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Abstract. Embedded systems are considered the most potential area
for future innovations. Two embedded fields that will most certainly
take a primary role in future innovations are mobile robotics and mobile
computing. Mobile robots and smartphones are growing in number and
functionalities, becoming a presence in our lifes. In this paper, we study
the current feasibility of a smartphone to execute navigation algorithms.
As a test case, we use a smartphone to control an autonomous mobile
robot. We tested three navigation problems: Mapping, Localization and
Path Planning. For each of these problems, an algorithm has been chosen,
developed in J2ME, and tested on the field. Results show the current mo-
bile Java capacity to executing computationally demanding algorithms
and reveal the real possibility of assist autonomous navigation.
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1 Introduction

The capability of autonomous navigation is an important aspect for mobile
robotics and for mobile devices with the goal of helping the user to navigate
in certain environments. A mobile device such as a smartphone could be used
to guide the user in museums, shopping centers, exhibitions, city tours, exiting
from buildings when a catastrophe occurs, to control effectively by ensuring more
powerful algorithms for home vacuum cleaners, to guide impaired people, etc.

However, to be efficient and effective, most navigation problems require com-
putationally demanding algorithms. Bearing in mind the previous applications,
this paper presents a performance study of three navigation algorithms when im-
plemented under J2ME technology for mobile devices. To test those algorithms
on the field, we use a system composed by a mobile robot and two smartphones.
In this system, a smartphone executes the navigation algorithms and sends con-
trol instructions to the mobile robot using bluetooth communication (see the
system organization presented in Figure 1).
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By developing and studying navigation algorithms considering their imple-
mentation in J2ME on smartphones, we hope to be contributing to a clear un-
derstanding about the current capabilities of high-end smartphones and J2ME,
and possibly to highlight future improvements on both.

Fig. 1. System organization.

This paper is organized as follows: section 2 gives an overview of navigation
algorithms; section 3 presents the algorithms implemented and the experimental
setup used; section 4 shows experimental results and section 5 presents some
conclusions.

2 Autonomous Navigation

Autonomous navigation has been widely focused by mobile robotics area [14].
Navigation is defined as the process or activity of accurately ascertaining one’s
position, planning and following a route. In robotics, navigation refers to the
way a robot finds its way in the environment [14] and is a common necessity and
requirement for almost any mobile robot.

Leonard and Durrant-Whyte [12] briefly described the general problem of
mobile robot navigation by three questions, each one addressed for a subcategory:
Localization, Mapping and Path Planning.

2.1 Localization - ”Where am I?”

Localization is the process of estimating where the robot is, relatively to some
model of the environment, using whatever sensor measurements are available.
As the robot keeps moving, the estimation of its position drifts and changes,
and has to be kept updated through active computation [14]. These updates are
performed based on the recognition of special features in landmarks, sensor data
and probabilistic models.

Localization uncertainty rises from the sensing of the robot, because of the
indirect estimation process. The measurements besides being noisy, because of
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real-world sensors, may not be available at all times. Based on the uncertainty
characteristics of the localization problem, similarly to other important mobile
robotics problems, it has been tackled by probabilistic methods [24]. The most
commonly used are Markov Localization [4] and Particle Filters [6].

2.2 Mapping - ”Where am I going?”

The mapping problem exists when the robot does not have a map of its environ-
ment and incrementally builds one as it navigates. While in movement, the robot
senses the environment, identifying key features which will allow it to register
information of its surroundings. The main concern for the mapping problem is
how does the mobile robot perceive the environment. The are many sensors used
for mapping, being the most common sonar, digital cameras and range lasers.
The complexity of the mapping problem is the result of a different number of
factors [24], the most important of which are: size of the environment, noise in
perception, and actuation and perceptual ambiguity.

Approaches for mapping have been accomplished considering the extraction
of natural features from the environment (see [13]) and through the identification
of special artificial landmarks (see, e.g., [19] and [1]).

2.3 Path Planning - ”How do I get there?”

Path Planning is the process of looking ahead at the outcomes of possible actions,
and searching for the best sequence that will drive the robot to the desired
goal [14]. It involves finding a path from the robot’s current location to the
destination. The cost of planning is proportional to the size and complexity
of the environment. The bigger the distance and the number of obstacles, the
higher the cost to the overall planning. Path Planning techniques for navigation
can be divided in local path planning and global path planning, which differ
on the quantity of information of the environment they need to possess. Local
techniques only need information of the environment that is near to the robot,
global techniques use full information of the environment.

There are many different approaches to path planning. A relevant Path Plan-
ning technique is Artificial Potential Field [8].

