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Abstract
One of the most relevant tasks of high-dimensional estimation is the computation of
the parameters covariance matrix. This matrix offers valuable insights into the uncer-
tainties associated with the estimation process. In the context of adaptive filtering,
the weight error covariance matrix is a key parameter that determines how the filter
adapts to input statistics and noise levels. Additional statistical information about the
weight error vector allows one to depict a more precise description of the stochastic
coupling between the adaptive weights. This paper concentrates on an in-depth study
of the least mean squares asymptotic weight error covariance matrix, employing the
exact expectation analysis. Through this examination, a key conclusion emerges: The
symmetries commonly engendered by traditional analyses are not present in the actual
covariance matrix. Instead, these symmetries are artifacts of the widespread assump-
tion of independence. In summary, the advanced analysis performed in this work
reveals a significantly more nuanced learning behavior exhibited by the least mean
squares algorithm, challenging the conventional understanding put forth by traditional
approaches. The theoretical predictions are confirmed by extensive simulations.

Keywords LMS · Stochastic model · Exact expectation analysis · Weight error
correlation matrix

1 Introduction

Adaptive filtering, commonly termed as “estimators” or “filters,” plays a pivotal role
in extracting relevant information from noisy data across diverse applications such as
communications, radar, imaging, biomedical engineering and financial time series
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forecasting [4, 40]. These algorithms, striking a balance between parametric and
nonparametric approaches [48], prove particularly effective in scenarios where the
dynamic nature of the environment or limited prior knowledgeposes challenges.Appli-
cations span prediction [28, 37, 44], noise cancelation [1, 26, 45], system identification
[9, 22, 23], adaptive beamforming [46] and adaptive spectrum analysis [35]. Their sig-
nificance extends to both military systems and everyday electronic devices. However,
the multitude of adaptive filtering algorithms demands scrutiny of their stability, effi-
ciency and tracking abilities, as their learning procedures involve inherent feedback,
presenting a non-trivial challenge to ensuring reliable operation.

It is important to distinguish adaptive algorithms from algorithms based on the
Wiener method [42]. Such a distinction is rooted in their fundamental principles and
applications. Adaptive filtering algorithms are crafted to function within dynamic
environments, where the statistical characteristics of input signals may undergo tem-
poral changes. These algorithms continually adjust their parameters, enabling them
to dynamically adapt to evolving conditions and enhance their performance. Con-
versely, Wiener filtering encompasses a specific category of linear filters with the goal
of minimizing the mean square error between the desired signal and the output of the
filter [27]. Wiener filters achieve optimality by minimizing expected errors based on
specific statistical assumptions about input signals and noise. In contrast to adaptive
filters, Wiener filters are typically tailored for stationary processes, assuming a pri-
ori knowledge of the statistical properties of both the signals and noise. The choice
between these approaches hinges on the specific requirements and characteristics of
the signal processing task at hand.

In a broad sense, in the realm of adaptive filtering, the least mean squares (LMS)
and recursive least squares (RLS) families of algorithms stand out with distinct charac-
teristics [41]. The LMS algorithm, appreciated for its simplicity, demonstrates faster
convergence in scenarios of low input correlation, making it suitable for real-time
applications with limited computational resources. On the other hand, the recursive
least squares (RLS) algorithm, leveraging recursive computations and historical data,
excels in environments with high input correlation, exhibiting faster convergence in
dynamically changing systems [6]. However, this advantage comes at the cost of
increased computational complexity due to recursive matrix inversions and the need
to store the entire data history. The selection between LMS and RLS hinges on the
specific demands of an application, with LMS favoring simplicity and lower com-
putational requirements, while RLS offers enhanced performance in scenarios where
adaptability and rapid convergence in correlated environments are paramount.

Abstracting hardware idiosyncrasies, this paper advances a stochastic model that
predicts some operating characteristics of the least mean squares (LMS) algorithm.
Therefore, it focuses on stochastic models of adaptive filtering algorithms rather than
on physical implementation. Such models usually rely on theoretical constructs and
statistical hypotheses that are employed to explain and/or predict phenomena and are
evaluated according to their ability to do so. One of our main objectives consists of
determining whether for a certain configuration and parameter choice, the algorithms
generate instability. Accordingly, this work intends to offer several predictions about
the learning characteristics of the LMS in a more accurate manner than traditional
approaches do.
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Out of the hypotheses commonly used, the most troublesome one is the widespread
independence assumption (IA), usually encountered in the stochastic approximations
field [47] and widely used in the dynamic convergence analysis of adaptive algorithms
[36]. The IA is a strong stochastic hypothesis that states that the adaptive weights are
statistically independent of the input samples that currently feed the adaptive structure.
This hypothesis is clearly violated in tapped-delay line structures, since these impose
a deterministic coherence between consecutive input vectors. Due to this fact, some
authors claim that the expression “independence heuristic” is more adequate than
“independence assumption” [43].

The IA assumption renders the resulting stochastic model inaccurate when a non-
infinitesimally small step size factor is adopted, especially when non-normalized
algorithms (such as the LMS) are utilized. However, some potential advantages of
adaptive filtering schemes may become apparent only for large step sizes [19]. Fur-
thermore, instability issues are commonly encountered when the step size presents
a large magnitude. Consequently, traditional analyses cannot accurately predict an
upper bound for the step size that guarantees stability. Such an issue is widely recog-
nized in standard textbooks about adaptive filtering [10, 24, 42]. Since instability is
undesirable, analyses capable of providing reliable stability predictions are crucial.

This paper circumvents such limitations by employing the exact expectation anal-
ysis (EEA), which was presented in references [11, 14, 17]. In general terms, the
EEA is a systematic constructive procedure that utilizes algebraic manipulations for
the generation of a system of equations that model in a precise manner the learning
behavior of an adaptive filter. The analysis is computationally intensive, requiring a
judicious and efficient design of the programming code.

The focus of this paper relies on the covariancematrix of the LMSdeviationweight.

w̃(k) � w∗ − w(k), (1)

where w� ∈ R
N denotes the ideal (and unknown) Wiener solution and w(k) ∈ R

N is
the adaptive weight vector at the kth iteration.

In the context of adaptive filtering, the weight error covariance matrix (WECM) is
a key parameter that determines how the filter adapts to changing input statistics and
noise levels. This is becauseWECMprovides an objective estimate of the uncertainties
in the estimated filter coefficients. Thus, the WECM is defined as:

Rw̃(k) � E

[
w̃(k)w̃T (k)

]
(2)

is very important for the characterization of the learning abilities of an adaptive filter.
In this context, [3] states:

“In many situations, additional statistical information about the weight vector
would be useful. These cases include the detection of a narrowband line com-
ponent in background noise using the weight vector as a test statistic, using the
filtered output as a test statistic and time delay estimation. The algorithm has
been used as a canceller as part of a spread spectrum communication system.
The output of the canceller acts as the input to a matched filter binary decision
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device. Knowledge of the statistics of the canceller output is crucial to predicting
error probabilities for the system. Most often, via a central limit argument, it is
assumed that the test statistic and/or the weights are Gaussian.”

