together, these contributions address a key gap in the literature 
by introducing a robust, cost-oriented, and dynamically adaptive rein-
forcement learning framework capable of operating under uncertainty 
and limited observability. The proposed DDRL approach strengthens 
both the theoretical understanding and the practical applicability of 
maintenance optimization in real-world industrial environments where 
condition monitoring data are scarce or unavailable.
4 
1.4. Article outline

The remainder of this paper is structured as follows. Section 2 
reviews the relevant literature on maintenance optimization and rein-
forcement learning. Section 3 presents the proposed cost model and 
reliability formulations, defines the problem within a Markov Decision 
Process framework, and details the implementation of the Double Deep 
Q-Network algorithm. Section 4 discusses the main results, beginning 
with the analysis of algorithmic hyperparameters and proceeding to 
the evaluation of maintenance cost performance for the trained agents. 
Finally, the last section concludes the paper and outlines directions for 
future research.

2. Literature review

Optimization of maintenance scheduling has been a central theme 
in industrial engineering, operations research, and computational 
science for decades. Classical optimization approaches, ranging from 
dynamic programming (Bellman, 1958) to genetic algorithms (Berrichi 
et al., 2009), integer linear programming, and algebraic formulations, 
have provided the foundation for preventive maintenance modeling 
and cost optimization. Subsequent studies such as Baek (2007) and 
Castro et al. (2014) extended these formulations to address reliability, 
availability, and cost trade-offs. However, these traditional optimiza-
tion techniques are computationally intensive and require explicit 
knowledge of system failure models, which limits their adaptability 
in complex, uncertain, and data-scarce industrial environments. 

Recent studies have explored the use of metaheuristic algorithms, 
particularly GA-based frameworks, to dynamically allocate mainte-
nance activities and reduce downtime under uncertainty. For example, 
the study presented by Ruiz-Rodríguez et al. (2024) proposed a RL 
and a GA approach to optimize downtime assignment and workforce 
scheduling. Although this model successfully minimizes the mean time 
to repair through efficient labor allocation, its objective function fo-
cuses narrowly on downtime reduction rather than the minimization 
of total stochastic maintenance costs. Moreover, the model does not 
incorporate stochastic variability in cost structures or recovery fac-
tors, nor does it generalize the failure dynamics beyond simplified 
distributions. Ruiz-Rodríguez et al. (2024) acknowledged the high com-
putational burden of GA optimization and the limitations of scaling 
such methods to larger problem spaces, which underscores the need 
for more sample-efficient and adaptive approaches such as deep rein-
forcement learning (DRL). Our study extends this direction by directly 
targeting total cost minimization under stochastic costs and failure 
behavior, rather than only reducing downtime. 

The integration of DRL into maintenance optimization has shown 
promising results in terms of cost reduction and decision adaptability. 
The framework proposed by Bukhsh et al. (2025) introduced main-
tenance planning models with online and offline DRL to minimize 
maintenance costs of the water pipes network over time. Although 
effective, this approach relies on the assumption that the failure pro-
cess follows an exponential distribution, with the failure rate and 
probability known to the agent. Consequently, the agent’s decision-
making is guided by prior knowledge of the degradation law, which 
simplifies the state representation but restricts generalization to real-
world scenarios where the failure rate follows realistic distributions and 
is not completely known. Furthermore, the reward structure is based on 
deterministic or expected costs, rather than stochastic variations, which 
limits robustness against uncertainty or nonlinearities in maintenance 
costs or repair outcomes. Such characteristics can also be observed 
in Tanhaeean et al. (2025). By contrast, our proposed DDRL framework 
relaxes these assumptions by training under informational constraints, 
where only failure events, not their underlying rates or hazard param-
eters, are observable, and by incorporating stochastic cost structures 
directly into the learning process.
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Recent contributions further illustrate both the potential and con-
straints of MDPs and RL algorithms in maintenance and reliability 
engineering in general. Yuan et al. (2025) proposed a DRL formula-
tion that jointly optimizes maintenance cost and reliability through a 
hybrid Gamma-Wiener degradation model and a reshaped, explicitly 
multi-objective reward, achieving strong performance in safety-critical 
applications. Zhu et al. (2025) investigated joint condition-based main-
tenance and spare-parts sourcing under supply uncertainty, formulating 
the problem as an MDP and using DQN primarily as a scalable alter-
native to value iteration. Yang et al. (2025) addressed the coordina-
tion between dispatching and preventive maintenance in multi-product 
manufacturing systems via a continuous-time MDP formulation and 
structural analysis, establishing the existence of an optimal control-
limit policy for PM decisions. da Silva et al. (2025) demonstrated 
the applicability of reinforcement learning in a distinct domain of 
reliability engineering by framing accelerated life test planning as a 
sequential parameter-estimation problem rather than a maintenance 
task. In their framework, a DDQN agent was trained to dynamically 
configure stress levels, test durations, and sample allocations in order 
to minimize the statistical uncertainty of a key reliability parameter.

Another relevant strand of research applies DRL to manufactur-
ing systems, emphasizing production efficiency and loss minimiza-
tion. Huang et al. (2020) developed a Double Deep Q-Network (DDQN) 
model to determine optimal preventive maintenance intervals in a 
serial production line with intermediate buffers. The model effectively 
captures the interaction between production flow and maintenance 
actions, but assumes that the component lifetimes follow a known 
Weibull distribution and that the exact virtual age of the system is 
observable to the agent. As a result, the framework depends on an 
accurate degradation model and are not extended to cases where the 
equipment condition is unobservable. Moreover, the reward function 
proposed by Huang et al. (2020) emphasizes minimizing production 
loss rather than explicitly minimizing the total maintenance cost under 
uncertainty. Hence, although it demonstrates the potential of DRL in 
complex manufacturing contexts, it remains limited to fully observable 
settings.

It is also important to note that the DDQN architecture of Huang 
et al. (2020) does not incorporate an adaptive policy capable of re-
sponding to stochastic variations in the operational environment. The 
learned policy in their work was derived under fixed, deterministic 
conditions, assuming stable production dynamics and a known failure 
distribution. Consequently, it does not adapt online to unexpected 
changes or to the emergence of new degradation patterns inferred 
from data. By contrast, the DDRL framework proposed in this study 
is designed to operate under intrinsic uncertainty, where failure oc-
currences, repair effect and cost parameters vary stochastically. The 
agent continuously interacts with an environment that evolves accord-
ing to random failures and variable maintenance costs, learning an 
adaptive policy that dynamically reschedules maintenance actions in 
response to real-time events. This distinction highlights that, while 
the study by Huang et al. (2020) leverages the learning capability 
of DRL to optimize a predefined structure, our approach explicitly 
extends the paradigm toward responsive and adaptive maintenance 
decision-making under uncertainty.

Several other studies have similarly employed RL or metaheuristic 
algorithms to optimize maintenance actions in predictive contexts, 
such as (Tanhaeean et al., 2025), and including power generation 
scheduling (El-Sharkh & El-Keib, 2003), wind turbine systems (Zhong 
et al., 2019), and railway infrastructure (Sresakoolchai & Kaewunruen, 
2023). Despite their methodological diversity, most rely on explicit 
knowledge of degradation laws or condition-monitoring data, such as 
vibration or temperature signals, to guide decision-making. As noted 
by Sikorska et al. (2011) and Ren et al. (2019), such reliance on sensor 
data limits the applicability of AI-based maintenance frameworks in 
environments where the monitoring infrastructure is incomplete or 
5 
prohibitively costly. Furthermore, cost structures are frequently sim-
plified to deterministic values, neglecting the stochastic nature of real 
maintenance operations, where cost ratios and recovery factors vary 
with time and context. 

In light of these limitations, the present study advances the state 
of the art by addressing the challenge of cost-minimizing, event-driven 
maintenance dynamic scheduling under informational constraints.
Specifically, the proposed DDRL method operates without access to 
condition-monitoring or hazard data, relying solely on observed failure 
events and maintenance actions to infer optimal maintenance policies. 
Unlike the GA-based method in Ruiz-Rodríguez et al. (2024), our 
approach circumvents the computational overhead of population-based 
search, yielding an inference that is nearly instantaneous. 

3. Methodology

3.1. Reliability fundamentals

Reliability engineering has evolved to become an integral part 
of ensuring efficiency, availability, maintainability, safety, and cost-
effectiveness in diverse sectors ranging from aviation to manufacturing 
(see e.g. Zio et al., 2019 and Nor et al., 2021). This discipline is 
responsible for identifying requirements, analyzing, designing, veri-
fying, validating, assuring quality, and maintaining various systems 
to guarantee their reliability under prescribed conditions and time-
frames (Zio et al., 2019). The significance of reliability engineering is 
highlighted by its irreplaceable role in promoting progress across major 
industries, and improving the quality of a wide range of products and 
systems (Zuo, 2021).

Modern multidisciplinary maintenance programs in reliability en-
gineering aim to enhance system reliability by considering the op-
erational characteristics, production necessity, and other vital fac-
tors (Patiño-Rodriguez & Carazas, 2019). This field is particularly 
relevant in the development and production of sophisticated equipment 
and systems, which must be achieved within shorter timespans and 
under stringent costs and legal constraints (Birolini, 1996).

The following mathematical definitions of reliability engineering 
relevant to this study can be found in Meeker and Escobar (2014) and 
in Elsayed (2021). Let 𝑓 (𝑡) be the failure probability density function 
such that
𝑓 (𝑡) ≥ 0, ∀𝑡 ≥ 0,

and

∫

∞

0
𝑓 (𝑠)𝑑𝑠 = 1.

The corresponding probability of failure from time 0 to time 𝑡 is given 
by: 

𝐹 (𝑡) = ∫

𝑡

0
𝑓 (𝑠)𝑑𝑠, (1)

and the survival or reliability function is given by 

𝐶(𝑡) = 1 − 𝐹 (𝑡) = ∫

∞

𝑡
𝑓 (𝑠)𝑑𝑠. (2)

The following function

ℎ(𝑡) = lim
𝛥𝑡→0

𝐶(𝑡) − 𝐶(𝑡 + 𝛥𝑡)
𝛥𝑡𝐶(𝑡)

= 1
𝐶(𝑡)

[

− 𝑑
𝑑𝑡

𝐶(𝑡)
]

(3)

=
𝑓 (𝑡)
𝐶(𝑡)

is known as the hazard function. The hazard function in reliability 
engineering refers to the instantaneous failure rate of a system at a 
specific time, given that it has survived up to that time (Esary et al., 
1970). This is a fundamental concept used to model the probability of 
a system failing at a given moment, thereby providing insights into the 
system’s reliability over time.
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Suppose that, in failure event, minimal repairs are executed. Thus, 
according to Elsayed (2021), the expected number of failures in [0, 𝑡] is 
given by: 

𝐻(𝑡) = ∫

𝑡

0
ℎ(𝑠)𝑑𝑠. (4)

3.2. Reliability-centered maintenance

Following Pham (2003) and da Silva (2023), maintenance encom-
passes measures taken to manage the deterioration process that could 
potentially result in system failure. They can be categorized into two 
types: maintenance and corrective maintenance. Preventive mainte-
nance focuses on preventing system failures by conducting periodic in-
spections and repairs, whereas corrective maintenance involves restor-
ing the system to its functional state after a failure occurs through 
appropriate actions. The effectiveness of equipment post-repair is con-
tingent upon the type of repair executed. In this study, we address the 
scheduling problem in terms of cost minimization.

Consider a scenario in which the equipment is only minimally 
repaired when it fails, and the impact of imperfect preventive main-
tenance is modeled using the Proportional Age Reduction (PAR) cri-
terion (Malik, 1979). If the maintenance was perfect, the equipment 
would be restored to its original state. The PAR approach, used by Pham
(2003) and da Silva (2023), assumes that each preventive maintenance 
action reduces the equipment’s age by a proportionate amount to 
the operating time that has elapsed since the most recent scheduled 
maintenance.

A Nonhomogeneous Poisson process (Elsayed, 2021) was used to 
describe the failure patterns in each maintenance cycle. In this process, 
the age of the equipment in the 𝑘th cycle is decreased by a fraction 𝜌 of 
the most recent scheduled maintenance action 𝜏𝑘−1. Following da Silva 
(2023), the hazard function (3) at time 𝑡 is 

ℎ(𝑡) = ℎ(𝑡 − 𝜌𝜏𝑘−1), 𝜏𝑘−1 < 𝑡 < 𝜏𝑘. (5)

Shin et al. (1996) proposed the following hypotheses to model min-
imal repairs interspersed with scheduled imperfect preventive mainte-
nance actions:

1. Suppose that 𝑙 units are observed until 𝑇𝑖, 𝑖 = 1,… , 𝑙.
2. Suppose that each equipment 𝑖 is subjected to 𝑚𝑖 scheduled 
maintenance actions at 𝜏𝑖,1 < 𝜏𝑖,𝑚𝑖

≤ 𝑇𝑖.
3. The 𝑖th equipment experiences 𝑟𝑖,𝑘 failures during the 𝑘th pre-
ventive maintenance cycle (𝑘 = 1,… , 𝑚𝑖 + 1)

4. Let 𝑡𝑖,𝑘,𝑗 be the time of the 𝑗th failure of the 𝑖th equipment that 
occurs in the 𝑘th maintenance cycle.

The maintenance model adopted in this study considers that pre-
ventive actions with possibly varied recovery factors are executed 
periodically. Let

– 𝑐𝑝 be the preventive maintenance cost;
– 𝑐𝑚 be the corrective maintenance cost.

