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ABSTRACT This paper proposes the Set-Membership sign-NLMS (SM-sign-NLMS) adaptive filter, which
combines the ability for data censoring (offered by Set-Membership schemes) with robustness against
impulsive noise (provided by signed schemes). The algorithm can present a much lower steady-state
probability of update than the standard SM-NLMS algorithm when impulsive noise is present in the system.
It is derived from a local deterministic optimization problem modulated by a minimum disturbance cost
function combined with a bounded error criterion. Several stochastic models are proposed in order to
extract insights and a time-variant step size extension of the algorithm. The first of them, based on energy
conservation arguments, leads to a fixed-point analytic equation whose solution predicts the asymptotic
performance of the algorithm. Further, a transient analysis based on a statistical decoupling of the radial
and (discrete) angular distributions of the input vector is derived. Based on such an analysis, an efficient
time-variant step-size version of the algorithm is proposed. Additionally, such an analysis is also utilized to
obtain a fixed-point formula whose solution describes the asymptotic performance when the unknown plant
that the filter intends to match varies according to a first-order Markovian model. Lastly, a novel stochastic
model is advanced for the description of the algorithm learning behavior under a deficient-length scenario
for a white input signal, which provides some insights about the asymptotic performance of the algorithm.
The findings are confirmed by extensive simulations.

INDEX TERMS Set-Membership, Adaptive Filtering, Data Censoring, Computational Complexity, Stochas-
tic Models.

I. INTRODUCTION

S IGNALS are often contaminated by unwanted artifacts
and noise that affect the performance of adaptive filters.

Such filters, originally derived from the optimal prediction
and filtering method for solving the Wiener-Hoff equation,
play a relevant role in advanced signal processing and control
schemes [1], [2]. The optimization problem they solve is
intrinsically related to their learning features, such as sta-
bility, computational cost and robustness against impulsive
noise that may be found in the measurement noise. The latter
phenomenon may occur due to a plethora of possible causes,
ranging from a large number of drum shrimp family organ-
isms in hydroacoustic channels [3] to double-talk in acoustic

echo cancellation systems [4] and atmospheric phenomena
in telecommunication systems [5]. Applications that have to
deal with impulsive interferences, range from echo cancella-
tion to signal prediction and location tracking [6].
In this paper, a novel Set-membership signed-error nor-

malized LMS (SM-sign-NLMS) algorithm is derived from a
minimum disturbance optimization problem. The algorithm
operates in some scenarios in an attractive point of the ubiq-
uitous trade-off between convergence rate, asymptotic perfor-
mance and computational burden. Namely, the method blends
the reduction of computational cost from the Set-membership
approach (due to its data censoring capabilities) with the
robustness against impulsive noise provided by the signed-
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error strategies1. It is noteworthy that such a reduction is
crucial in applications that demand thousands of adaptive taps
(e.g., in the acoustic echo cancellation task [7]). Furthermore,
the data-dependent selective update of the Set-membership
schemes evaluates the incoming data in terms of their contri-
bution to the estimation procedure [8].

One weakness of traditional adaptive filtering schemes
with ℓ2-norm-based cost functions is their vulnerability to
disturbances such as the ones that occur with impulsive
noise [9], [10]. In this context, signed variants receive a great
attention, since the occurrence of impulsive noise causes a
high fluctuation of the error signal, resulting in updates in the
wrong direction (or even divergence) in traditional adaptive
schemes [9], [11]. The signed-error variants utilize nonlinear
correlation multipliers [12] that can offer robustness against
impulsive noise. Typically, such a disturbance does not induce
a high misalignment in the adaptive estimator when the sign
of the error is used, instead of the error signal [13].

This paper advances a framework that is able to furnish
an algorithm that combines both Set-membership and signed
approaches. The advanced algorithm eliminates the need for
parameter selection by leveraging prior knowledge of the
noise, a feature shared by both correntropy-based and the least
mean p-th power algorithms [14], [15]. Despite its simple
update equation and low computational burden, the learning
behavior of the advanced algorithm is very sophisticated (a
feature it shares with adaptive algorithms in general). This
fact demands the right level of theorizing craft, in order to
comply with the demands of both accurate predictions and
extraction of relevant insights about different aspects of the
algorithm learning mechanism.