3 Prototype and Navigation Algorithms Considered

The block diagram of the system is shown in Figure 1. A middleware component
is responsible for the interaction between the smartphones and the mobile robot.
The navigation algorithms are executed in the smartphone, and the control in-
structions are passed to the robot via the middleware. Raw data from sensing is
acquired by the middleware via Bluetooth interface.
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3.1 Prototype

The prototype mobile robot consists of a Lego Mindstorms NXT kit [11] coupled
with a smartphone (we have used the Nokia N80 [17] and the Nokia N95 [16]).
The smartphone is positioned so its built-in camera faces the front of the robot,
enabling it to act as an intelligent image sensor (Figure 2), which furnishes
sensing meta-data to the main navigation system (a smartphone responsible to
execute the navigation algorithms).

Fig. 2. Prototype mobile robot with a smartphone.

Development for the smartphone was done in Java using its Micro Edition
version (J2ME [23]). Development for the mobile robot was also done using a
subset of Java supported by the JVM present in the custom firmware for the
Lego’s NXT Brick known as leJOS NXJ [22].

3.2 NXT Middleware

In order to provide seamless integration within the system, we developed a mid-
dleware component which helps J2ME application development for the smart-
phone to communicate with the NXT mobile robot. The core functionality of
the middleware consists in providing abstractions for Bluetooth communication
and also access to the mobile robot’s sensors and actuators. The middleware
component was developed in the Java programming language and was built on
top of the leJOS NXJ firmware [22].

3.3 Visual Landmark Recognition

For real-time mapping we rely on feature extraction by the visual sensor. With
the objective of keeping the detection and recognition of the landmarks as fast as
possible, the approach implemented in this work uses solid-color artificial land-
marks. The approach developed is similar to the method by [2]. In our approach,
the visual system detects one landmark, recognizes its color, and calculates its
distance and orientation to the visual sensor. As landmarks we use cylindrical
shaped objects with solid colors.
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Color Segmentation represents the first step for detecting the landmark on
a captured image by the smartphone. Previously, the landmark color features
were gathered and analyzed, providing the means of empirically producing a set
of rules in the RGB color space for detection of the colors used in the artificial
landmarks. These rules will detect the presence of a landmark in an image thus
providing the corresponding landmark classification based on its color. E.g., for
a green landmark, we used the rules present in (1). R, G and B correspond to
the red, green and blue color components of the RGB color space. The value
X is an adjustment value, that is used to augment the green color component
relatively to the red and blue.

(G ≥ 130) and(G > R+X) and (G > B +X) (1)

The color segmentation process transforms the captured image into a binary,
black and white image as can be seen in Figure 3. White color pixels indicate
the presence of the green range color and black pixels the absence of it.

Fig. 3. Image captured with a green landmark (left image); Binary image after the
application of the color segmentation (middle image) and landmark boundary detection
after the application of the image noise reduction filter (right image).

Image Noise Reduction is necessary for the elimination of salt and pepper
noise, caused by the color segmentation process. The noise may compromise
better results in future steps and therefore needs to be reduced or removed. The
filter implemented uses a 3× 3 scanning window, that analyzes all the landmark
pixels present in the image. The window checks if the pixels surrounding the
current scanned pixel mostly belong to the landmark or the background. If they
are mostly background (≥ 50%) then the pixel is most likely noise and is erased
(see Figure 3).

Minimum Bounding Rectangle is needed for more accurate calculations of
distance and orientation. These boundaries contain the shape detected and is
used to help cope with some small variations in the shape’s perspective, that
can vary according to the view from which the image was acquired.

Distance (d) and Orientation (θ) from the visual sensor to the landmark is
calculated based on one of the methods in [26]. By knowing the width, height
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and center point of the landmark and having already performed measurements
for camera calibration, the distance and orientation information can be inferred
from the landmark’s size and position in the image (see (2) and (3)).

dy = ky ×
1
y′

dx = kx ×
1
x′

d =
dx + dy

2
(2)

θ = m× xLandmarkCenter + l (3)

3.4 Particle Filter

For localization we implemented the Particle Filter method, based on the ap-
proach presented in [20]. The environment is represented as an occupancy grid
map, where each grid cell matches an area of the real environment at a specific
ratio. Each grid cell can be assigned with estimation probabilities of the mobile
robot’s position or with a reference to the presence of an obstacle.

Motion model is the robot’s path planner, which is responsible for providing
at each step a path for the mobile robot’s movement. In this work two motion
models were developed: an explorer type motion model which visits all free
locations in the map and a point to point motion model which is a predefined
obstacle-free path from one location in the environment to another.

Noise model is responsible for the odometry error that is added to the robot’s
motion, based on the noise model provided in [20]. The odometry error consid-
ered was divided into rotation error and translation error. Both were experimen-
tally established from the real odometry errors from the robotics kit used. Trans-
lation and rotation with noise is accomplished using a pseudo-random value,
drawn as a sample from the guassian distribution.