Following Pham (2003), the expected maintenance costs for periods 
[𝑡𝑚+1, 𝑡𝑚+2] are given by. 

𝑉 (𝑡𝑚+1, 𝑡𝑚+2) =
𝑐𝑚𝐻(𝑡𝑚+1, 𝑡𝑚+2) + 𝑐𝑝

𝑡𝑚+2 − 𝑡𝑚+1
, (6)

where 𝐻(𝑡 , 𝑡 ) = ∫ 𝑡𝑚+2 ℎ(𝑠)𝑑𝑠. The static maintenance strategy is 
𝑚+1 𝑚+2 𝑡𝑚+1

6 
determined by finding the preventive maintenance intervals [𝑡𝑚, 𝑡𝑚+𝑖];
[𝑡𝑚+𝑖, 𝑡𝑚+𝑖+1]... which minimizes the expected overall maintenance cost 
𝑉  given by Eq.  (6).

To model the failure behavior of systems over time, we employed 
two forms for the hazard function in this study: the power law model 
given by 

ℎ(𝑡) =
𝛽
𝛼

( 𝑡
𝛼

)𝛽−1
, 𝛼, 𝛽 > 0, (7)

and the bathtub model is given by 

ℎ(𝑡) =
𝛽1
𝛼1

(

𝑡
𝛼1

)𝛽1−1
+

𝛽2
𝛼2

(

𝑡
𝛼2

)𝛽2−1
, 𝛼1, 𝛽1, 𝛼2, 𝛽2 > 0. (8)

The parameters 𝛼 and 𝛽 control the level and slope of the risk function, 
respectively. The latter represents the class of non-monotonic phenom-
ena hazard functions, as discussed by Diamoutene et al. (2021). Inter-
estingly noted by Gaonkar et al. (2021) is that, the bathtub function is 
inappropriate for predicting the hazard rates of electronic components, 
products, and systems. The authors provided several case studies of 
electronic equipment where the hazard function is given by the power 
law model (7), which is derived from the Weibull distribution via Eq. 
(3).

In reliability engineering, estimating the parameters of hazard func-
tions is crucial for modeling the failure behavior of systems. The 
maximum likelihood estimation (MLE) method is commonly used to 
derive these parameters from observed failure data (reliability appli-
cations can be found in Khan & King, 2012 and Murthy, 1979). MLE 
aims to identify the values of parameters that maximize the likelihood 
of the observed data occurring given a specific probability distribution 
or model.

Following Pham (2003), the likelihood function for a set of 𝑚
preventive maintenance actions, 𝑟 failures of 𝑙 identical machines, is 
given by

𝐿 =
𝑙

∏

𝑖=1

{𝑚𝑖+1
∏

𝑘=1

[ 𝑟𝑖,𝑘
∏

𝑗=1
ℎ(𝑡𝑖,𝑗,𝑘 − 𝜌𝜏𝑖,𝑘−1)

]

× (9)

exp

[

−
𝑚𝑖+1
∑

𝑘=1
∫

𝜏𝑖,𝑘

𝜏𝑖,𝑘−1
ℎ(𝑥 − 𝜌𝜏𝑖,𝑘−1) − 𝑑𝑥

]}

.

The methodology encompasses the simulation of failure times using 
bathtub model (8) to emulate the deterioration of the system. This func-
tion enables the modeling of failure patterns, especially for repairable 
systems, as observed in practical scenarios.

The bathtub function models the initial higher failure rates (early 
failures) followed by a period of lower (random failures) relatively 
constant failure rates which is subsequently followed by an increasing 
failure rate. The power law function captures only the increasing failure 
pattern as systems age (wear-out failures).

In order to simulate corrective maintenance action times, Algorithm 
1 was used to generate random failures:
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Algorithm 1 Failure Time Generation under PAR and Risk Factor 
Model
Require: Current time 𝑇𝑘, last failure time 𝐹𝑘, last preventive mainte-

nance time 𝑀𝑘, age reduction factor 𝜌, risk multiplier 𝜃, maximum 
risk 𝜃max, Weibull parameters (𝛼1, 𝛽1)

Ensure: Real failure time 𝑇 fail𝑘+1 and failure indicator fail ∈ {0, 1}

1: function LocalDeltaH(𝑇𝑘,𝑀𝑘, 𝜌, 𝛽1, 𝛼1)
2:  Compute effective age interval under PAR:

𝑎 = max((𝑇𝑘 − 1) − 𝜌𝑀𝑘, 0), 𝑏 = max(𝑇𝑘 − 𝜌𝑀𝑘, 0)

3:  Compute hazard increment:
𝛥𝐻 = (𝑏∕𝛼1)𝛽1 − (𝑎∕𝛼1)𝛽1

4:  return max(𝛥𝐻, 0)
5: end function

6: function LocalFailureTime(𝑇𝑘, 𝐹𝑘,𝑀𝑘, 𝜌, 𝜃, 𝜃max, 𝛽1, 𝛼1)
7:  Compute hazard increment 𝛥𝐻 = LocalDeltaH(𝑇𝑘,𝑀𝑘, 𝜌, 𝛽1, 𝛼1)
8:  Compute capped risk: 𝜃∗ = min(max(𝜃, 10−6), 𝜃max)
9:  Compute instantaneous failure probability:

𝑝 = 1 − exp(−𝜃∗𝛥𝐻)

10:  Draw 𝑢 ∼ Uniform(0, 1)
11:  if 𝑢 < 𝑝 then
12:  𝑇 fail𝑘+1 ← 𝑇𝑘 ⊳ Failure occurs in the current step
13:  fail← 1
14:  else
15:  𝑇 fail𝑘+1 ← 𝐹𝑘 ⊳ No new failure in (𝑇𝑘 − 1, 𝑇𝑘]
16:  fail← 0
17:  end if
18:  return (𝑇 fail𝑘+1, fail)
19: end function

20: function FailureGenerator(𝑇0,𝐻,𝑀0, 𝜌, 𝜃, 𝜃max, 𝛼1, 𝛽1)
21:  Initialize 𝐹0 ← 0
22:  for 𝑘 = 1, 2,… ,𝐻 do
23:  (𝐹𝑘, fail) ← LocalFailureTime(𝑇𝑘, 𝐹𝑘−1,𝑀𝑘−1, 𝜌, 𝜃, 𝜃max, 𝛽1, 𝛼1)
24:  if fail = 1 then
25:  Record failure event at time 𝑇𝑘
26:  end if
27:  end for
28: end function

Elsayed (2021) defined the cost incurred by the system during 
period 𝑡0, comprising the sum of the corrective maintenance action cost 
times the number of failures and the preventive maintenance action 
cost, called the total maintenance cost, as follows: 
𝑉 (𝑡0) = 𝑐𝑐𝐻(𝑡0) + 𝑐𝑝, (10)

where 𝑐𝑐 represents the cost of each corrective maintenance action, 
𝐻(𝑡0) denotes the number of failures encountered up to time 𝑡, and 𝑐𝑝
signifies the preventive maintenance cost incurred per action. Then, the 
reward function 𝑅 to be minimized is given by: 
𝑅(𝑡𝑖) = 𝑐𝑐 × condition(𝑡𝑖) + 𝑐𝑝 × PM action(𝑡𝑖), (11)

for 𝑖 = 1, 2,… , 𝑛, where ‘condition’ is a binary variable representing the 
actual status of the equipment, and ‘PM action’ is a binary variable that 
describes if a preventive maintenance action was performed or not.

3.3. Markov decision process

We propose the model exhibited in Fig.  2, which integrates the 
DDQN algorithm with a preventive maintenance framework. By ob-
serving state variables, interacting with the environment through main-
tenance actions, and receiving penalties in the form of maintenance 
7 
costs, the agent schedules preventive maintenance actions aiming at 
minimizing the costs. 

In order to formalize the reinforcement learning framework, the 
preventive maintenance optimization problem is cast as a Markov 
Decision Process (MDP) (see Sutton & Barto, 2018). The MDP is defined 
by the tuple

 = ( ,, ,, 𝛾),

where  is the state space,  the action space,  the transition kernel, 
 the reward function, and 𝛾 ∈ (0, 1) the discount factor.

State space. The state representation was designed to capture all ob-
servable aspects of the system’s operational history while intentionally 
excluding condition-based variables, since the proposed framework 
explicitly addresses partially observable environments where no direct 
condition-monitoring data are available (see Zhang et al., 2024). At de-
cision epoch 𝑘 ∈ N, the system state is represented by the 7-dimensional 
vector

𝑠𝑘 = (𝐹𝑘, 𝑇𝑘, 𝐴𝑘, 𝑓
PM
𝑘 , 𝑓 tot𝑘 , 𝑎𝑘−1, 𝑀𝑘) ∈  ,

where:

– 𝐹𝑘 ∈ N is the last failure time (days),
– 𝑇𝑘 ∈ N is the current time,
– 𝑀𝑘 ∈ N is the time of the last preventive maintenance.
– 𝐴𝑘 ∈ R+ is the effective age of the equipment after the most 
recent preventive action, computed under the PAR model as 𝐴𝑘 =
max(𝑇𝑘 − 𝜌𝑘−1𝑀𝑘, 0),

– 𝑓PM𝑘 ∈ N is the number of failures since the last preventive 
maintenance,

– 𝑓 tot𝑘 ∈ N is the cumulative number of failures up to epoch 𝑘,
– 𝑎𝑘−1 ∈  ∈ [0, 1] is the previous preventive maintenance action,

All state variables are normalized in the environment to the unit 
interval using problem-specific scales (e.g., 𝑇𝑘∕60, 𝑓PM𝑘 ∕2, 𝑓 tot𝑘 ∕10), 
ensuring numerical stability during training. This representation en-
ables the process to remain Markovian under imperfect maintenance 
conditions, since the variables (𝐴𝑘, 𝑓PM𝑘 ,𝑀𝑘) preserve sufficient infor-
mation about system history to characterize its degradation trajectory. 
Furthermore, these choices enable the agent to be responsive and act 
dynamically to the current environmental condition.

It is assumed that following each event occurring at 𝑇𝑘, either a 
failure or a preventive maintenance action, the equipment resumes op-
eration, and consequently its evaluation, only at 𝑇𝑘+1. This assumption 
renders the proposed approach a discrete-event simulation framework.

Formally, the state space is endowed with the product 𝜎-algebra

𝛴 = (R+)⊗6 ⊗ 2{0,0.25,0.50,0.75,1},

ensuring measurability of both transition probabilities and reward map-
pings.

Following the taxonomy proposed by Powell (2019), the compo-
nents of 𝑠𝑘 are predominantly informational state variables that sum-
marize the observable operational history of the system. Quantities 
such as the last failure time (𝐹𝑘), the last preventive maintenance 
time (𝑀𝑘), the effective age (𝐴𝑘), and the accumulated failure counts 
(𝑓PM𝑘 , 𝑓 tot𝑘 ) encode sufficient information about past events to infer the 
unobserved degradation state. The current time 𝑇𝑘 represents the only 
physical variable, whereas previous action 𝑎𝑘−1 provides a control-
related historical marker. Although the belief variables are not explic-
itly modeled, the agent’s value function implicitly infers probabilis-
tic expectations about future failures conditioned on these historical 
summaries.



A.J. da Silva et al. Computers & Industrial Engineering 213 (2026) 111813 
Fig. 2. Maintenance optimization RL model.
Action space. At each epoch the agent selects an action 𝑎𝑘 ∈  = {0, 1}
for the perfect maintenance case, and
𝑎𝑘 ∈  = {0, 0.25, 0.50, 0.75, 1},

for the imperfect maintenance case, where 𝑎𝑘 = 0 represents no 
preventive maintenance, and 𝑎𝑘 > 0 corresponds to a preventive action 
with proportional age reduction factor 𝜌 = 𝑎𝑘. Whenever a failure 
occurs, corrective maintenance is automatically performed, regardless 
of the chosen 𝑎𝑘.
Transition kernel. The system evolves stochastically according to the 
underlying hazard function and the selected action. Given (𝑠𝑘, 𝑎𝑘), the 
environment computes the hazard increment 𝛥𝐻𝑘 between 𝑇𝑘 and 𝑇𝑘+
𝛥𝑡 based on the PAR-adjusted virtual age, and defines the instantaneous 
failure probability as 
𝑝𝑘 = 1 − exp(−𝜃𝑘 𝛥𝐻𝑘), (12)

where 𝜃𝑘 = 1 + 𝜅risk 𝟏{𝐹𝑘>𝑀𝑘} represents the additional risk introduced 
by corrective repairs since the last preventive action. A failure indicator 
is then sampled as 𝐹 fail𝑘 ∼ Bernoulli(𝑝𝑘).

If 𝑎𝑘 > 0, a preventive maintenance action is executed, the variable 
𝑀𝑘+1 is updated to 𝑇𝑘 + 𝛥𝑡, and the local failure counter 𝑓PM𝑘+1 is reset 
to zero. Otherwise, the system continues to age normally. Whenever 
𝐹 fail𝑘 = 1, a corrective repair is applied (without age reduction), and 
both counters 𝑓PM and 𝑓 tot are incremented. This defines the transition 
kernel (𝑠𝑘+1 ∣ 𝑠𝑘, 𝑎𝑘) on ( , 𝛴).