Models that allow for more hypothesis usually translate
into simpler equations that lose adherence to the original
data. Accordingly, the model needs to be precisely calibrated,
such that concise equations allowing for insight extraction are
obtained but, at the same time, they are not too simplified so as
to provoke a lack of adherence to real behaviour. This leads to
the choice of a specificmodel that operates in a set point of the
explanation versus prediction dimensions. Since each model
has its weaknesses, distinct stochastic models are employed
in this paper, in order to attain a broader spectrum of insights
regarding the performance of the proposed algorithm. Those
theoretically-based perceptions have attracted attention from
the scientific community, since they offer i) useful guide-
lines for the algorithm designer; ii) novel relationships with
remaining adaptive schemes; iii) interpretable cause-effects
relations; iv) new ways of explaining some phenomenon in a
more transparent manner; and v) suggest further questions or
generalizations of practical interest.

This paper is structured as follows. The novel algorithm,
that combines the advantageous features of Set-membership
and signed-variants schemes, is derived in Section II through
a deterministic and purely local optimization problem. A

1Signed-error variants may reduce the computational burden of the filter,
but this is not the case with our method, due to its normalization procedure.

fixed-point equation whose solution estimates its asymp-
totic mean square performance is obtained through energy-
conservation arguments in Section III. A transient analysis
that simplifies the joint statistics of the input vector is ad-
vanced in Section IV to obtain a modal description of its
transient behavior. Since the model for the input excludes
its Gaussianity (except possibly for the radial distribution),
which does not allow the utilization of the Price theorem,
the recently proposed Price heuristics [16] is adopted in the
model. Such a model is utilized in Section V for propos-
ing a practical variable step-size (VSS) scheme tailored for
the algorithm, which does not requires additional adjustable
parameters (i.e., a novel nonparametric VSS is proposed,
see [17]). The advanced VSS scheme significantly improves
the rate convergence compared to its original fixed step-size
version. The analysis of Section IV is extended in Section VI
to describe its steady-state performance when the unknown
plant varies according to a first-order Markovian model. In
Section VII-B, the asymptotic mean squared deviation in the
case of a deficient-length adaptive filter is also obtained as
a solution of two coupled fixed-point equations, utilizing a
stochastic model based on a recursion of the autocorrelation
matrix of the deviation coefficients.

A. MATHEMATICAL NOTATION
Throughout this paper, vector and matrices are represented
with lowercase and uppercase bold fonts, respectively, while
scalars are denoted by italics. ∥x∥2 denotes the squared Eu-
clidean norm of vector x, and E [·] is the expectation statis-
tical operator. (·)T denotes transpose and Tr[A] is the trace
of matrix A. All vectors are of column type. The function
sign(x) determines the output value based on whether the
input argument x is positive, negative, or zero, returning +1
for positive, -1 for negative, and 0 for zero input. Symbol ∼
indicates that a random variable (or random vector) is dis-
tributed according to the same probability density function
as another given random variable. Prob{A} represents the
probability of event A occurring. Expression∇wf computes
the gradient of the scalar function f (w) w.r.t. the vector w.

II. THE SM-SIGN-NLMS ALGORITHM
In a system identification setting, Set-membership Filter-
ing (SMF) approaches exploit the hypothesis of a bounded
noise process ν(k) immersed in a linear-in-the-parameters
model [18]:

d(k) = [w⋆]
T
x(k) + ν(k), (1)

where d(k) ∈ R is the reference signal, w⋆ ∈ RN contains
the ideal (and unknown) set of coefficients the adaptive filter
intends to estimate and x(k) comprises N consecutive sam-
ples of the input signal x(k) at the k-th iteration:

x(k) ≜
[
x(k) x(k − 1) . . . x(k − N + 1)

]T
, (2)

where a transversal structure is assumed.
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In each iteration, the adaptive filter generates an output
sample y(k) ∈ R, computed through an inner product:

y(k) = wT (k)x(k), (3)

where w(k) ∈ RN contains the adaptive taps at the k-
iteration:

w(k) ≜
[
w0(k) w1(k) . . . wN−1(k)

]T
, (4)

which should be adapted in an iterative manner by a specific
adaptation rule. The difference between the reference signal
and the filter output is the error signal e(k) ∈ R:

e(k) ≜ d(k)−wT (k)x(k). (5)

The overall system identification task this paper focuses on is
depicted in Figure 1.

x(k)

w⋆

w(k)
y(k)
−

+

+
d(k)

ν(k)

e(k)

FIGURE 1. Block diagram of the structure of an adaptive filtering
algorithm applied to a system identification task.