This excerpt emphasizes the common assumption that the adaptive weights are
sampled according to a multivariate normal distribution. Under this scenario, a pos-
sible sparseness of the WECM provides valuable information about independence
and conditional independence properties. Hence, the WECM encodes complete infor-
mation about such properties, whereas, for general distributions, they merely reveal
correlations and partial correlations between variables. Another attractive feature of
multivariate normal distributions is that the second moment matrix and its inverse
also contain complete information about independence and conditional independence
properties. Specifically, a zero entry in the covariance matrix’s i j th position indicates
that variables i and j are independent, while a zero entry in the precision (inverse
covariance) matrix’s i j th position indicates that the two are conditionally independent
[39].

Furthermore, the WECM provides information about the convergence behavior of
the filter and the trade-off between convergence speed and steady-state error. There-
fore, a more accurate estimate of the WECM can provide insights into the behavior
of the algorithm being modeled. Namely, it can help allocate computational resources
more efficiently by providing information about the degree of uncertainty in the esti-
mated filter coefficients. In addition, it can also be used to infer the statistical properties
of the adaptive estimator. For example, by examining the estimated covariance matrix
one can see whether the deviation term variance is equal or presents some symmetry.

Among the contributions of this article, we can enumerate: (i) the calculation of
the WECM in steady state without adopting the restrictive independence assumption,
through the technique of exact expectation analysis; (ii) noting that several symmetries
present in the WECM, commonly found in the literature, are actually artifacts of the
IA; (iii) concluding that the correlations between different deviations in asymptotic
regime can be quite distinct in magnitude compared to the theoretical values predicted
by classical analyses; (iv) validating the theoretical findings with simulations; and
(v) conducting real experiments with non-stationary signals and observing that such
symmetries do not even exist, thereby indicating that the asymmetries predicted by
the exact analysis are not restricted to signals adhering to the stochastic model used
in the analysis.

This paper is structured as follows. Section 2 presents fundamental concepts of the
LMS algorithm. Section 3 focuses on traditional theoretical results of the WECM,
which adopts the IA. Section 4 explains the employment of the EEA to obtain the
asymptoticWECM. Section 5 outlines the results of the paper. The concluding remarks
of the paper are presented in Sect. 6.

Throughout this paper, vectors and matrices are represented with lowercase and
uppercase bold fonts, respectively, while scalars are denoted by italics. All vectors are
of column type. E [·] is the expectation operator. (·)T represents matrix transposition.
Operator Tr(A) denotes the trace of matrix A.
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2 The LMS Algorithm

The LMS algorithm is the most traditional adaptive filtering algorithm. The simplicity
of the LMS implementation has made it a relevant benchmark for other adaptive
algorithms [21]. In this section, we succinctly explain the operations performed by an
adaptive filter that uses LMS adaptation, to introduce definitions that are employed in
the following sections.

The LMS adopts the stochastic gradient optimization method in order to minimize
the following stochastic cost function:

FLMS[w(k)] � 1

2
e2(k), (3)

where w(k) ∈ R
N denotes the adaptive weight vector and

e(k) � d(k) − y(k), (4)

where d(k) ∈ R denotes the kth sample of the reference signal and y(k) ∈ R denotes
the filter output at the kth iteration. Throughout this paper, the reference signal is, as
usual, considered to be generated according to the following noisy linear regression
model:

d(k) = [
w�

]T x(k) + ν(k), (5)

where ν(k) ∈ R accounts for the measurement noise and w� ∈ R
N is the ideal (and

unknown) vector. This paper also assumes a system identification problem, so that the
adaptive filter intends to emulate w�.

The stochastic minimization ofFLMS[w(k)] is performed by the iterative operation

w(k + 1) = w(k) − β∇w(k)F[w(k)] = w(k) + βx(k)e(k), (6)

where β ∈ R+ is the step size and

x(k) �
[
x(k) x(k − 1) x(k − 2) . . . x(k − N + 1)

]T (7)

denotes the input vector. Note that definition (7) assumes a tapped-delay line (also
known as transversal structure). The output of the filter at the kth iteration can be
described as

y(k) = wT (k)x(k), (8)

where

w(k) �
[
w0(k) w1(k) w2(k) . . . wN−1(k)

]T (9)

contains the N adaptive weights wi (k) (for i ∈ {0, 1, . . . , N − 1}) at the kth iteration.
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3 Traditional Estimates of theWECM

The ubiquitous IA provides some theoretical predictions w.r.t. the WECM. For exam-
ple, most models assume that the off-diagonal elements of the WECM decrease
monotonically to 0, so that the deviations are supposedly asymptotically uncorre-
lated [29]. Convergence studies often concentrate on the asymptotic properties of the
diagonal elements of the WECM, as a large MSE results from a linear combination
of these elements [20].

The adoption of the IA usually introduces some symmetry in the theoretical asymp-
totic WECM. Thus, for example, considering the Gaussianity of the input signal and
traditional assumptions, [42] presents the following recursion for the WECM:

Rw̃(k+1) = Rw̃(k) − β
[
RRw̃(k) + Rw̃(k)R

] + 2β2RRw̃(k)R + β2R
{
σ 2

ν + Tr[RRw̃(k)]
}
,

(10)

where the input autocorrelation matrix is defined by

R � E

[
x(k)xT (k)

]
. (11)

Another standard result states that theWECM can be recursively computed accord-
ing to [42] :

Rw̃(k + 1) = (I − βR)Rw̃(k)(I − βR) + β2 JminR, (12)

where Jmin denotes the minimum obtainable MSE. The symmetries presented in (10)
and (12) give rise to structured asymptotic solutions for the WECM. Such a fact can
be seen more clearly in the asymptotic identity [5]:

lim
k→∞ RRw̃(k) + RRw̃(k)R = F, (13)

where F is the following “excitation matrix”:

F =
∞∑

l=−∞
E [ν(k)ν(k − l)]E

[
x(k)xT (k − l)

]
. (14)

In the case of white process ν(k), Eq. (14) leads to the following closed-form solution
for the WECM [5]:

lim
k→∞ Rw̃(k) = 1

2
σ 2

ν I . (15)

Result (15) helps to explain, in an intuitivemanner, some traditional theoretical find-
ings. For example, frequently, theWECMis assumed to be approximately uncorrelated
from tap to tap [12]. Further, under a white input signal, the WECM is expected to be
a diagonal matrix, with equal diagonal elements [38]. These predictions are obtained
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from usual stochastic approximations (i.e., the IA) and can be refined with the more
sophisticated tools brought about by the EEA, which is the focus of the next section.