Reward function. During training, at each epoch, the environment com-
putes a dense-shaped normalized step cost that provides continuous 
feedback even in the absence of failures. Let 𝑐𝑝 and 𝑐𝑐 denote the 
base average normalized preventive and corrective maintenance costs, 
respectively, and let 𝜅cost > 0 be a sensitivity factor penalizing consec-
utive failures since the last preventive action. The instantaneous cost is 
defined as follows: 

𝐶(𝑠𝑘, 𝑎𝑘) =
𝑐𝑝 𝑎𝑘 + 𝑐𝑐 (1 + 𝜅cost𝑓PM𝑘 ) 𝑝𝑘
max(𝑐𝑝, 𝑐𝑐 (1 + 𝜅cost𝑓PM𝑘 ))

, (13)

and the reward is given by its negative value, 
𝑅(𝑠𝑘, 𝑎𝑘) = −𝐶(𝑠𝑘, 𝑎𝑘). (14)

This formulation ensures a normalized and bounded reward signal, 
improving learning stability in sparse-failure environments.

It is important to note that, during training, the agent interacts with 
the environment through the shaped instantaneous cost 𝐶(𝑠 , 𝑎 ), which 
𝑘 𝑘
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ensures the presence of a dense and continuous reward signal even 
in failure-free trajectories. However, the agent is evaluated using the 
true cumulative cost function defined in Eq. (11), which is consistent 
with the economic formulation of the maintenance problem and the 
analytical benchmarks. This design choice allows the policy to learn 
efficiently under a smoother optimization scenario while still being 
assessed according to the actual operational performance criterion. Fur-
thermore, by relying on the term 𝑝𝑘 within the shaped cost during the 
training, the agent implicitly develops a belief about the current hazard 
rate through the estimated increment 𝛥𝐻𝑘, enabling it to infer and act 
upon the underlying risk dynamics even when the true degradation 
process deviates from the nominal model. 
Bellman equations. In the present maintenance optimization setting, the 
Bellman recursion formalizes the trade-off between immediate main-
tenance costs and the expected future deterioration risk. Let 𝑉 𝜋 (𝑠𝑘)
denote the expected discounted return starting from state 𝑠𝑘 under a 
policy 𝜋. The corresponding Bellman equation is 

𝑉 𝜋 (𝑠𝑘) = E
[

−𝐶(𝑠𝑘, 𝜋(𝑠𝑘)) + 𝛾 𝑉 𝜋 (𝑠𝑘+1) | 𝑠𝑘
]

, 𝑠𝑘+1 ∼ (⋅ ∣ 𝑠𝑘, 𝜋(𝑠𝑘)).

(15)

Here, the first term captures the instantaneous maintenance expen-
diture, either preventive, proportional to the restoration factor 𝜌, or 
corrective, conditional on a stochastic failure, whereas the second 
term expresses the expected future operational cost under continued 
degradation. The optimal state–action value function 𝑄∗(𝑠𝑘, 𝑎𝑘) satisfies 

𝑄∗(𝑠𝑘, 𝑎𝑘) = −𝐶(𝑠𝑘, 𝑎𝑘) + 𝛾 E𝑠𝑘+1∼(⋅|𝑠𝑘 ,𝑎𝑘)

[

min
𝑎𝑘+1∈

𝑄∗(𝑠𝑘+1, 𝑎𝑘+1)
]

, (16)

where the minimization reflects the cost-minimization formulation of 
the problem (as opposed to reward maximization). Therefore, the 
optimal preventive maintenance policy is obtained as 
𝜋∗(𝑠𝑘) = arg min

𝑎𝑘∈
𝑄∗(𝑠𝑘, 𝑎𝑘), (17)

which yields the restoration level 𝜌 ∈ [0, 1] that minimizes the expected 
long-term maintenance cost.

Unlike conventional MDP formulations, the transition operator 
here implicitly encodes both the degradation law and the stochas-
tic occurrence of failures through the hazard increment 𝛥𝐻𝑘, whose 
dependence on 𝜌 links the preventive decision to future system relia-
bility. This coupling makes the Bellman operator domain-specific: each 
action not only incurs an immediate cost but also alters the virtual 
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age distribution that determines the subsequent failure probability. In 
this sense, the Bellman equation captures the recursive propagation 
of maintenance effectiveness over time, providing a dynamic balance 
between short-term expenditure and long-term reliability. 

3.4. Double deep reinforcement learning algorithm

In order to find the optimal maintenance policies, the reinforcement 
learning method applied in this study utilizes the double deep Q-
learning algorithm, which is a variation of the Q-learning approach, 
that can be found in the reference book of Sutton and Barto (2018).
Szepesvári (2010) presents some reinforcement learning algorithms.

The Double Deep Q-Network (DDQN) algorithm, an advancement 
in reinforcement learning introduced by van Hasselt et al. (2015), is 
essential in addressing the overestimation bias of Q-values and stabiliz-
ing training. This is achieved through a novel approach of decoupling 
action selection from target Q-value estimation by employing two 
distinct neural networks: policy and target networks.

The efficacy of DDQN extends across various domains, as demon-
strated by a variety of applications, such as enhancing driving safety 
and fuel economy in autonomous vehicles through vehicle-to-
infrastructure communication networks (Liu et al., 2020), optimizing 
timeslot scheduling in network traffic (Ryu et al., 2023), control-
ling hysteresis phenomena in mode-locked fiber lasers (Kokhanovskiy 
et al., 2022), improving relay selection and power allocation in secure 
cognitive radio networks (Huang et al., 2021), optimizing hospital oc-
cupancy (Rajendran & Geetha, 2021), financial trading strategies (Brim, 
2020), and dynamic planning of transmission networks (Wang et al., 
2021).

The key details of DDQN implementation, which can be found 
in Ravichandiran (2020), include the following:

– Double Q-Value Estimation: Two separate Q-value networks are 
employed, one for selecting the best action and the other for 
evaluating its value. This decoupling mitigates the overestimation 
bias inherent to traditional Q-learning and improves robustness 
when learning from sparse and noisy maintenance cost signals.

– Target Q-Network Updates: The target network parameters are 
updated periodically to stabilize learning. By keeping the target 
network fixed for several steps and updating it incrementally 
with the online network parameters, this mechanism reduces 
oscillations in the target estimates and enhances the convergence 
stability under stochastic failure dynamics.

– Neural Network Configuration: A feed-forward neural network 
architecture with fully connected hidden layers, followed by an 
activation function.

– Exploration-Exploitation Strategy: Implements an 𝜖−greedy ex-
ploration strategy to balance exploration and exploitation in ac-
tion selection.

– Experience Replay: A replay buffer stores and samples past tran-
sitions to break temporal correlations between consecutive main-
tenance decisions. This improves sample efficiency and ensures 
more stable convergence by allowing the agent to learn from a 
representative mix of past experiences rather than from sequen-
tially correlated episodes.

The output of the neural networks exhibits variability based on the 
specific application context. In scenarios where the agent’s decision-
making is limited to a binary choice between perfect maintenance or 
non-maintenance of the equipment, the neural network architecture is 
configured with two distinct output nodes, as shown in Fig.  3. Con-
versely, in more complex decision-making situations where the agent is 
tasked with determining whether maintenance is performed and spec-
ifying the corresponding restoration level, the neural network output 
encompasses Q-values for a range of five discrete values associated with 
the recovery factor 𝜌, which were evenly distributed between 0 and 1, 
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as shown in Fig.  4. This dichotomy in the neural network output con-
figuration is influenced by the specific decision-making requirements 
of a given application: perfect or imperfect maintenance, reflecting the 
need for adaptability and precision in different operational contexts.

Figs.  3 and 4 provide visual representations of the neural network 
outputs corresponding to these distinct decision scenarios.
Algorithm 2 Double Deep Q-Network (DDQN) for Preventive Mainte-
nance with 7-State PAR Model
1: Initialize online network 𝑄(𝑠, 𝑎; 𝜃) and target network 𝑄(𝑠, 𝑎; 𝜃−)
with random weights

2: Initialize replay buffer 
3: for episode = 1, 2,… , 𝐸 do
4:  Initialize environment using resetFcn, obtaining:

𝑠0 = (FailTime0, 𝑇0, AgeEff0, 𝑓PM,0, 𝑓tot,0, 𝑎−1, PMtime0)

5:  for step 𝑘 = 0, 1,…  until episode horizon 𝐻 do
6:  With probability 𝜖, select random action 𝑎𝑘 ∈ , otherwise 
select greedy action 𝑎𝑘 = argmax𝑎 𝑄(𝑠𝑘, 𝑎; 𝜃)

7:  Apply action 𝑎𝑘 in environment via stepFcn:
8:  if 𝑎𝑘 > 0 then
9:  Set preventive maintenance level 𝜌 = 𝑎𝑘
10:  Reset fails_since_PM ← 0
11:  Update PM_last ← 𝑇𝑘 + 𝛥𝑡
12:  Add preventive cost 𝑐𝑝
13:  end if
14:  Compute effective risk factor 𝜃 = 1 + 𝜅risk ⋅ 1{fail since last PM}
15:  Sample failure occurrence 𝐹𝑘 ∼ Bernoulli(1 − 𝑒−𝜃𝛥𝐻 )
16:  if 𝐹𝑘 = 1 then
17:  fails_since_PM← fails_since_PM + 1,
18:  total_fails ← total_fails + 1
19:  Apply corrective maintenance (minimal repair)
20:  Add corrective cost 𝑐𝑐 (1 + 𝜅cost ⋅ fails_since_PM)
21:  Update last failure time FailTime ← 𝑇𝑘 + 𝛥𝑡
22:  end if
23:  Update effective age: AgeEff = max((𝑇𝑘 + 𝛥𝑡) − 𝜌 ⋅ PM_last, 0)
24:  Normalize new state:

𝑠𝑘+1 = (FailTime𝑛, 𝑇𝑛, AgeEff𝑛, 𝑓PM,𝑛, 𝑓tot,𝑛, 𝑎𝑘, PMtime𝑛)

25:  Compute dense-shaped cost

step_cost =
𝑐𝑝𝑎𝑘 + 𝑐𝑐 (1 + 𝜅cost𝑓PM)𝑝fail
max(𝑐𝑝, 𝑐𝑐 (1 + 𝜅cost𝑓PM))

26:  Reward 𝑟𝑘 = −step_cost
27:  Store (𝑠𝑘, 𝑎𝑘, 𝑟𝑘, 𝑠𝑘+1) in replay buffer 
28:  Sample minibatch {(𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗+1)} from 
29:  for each sample (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗+1) do
30:  𝑎∗ = argmax𝑎′ 𝑄(𝑠𝑗+1, 𝑎′; 𝜃)
31:  𝑌 DDQN

𝑗 = 𝑟𝑗 + 𝛾𝑄(𝑠𝑗+1, 𝑎∗; 𝜃−)
32:  Compute loss 𝐿𝑗 = (𝑌 DDQN

𝑗 −𝑄(𝑠𝑗 , 𝑎𝑗 ; 𝜃))2

33:  end for
34:  Update 𝜃 ← 𝜃 − 𝜂∇𝜃𝐿𝑗
35:  if 𝑘 mod 𝜏 = 0 then
36:  Update target network: 𝜃− ← 𝜃
37:  end if
38:  𝑠𝑘 ← 𝑠𝑘+1
39:  end for
40: end for
The simulations of this study were performed using MATLAB (The 

MathWorks Inc., 2022). The reinforcement learning toolbox provides 
appropriate functions for training reinforcement learning algorithms 
and achieving optimal policies. The rlDQNAgent function was used in 
this study.

3.4.1. Double deep Q-learning update rule
To learn the optimal policy in the proposed MDP, we propose the 

DDQN Algorithm 2. At each training step, the agent samples a transition 
(𝑠𝑘, 𝑎𝑘, 𝑟𝑘, 𝑠𝑘+1) from the replay buffer, where 𝑠𝑘 is the current state, 
𝑎𝑘 is the selected preventive maintenance intensity, 𝑟𝑘 = −𝑅(𝑠𝑘, 𝑎𝑘)
is the immediate reward (negative of the maintenance cost), and 𝑠𝑘+1
is the next state sampled according to the kernel (⋅|𝑠𝑘, 𝑎𝑘), with 
failure indicator drawn from a Bernoulli distribution with parameter 
𝑝true(𝑠𝑘, 𝑎𝑘). 

The DDQN target value is defined as 

𝑌 DDQN𝑘 = 𝑟𝑘 + 𝛾 𝑄
(

𝑠𝑘+1, arg max
𝑎′∈

𝑄(𝑠𝑘+1, 𝑎′; 𝜃) ; 𝜃−
)

, (18)

where:
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Fig. 3. Neural network architecture for the perfect maintenance case.
Fig. 4. Neural network architecture for the imperfect maintenance case.
– 𝑄(⋅; 𝜃) is the online network with parameters 𝜃,
– 𝑄(⋅; 𝜃−) is the target network with parameters 𝜃−,
– 𝜃− is updated by 𝜃 every 𝜏 steps to stabilize learning.