The SMF aims to guarantee a prescribed bound on the
magnitude of the error within the relevant time frame. In
this sense, any update of the adaptive vector that provides an
absolute value of the error less than the tunable bound γ is
considered to be a feasible solution for the iterative learning
procedure. Moreover, such a methodology bounds the worst-
case error achieved by the filter, with a priori error-bound
specification [8], [19]. Typically, the threshold γ depends on
the variance of the additive noise σ2

ν through [20]

γ =
√
τσ2

ν , (6)

where τ ∈ R+ is a tunable parameter. The effectiveness of
SMF methodologies is tied to the specification of γ, a task
that may be challenging in real-world scenarios owing to the
lack of knowledge regarding the environment and its dynamic
intricacies [21]. In spite of that, it should be noted that the
literature in general shows that SM algorithm outperform
their non-SM counterparts [22].

Consider S as the dataset containing the pairs {x(k), d(k)}
available for the learning scheme. The constraint setHn is the
set of adaptive weight vectors that are consistent with

Hk ≜ {w ∈ RN : |d(k)−wT (k)x(k)| ≤ γ}, (7)

which defines a region enclosed by parallel hyperplanes and
suggests the usage ofmore constraint-sets in the updatemech-
anism [18], [23]. The standard SM-NLMS algorithm solves
the following optimization problem [24]:

minw(k+1) ∥w(k + 1)−w(k)∥2
s.t. w(k + 1) ∈ Hk

, (8)

where the output error is bounded by a prespecified bound
(see (7)). The non-relaxed solution of (8) is

w(k+1) =

{
w(k) + x(k)

∥x(k)∥2 [e(k)− γ] , if |e(k)| > γ

w(k), otherwise
,

(9)
which demands fewer updates to reach steady state [24]. By
utilizing the SMF, it becomes possible to lessen computa-
tional complexity in adaptive filtering, given that updates to
filter coefficients happen only when the estimated error goes
beyond the pre-established upper threshold [25].
The term ∥w(k + 1) − w(k)∥2 minimized in (8) derives

from the conservative minimum disturbance principle, which
assumes that the previous updates contain more information
than the one brought by the current input vector, and therefore
the current solution w(k) should be slightly perturbed in a
reasonable learning process.
The standard sign-LMS algorithm is typically derived from

a stochastic gradient procedure based on a ℓ1-norm optimiza-
tion [26]:

w(k + 1) = w(k)− β∇w(k)|e(k)| (10)

⇒ w(k + 1) = w(k) + βx(k)sign[e(k)], (11)

where the update term βx(k)sign[e(k)] is a clipped function
of the noise and the adaptive taps that replaces the error signal
by its polarity [27], [28]. The hard limiter in Equation (11)
complicates the stochastic modelling of the resulting algo-
rithm, often requiring significant analytical ingenuity for a
theoretical analysis to be conducted satisfactorily [29].

It is not trivial to design a linear-in-parameter filter whose
space of feasible solutions for the updates combines the
SMF data censoring capabilities and the robustness against
impulsive noise offered by signed schemes. This is due to
the fact that whereas the SMF approach employs the mini-
mum disturbance criterion, the signed strategy usually adopts
the stochastic gradient optimization method in its derivation.
By taking the structure and constraints of the problem into
account and using the conceptual links between the mini-
mum disturbance principle and the stochastic gradient offered
by [30]–[33], this issue is circumvented in this paper by the
following advanced optimization:

minw(k+1)
1
2∥w(k + 1)−w(k)∥2

s.t. ep(k) =

{
e(k), if |e(k)| ≤ γ[

1− β
|e(k)|

]
e(k), if |e(k)| > γ

, (12)

where ep(k) denotes the a posteriori error, obtained after the
update with the current data {d(k),x(k)}:

ep(k) ≜ d(k)−wT (k + 1)x(k). (13)
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Observe that the second constraint of (12) (i.e., ep(k) =[
1− β

|e(k)|

]
e(k)) imposes diminishing returns on the impact

that the error e(k) has on the update intensity. Such a feature
is responsible for the desirable robustness against impulsive
noise presented by the algorithm.
Theorem. The solution of (12) defines the following novel

adaptive update:

w(k + 1) =

{
w(k), for |e(k)| ≤ γ

w(k) + β sign[e(k)]
∥x(k)∥2 x(k), for |e(k)| > γ

,

(14)
which combines the advantages of both Set-Membership and
signed strategies.
Proof : Solving (12) by the Lagrangemultipliers technique,

the solution of (12) can be converted into the following un-
constrained and equivalent optimization problem:

F [w(k + 1)] =
1

2
∥w(k + 1)−w(k)∥2

+ λ

{
ep(k)−

[
1− β

|e(k)|

]
e(k)

}
.(15)

Zeroing the gradient of (15) leads to:

w(k + 1) = w(k) + λx(k). (16)

If |e(k)| ≤ γ, the solution of (12) is trivial, since setting

w(k + 1) = w(k) (17)

complies with the constraint ep(k) = e(k) and minimizes
the term 1

2∥w(k + 1) − w(k)∥2. This possibility imposes
the condition λ = 0 in (16) and explains the advantageous
reduction of the computational burden, since the update of the
adaptive weight is avoidedwhen the current data is redundant.
Further, this implicit evaluation of the information content
of the input data is also responsible for the data censoring
capability of the resulting algorithm.

In the case |e(k)| > γ, one may apply (16) in the second
constraint of (12), leading to:

λ = βsign[e(k)]. (18)

Bringing together equations (16), (17), and (18) takes one
to (14). □

For our purposes of analytical description of the learning
behavior of our novel method, a more adequate description
of it is

w(k + 1) = w(k) + β
x(k)

∥x(k)∥2
f [e(k)], (19)

where

f [e(k)] =
{

0, for |e(k)| ≤ γ,
sign[e(k)] for |e(k)| > γ

. (20)

The proposed algorithm, as well as typical Set-membership
algorithms, utilizes a metric projection onto a closed convex
set (convex projection). Unfortunately, the nonlinearity of
the convex projection poses a challenge to theoretical analy-
sis. In the following sections, distinct stochastic models are

employed in order to extract insights about the algorithm
performance.
From a computational complexity perspective, the number

of scalar sums/subtractions (resp. scalar multiplications) of
the advanced algorithm is 2N + 2 (resp. 2N + 1), when
there is an update. Only one scalar division for update is
demanded. Note that such a complexity is very similar to the
LMS algorithm, which requires 2N scalar sums/subtractions
and 2N + 1 scalar multiplications per iteration. In fact, in
practice the computational burden of the advanced algorithm
is even less than this, since it does not update theweight vector
in all iterations.

III. STEADY-STATE ANALYSIS
The SM-sign-NLMS algorithm involves two nonlinear-
ities: the data-normalization [34] and the error-non-
nonlinearity [35]. Treating these nonlinearities at the same
time makes the performance analysis difficult [36]. Thus,
some stochastic assumptions will be introduced to overcome
such a strong nonlinearity.
In this section, energy-conservation arguments, that com-

prise one of the most powerful analyses (based on energy con-
servation arguments) are adopted for the purpose of obtaining
a prediction for the steady-state performance of the algorithm.
Consider the deviation vector described by

w̃(k + 1) ≜ w⋆ −w(k). (21)

where w⋆ ∈ RN is the optimal solution.
Using (19) and definition (21), one has:

w̃(k + 1) = w̃(k)− β
x(k)

∥x(k)∥2
f [e(k)]. (22)

Themultiplication on the left of both sides of (22) byxT (k)
leads to:

ep(k) = ea(k)− βf [e(k)], (23)

where the following error measures are considered:

ep(k) ≜ xT (k)w̃(k + 1), (24)

ea(k) ≜ xT (k)w̃(k). (25)

The application of (23) in (22) reveals that

w̃(k + 1) +
x(k)ea(k)
∥x(k)∥2

= w̃(k) +
x(k)ep(k)
∥x(k)∥2

, (26)

which implies that the energy of its both sides are equal:[
w̃T (k + 1) + xT (k)ea(k)

∥x(k)∥2

] [
w̃(k + 1) + x(k)ea(k)

∥x(k)∥2

]
=
[
w̃T (k) + xT (k)ep(k)

∥x(k)∥2

] [
w̃(k) + x(k)ep(k)

∥x(k)∥2

]
.