4 Exact Expectation Prediction of theWECM

Given the importance of the WECM, in this paper, EEA is employed to obtain a more
accurate estimate of the LMS algorithm asymptotic WECM. The EEA [13, 15, 18,
30–33] is a refined technique that recursively generates update equations for a set of
joint moments (or state variables). The joint moments update equations govern the
dynamics of the LMS learning. Since EEA does not adopt the IA, its predictions are
a better fit for experimental results than standard approaches (e.g., in the specification
of an upper bound for the learning factor that ensures convergence [18, 30, 33]).

The EEA technique was proposed in [16], in a configuration where the excitation
data is assumed to be white. An unequal-mode convergence behavior in the variances
of the filter coefficients (which contradicts the IA) was theoretically predicted and
confirmed by simulations. Work [13] extends the approach to the sign-data LMS
algorithm, without assuming a white input data. A more comprehensive analysis of
the LMS algorithm (assuming colored input data) under EEA is the focus of [15,
18], which effectively established EEA as a powerful and alternative analysis method
for predicting LMS performance. More recently, this technique has experienced some
generalizations; namely, [31] removed the whiteness assumption of the additive noise;
[32] has demonstrated that coloring the additive noise does not impact mean square
stability; [34] addressed the identification of nonlinear plants; [30] employed EEA to
derive an optimal sequence of step size values that optimize performance; and [33]
modeled the deficient case that occurs when the adaptive filter length is surpassed by
the length of the unknown transfer function the adaptive filter intends to emulate.

In order to explain the EEA, let us consider a simple configuration, for didactic
purposes. This setup is the same as the one presented in [17]. Even in this simple
configuration, the EEA results in lengthy algebraic manipulations. We will begin by
describing the statistical assumptions.

Moving Average Assumption Suppose that the input signal is generated by the
following moving average process

x(k) = b0u(k) + b1u(k − 1), (16)

so that the analysis is not restricted to white input signals, although the signal u(k) is
modeled as a zero-mean i.i.d. random process, whose probability density function is
even, so that

E[un(k)] =
{
0, for odd n
γn, for even n

, (17)

where γn depends on the specific considered distribution.
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Note that the correlation between x(k1) and x(k2) should be zero whenever
|k1 − k2| > M , where M is finite. This is a restriction imposed by the EEA analysis
(otherwise, its recursion procedure never halts), which is guaranteed by model (16).

Noise Assumption The zero-mean noise ν(k) is statistically independent of the
remaining random variables. so that terms like E

[
ν(k)u(k)w̃0(k)

]
and

E
[
ν(k)u(k − 1)w̃0(k)

]
can be canceled.

Independence Assumption (IA) Most of the time, stochastic models of adaptive
filtering algorithms employ the IA,which assumes that the adaptiveweights inw(k) are
statistically independent of the elements of x(k). IA is clearly violated in tapped-delay
structures since these structures impose a deterministic coherence between consecutive
input vectors. Since previous input vectors were utilized for adaptation purposes, the
adaptive vector w(k) is indeed statistically coupled with x(k). Nevertheless, IA is a
widespread assumption, since it simplifies the resulting model equations. In practice,
it leads to inaccurate results when β is large [5].

Using the assumptions, the following theorem will be demonstrated:
Theorem. Suppose that the adaptive filter has only one adaptive tap (i.e., N = 1).

Using the moving average, noise and independence assumptions, one may establish
the following linear time-invariant state space description:

y(k + 1) = Ay(k) + b, (18)

where the state vector is

y(k) =
⎡
⎣

E
[
w̃2
0(k)

]
E

[
w̃2
0(k)u

2(k − 1)
]

E
[
w̃2
0(k)u

4(k − 1)
]

⎤
⎦ , (19)

the transition matrix is

A =
⎡
⎣
1 − 2b20βγ2 + b40β

2γ4 6b20b
2
1β

2γ2 − 2b21β b41β
2

γ2 − 2b20βγ4 + b40β
2γ6 6b20b

2
1β

2γ4 − 2b21βγ2 b41β
2γ2

γ4 − 2b20βγ6 + b40β
2γ8 6b20b

2
1β

2γ6 − 2b21βγ4 b41β
2γ4

⎤
⎦ (20)

and

b =
⎡
⎣

b20β
2σ 2

ν γ2 + b21β
2σ 2

ν γ2
b20β

2σ 2
ν γ4 + b21β

2σ 2
ν γ 2

2
b20β

2σ 2
ν γ6 + b21β

2σ 2
ν γ2γ4

⎤
⎦ . (21)

Proof. When N = 1, recursion (6) degenerates into

w̃0(k + 1) = (1 − βx2(k))w̃0(k) + βν(k)x(k), (22)

where w̃i (k) ∈ R denotes the i th element of vector w̃(k) (see (9)). From (4), the error
can be written as

e(k) = w̃0(k)x(k) + ν(k) = b0w̃0(k)u(k) + b1w̃0(k)u(k − 1) + ν(k), (23)
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so that the square of the error, in terms of signal u(k), is

e2(k) = b20u
2(k)w̃2

0(k) + 2b0b1u(k)u(k − 1)w̃2
0(k) + 2b0ν(k)u(k)w̃0(k)

+ b21u
2(k − 1)w̃2

0(k) + 2b1ν(k)u(k − 1)w̃0(k) + ν2(k). (24)

The MSE can be obtained by the application of the expectation operator in (24),
which leads to

ξ(k) � E

[
e2(k)

]
= b20E

[
u2(k)w̃2

0(k)
]

+ 2b0b1E
[
u(k)u(k − 1)w̃2

0(k)
]

+ 2b0E
[
ν(k)u(k)w̃0(k)

] + b21E
[
u2(k − 1)w̃2

0(k)
]

+ 2b1E
[
ν(k)u(k − 1)w̃0(k)

] + E

[
ν2(k)

]
, (25)

which simplifies (25):

ξ(k) = E

[
e2(k)

]
= b20E

[
u2(k)w̃2

0(k)
]

+ 2b0b1E
[
u(k)u(k − 1)w̃2

0(k)
]

+ b21E
[
u2(k − 1)w̃2

0(k)
]

+ E

[
ν2(k)

]
. (26)

Note that w̃0(k) depends directly on x(k − 1), since (see (22)):

w̃0(k) = (1 − βx2(k − 1))w̃0(k − 1) + βν(k − 1)x(k − 1), (27)

which implies that w̃0(k) depends statistically on sample x(k), due to the fact that x(k)
is colored (see (16)) and x(k) is correlated with x(k − 1). Due to this fact, (26) was
written in terms of u(k). Being u(k) an i.i.d. process, w̃0(k) depends on u(k − 1) and
is indeed statistically independent from u(k), since u(k) is statistically independent
from u(k − 1). This implies that