The corresponding loss function is 
𝐿𝑘(𝜃) = E(𝑠𝑘 ,𝑎𝑘 ,𝑟𝑘 ,𝑠𝑘+1)∼

[

(

𝑌 DDQN𝑘 −𝑄(𝑠𝑘, 𝑎𝑘; 𝜃)
)2
]

, (19)

where  is the experience replay memory distribution. Stochastic gra-
dient descent is used to update 𝜃 by minimizing 𝐿𝑘(𝜃), whereas 𝜃− is 
synchronized with 𝜃 at fixed intervals.
10 
This update rule incorporates the stochasticity of the environment: 
failures are sampled according to 𝐹𝑘 ∼ Bernoulli(𝑝true(𝑠𝑘, 𝑎𝑘)), and 
corrective costs may follow a random distribution 𝐶𝑐 (𝑁𝑘) ∼ (𝑐𝑐 , 𝜎2). 
Hence, the DDQN update naturally accounts for both probabilistic fail-
ures and random cost realizations in the Bellman target. The decoupling 
of action selection and evaluation ensures stable convergence despite 
the noisy and non-stationary reward structure of the maintenance 
environment. 
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3.5. Evaluation methodology and cost simulation framework

To ensure a fair comparison between the RL-based agent and the 
analytical maintenance policies, a unified evaluation framework was 
implemented. All simulations were conducted over a 60-day horizon 
(𝑇 = 60) with a daily decision step, and each policy was evaluated 
across 𝑁epi = 1000 independent Monte Carlo episodes using shared 
random sequences to guarantee identical sampling of failure events. 

Three types of policies were evaluated for each corrective-to-
preventive cost ratio 𝑐𝑚∕𝑐𝑝 ∈ {8, 4, 2, 1, 0.5, 0.25}: (i) the single-action
policy, in which a single preventive action is scheduled at an optimal 
day within the horizon given by the minimum of Eq.  (6), (ii) the
periodic policy, with an analytically optimized maintenance interval 𝜏∗
by searching optimal maintenance intervals that minimizes Eq.  (6); and 
(iii) the RL-based policy, represented by the greedy deterministic policy 
derived from the trained DDQN agent. All three policies were tested 
under identical stochastic realizations of the failure process, generated 
by the same matrix of random draws. This guarantees that differences 
in total cost arise solely from the decision policy, not from randomness 
in the environment.

The underlying base degradation process follows a non-
homogeneous Poisson process (NHPP) with a Weibull (power-law) 
intensity where the shape and scale parameters were set to 𝛽1 = 1.065
and 𝛼1 = 4.721, values consistent with reliability data reported for 
a die-casting machinery (see de Souza & da Silva, 2024). A similar 
order of magnitude for the parameters can also be observed in other 
contexts, for instance in the estimates reported by Saraygord Afshari 
et al. (2022) and Moniri-Morad and Sattarvand (2023). Preventive 
maintenance actions reduce the virtual age according to the PAR model 
with factor 𝜌, whereas corrective maintenance is minimally restorative. 
To represent imperfect repairs and the risk accumulation observed in 
industrial practice, the instantaneous failure probability incorporates a 
multiplicative post-failure risk factor 𝜃, defined as 
𝜃 = 1 + 𝜅risk 𝟏{failure since last PM}, with 𝜃 ≤ 𝜃max. (20)

The probability, as shown in 12, of at least one failure occurring within 
the step (𝑡, 𝑡 + 𝛥𝑡] is then 
𝑝fail = 1 − exp(−𝜃 𝛥𝐻), (21)

where 𝛥𝐻 is the cumulative hazard increment under the PAR-adjusted 
age. The parameter 𝜅risk = 0.25 controls the magnitude of the temporary 
increase in failure rate following a corrective event, and 𝜃max = 3.0
defines its saturation limit.

The total cost accumulated within each episode is computed by 
combining preventive and corrective costs while accounting for the 
sensitivity of corrective maintenance to repeated failures. Whenever a 
preventive action of magnitude 𝜌 ∈ [0, 1] is taken, a cost proportional 
to its intensity is incurred: 
𝐶PM = 𝑐𝑝 𝜌. (22)

If a failure occurs, the corrective cost increases with the number of 
consecutive failures since the last preventive action: 
𝐶CM = 𝑐𝑚

(

1 + 𝜅cost 𝑓
PM)

, (23)

where 𝑓PM is the number of failures accumulated since the previous PM 
and 𝜅cost = 0.25 quantifies the cost amplification effect due to repeated 
unplanned interventions. This structure reflects both operational risk 
escalation and the rising indirect costs associated with equipment 
downtime. 

For each policy, the environment evolves deterministically in time, 
whereas the occurrence of failures follows the sampled probabilities 
𝑝fail. The total episode cost is then obtained by summing the instan-
taneous preventive and corrective components across all time steps: 

𝐶total =
𝑇
∑

(

𝐶PM,𝑡 + 𝐶CM,𝑡
)

. (24)

𝑡=1
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The average and standard deviation of 𝐶total over all episodes are re-
ported as performance metrics for each policy and cost regime. Because 
all methods share the same random seeds and hazard realizations, 
the comparison isolates the effect of the decision logic rather than 
stochastic variability.

This evaluation methodology extends classical reliability-based cost 
simulations by incorporating post-failure risk escalation (𝜅risk) and cost 
sensitivity to repeated failures (𝜅cost), both of which were present 
during RL training. Therefore, the performance of the trained DDQN 
agent can be assessed under conditions that faithfully reproduce the 
stochastic environment and cost dynamics to which it was exposed, 
allowing a direct and statistically rigorous comparison with periodic 
and single-action analytical policies.

3.6. Comparison methods

To assess the performance of the RL-based maintenance policy, 
three alternative optimization strategies were implemented and eval-
uated under identical stochastic environments. All methods were sim-
ulated using the same random failure sequences and cost parameters, 
ensuring that differences in performance reflected only the decision-
making approach.

3.6.1. Static analytical policies.
Two classical maintenance strategies were adopted as analytical 

baselines. The first is the periodic policy, in which preventive mainte-
nance is executed at fixed intervals 𝜏∗ that minimize the expected cost 
per unit time. The optimal interval is obtained by solving 

𝜏∗ = argmin
𝜏

𝑐𝑚𝐻(𝜏) + 𝑐𝑝
𝜏

, (25)

where 𝐻(𝜏) = ∫ 𝜏
0 ℎ(𝑠) 𝑑𝑠 is the cumulative hazard function of the 

Weibull failure model, and 𝑐𝑝 and 𝑐𝑚 are the preventive and corrective 
maintenance costs, respectively. The second is the single-action policy, 
in which exactly one preventive maintenance operation is scheduled 
within the horizon at the time 𝜏∗ that minimizes the total expected cost 
over the period [0, 𝑇 ].

3.6.2. Dynamic genetic algorithm (GA-S).
As a non-learning, model-based method, a dynamic Genetic Al-

gorithm (GA-S) was implemented. At each decision epoch, the GA 
re-optimizes a sequence of future preventive actions over the remaining 
horizon by simulating the stochastic failure process as a black-box 
environment. Each chromosome encodes a binary sequence of mainte-
nance actions (perform or skip) for the remaining days, and its fitness 
is evaluated as the expected total cost obtained from Monte Carlo 
simulations of the same Weibull–PAR process, including the post-failure 
risk amplification (𝜅risk) and corrective cost escalation (𝜅cost). Selection, 
crossover, and mutation operators evolve the population over several 
generations, and the best individual’s first action is applied to the 
system before the process repeats for the next day. This re-optimization 
scheme allows the GA to approximate a dynamic decision process 
without learning an explicit policy or state-value function.

4. Results and analysis

This section presents the experimental results obtained using the 
proposed DDQN-based preventive maintenance algorithm presented 
in Section 3. The analysis was divided into two main parts. First, 
a comprehensive sensitivity study was conducted to evaluate the in-
fluence of key hyperparameters on learning performance and policy 
stability, including the target network update frequency, replay buffer 
size, neural network architecture, mini-batch size, learning rate, look-
ahead parameter, and discount factor. These experiments aimed to 
identify configurations that yield robust convergence and consistent 
value estimation under a stochastic maintenance environment.
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In the second part, the trained agent is evaluated under multiple 
corrective-to-preventive cost ratios, with both perfect and imperfect 
maintenance actions, illustrating how the learned policies adapt to 
different economic trade-offs between corrective and preventive main-
tenance. The performance of the reinforcement learning agent is then 
compared against benchmark maintenance strategies, including an-
alytical static schedules and periodic policies, to assess its relative 
efficiency and generalization capability.

The simulations employed reliability parameters consistent with the 
failure data reported in the literature for die-casting machinery. The 
power-law (Weibull) parameters used in this study, 𝛽1 = 1.065 and 
𝛼1 = 4.721, are of the same order of magnitude commonly found across 
various types of industrial equipment, such as jet engine parts and 
mining trucks, ensuring that the experimental results reflect realistic 
degradation and failure dynamics.

4.1. Analysis of hyperparameters

This subsection presents a systematic evaluation of the influence of 
key hyperparameters on the performance and stability of the Double 
Deep Q-Network algorithm. Each parameter was varied independently 
around the baseline configuration defined in Section 4.2, whereas 
all others were held constant. The results are discussed in terms of 
mean and variance of the total cost, convergence behavior or other 
quantitative characteristics of the learned policies.

4.2. Training configuration and baseline hyperparameters

The reinforcement learning agent was trained using an 𝜖-greedy 
exploration strategy, with the exploration rate (𝜖) linearly decaying 
from 1.0 to 0.01 over 10,000 timesteps, corresponding to a decay rate 
of 8 × 10−6 per step and the random seed fixed at rng(3). This schedule 
ensures a gradual transition from an exploratory to an exploitative 
behavior, as shown in Fig.  5, allowing the agent to initially sample 
the environment widely before focusing on the exploitation of the most 
promising actions. The full training process required approximately two 
hours on a standard workstation equipped with an Intel Core i5 proces-
sor (3.2 GHz) and 8 GB of RAM. Within the same computational setup, 
the inference process of the trained agent is effectively instantaneous.

The baseline configuration adopted for the analyses was established 
after extensive sensitivity testing across the main hyperparameters. The 
set of values found to produce stable and consistent convergence across 
independent runs is summarized below:

– Target Update Frequency: 1000;
– Look-Ahead Parameter: 3;
– Discount Factor (𝛾): 0.99;
– Network Architecture: Two hidden layers of 64 neurons each with 
ReLU, and a linear activation in the output layer;

– Batch Size: 64;
– Learning Rate: 0.00005;
– Replay Buffer Length: 3 × 105;
– 𝐿2 Regularization Factor: 1 × 10−5;

The inclusion of an 𝐿2 regularization term was found to play an 
important role in stabilizing the learning dynamics. By penalizing 
large network weights, this term helps control overfitting to tran-
sient fluctuations in the value function estimates, promoting smoother 
convergence and improved generalization when exposed to unseen 
operational conditions.

Fig.  5 illustrates the evolution of the training process under this 
baseline configuration. The learning curve shows the progressive re-
duction and subsequent stabilization of the cumulative cost across 
episodes, indicating the agent’s ability to extract a consistent policy 
from the simulated experience. The steady convergence trend observed 
supports the selection of this configuration as the reference setup for 
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the subsequent hyperparameter analyses. In the following subsections, 
the parameters above will be individually varied to assess its influ-
ence on learning efficiency, convergence stability, and overall policy 
performance.

4.3. Analysis of hyperparameters

4.3.1. Analysis of target network update frequency: DQN vs. DDQN
The first set of experiments was conducted to evaluate the influence 

of the target network update frequency on the performance of the 
Double Deep Q-Network (DDQN) compared with the standard Deep 
Q-Network (DQN). The action space in this experiment was binary, 
consisting of either performing a perfect preventive maintenance action 
or taking no action. The hyperparameter configuration followed the 
base setup described earlier, with the target network update frequency 
varying in 1, 10, 60, 100, 1000 and the random seed fixed at rng(3).

The experiments were performed with 𝜅risk = 𝜅cost = 0.25, Weibull 
parameters 𝛽1 = 1.065 and 𝛼1 = 4.721, a time horizon of 60 days, 
and 1, 000 simulation trials per configuration. The case 𝑐𝑐∕𝑐𝑝 = 1 was 
of particular interest, since it represents the most sensitive decision 
region where the choice between performing preventive maintenance 
or accepting a corrective cost is least obvious.

For the baseline case (𝑐𝑐∕𝑐𝑝 = 1), the DDQN consistently achieved 
lower mean cost values than the DQN, with average reductions exceed-
ing 20% relative to the standard agent. This improvement remained 
stable across different values of Target Update Frequency, with no clear 
performance gap among 1, 10, 60, or 100 updates.