(27)

After some manipulations, one obtains:

∥w̃(k + 1)∥2 + e2a (k)
∥x(k)∥2

= ∥w̃(k)∥2 +
ep(k)

∥x(k)∥2
, (28)

which provides a description without approximations of the
energy flow through each iteration of the advanced algo-
rithm. Note that (28) holds even in the case of a colored
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measurement noise. The groundwork for (28) is based on
a basic energy conservation relationship that was originally
established in [37], while dealing with the robustness analysis
of adaptive filters.

The application of the expectation operator E [·] in both
sides of (28) results in

E
[
∥w̃(k + 1)∥2

]
+E

[
e2a (k)

∥x(k)∥2

]
= E

[
∥w̃(k)∥2

]
+E

[
e2p (k)

∥x(k)∥2

]
.

(29)
Assuming that the algorithm operates in steady-state

under a stable condition enables one to derive that
E
[
∥w̃(k + 1)∥2

]
= E

[
∥w̃(k)∥2

]
. Thus:

E
[

e2a (k)
∥x(k)∥2

]
= E

[
e2p(k)

∥x(k)∥2

]
. (30)

When the filter presents a large number of taps and con-
sidering that the denominator in (30) is equal to ∥x(k)∥2, the
expected value of the ratio can be approximated by the ratio
of the expected values. This is a reasonable approximation,
since at the steady state the errors ea(k) and ep(k) exhibit low
sensitivity to the input data [38]. Therefore, the identity (30)
collapses to

E
[
e2a (k)

]
≈ E

[
e2p(k)

]
. (31)

The derivation of a closed-form that predicts the steady-
state MSE requires some additional steps. Since the errors
{ep(k), ea(k), e(k)} are related by (see (1) and (5)):

ep(k) = ea(k)− βf [e(k)], (32)

one has

e2p(k) = e2a (k)− 2βea(k)f [e(k)] + β2f 2[e(k)]. (33)

After the application of (33) in (31), one arrives at:

2E {ea(k)f [e(k)]} = βE
{
f 2[e(k)]

}
. (34)

Thus, it is assumed that ea(k) and e(k) are jointly Gaussian (a
reasonable assumption for long adaptive filters [35]). Let one
consider

ξ ≜ E
[
e2(k)

]
(35)

and
ρ ≜ ea(k)e(k). (36)

Employing the Price Theorem [39], one is led to:

∂E [ea(k)f [e(k)]]
∂ρ

= E
[
∂ea(k)
∂ea(k)

∂f [e(k)]
∂e(k)

]
=

∫ ∞

−∞

[δ[e(k)− γ] + δ[e(k) + γ]√
2πξ

exp
[
−e2(k)

2ξ

]
de(k)

=
exp

[
−γ2

2ξ

]
+ exp

[
−γ2

2ξ

]
√
2πξ

=
2exp

[
−γ2

2ξ

]
√
2πξ

,

(37)
which takes one to:

E {ea(k)f [e(k)]} =

√
2

πξ
exp

[
−γ2

2ξ

]
E [ea(k)e(k)] . (38)

Assuming that the error is distributed according to a Gaus-
sian distribution results in

E
{
f 2[e(k)]

}
= 2β

∫ ∞

γ

1√
2πξ

exp
[
−e2(k)

2ξ

]
de(k) (39)

=
2√
π

∫ ∞

γ√
π

exp
(
−u2

)
du = erfc

(
γ√
2ξ

)
,

where

erfc(x) ≜
2√
π

∫ ∞

x
exp(−t2)dt. (40)

The utilization of equations (38), (39) and (34) brings one
to:

2

√
2

πξ
exp

[
−γ2

2ξ

]
ξ −

√
2

πξ
exp

[
−γ2

2ξ

]
σ2
ν

= βerfc
(

γ√
2ξ

)
,

(41)

where σ2
ν denotes the variance of the measurement noise

ν(k), supposed to be zero-mean, independent, identically
distributed and independent of the input signal. From (41) one
arrives to the following fixed-point equation for the asymp-
totic mean square error:

ξ = σ2
ν +

β

2

√
πξ
2 erfc

(
γ√
2ξ

)
exp

[
−γ2

2ξ

] . (42)

Remark: Equation (42) is the main contribution of this
section. It is a nonlinear equation whose positive solution is a
theoretical approximation of the steady-state MSE of the SM-
sign-NLMS algorithm. Interestingly, Equation (42) implies
that the statistics of the input signal (e.g., its variance) do not
impact the asymptotic performance of the algorithm.

IV. TRANSIENT ANALYSIS
In order to cope with the nonlinear characteristics of the
update equation of the SM-sign-NLMS algorithm, a simple
model for the input signal is adopted such as to evaluate its
convergence analysis. The model originates a description of
the modal behavior of the second-order behavior of the algo-
rithm. The resulting description permits one to extract novel
perceptions about the eigenvalue-distribution-dependent con-
vergence behavior of the SM-sign-NLMS algorithm.
The model utilizes the ubiquitous independence assump-

tion [40], which implies that vectorsx(k) are independent and
identically distributed. The eigendecomposition of the input
autocovariance matrix R

R ≜ E
[
x(k)xT (k)

]
= VΛVT =

N−1∑
i=0

λiviv
T
i (43)

emphasizes two import quantities for the following analysis:
the eigenvalues λi ∈ R+ (for i ∈ {0, 1, . . . ,N − 1}) and the
orthonormal eigenvectors vi ∈ RN (for i ∈ {0, 1, . . . ,N −
1}).
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A simple model that fits the first- and second-order mo-
ments of x(k) is [41]:

x(k) = skrk ṽ(k), (44)

where statistically-independent random variables2 sk (sig-
nal), rk (radial distribution) and ṽ(k) (discrete angular dis-
tribution) are distributed according to

Prob{sk = ±1} =
1

2
, (45)

r(k) ∼ ∥x(k)∥, (46)

Prob{ṽ(k) = vi} =
λi

Tr[R]
, (47)

where (46) means that r(k) emulates the distribution of the
original (i.e., obtained in a tapped-delay structure) x(k). Note
that the Gaussianity of x(k) can be partially inserted into the
model, which motivates the Price heuristic [16] that will be
adopted.

In order to advance a second-order model for the SM-sign-
NLMS algorithm, consider the multiplication of both sides
of (22) by their transpose. Using the expectation operator, one
arrives at the following recursion:

Rw̃(k + 1) = Rw̃(k)− βE
{
w̃(k)xT (k)
∥x(k)∥2

f [e(k)]
}

− βE
{
x(k)w̃T (k)
∥x(k)∥2

f [e(k)]
}

+ β2E
{
x(k)xT (k)
∥x(k)∥4

f 2[e(k)]
} ,

(48)
where

Rw̃(k) ≜ E
[
w̃(k)w̃T (k)

]
(49)

is the weight-error autocorrelation matrix. This matrix plays
a fundamental role for the prediction of the MSE, because it
permits the computation of

λ̃i(k) ≜ vTi Rw̃(k)vi, (50)

from which, with the independence assumption and the com-
mon assumptions for the measurement noise, the MSE can be
obtained:

ξ(k) ≜ E
[
e2(k)

]
= σ2

ν + E
[
∥w̃T (k)x(k)∥2

]
= σ2

ν + Tr
[
ΣVTRw̃V

]
= σ2

ν +

N−1∑
i=0

λiλ̃i(k). (51)

2In the case of v(k), the adequate expression is ‘‘random vector’’.