E

[
u2(k)w̃2

0(k)
]

= E

[
u2(k)

]
E

[
w̃2
0(k)

]
= γ2E

[
w̃2
0(k)

]
, (28)

E

[
u(k)u(k − 1)w̃2

0(k)
]

=
=0︷ ︸︸ ︷

E [u(k)]E
[
u(k − 1)w̃2

0(k)
]

= 0. (29)

The combination of (28) and (29) with (26) leads to

ξ(k) = σ 2
ν + E

[
w̃0(k)x

2(k)
]

= σ 2
ν + b20γ2E

[
w̃2
0(k)

]
+ b21E

[
w̃2
0(k)u

2(k − 1)
]
,

(30)

which means that the estimation of the MSE can be equivalently converted in the esti-
mation of the evolution of the statistical quantitiesE

[
w̃2
0(k)

]
andE

[
w̃2
0(k)u

2(k − 1)
]
.

Such quantities are also termed as state variables.
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The EEA is a systematic procedure that intends to obtain recursive equations that
describe the evolution of the state variables. At the moment, there are two state vari-
ables: E

[
w̃2
0(k)

]
and E

[
w̃2
0(k)u

2(k − 1)
]
. The first step to obtaining a recursion for

the first state variable requires squaring of both sides of (22):

w̃2
0(k + 1) = b40β

2u4(k)w̃2
0(k) + 4b30b1β

2u3(k)u(k − 1)w̃2
0(k) − 2b30β

2ν(k)u3(k)w̃0(k)

+ 6β2b20b
2
1u

2(k)u2(k − 1)w̃2
0(k) − 6b20b1β

2ν(k)u2(k)u(k − 1)w̃0(k)

+ b20β
2ν2(k)u2(k) − 2b20βu

2(k)w̃2
0(k) + 4b0b

3
1β

2u(k)u3(k − 1)w̃2
0(k)

− 6b0b
2
1β

2ν(k)u(k)u2(k − 1)w̃0(k) + 2b0b1β
2ν2(k)u(k)u(k − 1)

− 4b0b1βu(k)u(k − 1)w̃2
0(k) + 2b0βν(k)u(k)w̃0(k) + b41β

2u4(k − 1)w̃2
0(k)

− 2b31β
2ν(k)u3(k − 1)w̃0 + b21β

2ν2(k)u2(k − 1) − 2b21βu
2(k − 1)w̃2

0(k)

+ 2b1βν(k)u(k − 1)w̃0(k) + w̃2
0(k). (31)

After applying the expectation operator in (31) and using the simplifications that
arrive from the combination of both the statistical independence of ν(k) w.r.t. the
remaining random variables and the whiteness of u(k), one has

E

[
w̃2
0(k + 1)

]
= (1 − 2b20βγ2 + b40β

2γ4)E
[
w̃2
0(k)

]
+ b41β

2
E

[
w̃2
0(k)u

4(k − 1)
]

+ (6b20b
2
1β

2γ2 − 2b21β)E
[
w̃2
0(k)u

2(k − 1)
]

+ (b20β
2σ 2

ν γ2 + b21β
2σ 2

ν γ2), (32)

where we observe the emergence of a novel state variable: E
[
w̃2
0(k)u

4(k − 1)
]
. Note

that we were not initially interested in estimating such a quantity in order to obtain the
MSE (see Eq. (30)). For this reason, the new term is named as a nuisance state variable,
because its estimation is necessary for the estimation of one statistical quantity of
interest [7]. Unfortunately, in more complex configurations, the nuisance parameters
may be the large majority of the state variables.

After obtaining the recursion for E[w̃2
0(k)] in (32), two state variables remain to be

addressed: The term E
[
w̃2
0(k)u

2(k − 1)
]
, which is originally encountered in the MSE

expression (25) and the nuisance state variable E
[
w̃2
0(k)u

4(k − 1)
]
. The recursions

for these state variables can be derived bymultiplying both sides of (31) by convenient
terms before the application of the expectation operator and the subsequent simplifica-
tion by both the statistical independence of the measurement noise and the whiteness
of u(k). Due to the length of the necessary manipulations, the derivation is omitted
and the final recursions are:

E
[
w̃2
0(k + 1)u2(k)

] = (γ2 − 2b20βγ4 + b40β
2γ6)E

[
w̃2
0(k)

] + b41β
2γ2E

[
w̃2
0(k)u

4(k − 1)
]

+ (6b20b
2
1β

2γ4 − 2b21βγ2)E
[
w̃2
0(k)u

2(k − 1)
]

+ (b20β
2σ 2

ν γ4 + b21β
2σ 2

ν γ 2
2 ), (33)

E
[
w̃2
0(k + 1)u4(k)

] = (γ4 − 2b20βγ6 + b40β
2γ8)E

[
w̃2
0(k)

] + b41β
2γ4E

[
w̃2
0(k)u

4(k − 1)
]

+ (6b20b
2
1β

2γ6 − 2b21βγ4)E
[
w̃2
0(k)u

2(k − 1)
]

+ (b20β
2σ 2

ν γ6 + b21β
2σ 2

ν γ2γ4). (34)
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Through straightforward manipulations, Eqs. (32)–(34) result in Eqs. (18)–(21). ��
Remarks When IA is adopted, Equation (30) can be simplified, since

E

[
w̃2
0(k)u

2(k − 1)
]

≈ E

[
w̃2
0(k)

]
E

[
u2(k − 1)

]
= γ2E

[
w̃2
0(k)

]
. (35)

Nevertheless, this approximation is not used in the EEA.
Since recursions (32)–(34) are self-contained, for the considered setup, the resulting

state space model contains R = 3 equations. Unfortunately, R can be very large, even
for simple configurations. Note that theWECM can be recovered from the state vector
y(k) and that the steady-state value of y(k) can be obtained in a closed-form manner:

lim
k→∞ y(k) = yss = (I − A)−1 b. (36)

In order to perform the demanded algebraic operations, efficient C++-based codes
were implemented. Thus, commercial general-purpose software for symbolic manip-
ulations was avoided. This allowed us to model configurations that have never been
considered using EEA. The implemented code also allows the imposition of the IA,
in order to obtain results derived by traditional analyses. In the next section, the pre-
dictions obtained by EEA are compared with the ones of the traditional analysis (i.e.,
one that adopts IA).

5 Results

In this section, we will conduct some experiments with simulated data and one experi-
ment with real data. In the following, the steady-state WECM (SS-WECM) of several
simulated scenarios is considered. Three distinct SS-WECMs are computed: (i) the
empirical one (EMP-SS-WECM, obtained through simulations); (ii) the classical one
(IA-SS-WECM, computed with the IA); and (iii) the WECM obtained with the EEA
(EEA-SS-WECM).