4.3.2. Influence of the look-ahead parameter in DDQN learning
A complementary set of experiments was conducted to investigate 

the influence of the ‘number of steps to look-ahead’ parameter on the 
performance and stability of the DDQN agent. This parameter controls 
the number of future steps considered when computing the target 
return during the Bellman update. In standard one-step Q-learning, the 
target is defined as 
𝑌 (1)
𝑡 = 𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝑎∗𝑡+1; 𝜃

−), (26)

where 𝑎∗𝑡+1 = argmax𝑎 𝑄(𝑠𝑡+1, 𝑎; 𝜃) is the greedy action according to the 
current online network. When the look-ahead parameter is extended to 
𝑛 steps, the target becomes 
𝑌 (𝑛)
𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 +⋯ + 𝛾𝑛−1𝑟𝑡+𝑛−1 + 𝛾𝑛𝑄(𝑠𝑡+𝑛, 𝑎∗𝑡+𝑛; 𝜃

−), (27)

propagating the influence of near-future rewards into the update.
In the DDQN algorithm described in Algorithm 2, the lines corre-

sponding to the target computation are modified as follows: 

∀ (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗+1) ∈  ∶ 𝑌 DDQN
𝑗 ←

𝑛−1
∑

𝑖=0
𝛾 𝑖𝑟𝑗+𝑖 + 𝛾𝑛𝑄(𝑠𝑗+𝑛, 𝑎∗𝑗+𝑛; 𝜃

−). (28)

This adjustment affects only the target generation step, leaving the 
remaining parts of the training loop unchanged. Conceptually, the 
parameter 𝑛 controls the temporal depth of reward propagation and 
balances bias and variance in value estimation. The parameter was 
tested for 𝑛 ∈ {1, 2, 3, 5}, keeping all the other hyperparameters fixed. 
The results show that setting 𝑛 = 3 produced the lowest mean mainte-
nance cost and the smallest standard deviation across 1, 000 simulated 
episodes, outperforming both shorter and longer look-ahead horizons. 
With 𝑛 = 1 or 𝑛 = 2, the agent converged faster but exhibited higher cost 
variability and evidence of premature stabilization of the 𝑄(𝑠, 𝑎) values, 
indicating a bias toward short-term rewards and suboptimal policies. 
For 𝑛 = 5, convergence became slower and less stable, as longer look-
ahead returns incorporated higher variance due to stochastic failure 
events.

These observations are consistent with the theoretical trade-off 
between bias and variance in 𝑛-step methods. A smaller 𝑛 leads to 
faster but biased updates that rely heavily on noisy one-step transitions, 
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Fig. 5. Episode reward (blue) and 10-episode moving average reward (bold blue) during he training of a DDQN agent for maintenance scheduling.
whereas a larger 𝑛 reduces bias at the expense of amplifying vari-
ance and slowing convergence. In this preventive maintenance context, 
where each maintenance action influences the risk and cost structure 
for a few subsequent days, a look-ahead horizon of 𝑛 = 3 provides 
an effective compromise. It captures the short-term delayed effect 
of preventive maintenance actions on equipment reliability without 
excessively propagating stochastic noise from future failures. 

4.3.3. Sensitivity to the discount factor
A sensitivity analysis was also conducted to assess the effect of the 

discount factor 𝛾 on the learning performance of the DDQN agent. 
The discount factor regulates the relative importance assigned to future 
rewards in the Bellman update, and therefore determines how strongly 
the agent values long-term outcomes with respect to immediate costs. 

The parameter was tested for 𝛾 ∈ {1.0, 0.999, 0.99, 0.95, 0.9}, keep-
ing all other hyperparameters fixed to the baseline configuration, but 
using with 𝑛 = 3. Across 10, 000 training episodes, no significant 
differences in performance were observed for 𝛾 ≥ 0.95. The resulting 
mean costs and standard deviations were statistically indistinguishable, 
indicating that the learned policy and value estimates were robust 
to small variations in the discount factor within this range. Only 
the configuration with 𝛾 = 0.9 showed a noticeable degradation in 
performance, producing higher average maintenance costs.

This outcome is consistent with the expected behavior of sequential 
decision processes with moderately long horizons. Given that each 
episode spans 60 decision steps (days) and maintenance actions have 
delayed but bounded effects, high values of 𝛾 near unity appropriately 
preserve the temporal dependencies between actions and their future 
costs. When 𝛾 is reduced to 0.9, the agent becomes overly myopic, 
prioritizing immediate cost minimization over preventive decisions that 
yield benefits several steps ahead. Consequently, the learned policy 
tends to underperform by deferring maintenance actions too long.

4.3.4. Effect of network size on learning performance
The neural network architecture used by both the online and target 

critics in the DDQN agent consists of two fully connected hidden layers 
with ReLU activation functions. To evaluate the influence of network 
capacity on learning performance, several configurations were tested 
by varying the number of neurons in each hidden layer while keeping 
the network depth fixed at two layers. The number of neurons per layer 
was set to {32, 64, 128, 256, 512}.

The decision to restrict the analysis to two hidden layers follows 
from the universal approximation theorem (Chen & Chen, 1995), which 
establishes that a feed-forward neural network with a single hidden 
layer and a sufficient number of units can approximate any continuous 
function on a compact domain to arbitrary precision. In practice, deeper 
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Table 1
Performance of DDQN agents with different numbers of neurons 
per hidden layer.
 Neurons Mean cost Std. deviation 
 32 57.17 5.44  
 64 25.67 5.94  
 128 39.53 5.77  
 256 28.51 6.40  
 512 27.83 7.97  

networks often increase training complexity and variance without pro-
portional gains in representational power for problems of moderate 
dimensionality such as the present seven-state MDP. Therefore, ex-
ploring different network widths provides a more relevant measure of 
model capacity than varying the number of layers.

The ReLU activation function was adopted because of its well-
established advantages in stabilizing gradient propagation and acceler-
ating convergence in deep Q-learning frameworks, as widely reported 
in the reinforcement learning literature, and it was therefore selected 
as a standard choice without further empirical comparison.

The results of this analysis are summarized in Table  1. Each con-
figuration was trained under identical conditions and evaluated across 
1, 000 simulation trials using the same random seed. The mean main-
tenance cost and its standard deviation were computed during the 
inference phase of the trained policies.

The results indicate that the configuration with 64 neurons in 
each hidden layer achieved the lowest mean cost while maintaining 
one of the smallest standard deviations. Smaller networks (e.g., 32 
units) were unable to capture the nonlinear structure of the value 
function, leading to systematically higher costs. Larger networks (128 
units or more) did not improve the average performance and tended to 
exhibit slightly higher variability, suggesting overparameterization and 
increased sensitivity to stochastic fluctuations during training.

4.3.5. Effect of mini-batch size on training stability
Another hyperparameter evaluated in this study was the mini-batch 

size used for stochastic gradient descent during the critic updates. The 
mini-batch size determines the number of experience tuples randomly 
sampled from the replay buffer at each training iteration. This parame-
ter directly affects the bias–variance trade-off of the gradient estimates 
and, consequently, the stability of the learning process.

Three configurations were tested, with batch sizes of {64, 128, 256}
samples per update, while keeping all other training parameters fixed. 
Each configuration was trained for the same number of episodes under 
identical random seeds. The performance of the resulting agents was 
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Table 2
Performance of DDQN agents with different mini-batch sizes.
 Batch size Mean cost Std. deviation 
 64 25.67 5.94  
 128 45.45 16.58  
 256 44.42 16.23  

Table 3
Performance of DDQN agents with different learning rates.
 Learning Rate Mean cost Std. deviation 
 0.05000 45.38 16.72  
 0.00500 45.38 16.72  
 0.00050 43.56 18.17  
 0.00005 25.67 5.93  

assessed using the mean and standard deviation of the maintenance cost 
over 1, 000 inference episodes.

As shown in Table  2, the configuration using a mini-batch of 64 sam-
ples achieved the lowest mean cost and the smallest standard deviation 
among all tested values. Increasing the batch size to 128 or 256 did 
not improve convergence; instead, both resulted in higher variability 
and worse average performance. This behavior can be attributed to the 
reduced stochasticity of the gradient updates when using large batches, 
which limits exploration in parameter space and slows the adaptation 
of the Q-network to the nonstationary reward landscape.

Conversely, smaller batches introduce moderate noise in the gradi-
ent estimation, which helps the optimization escape local minima and 
better capture the underlying structure of the value function. In this 
context, a mini-batch size of 64 offered a favorable balance between 
learning stability and representational generalization. Therefore, this 
configuration was adopted as the standard setting for all the subsequent 
DDQN training experiments.

4.3.6. Influence of the learning rate on convergence behavior
The learning rate is one of the most critical hyperparameters in 

deep reinforcement learning, as it determines the step size of the 
gradient descent updates during network training. Excessively large 
values can lead to unstable oscillations or divergence, whereas values 
that are too small can result in slow convergence and poor adaptation to 
nonstationary environments. To assess its effect, four values of the critic 
learning rate were tested: {0.05, 0.005, 0.0005, 0.00005}, while keeping 
all other hyperparameters identical to the baseline configuration.

Each configuration was trained under identical conditions and eval-
uated using 1000 inference episodes. Table  3 summarizes the resulting 
mean and standard deviation of the maintenance cost for each learning 
rate.

The results clearly show that lower learning rates produced substan-
tially better outcomes. For LR = 0.00005, the agent achieved the lowest 
mean cost and the smallest standard deviation, indicating both superior 
convergence and higher stability of the learned policy. In contrast, 
larger learning rates (0.05 and 0.005) resulted in nearly identical and 
significantly worse performance, reflecting the characteristic oscillatory 
behavior and loss of precision typical of overly aggressive gradient 
updates. An intermediate value (0.0005) slightly improved the average 
cost but still exhibited high variance.

These findings are consistent with the sensitivity of DDQN algo-
rithms to the magnitude of parameter updates, particularly in environ-
ments with dense but noisy rewards such as the present maintenance 
optimization problem. A small learning rate ensures smoother adjust-
ments of the Q-network weights, preventing overreaction to stochastic 
variations in the replayed transitions and promoting gradual, stable 
convergence. Based on these observations, a learning rate of 5 × 10−5

was adopted as the default configuration in subsequent experiments.
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Table 4
Comparison of replay buffer sizes and corresponding performance 
metrics.
 Buffer size Mean Cost Standard Deviation 
 3 × 104 38.26 6.74  
 3 × 105 25.67 5.94  
 3 × 106 26.34 6.31  

4.3.7. Effect of replay buffer size
To assess the influence of experience replay on training stability, 

additional experiments were conducted with three replay buffer sizes: 
3 × 104, 3 × 105, and 3 × 106 transitions. The results, summarized 
in Table  4, indicate that the intermediate configuration with 3 × 105

samples produced the lowest mean total cost and the smallest variabil-
ity, representing the most stable and cost-efficient policy. Empirically, 
small replay buffers (104) tend to limit the diversity of past expe-
riences available for training, causing the agent to overfit to recent 
transitions and leading to oscillatory learning behavior. Conversely, 
excessively large buffers (106) dilute the relevance of recent expe-
riences, slowing convergence and introducing outdated samples that 
reduce learning responsiveness. These observations are consistent with 
established reinforcement learning literature, which emphasizes that 
experience replay improves convergence by breaking temporal corre-
lations, provided that the stored experiences remain representative of 
the current policy distribution. Therefore, a buffer size of 3 × 105 was 
adopted as a practical compromise, ensuring sufficient sample diversity 
for stable learning while maintaining adequate sensitivity to recent 
environmental dynamics.

4.3.8. Evolution of the Q-values during training
The convergence properties of value-based Deep Reinforcement 

Learning algorithms are inherently influenced by the stochastic nature 
of the training process, the bootstrapped construction of target values, 
and the use of neural function approximation. In the present study, both 
the classical Deep Q-Network (DQN) and the Double Deep Q-Network 
(DDQN) were trained under identical conditions, employing a Target 
Update Frequency of 1000 steps. 

As shown in Fig.  6, the DDQN produced higher converged 𝑄(𝑠, 𝑎)
values (less negative in the cost-based formulation) and a more efficient 
policy compared with the DQN, as described in Section 4.3.1, despite 
exhibiting slightly greater variance during the final training episodes. 
The DDQN agent clearly differentiates the value of ‘not maintain’ action 
from ‘maintain’ action in the first step of the training process. This 
difference can be attributed to the distinct bias characteristics of each 
algorithm. The DQN tends to overestimate its target values due to the 
correlation between action selection and evaluation within the same 
estimator. Such coupling introduces a persistent maximization bias that 
can destabilize the value updates and drive the learning process toward 
suboptimal local attractors. This effect is evidenced in the DQN results 
(left panel), where the agent converged prematurely to a lower 𝑄(𝑠, 𝑎)
plateau and failed to escape from it in the later stages of training.

In contrast, the DDQN mitigates this maximization bias by decou-
pling action selection from target evaluation, employing two decorre-
lated estimators that generate more consistent and less correlated target 
values. This modification results in smoother updates and allows the 
DDQN agent to explore a broader portion of the value-function space, 
leading to a policy that achieves a lower expected maintenance cost. 
Because the target and online networks evolve asynchronously and are 
periodically synchronized, each target update introduces small discon-
tinuities in the learning dynamics. The resulting oscillations represent 
bounded fluctuations around a stationary point rather than evidence of 
divergence.
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Fig. 6. 𝑄(𝑠, 𝑎) estimation during training. (Left) DQN algorithm. (Right) DDQN algorithm with target network update frequency equal to 1000.
4.4. Agent results

This subsection reports the performance of the trained agents under 
different maintenance cost structures and risk models. The results 
include comparisons with analytical benchmark policies, with an or-
dinary RL algorithm as well as with heuristic optimization baselines. 
Both robustness and generalization are examined by evaluating the 
agents under perturbed failure dynamics and stochastic maintenance 
environments, providing insight into the learned policy’s adaptability 
and stability.