Equation (51) implies that predicting the dynamics of λ̃i(k)
allows one to estimate the evolution of the MSE. Thus, mul-
tiplying (48) on the left by vTi and on the right by vi, one has:

λ̃i(k + 1) = λ̃i(k) − βE
{
vTi w̃(k)xT (k)vi

∥x(k)∥2
f [e(k)]

}
︸ ︷︷ ︸

I

− βE
{
vTi x(k)w̃

T (k)vi
∥x(k)∥2

f [e(k)]
}

︸ ︷︷ ︸
II

(52)

+ β2E
{
vTi x(k)x

T (k)vi
∥x(k)∥4

f 2[e(k)]
}

︸ ︷︷ ︸
III

.

The analytic computation of terms I - III is a challenging
task, especially due to the presence of the nonlinear terms. In
order to circumvent such an issue, two simplifying assump-
tions are adopted: the model (45)- (47) and the Price heuristic
(discussed in [16]). Briefly, the Price heuristic utilizes the
Price theorem [42] (which is strictly valid only when jointly
Gaussian random variables are involved in the expectation)
when the input vector is generated according to the model
described by Equations(45)- (47). Therefore, term I in (52)
can be expressed as:

I = −β

√
2

πξ
exp

[
−γ2

2ξ

]
E
[
vTi w̃(k)xT (k)w̃T (k)x(k)vi

∥x(k)∥2

]
= −β

√
2

πξ
exp

[
−γ2

2ξ

]
λi

Tr[R]
λ̃i(k).

(53)
whereas terms II and III can be simplified to

II = −βE
[
vTi x(k)w̃

T (k)f [e(k)]vi
∥x(k)∥2

]
= −β

√
2

πξ
exp

[
−γ2

2ξ

]
E
[
vTi x(k)w̃

T (k)xT (k)w̃(k)vi
∥x(k)∥2

]
= −β

√
2

πξ
exp

[
−γ2

2ξ

]
λi

Tr[R]
λ̃i(k)

,

(54)

III ≈ β2E
[
vTi x(k)x

T (k)vi
∥x(k)∥4

]
E
{
f 2[e(k)]

}
= β2erfc

(
γ√
2ξ

) N−1∑
j=0

λj
Tr[R]

E[s2k ]E
[
r2k
]
vTi vjv

T
j vi

E [s4k ]E [r4k ]v
T
j vj

= β2erfc
(

γ√
2π

)
λi

E[r4]

.

(55)
The combination (52)- (55) of yields the subsequent recur-
sion:

λ̃i(k + 1) = λ̃i(k)− 2

√
2

πξ
βexp

[
−γ2

2ξ

]
λi

Tr[R]
λ̃i(k)

+ β2erfc
(

γ√
2ξ

)
λi

E[r4]
, (56)
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where one observes that the dynamics of the modes are
coupled, since ξ depends on all λ̃i(k) (see (51)). Using (56)
and (51), it is possible to predict the evolution of the MSE.
Therefore, a model for the transient behavior of the algorithm
was obtained.

Such a model is also valid in asymptotic regime. In this
case, assuming that the algorithm operates in a stable manner,
one has that λ̃i(k + 1) = λ̃i(k) and

λ̃i(k) =
β

2

√
πξ

2

erfc
(

γ√
2ξ

)
exp

[
−γ2

2ξ

] Tr[R]

E [r4]
. (57)

Which implies that in steady-state:

ξ = σ2
ν +

N−1∑
i=0

λiλ̃i(k) = σ2
ν +

β

2

√
πξ
2 erfc

(
γ√
2ξ

)
exp

(
−γ2

2ξ

) {Tr[R]}2

E [r4]
,

(58)
an identity similar to the one obtained with energy-
conservation arguments (see (42)).
Remark: It is possible to elucidate under which conditions

Equations (58) and (42) are equivalent. Assume that the input
vector derives from a white Gaussian process. Hence,

E [∥x(k)∥n2] = 2
n−2
2 σnxN

Γ
(
N+n
2

)
Γ
(
N+2
2

) , (59)

where σ2
x is the variance of x and

Γ(x) ≜
∫ ∞

0

tx−1exp(−t)dt. (60)

Thus,
{Tr[R]}2

E [r4]
=
N
2

Γ
(
N+2
2

)
Γ
(
N+4
2

) . (61)

Since

lim
N→∞

N
2

Γ
(
N+2
2

)
Γ
(
N+4
2

) ≈ 1, (62)

both equations are equivalent for large values of N .