The settings of the distinct scenarios are summarized in Table 1. In all scenarios, the
optimum filter isw�

i = 1, for i ∈ {0, 1, . . . , N −1}, except for Scenario 6 wherew�
i =

10. Scenarios 6 and 5 have similar settings except forw�
i = 10, for i ∈ {0, 1, . . . , N −

1}. Since we are interested in the asymptotic operation, a significant influence of the
optimal solution in the WECM is not expected. The number of equations demanded
for each scenario is presented in Table 2.

5.1 Scenario 1

In Scenario 1, the IA-SS-WECM is:

⎡
⎣
5.826 × 10−8 −4.5 × 10−9 4.091 × 10−10

−4.5 × 10−9 5.867 × 10−8 −4.5 × 10−9

4.091 × 10−10 −4.5 × 10−9 5.826 × 10−8

⎤
⎦ (37)
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Table 1 Properties of the scenarios

# Scenario N M L β σ 2
ν Nsamples H(z) w�

i

1 3 2 1 0.075 10−6 107 1 − 0.9z−1 1

2 3 2 2 0.075 10−6 107 1 − 0.9z−1 1

3 4 2 1 0.05 10−6 106 1 1

4 5 1 1 0.075 10−6 107 1 1

5 6 1 1 0.055 10−6 106 1 1

6 6 1 1 0.055 10−6 107 1 10

Nsamples denotes the number of independent Monte Carlo trials. H(z) is the coloring filter of the input
signal

Table 2 Number of equations required for the linear state space equation for the considered scenarios and
the number of the iteration considered for the asymptotic operation

# Scenario # Equations (IA) # Equations (EEA) Steady-state iteration

1 6 698 299

2 6 830 299

3 10 9578 649

4 15 5313 199

5 21 49,695 399

6 21 49,695 399

Note that E
[
w̃2
0(k)

]
and E

[
w̃2
2(k)

]
(the initial and the final element of the main

diagonal) are equal. This symmetry, as discussed in Sect. 3, is frequent when the IA
is adopted.

In the same scenario, the EEA-SS-WECM is:

⎡
⎣
6.556 × 10−8 1.051 × 10−9 1.86 × 10−9

1.051 × 10−9 6.97 × 10−8 −1.786 × 10−9

1.86 × 10−9 −1.786 × 10−9 7.873 × 10−8

⎤
⎦ . (38)

EEA-SS-WECMpredicts thatE
[
w̃2
i (k)

] 
= E

[
w̃2

j (k)
]
, when i 
= j , which implies

that the supposed symmetry is indeed a by-product engendered by the IA. Further,
the EEA predicts that E

[
w̃2
2(k)

]
> E

[
w̃2
1(k)

]
> E

[
w̃2
0(k)

]
, and that E

[
w̃0(k)w̃2(k)

]
(i.e., 1.86 × 10−9) is much larger than the value predicted by the traditional method
(4.091 × 10−10), indicating that distinct deviations are much more correlated than
presumed by traditional analyses. This fact means that the stochastic coupling between
the adaptive weights is actually much more intricate than standard analyses portray.

The EMP-SS-WECM (i.e., the WECM obtained through actual executions of the
LMS) in this scenario is:
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Table 3 Results for Scenario 1

E
[
w̃i (k)w̃ j (k)

]
IA EEA EMP %�IA,EMP %�EEA,EMP

E

[
w̃2
0(k)

]
5.826 × 10−8 6.556 × 10−8 6.358 × 10−8 − 8.36% + 3.11%

E

[
w̃2
1(k)

]
5.867 × 10−8 6.97 × 10−8 6.76 × 10−8 − 13.21% + 3.1%

E

[
w̃2
2(k)

]
5.826 × 10−8 7.873 × 10−8 7.342 × 10−8 − 20.64% + 7.23%

E
[
w̃0(k)w̃2(k)

]
4.091 × 10−10 1.86 × 10−9 1.296 × 10−9 − 68.43% + 43.51%

⎡
⎣
6.358 × 10−8 2.066 × 10−9 1.296 × 10−9

2.066 × 10−9 6.76 × 10−8 −8.467 × 10−10

1.296 × 10−9 −8.467 × 10−10 7.342 × 10−8

⎤
⎦ . (39)

To help the comparisons, Table 3 summarizes some important results for Scenario 1.
Note that the simulations confirm the EEA prediction that E

[
w̃2
2(k)

]
> E

[
w̃2
1(k)

]
>

E
[
w̃2
0(k)

]
. The empirical moments E

[
w̃2
0(k)

]
, E

[
w̃2
1(k)

]
and E

[
w̃2
2(k)

]
are 9,1%,

15% and 26% larger (respectively) than the traditional estimates, whereas the EEA
estimates exceeds the empirical correlations by 3,1%, 3,1% and 7,2% (respectively).
Thus, it is possible to conclude that the EEA displays a much higher level of adher-
ence to empirical outcomes. Please observe that the total absence of symmetry in the
theoretical estimate is a feature of the proposed analysis, which has no precedent in
the literature regarding LMS.

It is muchmore challenging to obtain strong empirical evidence in the case of cross-
correlations between distinct deviations since such correlations are much smaller than
the ones located in the main diagonal of the WECM. But, even with a finite number
of Monte Carlo trials, the experimental correlation E

[
w̃0(k)w̃2(k)

]
(1.296 × 10−9)

is more than three times that predicted by the traditional method, an effect that is
captured by the EEA analysis (whose estimate, 1, 86 × 10−9, exceeds the empirical
estimate by approximately 40%).

5.2 Scenario 2

The major contrast between Scenario 2 and Scenario 1 is that the former, as opposed
to the latter, includes colored measurement noise. In Scenario 2, the IA-SS-WECM is
given by:

⎡
⎣

1.054 × 10−7 −8.204 × 10−9 6.984 × 10−10

−8.204 × 10−9 1.061 × 10−7 −8.204 × 10−9

6.984 × 10−10 −8.204 × 10−9 1.054 × 10−7

⎤
⎦ , (40)

where once again a symmetry is observed, given that E
[
w̃2
0(k)

] = E
[
w̃2
2(k)

] =
1.054 × 10−7.