4.4.1. Genetic algorithm and standard RL configuration and comparative 
performance

For benchmarking purposes against the periodic, static, and reinforce-
ment learning (RL) policies, a genetic algorithm (GA) was implemented 
with fixed evolutionary parameters and a dynamic stopping criterion 
proportional to the RL inference time. The GA employed a population 
of 10 individuals, up to 50 generations, a crossover probability of 
𝑝𝑐 = 0.8, a mutation probability of 𝑝𝑚 = 0.1, and 30 internal Monte 
Carlo simulations (𝑛sim = 30) to estimate the expected cost of each 
chromosome under the agent’s internal (belief) model, which neglected 
the second Weibull hazard component. 

Unlike the RL agent, the GA performs an on-line stochastic search 
during inference, evolving binary sequences of maintenance actions 
over the remaining decision horizon. To ensure computational fairness 
in the comparison, a time-based stopping criterion was introduced: the 
GA is interrupted when its total inference time for a given episode 
exceeds 𝑘 times the average inference time of the RL agent under 
the same evaluation conditions. The parameter 𝑘 thus represents the 
available computational budget, where larger values allow a broader 
search over the decision space at the cost of higher inference time.

For comparative purposes, an additional Double Deep Q-Network 
(DDQN) agent adapted from Huang et al. (2020) was also implemented 
using the reward function defined in Eq.  (11). The state space of this 
implementation was composed of four variables: the elapsed operating 
time, the time since the last failure, the cumulative age effect resulting 
from maintenance actions, and the total number of failures observed. 
This configuration mirrors the structure proposed by Huang et al. 
(2020), enabling a fair comparison between the standard DDQN formu-
lation and the proposed DDRL framework in terms of cost minimization 
performance and learning stability.

When evaluating the baseline DDQN under the simplified condition 
of 𝜅risk = 𝜅cost = 0, that is, when corrective maintenance actions 
produce no cumulative effects on either the risk or the cost structure, 
the standard model achieved slightly better performance than the pro-
posed DDRL framework. In this static environment, where adaptation 
offers no clear advantage, the baseline DDQN, due to its reduced state 
space and non-adaptive policy, obtained an average cost of 13.003 with 
a standard deviation of 3.1798, whereas the proposed RL approach 
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Table 5
Comparison of average and standard deviation of episode costs 
for different decision policies.
 Policy Mean Cost Std. Deviation 
 Periodic 30.6645 9.84  
 Single PM 30.6645 9.84  
 Proposed RL 25.2350 5.85  
 Standard RL 45.3750 16.72  
 GA (𝑘 = 5) 43.8595 16.21  
 GA (𝑘 = 10) 43.4565 15.97  
 GA (𝑘 = 100) 30.7145 11.46  

reached an average cost of 15.608 and a standard deviation of 3.6745. 
Even under perturbed conditions, the standard DDQN maintained a 
marginally better performance, with a mean cost of 30.478 and a stan-
dard deviation of 3.797, compared to 35.248 and 4.116, respectively, 
for the proposed DDRL agent. However, once any cumulative effect 
from corrective maintenance is introduced, through either the risk or 
cost terms, the standard DDQN’s performance deteriorates, similarly to 
analytical static policies, while the proposed model remains stable and 
continues to adapt effectively to the changing environment.

The results presented in Table  5 and in Table  6 correspond to 
the case of practical interest in which the corrective and preventive 
maintenance costs are equal (𝑐𝑚 = 𝑐𝑝), the restoration factor 𝜌 is 
equal to 1 and 𝜅risk = 𝜅cost ≠ 0. In Table  5 the agents model’s belief 
matches the real baseline hazard function. Conversely, in Table  6, the 
real hazard function differs from the baseline belief. The single-term 
Weibull process is enhanced with a two-component model defined by 
the parameters 𝛽1 = 1.065 + 0.25, 𝛼1 = 4.721 − 1, 𝛽2 = 0.875, and 
𝛼2 = 8. For each method, the tables report the average cost and 
its standard deviation across 1000 simulated episodes. The periodic 
and single preventive maintenance policies yield identical results, as 
expected from their analytical equivalence under constant intervals. 
The proposed RL agent clearly outperforms both analytical policies, the 
standard RL agent and the GA algorithm, achieving a lower mean cost 
and a smaller variance. The GA results, shown for three values of 𝑘, 
reveal the impact of the time budget on solution quality: for 𝑘 = 5
and 𝑘 = 10, the GA produces significantly higher costs and dispersion 
(approximately 75%), while for 𝑘 = 100 the mean cost approaches that 
of the RL policy (approximately 20% higher for the first case and 25% 
higher for the second), although with considerably larger variability 
(approximately 97% higher for the first case and 171% for the second).

As the value of 𝑘 increases, the GA is granted more time to ex-
plore the decision space, allowing for a more thorough search and 
a greater likelihood of discovering cost-efficient sequences. This be-
havior aligns with the exploratory nature of evolutionary algorithms, 
where additional generations and evaluations expand the coverage of 
potential action plans. However, this improvement is achieved solely by 
allocating more computational resources rather than through inherent 
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Table 6
Comparison of average and standard deviation of episode costs 
for different decision policies with perturbed environment.
 Policy Mean Cost Std. Deviation 
 Periodic 111.06 19.03  
 Single PM 111.06 19.03  
 RL 61.96 7.87  
 Standard RL 186.12 36.55  
 GA (𝑘 = 5) 181.59 34.91  
 GA (𝑘 = 10) 176.50 35.95  
 GA (𝑘 = 100) 77.57 19.76  

decision efficiency. Even with 𝑘 = 100, the standard deviation of the 
GA’s results remains more than twice that of the RL agent, indicating 
persistent inconsistency across independent runs.

4.4.2. Comparative evaluation of the RL policy trained with fixed model 
parameters

Given the high computational cost of the genetic algorithm (GA), 
which makes it unsuitable for real-time or large-scale applications, and 
the limited adaptability of the standard RL, whose policy fails to re-
spond effectively to environments with corrective maintenance effects 
or stochastic costs, the comparative analysis in this section focuses 
solely on the proposed RL agent relative to the analytical maintenance 
policies. Two analytical baselines are considered: a static policy and a
periodic policy, both derived from the power-law failure model used in 
the RL training. 

In the first part of the analysis, the RL agent is evaluated under 
the same baseline environment used for training, corresponding to a 
single-term Weibull failure model with fixed parameters. The preven-
tive maintenance cost is normalized to 𝑐𝑝 = 1, and several values 
of the corrective-to-preventive cost ratio 𝑐𝑚∕𝑐𝑝 are examined. For the 
representative case 𝑐𝑚 = 𝑐𝑝, both analytical policies identify the same 
optimal preventive interval 𝑡∗ = 30, yielding identical performance 
statistics with a mean episode cost of 31.05 and a standard deviation 
of 9.87 across 1000 Monte Carlo simulations. The RL policy achieves a 
lower mean cost of 25.53 and a standard deviation of 5.89. 

A two-sample Student’s 𝑡-test rejects the null hypothesis of equal 
means with a 𝑝-value of 3 × 10−49, and the Brown–Forsythe test 
(see Brown & Forsythe, 1974) for equality of variances also rejects 
the null hypothesis with a 𝑝-value of 4 × 10−40. These results confirm 
that the RL policy not only achieves lower average cost but also yields 
more stable outcomes within the baseline model. However, when the 
same policy and analytical baselines are evaluated under environments 
consistent with their respective belief models, the RL advantage does 
not extend across all cost ratios.

To better understand the operational logic of the learned policy, 
three random trajectories were analyzed under the nominal failure 
model. These trajectories correspond to distinct Monte Carlo realiza-
tions in which the same RL policy interacts with independent sequences 
of stochastic failures. Despite being generated under identical model 
parameters, each trajectory exhibits a different temporal pattern of 
failures and preventive maintenance actions, reflecting the adaptive 
nature of the learned policy. The corresponding outcomes for the three 
realizations are summarized as follows: 

1. Total cost = 22.50, number of failures = 13, number of PMs = 2;
2. Total cost = 36.25, number of failures = 20, number of PMs = 2;
3. Total cost = 15.00, number of failures = 9, number of PMs = 1.

Table  7 shows the evolution of the actions and failure occurrences 
over the 60-day horizon for each episode. 

From these trajectories, one can observe clear signs of adaptive 
behavior in the learned policy. Although the complete policy relies 
on a multidimensional state representation, including variables such as 
effective age, time since last PM, and cumulative number of failures, 
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the partial information reported in Table  7 is sufficient to illustrate 
the agent’s responsiveness to changing maintenance conditions. The RL 
agent reacts to local degradation patterns, triggering maintenance only 
when the recent failure history or inferred operational risk becomes 
significant. 

The following results refer to the perturbed environment, in which 
the agent was trained under the baseline model but later evaluated in 
an uncertain setting where the failure rate parameter 𝛽 varies uniformly 
within the interval [𝛽, 𝛽 +0.3]. This configuration introduces stochastic 
variability into the hazard function, allowing the assessment of the 
model’s adaptability. The results presented in Table  8 demonstrate 
that the RL agent maintained competitive performance under these 
perturbations, confirming its robustness and capacity to generalize 
beyond the nominal training conditions.

A second evaluation scenario, on the other hand, introduces a 
deliberate perturbation to the failure model, replacing the single-term 
Weibull process with a two-component model defined by the parame-
ters 𝛽1 = 1.065 + 0.25, 𝛼1 = 4.721 − 1, 𝛽2 = 0.875, and 𝛼2 = 8. Under 
this perturbed environment, shown in Fig.  7, the analytical policies 
continue to rely on the baseline failure model, whereas the RL agent 
operates without modification. In this case, the RL policy demonstrates 
a significant relative reduction in both the mean and variance of the 
total cost across all values of 𝑐𝑚∕𝑐𝑝, as can be seen in Fig.  8, indicating 
improved robustness when the underlying failure dynamics deviate 
from those assumed during training.

Table  9 summarizes the results of hypothesis testing between the RL 
policy and the periodic analytical policy for each cost ratio. In all eval-
uated cases, the 𝑡-tests indicate statistically significant differences in 
the mean costs between the RL and the analytical policies (𝑝 ≪ 0.001). 
Similarly, the Brown–Forsythe tests reveal significant differences in the 
variances. 

To evaluate the adaptability of the proposed DDRL framework to 
variations in the underlying failure dynamics, two perturbation scenar-
ios were tested after training the agent under the baseline power-law 
hazard function with an increasing failure rate. As shown in Fig.  9, the 
trained agent was subsequently exposed to failure processes governed 
by two distinct bathtub-shaped hazard functions. The first perturbation 
was defined by parameters 𝛽1 = 2.565, 𝛼1 = 22.721, 𝛽2 = 0.6, and 
𝛼2 = 2.5, while the second used 𝛽1 = 1.715, 𝛼1 = 22.721, 𝛽2 = 0.9, 
and 𝛼2 = 4. Despite being trained exclusively under a monotonically 
increasing risk assumption, the DDRL agent successfully adapted its 
policy to these non-monotonic failure behaviors. As illustrated in Fig. 
10, the model exhibited robustness not only to changes in the slope of 
the hazard function but also to its overall shape. In both perturbation 
cases, the reinforcement learning approach achieved a reduction in 
both the mean and variance of the total maintenance cost compared to 
the baseline, demonstrating its capacity for generalization and stable 
decision-making under differing reliability conditions. 

These findings suggest that the RL policy adapts to the stochastic 
variability inherent in the maintenance environment and retains sta-
ble performance when evaluated under unseen operating conditions. 
The absence of degradation in policy effectiveness under model per-
turbations indicates that the learned strategy generalizes beyond the 
training distribution and does not exhibit signs of overfitting. In the 
next subsection, this aspect is further investigated by analyzing an RL 
agent trained with randomized model parameters, in order to explicitly 
assess its generalization and robustness across heterogeneous failure 
dynamics.