Measurement model provides on each observation of the environment neces-
sary information for the weighting function which will update the particle’s
weights. In this implementation the particle’s weight is considered to be a nu-
meric value w greater than 0. An observation consists on sensing the environ-
ment. Sensing is done by using a single straight observation from the information
present in the internal map representation or by using the visual landmark recog-
nition method presented earlier.

Resampling occurs when a considerable amount of particles within the par-
ticle population have weight values below a threshold and therefore have low
contribution to the overall estimate of the robot’s position. The resampling pro-
cess recognizes particles with small weight values (< threshold) and replaces
them with a random particle, whose weight value is higher than the resampling
threshold (≥ threshold). This random replacement minimizes the problem of
diversity loss. When all particles have weights bellow the threshold then a new
random set of particles is generated.
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Robot position estimate , at a determined time t, is given by the best
particle, i.e., the one which has the maximum weight value within the current
particle set.

3.5 Potential Fields

For path planning we use the Potential Fields approach [8] which is very used
for path planning and collision avoidance due to its mathematical simplicity and
elegance, providing acceptable and quick results [10] in real-time navigation.
This method is based upon the concept of attractive and repulsive forces. where
the goal is seen as a global minimum potential value (attractive force), and all
obstacles as high valued potential fields (repulsive force). The movement of the
robot is then defined by the potential values present in its path, moving ideally
from high to low potentials.

Our approach uses as basis the potential field functions presented by [5].
The most difficult problem for the Potential Field method, known as the local
minima has been addressed using the escape techniques (e.g., Random Escape,
Perpendicular Vector Escape [25], Virtual Obstacle Concept Escape [18]). In
order to provide a smoother robot movement, a lookahead function was imple-
mented which prevents the mobile robot from falling into local minima locations
by detecting them in advance.

4 Experimental Results

In this section, we present and discuss experimental results for the navigation
problems: Mapping, Localization, and Path Planning. Here we evaluate the per-
formance of the algorithms developed, by comparing executions between the
used smartphones and a desktop PC (AMD Athlon 64 X2 Dual Core Processor
at 2.20 GHz with 1GB of RAM and running Windows XP SP3), and analyzing
the feasibility of smartphones for real-time autonomous navigation.

A first study of performance was done with profiling results gathered from a
PC MIDP emulator. Figure 4 shows the testing environment where field testing
takes place.

4.1 Mapping

Experiments with mapping test the application of the Visual Landmark Recog-
nition method while trying to map the environment present in Figure 4. Tests
executed indicated good identification of the landmarks colors, being illumina-
tion changes the main source of the incorrect identifications.

Using a single captured image and considering a good landmark detection
and color segmentation process, the distance calculation revealed quite accurate.
The average absolute error was 3.6 cm and the average relative error was 5.715%.
Considering the angle orientation measurement, it revealed also quite accuracy
with an average absolute error of 2.11◦ and average relative error of 10.06%.
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Fig. 4. Field environment for testing the navigation algorithms.

Figure 5 presents profiling results of the task of capturing an image and
applying the landmark recognition algorithms. Table 1 compares the execution
time between the PC, Nokia N80 and Nokia N95.

Fig. 5. Contribution to the overall execution time of each step associated to the Visual
Landmark Recognition algorithm.

PC Nokia N80 Nokia N95

Execution time (ms) 453.00 3079.40 5824.30

Table 1. Execution time measurements for the Visual Landmark Recognition method.

Obviously, the PC is the fastest to execute the application. Comparing the
two smartphones, execution time is slower in the Nokia N95 compared to the
N80. The N95 has a more complex built-in camera with higher resolution, making
it slower when capturing an image with J2ME.
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When testing on-the-field, the mapping approach revealed less accurate. The
robot’s movement and variable lighting conditions prevent the method from
achieving its best results. Although this solution cannot be considered a very
reliable method for accurate mapping purposes in real-time mobile robot nav-
igation, it presents typical mapping tasks and is here used as a benchmark for
studying the performance obtained by the two smartphones used.

Figure 6 shows the achieved mapping accuracy using Visual Landmark
Recognition on the environment presented in Figure 4. The grid presents the
obstacles as black colored cells, obstacle estimates calculated in gray colored
cells marked with an ”X” character, and the path taken by the mobile robot is
presented in lighter gray and marked with numbers.

Fig. 6. Mapping results with landmark estimated positions.

4.2 Localization

Experimental results for Localization were conducted considering only a global
localization approach based on the Particle Filter.

For profiling the Particle Filter implementation, we considered one execution
of the method with a total number of 1,000 particles and using the environ-
ment in Figure 7. We consider here that the robot position estimation is only
performed at the end of the mobile robot’s movement. Figure 8 presents the
percentages of execution time of the main phases of the Particle Filter method.
Table 2 presents the execution time comparison between running the imple-
mented localization application on a PC and on the Nokia N80 and Nokia N95
smartphones.