In the same scenario, the EEA-SS-WECM is:



Circuits, Systems, and Signal Processing

Table 4 Results for Scenario 2

E
[
w̃i (k)w̃ j (k)

]
IA EEA EMP %�IA,EMP %�EEA,EMP

E

[
w̃2
0(k)

]
1.054 × 10−7 1.234 × 10−7 1.23 × 10−7 − 14.37% + 0.02%

E

[
w̃2
1(k)

]
1.061 × 10−7 1.11 × 10−7 1.085 × 10−7 − 2.21% 2.3%

E

[
w̃2
2(k)

]
1.054 × 10−7 1.257 × 10−7 1.214 × 10−7 − 13.17% + 3.54%

E
[
w̃0(k)w̃1(k)

] − 8.204 × 10−9 − 2.98 × 10−8 − 3.036 × 10−8 − 72.97% − 1.84%

E
[
w̃0(k)w̃2(k)

]
6.984 × 10−10 1.803 × 10−9 1.061 × 10−9 − 34.17% + 69.93%

E
[
w̃1(k)w̃2(k)

] − 8.204 × 10−9 − 3.003 × 10−8 1.214 × 10−7 106.75% 124.73%

⎡
⎣
1.234 × 10−7 −2.98 × 10−8 1.803 × 10−9

−2.98 × 10−8 1.11 × 10−7 −3.003 × 10−8

1.803 × 10−9 −3.003 × 10−8 1.257 × 10−7

⎤
⎦ , (41)

which implies that the statistical correlations between distinct deviations are much
more intense than the ones predicted by IA. Such a finding can be confirmed by the
respective EMP-SS-WECM, which is:

⎡
⎣

1.23 × 10−7 −3.036 × 10−8 1.061 × 10−9

−3.036 × 10−8 1.085 × 10−7 −2.848 × 10−8

1.061 × 10−9 −2.848 × 10−8 1.214 × 10−7

⎤
⎦ . (42)

Table 4 suggests that the EEA-SS-WECM fits the data better than IA-SS-WECM.
For instance, EEA predicts that E[w̃0(k)w̃1(k)] is −2.98× 10−8, which is 3.63 times
larger than the value predicted by traditional analysis (− 8.204×10−9). The simulated
value of E[w̃0(k)w̃1(k)] is− 3.036×10−8, just 1.88%above the value predicted by the
advanced analysis. In addition, EEA predicts thatE

[
w̃2
0(k)

]
is 17.08% above the value

estimated by IA. The simulations uphold this finding, revealing a value for E
[
w̃2
0(k)

]
that is 16.70% higher than the prediction made by traditional analysis. Even in the
case of E

[
w̃1(k)w̃2(k)

]
, where the exact analysis is farther from the actual value than

the traditional method (both including a change of sign), it correctly assumes that this
combined moment (in absolute terms) has a much greater intensity than that predicted
by the classical analysis.

5.3 Scenario 3

Scenario 3 uses a filter of size N = 4, larger than the size adopted in Scenarios 1
and 2. In this scenario, the IA-SS-WECM is given by:

⎡
⎢⎢⎣

3.483 × 10−8 −1.605 × 10−9 2.033 × 10−10 6.838 × 10−11

−1.605 × 10−9 3.503 × 10−8 −1.537 × 10−9 2.033 × 10−10

2.033 × 10−10 −1.537 × 10−9 3.503 × 10−8 −1.605 × 10−9

6.838 × 10−11 2.033 × 10−10 −1.605 × 10−9 3.483 × 10−8

⎤
⎥⎥⎦ , (43)
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Table 5 Some results for Scenario 3

E
[
w̃i (k)w̃ j (k)

]
IA EEA EMP %�IA,EMP %�EEA,EMP

E
[
w̃0(k)w̃1(k)

] − 1.605e−9 − 2.159e−10 − 3.137e−10 + 511.63% − 31.17%

E
[
w̃2(k)w̃3(k)

] − 1.605e−9 − 4.636e−10 − 2.054e−10 + 781.4% + 225.7%

where the expect symmetry also happens, sinceE
[
w̃2
0(k)

] = E
[
w̃2
3(k)

]
,E

[
w̃2
1(k)

] =
E

[
w̃2
2(k)

]
and E

[
w̃0(k)w̃1(k)

] = E
[
w̃2(k)w̃3(k)

]
, for example. In other words,

classical analysis constrains the freedom of the WECM to a greater extent than the
constraint imposed by the symmetry of the WECM.

In the same scenario, the computation of EEA-SS-WECM leads to

⎡
⎢⎢⎣

3.499 × 10−8 −2.159 × 10−10 2.002 × 10−10 8.654 × 10−11

−2.159 × 10−10 3.534 × 10−8 −6.934 × 10−11 4.258 × 10−10

2.002 × 10−10 −6.934 × 10−11 3.539 × 10−8 −4.636 × 10−10

8.654 × 10−11 4.258 × 10−10 −4.636 × 10−10 3.537 × 10−8

⎤
⎥⎥⎦ , (44)

whereas the EMP-SS-WECM is

⎡
⎢⎢⎣

3.472 × 10−8 −3.137 × 10−10 1.299 × 10−10 8.762 × 10−11

−3.137 × 10−10 3.491 × 10−8 −1.35 × 10−10 3.428 × 10−10

1.299 × 10−10 −1.35 × 10−10 3.496 × 10−8 −2.054 × 10−10

8.762 × 10−11 3.428 × 10−10 −2.054 × 10−10 3.44 × 10−8

⎤
⎥⎥⎦ .

(45)

Table 5 presents two cases in which the IA-SS-WECM’s estimation of the joint
moment differs from the empirical value by an order of magnitude. Conversely, EEA
yields estimates that are much closer to the simulated values, always within the same
order of magnitude.

5.4 Scenario 4

Scenario 4 features a larger filter size (N = 5) compared to the previous scenarios.
This is the first scenario in which the input signal is white. In this case, as observed,
classical analysis tends to generate estimates of very low magnitude for the deviations
cross-correlation (i.e., E

[
w̃i (k)w̃ j (k)

]
for i 
= j). In this scenario, the IA-SS-WECM

is given by:

⎡
⎢⎢⎢⎢⎣

5.092 × 10−8 1.232 × 10−13 1.232 × 10−13 1.232 × 10−13 1.232 × 10−13

1.232 × 10−13 5.092 × 10−8 1.232 × 10−13 1.232 × 10−13 1.232 × 10−13

1.232 × 10−13 1.232 × 10−13 5.092 × 10−8 1.232 × 10−13 1.232 × 10−13

1.232 × 10−13 1.232 × 10−13 1.232 × 10−13 5.092 × 10−8 1.232 × 10−13

1.232 × 10−13 1.232 × 10−13 1.232 × 10−13 1.232 × 10−13 5.092 × 10−8

⎤
⎥⎥⎥⎥⎦

,

(46)
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whichmakes a strong prediction: that all cross-correlations are equal to 1.232×10−13.
On the other hand, EEA-SS-WECM assumes that such cross-correlations have

significantly higher (and heterogeneous) magnitudes, depicting amuch richer learning
behavior:

⎡
⎢⎢⎢⎢⎣

5.102 × 10−8 2.96 × 10−11 −4.416 × 10−11 2.254 × 10−11 −6.17 × 10−11

2.96 × 10−11 5.064 × 10−8 3.466 × 10−11 2.08 × 10−11 2.147 × 10−11

−4.416 × 10−11 3.466 × 10−11 5.034 × 10−8 3.149 × 10−11 4.696 × 10−11

2.254 × 10−11 2.08 × 10−11 3.149 × 10−11 5.005 × 10−8 2.244 × 10−11

−6.17 × 10−11 2.147 × 10−11 4.696 × 10−11 2.244 × 10−11 4.968 × 10−8

⎤
⎥⎥⎥⎥⎦

(47)

The EMP-SS-WECM computed in this scenario is as follows:

⎡
⎢⎢⎢⎢⎣

5.101 × 10−8 4.916 × 10−12 −3.739 × 10−11 7.144 × 10−12 −3.448 × 10−11

4.916 × 10−12 5.063 × 10−8 3.611 × 10−11 3.229 × 10−11 3.522 × 10−11

−3.739 × 10−11 3.611 × 10−11 5.035 × 10−8 4.145 × 10−11 5.355 × 10−11

7.144 × 10−12 3.229 × 10−11 4.145 × 10−11 5.005 × 10−8 2.622 × 10−11

−3.448 × 10−11 3.522 × 10−11 5.355 × 10−11 2.622 × 10−11 4.970 × 10−8

⎤
⎥⎥⎥⎥⎦

.

(48)

The EMP-SS-WECMcorroborates the findings of the exact analysis, validating that
the stochastic coupling among the various deviations is far more intricate than implied
by conventional analysis. It is worth noting that in some cases, classical analysis (and
only classical analysis) even gets the sign of the joint moment wrong, such as in the
estimates of E

[
w̃0(k)w̃2(k)

]
and E

[
w̃0(k)w̃4(k)

]
.

5.5 Scenario 5

In Scenario 5, an even larger filter size is observed (i.e., N = 6). In this scenario, the
IA-SS-WECM is given by:

⎡
⎢⎢⎢⎢⎢⎢⎣

3.525 × 10−8 9.562 × 10−20 9.562 × 10−20 9.562 × 10−20 9.562 × 10−20 9.562 × 10−20

9.562 × 10−20 3.525 × 10−8 9.562 × 10−20 9.562 × 10−20 9.562 × 10−20 9.562 × 10−20

9.562 × 10−20 9.562 × 10−20 3.525 × 10−8 9.562 × 10−20 9.562 × 10−20 9.562 × 10−20

9.562 × 10−20 9.562 × 10−20 9.562 × 10−20 3.525 × 10−8 9.562 × 10−20 9.562 × 10−20

9.562 × 10−20 9.562 × 10−20 9.562 × 10−20 9.562 × 10−20 3.525 × 10−8 9.562 × 10−20

9.562 × 10−20 9.562 × 10−20 9.562 × 10−20 9.562 × 10−20 9.562 × 10−20 3.525 × 10−8

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(49)

whereas the EEA-SS-WECM is given by

⎡
⎢⎢⎢⎢⎢⎢⎣

3.528 × 10−8 1.659 × 10−16 −3.721 × 10−11 1.255 × 10−16 −4.317 × 10−11 1.48 × 10−16

1.659 × 10−16 3.514 × 10−8 1.889 × 10−16 −1.981 × 10−11 1.806 × 10−16 −2.631 × 10−11

−3.721 × 10−11 1.889 × 10−16 3.501 × 10−8 2.341 × 10−16 −6.932 × 10−12 1.179 × 10−16

1.255 × 10−16 −1.981 × 10−11 2.341 × 10−16 3.49 × 10−8 1.719 × 10−16 4.568 × 10−12

−4.317 × 10−11 1.806 × 10−16 −6.932 × 10−12 1.719 × 10−16 3.478 × 10−8 1.382 × 10−16

1.48 × 10−16 −2.631 × 10−11 1.179 × 10−16 4.568 × 10−12 1.382 × 10−16 3.463 × 10−8

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(50)
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Comparing the EEA-SS-WECM with IA-SS-WECM, it can be observed that the
exact analysis predicts that the off-diagonal elements of the WECM have a much
higher magnitude than predicted by the classical analysis. This finding is confirmed
by the computed EMP-SS-WECM:

⎡
⎢⎢⎢⎢⎢⎢⎣

3.527 × 10−8 9.484 × 10−13 −5.0262 × 10−11 2.528 × 10−13 −5.334 × 10−11 8.317 × 10−12

9.484 × 10−13 3.514 × 10−8 −1.258 × 10−11 −2.08 × 10−11 1.51 × 10−12 −2.954 × 10−11

−5.02 × 10−11 −1.258 × 10−11 3.503 × 10−8 1.853 × 10−12 −2.397 × 10−11 1.212 × 10−11

2.528 × 10−13 −2.08 × 10−11 1.853 × 10−12 3.493 × 10−8 −2.811 × 10−11 3.357 × 10−11

−5.33 × 10−11 1.51 × 10−12 −2.397 × 10−11 −2.811 × 10−11 3.478 × 10−8 −1.688 × 10−12

8.317 × 10−12 −2.954 × 10−11 1.212 × 10−11 3.357 × 10−11 −1.688 × 10−12 3.463 × 10−8

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(51)

However, it is worth mentioning that even the exact analysis occasionally misjudges
the order of magnitude of the cross-correlations of the deviations. Nonetheless, in all
cases, the error of the exact analysis is lower than the error of the classical analysis.
By comparing the scenarios, it is possible to notice that with the increase in N , there
appears to be a tendency for a reduction in the magnitude of correlations between
different deviations. Thus, even with the adoption of a large number of independent
Monte Carlo trials (i.e., 106 trials) for Scenario 5, it is challenging to compute a
reasonable approximation of such small numbers.

5.6 Scenario 6

The fundamental difference in Scenario 6 compared to the previous scenarios lies in
the optimal values of the adaptive coefficients (they all are now set to 10). The purpose
of this scenario is to determine whether there is a notable difference in the asymptotic
behavior when the final values of the filters change. Intuitively, after convergence, the
variance and deviation correlations are not highly sensitive to the values around which
the adaptive estimator oscillates (as LMS is an unbiased algorithm). The objective of
the simulations in this scenario is to validate or refine such intuition.