4.4.3. Evaluation under imperfect preventive maintenance
In this analysis, the preventive maintenance action is modeled as 

imperfect, such that each intervention partially restores the system 
depending on the selected restoration factor 𝜌 ∈ [0, 0.25, 0.50, 0.75, 1]. A 
value of 𝜌 = 1 corresponds to perfect maintenance, fully rejuvenating 
the system to an ‘‘as-good-as-new’’ state, whereas smaller values of 
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Table 7
Full trajectories of three RL realizations under the nominal model.
 Day Episode 1 Episode 2 Episode 3
 PM Action Fail Flag Fails Count PM Action Fail Flag Fails Count PM Action Fail Flag Fails Count 
 1 0 0 0 0 1 1 0 0 0  
 2 0 0 0 0 0 1 0 0 0  
 3 0 1 1 0 0 1 0 1 1  
 4 0 0 1 0 0 1 0 0 1  
 5 0 0 1 0 0 1 0 0 1  
 6 0 1 2 0 0 1 0 0 1  
 7 0 0 2 0 0 1 0 0 1  
 8 0 1 3 0 0 1 0 1 2  
 9 0 0 3 0 0 1 0 0 2  
 10 0 0 3 0 0 1 0 1 3  
 11 0 1 4 0 1 2 0 0 3  
 12 0 0 4 0 0 2 0 1 4  
 13 0 0 4 0 1 3 0 0 4  
 14 0 0 4 0 0 3 0 0 4  
 15 0 0 4 0 1 4 0 0 4  
 16 0 0 4 0 0 4 0 0 4  
 17 0 0 4 0 0 4 0 0 4  
 18 0 0 4 0 1 5 0 0 4  
 19 0 0 4 1 1 6 0 0 4  
 20 0 0 4 0 0 6 0 0 4  
 21 0 1 5 0 0 6 0 0 4  
 22 1 0 5 0 0 6 0 0 4  
 23 0 0 5 0 1 7 0 0 4  
 24 0 0 5 0 0 7 0 0 4  
 25 0 0 5 0 0 7 0 0 4  
 26 0 0 5 0 1 8 0 0 4  
 27 0 0 5 0 1 9 0 1 5  
 28 0 0 5 0 1 10 0 0 5  
 29 0 0 5 0 0 10 0 0 5  
 30 0 0 5 0 1 11 0 0 5  
 31 0 0 5 0 1 12 0 0 5  
 32 0 0 5 0 0 12 0 0 5  
 33 0 1 6 1 1 13 0 0 5  
 34 0 1 7 0 0 13 0 0 5  
 35 0 0 7 0 0 13 0 0 5  
 36 0 0 7 0 0 13 0 0 5  
 37 0 1 8 0 0 13 0 0 5  
 38 0 0 8 0 0 13 0 0 5  
 39 0 0 8 0 0 13 0 0 5  
 40 0 0 8 0 1 14 0 0 5  
 41 0 0 8 0 0 14 0 1 6  
 42 0 1 9 0 0 15 0 0 6  
 43 0 0 9 0 0 15 0 0 6  
 44 0 0 9 0 1 16 0 0 6  
 45 0 0 9 0 0 16 0 0 6  
 46 0 1 10 0 0 17 0 0 6  
 47 1 0 10 0 0 17 0 0 6  
 48 0 0 10 0 0 17 0 0 6  
 49 0 0 10 0 0 17 0 0 6  
 50 0 0 10 0 0 17 0 0 6  
 51 0 0 10 0 0 17 0 0 6  
 52 0 0 10 0 1 18 0 0 6  
 53 0 1 11 0 0 18 0 0 7  
 54 0 1 12 0 0 19 0 1 8  
 55 0 1 13 0 1 20 0 1 9  
 56 0 0 13 0 0 20 1 0 9  
 57 0 0 13 0 0 20 0 0 9  
 58 0 0 13 0 1 20 0 0 9  
 59 0 0 13 0 0 20 0 0 9  
 60 0 0 13 0 0 20 0 0 9  
𝜌 represent partial restorations. The PM cost is assumed to increase 
linearly with 𝜌, reflecting a proportional trade-off between restoration 
efficacy and expenditure. The RL agent is thus required to learn not 
only when to perform maintenance but also how much restoration 
effort to apply, given its impact on long-term costs.

The first set of experiments evaluates the agent trained under the 
baseline power-law model used throughout previous sections. The per-
formance of the learned policy was compared against the optimal 
periodic and single-PM analytical benchmarks. The resulting average 
and standard deviation of the total costs per episode are summarized in 
Table  10. In all cases, two-sample 𝑡-tests and Brown–Forsythe variance 
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tests indicated statistically significant differences between the RL and 
the analytical policies (𝑝 ≪ 10−4), confirming that the RL policy con-
sistently achieves lower mean and variance of costs. Fig.  11 illustrates 
the results.

The results demonstrate that, even when the agent must choose 
among multiple levels of imperfect restoration, the learned policy 
consistently yields lower costs and reduced variability compared to 
the analytical baselines. This indicates that the RL framework success-
fully captures the nonlinear interaction between restoration intensity, 
accumulated hazard, and long-term cost.
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Fig. 7.  Original (blue) and perturbed (orange) hazard functions.
Fig. 8.  Total cost per episode comparison among static, periodic and RL policies.
Table 8
Comparison of average total costs under the perturbed environment with 
stochastic variation of 𝛽 ∈ [𝛽, 𝛽 + 0.3].
 𝑐𝑚 𝜏periodic 𝑉periodic 𝜎periodic 𝜏single 𝑉single 𝜎single 𝑉RL 𝜎RL  
 8 9 237.54 49.04 30 398.22 108.75 230.28 29.93 
 4 15 143.85 33.79 30 198.58 53.27 144.09 14.57 
 2 30 100.81 26.32 30 101.33 26.83 94.35 7.84  
 1 30 51.35 13.82 30 50.76 13.56 35.94 6.54  
 0.5 30 25.84 6.84 30 25.78 6.89 29.96 4.97  
 0.25 30 13.57 3.37 30 13.58 3.34 12.38 2.03  

These results also reveal an additional behavioral insight into the 
agent’s decision-making process under imperfect maintenance condi-
tions. When the corrective maintenance cost (𝑐𝑚) is lower than the 
preventive cost, the agent behaves responsively to the environment, 
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Table 9
Comparison between RL and Periodic policies for different values 
of 𝑐𝑚. Reported are the 𝑝-values for the two-sample 𝑡-test and the 
Brown–Forsythe test for equality of variances.
 𝑐𝑚 𝑝-value 

(𝑡-test)
𝑝-value 
(Brown–Forsythe)

 

 8.000 0 1.075 × 10−80  
 4.000 0 3.376 × 10−130  
 2.000 0 1.911 × 10−174  
 1.000 0 2.149 × 10−102  
 0.500 0 7.935 × 10−89  
 0.250 0 4.401 × 10−106  

strategically waiting for actual failure events before deciding for main-
tenance interventions, thereby exploiting the lower corrective cost 
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Fig. 9.  Different hazard models do evaluate the model’s robustness. Original (blue) and perturbed (orange) hazard function.
Fig. 10.  Inference results of perturbed power-law models: lower risk convex hazard shape (left panel) and higher risk convex hazard shape (right panel). 
regime and the post-maintenance age effect (see Table  11 for the 
𝑐𝑚 = 𝑐𝑝 case). Conversely, in scenarios where the corrective cost equals 
or exceeds the preventive cost, the agent adopts a more proactive 
stance, executing at least the minimal nonzero preventive action (𝜌 =
19 
0.25) on a daily basis (see Table  12). The table presents the same 
simulated sequence of failures subjected to different policies, that is, 
policies learned for distinct cost ratios. Although the failure occurrences 
are identical across simulations (see Fail Flag columns), the resulting 
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Fig. 11.  Total cost per episode comparison among static, periodic and RL with imperfect action policies.
Table 10
Comparison of average total costs under imperfect preventive maintenance 
(𝜌 ∈ [0, 1]) for the evaluated model.
 𝑐𝑚 𝜏periodic 𝑉periodic 𝜎periodic 𝜏single 𝑉single 𝜎single 𝑉RL 𝜎RL  
 8 9 132.58 39.26 30 224.47 77.56 117.74 27.72 
 4 15 81.45 24.73 30 114.43 38.69 70.11 13.76 
 2 30 56.82 18.94 30 56.82 18.94 50.07 6.60  
 1 30 28.88 9.52 30 28.88 9.52 23.47 5.33  
 0.5 30 14.95 4.93 30 14.95 4.93 10.63 2.35  
 0.25 30 8.05 2.41 30 8.05 2.41 6.49 1.32  

effective ages differ due to the varying levels of restoration applied by 
each agent (see Age Eff. columns). Each policy exhibits a unique pattern 
of preventive intensity, with all agents performing some level of daily 
intervention to minimize long-term costs. This behavior illustrates that 
the DDRL agent dynamically adapts its restoration decisions according 
to the cost structure, balancing reactivity and proactivity in a manner 
consistent with cost-optimal decision-making. 

A second evaluation was performed using a perturbed environment 
that follows a two Weibull components with parameters 𝛼1 = 4.721, 
𝛼2 = 11, 𝛽2 = 0.85, and a stochastic 𝛽1 drawn from a uniform 
distribution with mean 1.065 and variation of ±0.05. The agent was 
evaluated assuming its mean value as the belief model, while the true 
environment was generated using the random realizations of 𝛽1. The 
corresponding results are summarized in Table  13.

The results obtained under this configuration show that the RL 
policy maintains its superior performance even when evaluated in a 
simplified environment, where the degradation follows the mean value 
of the parameter 𝛽1 used during training. In this case, the agent had 
been trained under heterogeneous conditions with randomly sampled 
𝛽1 values, yet was evaluated under a single, nominal model that co-
incides with its belief. The consistently low mean and variance of the 
resulting costs suggest that the policy learned from a diverse training 
environment is able to retain its effectiveness when applied to a specific 
and less variable scenario. This indicates that exposure to a broader 
range of dynamics during training enhances the agent’s ability to form 
stable and robust decision rules, rather than overfitting to particular 
degradation trajectories.

Moreover, when the same agent trained under randomized 𝛽1 val-
ues was evaluated in environments that also exhibited random 𝛽
1
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realizations, its performance remained statistically indistinguishable 
from the case where the evaluation used the nominal (mean) 𝛽1. 
Both the mean and variance of the total cost distributions showed 
no significant deviation according to the 𝑡-test and Brown–Forsythe 
results. This consistency indicates that the agent effectively internalized 
the variability of the degradation dynamics during training, achieving 
stable performance across both deterministic and stochastic instances 
of the failure model. Such behavior reinforces the interpretation that 
the learned policy is not sensitive to small parameter fluctuations and 
demonstrates an inherent capacity to generalize within the same family 
of degradation processes.

4.5. Further discussions

We present additional points related to the results that supplement 
and extend the previously mentioned findings. By highlighting these 
points, we aim to enrich academic literature and establish a more 
robust foundation for future research in this field.

Notably, by considering the power-law hazard model with 𝛽 = 1, 
or any other combination of 𝛽𝑖 parameters of the bathtub model that 
reflect a constant failure rate, the RL agent did not predict any preven-
tive maintenance intervals (see Pham (2003) and da Silva (2023)). In a 
scenario where the risk function remains constant, preventive mainte-
nance is ineffective, as predicted by reliability engineering theory. The 
RL agent astutely recognized the impracticality of preventive actions 
in situations where the risk remained unaltered, showing a nuanced 
understanding of the underlying system dynamics.

Interestingly as in the previous case, the RL agent learned that 
when the recovery factor is set to zero, no preventive maintenance 
is necessary. It is important to remember that the RL agent does 
not have information regarding the post-maintenance effect on the 
hazard function. The agent observes only the behavior of time between 
the subsequent failures. This aligns with the logical expectation that 
in the absence of any recovery from maintenance actions, the cost-
effectiveness of preventive measures vanishes, and the agent correctly 
adapts its strategy accordingly.

An aspect observed during the simulations involves adaptive
rescheduling of preventive maintenance when an unexpected failure or 
unscheduled maintenance occurs. The agent dynamically adjusts the 
subsequent preventive maintenance schedule based on the occurrence 
of these events.
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Table 11
Full trajectories of three RL realizations under imperfect actions for 𝑐𝑚 = 𝑐𝑝.
 Day Episode 1 Episode 2 Episode 3
 PM Action Fail Flag Age Eff. PM Action Fail Flag Age Eff. PM Action Fail Flag Age Eff. 
 1 0.25 0 0.75 0.25 0 0.75 0.25 1 0.75  
 2 0.25 0 1.3125 0.25 0 1.3125 0.25 0 1.3125  
 3 0 0 2.3125 0 1 2.3125 0 0 2.3125  
 4 0 0 3.3125 0 0 3.3125 0 0 3.3125  
 5 0 1 4.3125 0 0 4.3125 0 0 4.3125  
 6 0 1 5.3125 0 1 5.3125 0 0 5.3125  
 7 1 1 0 1 0 0 0 0 6.3125  
 8 0.25 1 0.75 0.25 1 0.75 0 0 7.3125  
 9 0.25 1 1.3125 0.25 0 1.3125 0 0 8.3125  
 10 0 1 2.3125 0 0 2.3125 0 0 9.3125  
 11 0 0 3.3125 0 1 3.3125 0 1 10.3125 
 12 0 0 4.3125 0 0 4.3125 1 0 0  
 13 0 0 5.3125 0 0 5.3125 0.25 0 0.75  
 14 0 0 6.3125 0 0 6.3125 0.25 0 1.3125  
 15 0 0 7.3125 0 0 7.3125 0 1 2.3125  
 16 0 1 8.3125 1 0 0 0 0 3.3125  
 17 1 1 0 0.25 0 0.75 0 0 4.3125  
 18 0.25 0 0.75 0.25 0 1.3125 0 1 5.3125  
 19 0 0 1.75 0 0 2.3125 1 1 0  
 20 0 0 2.75 0 0 3.3125 0.25 0 0.75  
 21 0 0 3.75 0 1 4.3125 0.25 0 1.3125  
 22 0 0 4.75 0 0 5.3125 0 1 2.3125  
 23 0 0 5.75 1 0 0 0 0 3.3125  
 24 0 0 6.75 0.25 0 0.75 0 0 4.3125  
 25 0 1 7.75 0.25 0 1.3125 0 0 5.3125  
 26 1 0 0 0 0 2.3125 1 1 0  
 27 0.25 0 0.75 0 0 3.3125 0.25 1 0.75  
 28 0 0 1.75 0 0 4.3125 0 0 1.75  
 29 0 0 2.75 0 0 5.3125 0 0 2.75  
 30 0 0 3.75 0 0 6.3125 0 1 3.75  
 31 0 0 4.75 0 0 7.3125 0 1 4.75  
 32 0 0 5.75 1 0 0 1 0 0  
 33 0 0 6.75 0.25 0 0.75 0.25 1 0.75  
 34 0 0 7.75 0.25 0 1.3125 0 0 1.75  
 35 0 1 8.75 0 0 2.3125 0 0 2.75  
 36 1 0 0 0 0 3.3125 0 0 3.75  
 37 0.25 0 0.75 0 1 4.3125 0 0 4.75  
 38 0 0 1.75 1 0 0 0 0 5.75  
 39 0 0 2.75 0.25 0 0.75 0 0 6.75  
 40 0 0 3.75 0.25 0 1.3125 0 1 7.75  
 41 0 0 4.75 0 0 2.3125 1 0 0  
 42 0 0 5.75 0 1 3.3125 0.25 0 0.75  
 43 0 0 6.75 1 0 0 0.25 0 1.3125  
 44 0 0 7.75 0.25 0 0.75 0 0 2.3125  
 45 0 0 8.75 0.25 0 1.3125 0 0 3.3125  
 46 1 1 0 0 0 2.3125 0 0 4.3125  
 47 0.25 0 0.75 0 0 3.3125 0 0 5.3125  
 48 0.25 0 1.3125 0 1 4.3125 0 1 6.3125  
 49 0 0 2.3125 0 0 5.3125 0.25 0 5.4844  
 50 0 0 3.3125 0 0 6.3125 0 0 6.4844  
 51 0 0 4.3125 0 0 7.3125 0 0 7.4844  
 52 0 0 5.3125 0 0 8.3125 0 0 8.4844  
 53 0 1 6.3125 0 1 9.3125 0 0 9.4844  
 54 0.25 0 5.4844 0.25 0 7.7344 0 0 10.484  
 55 0 0 6.4844 0 0 8.7344 0 0 11.484  
 56 0 0 7.4844 0 1 9.7344 0 1 12.484  
 57 0 0 8.4844 0.25 1 8.0508 0.25 0 10.113  
 58 0 0 9.4844 0 1 9.0508 0 1 11.113  
 59 0 0 10.4844 0 0 10.051 0 0 12.113  
 60 0 0 11.4844 0 0 11.051 0 0 13.113  
Dynamic maintenance task scheduling allows for real-time adapta-
tion to changes, improves equipment reliability, and reduces mainte-
nance costs. As noted by Byon and Ding (2010), dynamic maintenance 
strategies can lead to considerable improvements in reliability and 
costs compared to static strategies. As industries continue to embrace 
more data-driven and intelligent systems (see e.g. Wehbi et al. (2026)), 
the ability to dynamically adapt to changing conditions and optimize 
maintenance schedules will become increasingly valuable.