According to the experiments, the phase which was responsible for the highest
percentage of execution time was the Prediction Phase with 48%. The Update
phase followed with 41%. Finally and considering the number of particles used



10 André Santos et al.

Fig. 7. Occupancy grid map for Particle Filter.

Fig. 8. Contribution to the overall execution time of each phase of the Particle Filter
method.

PC Nokia N80 Nokia N95

Time (ms) 78.00 3618.00 1725.00

Table 2. Execution time measurements for the Particle Filter method.

and their distribution within the environment, the Resample Phase took 9% of
execution time. The last 2% of execution time is spent by auxiliary tasks and
by the attainment of the pose estimate.

Our next experience uses the Particle Filter method to localize the mobile
robot in the environment presented in Figure 4. The Localization approach is im-
plemented as a distributed system, were the Particle Filter approach is executed
on the Nokia’s N95 smartphone, considering 1000 particles; and the measure-
ment model is a visual sensor performed with the Visual Landmark Recognition
method running on the Nokia N80 model.

Results for five executions of this field experiment are presented in Table 3.
Consider that the positions are given as xy position and θ orientation: [x; y; θ].
The robot’s real position at the end of the predefined path is [7; 0; 90◦]. By
analyzing Table 3, we can observe that only one of the experiments estimated
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the robot to be at its exact physical location. In the other four experiments,
three were relatively close to the robot’s real position, and the last one was very
far from the robot’s position.

Experiment Best Particle Position

#1 [4; 0; 90◦]
#2 [7; 0; 90◦]
#3 [9; 1; 90◦]
#4 [4; 0; 90◦]
#5 [0; 11; 180◦]

Table 3. Estimations for the same real position ([7; 0; 90◦]) for tests on-the-field using
the Particle Filter method.

The random initialization of the particles makes the method difficult to pre-
dict, by providing very different results on different runs of the algorithm (see
experiments #1 to #5 in Table 3). One possible solution to this problem is
the increase of the number of particles, but with high additional computational
costs.

The visual sensing, the particle filter execution are time demanding and can-
not, without further optimizations, be used to navigate mobile robots at high
speed. Nevertheless, considering a slower motion, this solution was able to pro-
vide a mechanism for mobile robot localization.

4.3 Path Planning

The next experiments analyze the Potential Fields. Figure 9 illustrates the main
stages of the algorithm and their contribution to the overall execution time. For
this particular implementation we used a lookahead value of 5 for local minima
detection. As can be seen, this preemptive detection is responsible for about 80

Fig. 9. Contribution to the overall execution time of each stage of the Potential Fields.
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Table 4 shows the execution time for the path presented in Figure 10. The
PC presents the lowest execution time, and the Nokia N95 has faster execution
time than the Nokia N80, as expected because of the faster main microprocessor
used in the N95.

Fig. 10. Complex environment used for profiling.

PC Nokia N80 Nokia N95

Average Step Time (ms) 11.00 377.00 278.75

Total Time (ms) 7664.60 253442.75 187882.75

Table 4. Time and Memory measurements for the Potential Fields algorithm.

When performing experiments on-the-field, the robot revealed some strange
orientation changes when avoiding obstacles. This fact was never very noticeable
in the simulations performed. We concluded that, even in the absence of local
minima locations, some raw directional vectors cannot be directly applied for the
robot’s movement. Some of these directional vectors force the robot to perform
expensive rotations that need to be smoothen beforehand.

The experiments revealed a high robustness of the JVM used in the mobile
devices used and the potential for those devices to execute complex navigation
algorithms.

5 Conclusions

The work presented in this paper focused on a study of the viability to ac-
complish autonomous navigation with a smartphone and J2ME. Tests with well
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known navigation algorithms (e.g., potential fields and particle filter) have been
performed. To achieve realistic experiments we use a mobile robot controlled
by a smartphone. The smartphone is able to execute complex and computa-
tionally intensive navigation algorithms and to communicate with the robot via
Bluetooth.

The mobile implementation of the algorithms revealed high consistency and
robustness. The experiments on the field show that it is feasible to execute in a
high-end smartphone real-time navigation algorithms without too much tighten
timing soft constraints. Note, however, that the current processing capabilities
of smartphones and J2ME can fulfill real-time requirements in environments
where the smartphone might be used to assist the user (e.g., navigating in a
city, shopping center).

From the experiments performed for visual landmark recognition, it is clear
that future enhancements of J2ME should include the capability to acquire video
streaming and to access individual frames. The current implementation needs to
perform single image capture, which is too slow for real-time image processing.
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