In this scenario, the IA-SS-WECM is given by:

⎡
⎢⎢⎢⎢⎢⎢⎣

3.525 × 10−8 9.562 × 10−18 9.562 × 10−18 9.562 × 10−18 9.562 × 10−18 9.562 × 10−18

9.562 × 10−18 3.525 × 10−8 9.562 × 10−18 9.562 × 10−18 9.562 × 10−18 9.562 × 10−18

9.562 × 10−18 9.562 × 10−18 3.525 × 10−8 9.562 × 10−18 9.562 × 10−18 9.562 × 10−18

9.562 × 10−18 9.562 × 10−18 9.562 × 10−18 3.525 × 10−8 9.562 × 10−18 9.562 × 10−18

9.562 × 10−18 9.562 × 10−18 9.562 × 10−18 9.562 × 10−18 3.525 × 10−8 9.562 × 10−18

9.562 × 10−18 9.562 × 10−18 9.562 × 10−18 9.562 × 10−18 9.562 × 10−18 3.525 × 10−8

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(52)

whereas the EEA-SS-WECM gives us:

⎡
⎢⎢⎢⎢⎢⎢⎣

3.528 × 10−8 1.659 × 10−14 −3.719 × 10−11 1.255 × 10−14 −4.316 × 10−11 1.48 × 10−14

1.659 × 10−14 3.514 × 10−8 1.889 × 10−14 −1.979 × 10−11 1.806 × 10−14− 2.63 × 10−11

−3.719 × 10−11 1.889 × 10−14 3.501 × 10−8 2.341 × 10−14 −6.915 × 10−12 1.179 × 10−14

1.255 × 10−14 −1.979 × 10−11 2.341 × 10−14 3.49 × 10−8 1.719 × 10−14 4.579 × 10−12

−4.316 × 10−11 1.806 × 10−14 −6.915 × 10−12 1.719 × 10−14 3.478 × 10−8 1.382 × 10−14

1.48 × 10−14 −2.63 × 10−11 1.179 × 10−14 4.579 × 10−12 1.382 × 10−14 3.463 × 10−8

⎤
⎥⎥⎥⎥⎥⎥⎦

(53)
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The EMP-SS-WECM in this scenario is:

⎡
⎢⎢⎢⎢⎢⎢⎣

3.531 × 10−8 −1.489 × 10−11 −3.799 × 10−11 −1.79 × 10−11 −4.126 × 10−11 3.896 × 10−13

−1.489 × 10−11 3.514 × 10−8 −1.876 × 10−13 −1.877 × 10−11 1.069 × 10−12 −4.442 × 10−11

−3.799 × 10−11 −1.876 × 10−13 3.502 × 10−8 3.381 × 10−12 −1.722 × 10−11 −2.047 × 10−11

−1.79 × 10−11 −1.877 × 10−11 3.381 × 10−12 3.489 × 10−8 1.175 × 10−12 2.373 × 10−11

−4.126 × 10−11 1.069 × 10−12 −1.722 × 10−11 1.175 × 10−12 3.476 × 10−8 −1.029 × 10−12

3.896 × 10−13 −4.442 × 10−11 −2.047 × 10−11 2.373 × 10−11 −1.029 × 10−12 3.464 × 10−8

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(54)

from which we can extract very similar conclusions to those of Scenario 5. The results
of this scenario support the intuition that the statistical properties of the adaptive esti-
mator in steady state are reasonably unaffected by the optimal value of the coefficients.

5.7 Experiment with Real Data

Real data commonly exhibit non-analytical probability density functions and are often
non-stationary. Therefore, it cannot be expected that the exact expectation analysis
technique, which assumes a highly idealized distribution of input signals, can accu-
rately infer phenomena occurringwith adaptive filters fed by real data. Nevertheless, in
this section, we seek to determinewhether the primary conclusion drawn through exact
analysis in this paper (namely, that the symmetries present in the WECM calculated
through classical analysis actually do not exist) would hold true with real data.

Therefore, consider the AudioMNIST dataset of voice signals [2]. The dataset com-
prises 30,000 audio samples featuring spoken digits (0–9) from 60 distinct speakers.
To construct each input signal, we concatenate the first 10 utterances from each speaker
for each of the digits (0–9). Thus, there is a total of 600 = 60 (speakers) × 10 (digits)
distinct input signals. Each input signal has been normalized to have unit variance.
The speech is filtered by the optimal plant defined by

w� = [
0.05377 0.18339 −0.22588 0.08622

]
, (55)

whose output is corrupted by a white additive Gaussian noise whose variance is 10−6.
The evolution of the computed MSE is depicted in Figure 1 for the LMS algorithm
withβ = 10−4, which reflects a less smooth learning curve, as expected since the input
signal is non-stationary and quite rich in statistical terms. The computed asymptotic
WECM in this experiment is given by

⎡
⎢⎢⎣

0.0010 −0.0032 0.0041 −0.0020
−0.0032 0.0207 −0.0302 0.0128
0.0041 −0.0302 0.0448 −0.0189

−0.0020 0.0128 −0.0189 0.0081

⎤
⎥⎥⎦ . (56)

Note that thematrix in (56) exhibits no symmetries, and the quantitiesE[w̃2
i (k)]vary

significantly for different values of i .Also, observe that the correlationsE[w̃i (k)w̃ j (k)]
are quite distinct from each other and, in magnitude, occasionally exceed the values
observed on themain diagonal of theWECM.Thus, only the exact expectation analysis
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Fig. 1 MSE evolution of the
experiment with speech signals
as inputs of the LMS adaptive
filter

technique has the sophistication necessary to extract from simulated signals such
phenomena that occur in practice, demonstrating a significant limitation in the use of
the ubiquitous independence hypothesis.

6 Conclusions

In this paper, EEA was employed to predict asymptotic characteristics of the steady-
state deviation autocorrelation matrix that classical analysis is unable to accurately
predict. The WECM provides statistical information such as mean square error and
mean square deviation, which can be useful in situations where the adaptive filter is
adopted to predict a narrowband component or for some statistical test. It was observed
that exact analysis outlines amuch richer asymptotic behavior of the adaptive estimator
than traditional analyses assume.

With the presented results, one can conclude that several symmetries found in
WECM prediction through classical analysis are actually artifacts produced by the
IA. It was also observed that the stochastic coupling between the adaptive weights can
be quite different from that predicted by the classical analysis. The experiments con-
firmed the indications of the exact analysis that the cross-correlations between these
deviations seem to decrease as the filter size increases. Lastly, such couplings (or,
more precisely, the joint moments) do not appear to be sensitive to the optimal value
of these coefficients, which aligns with what is expected from traditional stochas-
tic models. Many of these findings are also observed through experiments with real
signals, demonstrating that only the exact expectation analysis technique has the nec-
essary sophistication to infer from simulated signals phenomena that occur in practical
scenarios.

In a sense, the results presented are a tribute to the sophistication of the learning
process of the LMS algorithm, as they show that the actual behavior of the algorithm
can deviate considerably from that predicted by classical analyses, even in simple
configurations. The theoretical analysis proposed in this paper can be extended to
other configurations, such as deficient length and tracking, as well as to other adaptive
filtering algorithms (e.g., adaptive control methods with time delays [8, 25]), which
are promising future investigations.
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