A comparison between the baseline configuration adopted in this 
study and that proposed by van Hasselt et al. (2015) shows a close 
21 
alignment in key hyperparameters. Both use ReLU activations, a dis-
count factor of 𝛾 = 0.99, and target network updates at fixed intervals, 
confirming their effectiveness in stabilizing DDQN learning. Despite 
addressing problems of very different dimensionalities, the configura-
tions remain comparable. The main differences reflect adaptations to 
the maintenance optimization context: a smaller replay buffer (3 × 105
vs. 1M) improved responsiveness to recent experiences, and a shorter 
training horizon proved sufficient for convergence in a low-dimensional 
state space. Moreover, a higher target update frequency (every 1000 
steps vs. 10,000) enhanced stability under sparse-reward conditions. 
Overall, these adjustments preserve the core structure of the original 
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Table 12
Full trajectories of three RL realizations under different maintenance costs.
 Day 𝑐𝑚 = 2 𝑐𝑚 = 4 𝑐𝑚 = 8

 PM Action Fail Flag Age Eff. PM Action Fail Flag Age Eff. PM Action Fail Flag Age Eff. 
 1 0.25 0 0.75 0.25 0 0.75 0.25 0 0.75  
 2 0.25 0 1.31 0.25 0 1.31 0.25 0 1.31  
 3 0.5 0 1.16 0.25 0 1.73 0.25 0 1.73  
 4 0.5 0 1.08 0.25 0 2.05 0.25 0 2.05  
 5 0.5 0 1.04 0.25 0 2.29 0.25 0 2.29  
 6 0.5 0 1.02 0.25 0 2.47 0.25 0 2.47  
 7 0.5 1 1.01 0.25 1 2.60 0.25 1 2.60  
 8 0.25 0 1.51 0.5 0 1.80 0.25 0 2.70  
 9 0.5 1 1.25 0.25 1 2.10 0.25 1 2.77  
 10 0.5 0 1.13 0.5 0 1.55 0.25 0 2.83  
 11 0.5 1 1.06 0.25 1 1.91 0.25 1 2.87  
 12 0.25 0 1.55 0.5 0 1.46 0.25 0 2.91  
 13 0.5 0 1.27 0.25 0 1.84 0.25 0 2.93  
 14 0.5 0 1.14 0.25 0 2.13 0.25 0 2.95  
 15 0.5 0 1.07 0.5 0 1.57 0.25 0 2.96  
 16 0.5 0 1.03 0.25 0 1.92 0.25 0 2.97  
 17 0.5 1 1.02 0.25 1 2.19 0.25 1 2.98  
 18 0.25 0 1.51 0.5 0 1.60 0.25 0 2.98  
 19 0.5 0 1.26 0.5 0 1.30 0.25 0 2.99  
 20 0.5 0 1.13 0.25 0 1.72 0.25 0 2.99  
 21 0.5 0 1.06 0.25 0 2.04 0.25 0 2.99  
 22 0.25 0 1.55 0.5 0 1.52 0.25 0 2.99  
 23 0.5 0 1.27 0.25 0 1.89 0.25 0 2.99  
 24 0.5 1 1.14 0.25 1 2.17 0.25 1 3.00  
 25 0.5 0 1.07 0.5 0 1.58 0.25 0 3.00  
 26 0.25 0 1.55 0.5 0 1.29 0.25 0 3.00  
 27 0.5 0 1.28 0.25 0 1.72 0.25 0 3.00  
 28 0.5 0 1.14 0.25 0 2.04 0.25 0 3.00  
 29 0.5 0 1.07 0.5 0 1.52 0.25 0 3.00  
 30 0.25 0 1.55 0.25 0 1.89 0.25 0 3.00  
 31 0.5 0 1.28 0.25 0 2.17 0.25 0 3.00  
 32 0.5 0 1.14 0.5 0 1.58 0.25 0 3.00  
 33 0.5 0 1.07 0.25 0 1.94 0.25 0 3.00  
 34 0.25 0 1.55 0.25 0 2.20 0.25 0 3.00  
 35 0.5 0 1.28 0.5 0 1.60 0.25 0 3.00  
 36 0.5 1 1.14 0.25 1 1.95 0.25 1 3.00  
 37 0.25 0 1.60 0.25 0 2.21 0.25 0 3.00  
 38 0.5 0 1.30 0.25 0 2.41 0.25 0 3.00  
 39 0.5 0 1.15 0.5 0 1.71 0.25 0 3.00  
 40 0.25 0 1.61 0.25 0 2.03 0.25 0 3.00  
 41 0.5 0 1.31 0.25 0 2.27 0.25 0 3.00  
 42 0.5 0 1.15 0.25 0 2.45 0.25 0 3.00  
 43 0.25 0 1.62 0.5 0 1.73 0.25 0 3.00  
 44 0.5 0 1.31 0.25 0 2.05 0.25 0 3.00  
 45 0.5 0 1.15 0.25 0 2.28 0.25 0 3.00  
 46 0.25 0 1.62 0.25 0 2.46 0.25 0 3.00  
 47 0.5 0 1.31 0.5 0 1.73 0.25 0 3.00  
 48 0.25 0 1.73 0.25 0 2.05 0.25 0 3.00  
 49 0.75 0 0.68 0.25 0 2.29 0.25 0 3.00  
 50 0.25 0 1.26 0.5 0 1.64 0.25 0 3.00  
 51 0.25 0 1.70 0.25 0 1.98 0.25 0 3.00  
 52 0.75 0 0.67 0.5 0 1.49 0.25 0 3.00  
 53 0.25 0 1.26 0.25 0 1.87 0.25 0 3.00  
 54 0.25 1 1.69 0.5 1 1.43 0.25 1 3.00  
 55 0.75 0 0.67 0.25 0 1.83 0.25 0 3.00  
 56 0.25 0 1.25 0.25 0 2.12 0.25 0 3.00  
 57 0.75 0 0.56 0.5 0 1.56 0.25 0 3.00  
 58 0.5 0 0.78 0.25 0 1.92 0.25 0 3.00  
 59 0.5 0 0.89 0.25 0 2.19 0.25 0 3.00  
 60 0.25 0 1.42 0.25 0 2.39 0.25 0 3.00  
DDQN setup while optimizing it for faster and more stable learning in 
this domain. 

4.6. Limitations and future research

In this subsection, we critically evaluate the main limitations of the 
proposed methodology. The discussion aims to clarify the scope of the 
findings and identify promising directions for future work to overcome 
these constraints.

1. Fixed Hazard Functions and Generalization
22 
Except for the last case examined, the agents were trained 
under specific baseline hazard functions and evaluated across 
variations of power law model. Although the results show ro-
bustness under perturbations, a systematic generalization study, 
both during training and inference, was not conducted. Future 
work should explore transfer learning and domain randomiza-
tion techniques to assess the model’s ability to generalize across 
a broader range of failure dynamics and parameter uncertainties.

2. Fixed Time Horizon
All experiments were conducted within a fixed planning horizon, 
with the objective of minimizing the cumulative cost over this 
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Table 13
Performance under imperfect maintenance and perturbed failure model with 
random 𝛽1.
 𝑐𝑚 𝜏periodic 𝑉periodic 𝜎periodic 𝜏single 𝑉single 𝜎single 𝑉RL 𝜎RL  
 8 9 208.28 47.45 30 335.59 98.72 64.27 18.61 
 4 15 123.61 30.25 30 167.91 47.37 39.48 9.31  
 2 30 83.55 24.64 30 83.55 24.64 26.98 4.60  
 1 30 42.40 12.44 30 42.40 12.44 20.92 2.28  
 0.5 30 21.87 6.23 30 21.87 6.23 12.88 2.08  
 0.25 30 11.55 3.04 30 11.55 3.04 8.67 1.42  

predefined time window. Consequently, it remains uncertain 
whether the learned policy can generalize to different time hori-
zons or maintain optimal behavior in long-term or continuous 
operation settings. Future studies should investigate adaptive or 
open-horizon formulations that allow the agent to optimize over 
variable planning intervals.

3. Single-Component Assumption
The proposed model focuses on a single-component maintenance 
problem with one failure process. As such, the agents were 
trained to handle a single hazard function, which limits scalabil-
ity to systems composed of multiple interdependent components. 
Extending the framework to multi-action or multi-agent rein-
forcement learning architectures could enable the coordination 
of maintenance across multiple assets, where each component’s 
state and cost dynamics influence the global decision-making 
policy.

5. Conclusions

This study presented a Double Deep Q-Network (DDQN) framework 
for the dynamic optimization of preventive maintenance policies under 
stochastic failure conditions. The proposed method learns maintenance 
decisions directly from failure-event and cost data, without requir-
ing explicit condition monitoring or health indicators. By formulating 
maintenance as a Markov Decision Process with a structured state 
representation and dense reward shaping, the approach effectively 
learns adaptive preventive actions that minimize the total maintenance 
costs across different cost ratios and maintenance regimes.

Empirical analyses demonstrated that the DDQN-based policy con-
sistently achieved lower expected costs and reduced cost variability 
when compared with analytical periodic and static benchmarks, even 
under model perturbations. These results confirm the capacity of the 
method to adapt to imperfect or uncertain system behavior while 
maintaining training stability through target-network synchronization, 
experience replay, and 𝐿2 regularization. Experiments with varying 
restoration factors (𝜌 ∈ [0, 1]) further showed that the learned policy 
generalizes across both perfect and imperfect maintenance settings, 
preserving the effectiveness when evaluated under perturbed hazard 
models.

From a practical perspective, the proposed framework highlights 
the feasibility of applying data-driven maintenance optimization in 
industrial contexts where health condition data may be unavailable. 
Integration with existing Computerized Maintenance Management Sys-
tems involves coupling the DDQN agent with modules that record 
event-based maintenance data, taking decisions in real time. Such 
integration enables the model to operate in closed-loop maintenance 
decision environments.

Despite promising outcomes, several methodological limitations 
should be acknowledged. Training and evaluation were conducted 
in a single-component setting with stationary cost parameters, and 
the reward function was shaped to provide dense learning feedback 
rather than the true economic objective. Although this design choice 
improves learning stability, it introduces an abstraction that may affect 
the interpretability of the learned policies in practical deployments. 
23 
Furthermore, the assumption of fully observable state variables, while 
valid under simulation, may not hold in real settings where failure 
indicators or maintenance histories are incomplete.

Future research should extend this framework to multi-component 
systems, partially observable environments, and hybrid reliability mod-
els that combine real sensor data with stochastic hazard estimation. 
Additionally, exploring transfer-learning could enhance adaptation to 
heterogeneous fleets and evolving failure behaviors. These extensions 
would further evaluate the generalization capacity of the proposed 
DDQN architecture in complex industrial maintenance scenarios.
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