V. DESIGN OF A VARIABLE STEP-SIZE SM-SIGN-NLMS
This section addresses the issue of deriving a time-varying
step size in order to tackle the compromise between low
asymptotic MSE and fast convergence rate. The obtained
step-size sequences agrees with intuition and are obtained
based on the theoretical model described in Section IV.

Consider a time-variant step size β(k) in (56). The mini-
mization of λ̃i(k + 1) can be enforced by

∂λ̃i(k + 1)

∂β(k)
= −2

√
2

πξ(k)
exp

[
− γ2

2ξ(k)

]
λi

Tr[R]
λ̃i(k)

+ 2β(k)erfc

(
γ√
2ξ(k)

)
λi

E [r4]
= 0.(63)

Therefore, in order to maximize the convergence rate of the
algorithm, the following theoretically-based choice can be
made:

β(k) =
E[r4]

erfc
(

γ√
2ξ(k)

)√ 2

πξ(k)
exp

[
− γ2

2ξ(k)

]
λ̃i(k)
Tr[R]

.

(64)
Unfortunately, (64) is not a feasible choice in practice,

because λ̃i and Tr[R] are not observable. Hence, some ap-
proximations should be performed. Assuming a white input
signal, one may write:

λ̃i(k) ≈ σ2
x σ

2
w̃ ≈ ξ − σ2

ν

N
, (65)

where σ2
w̃ is the variance of the deviations w̃2

i (k), supposed to
be constant along the taps. Combining (65) with the approxi-
mation E[r4] ≈ N 2σ2

x leads to

βopt(k) =

√
2

πξ(k)

exp
[
− γ2

2ξ(k)

]
erfc

(
γ√
2ξ(k)

) [ξ(k)− σ̂2
ν

]
, (66)

where σ̂2
ν is an estimate of σ2

ν . Note that σ2
ν is already esti-

mated in the Set-membership approach (see (6)) and ξ(k) can
be estimated in an online manner through

ξ̂(k + 1) = λξ̂(k) + (1− λ)e2(k), (67)

where
λ = 1− 1

KN
, (68)

with K ≥ 2. In fact, the resulting variable step size is almost
insensitive to the value of K , so that one can impose K = 2 in
order to avoid the adjustment of an additional parameter [17].

VI. TRACKING
The ability to operate in a nonstationary setting is one of the
most desirable features of adaptive filtering algorithms [40].
The learning behavior of an adaptive filter is more sophisti-
cated in this case, since time-varying plants cause a ‘‘lag’’ in
the adaptive learning process. Thus, the tracking capabilities
of an algorithm are enhanced when the step size has large
values, whereas the variance of the adaptive estimator dimin-
ishes under small values of β. This implies that asymptotic
performance is optimized when this trade-off is taken into
account.
A time-variant feature of the ideal plant is explicitly in-

troduced by the following first-order stochastic multivariate
Markovian random walk model:

w⋆(k + 1) = w⋆(k) + q(k), (69)

wuere q(k) is a zero-mean random vector that is statistically
independent from the remaining random variables. It also has
the following covariance matrix

Q = E
[
q(k)qT (k)

]
= σ2

q IN . (70)
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Remark: The random walk model is popular in the area of
adaptive filtering. Its suitability is discussed in more detail
in [43]. It should be noted that first-order perturbations (69)
are encountered in applications such as acoustic echo cancel-
lation and transmission systems [40], in such a manner that
its use is not due solely to analytical convenience.

Under (69), a new formulation is called for Equation (22):

w̃(k + 1) = w̃(k)− β
x(k)

∥x(k)∥2
f [e(k)] + q(k). (71)

In a similar manner, Equation (48) can be restated in the form
of:

Rw̃(k + 1) = Rw̃(k)− βE
{
w̃(k)xT (k)
∥x(k)∥2

f [e(k)]
}
+Q

− βE
{
x(k)w̃T (k)
∥x(k)∥2

f [e(k)]
}

(72)

+ β2E
{
x(k)xT (k)
∥x(k)∥4

f 2[e(k)]
}
.

Thus, a revision is needed for equation (73) to read:

λ̃i(k + 1) = λ̃i(k) + β2(k)erfc

(
γ√
2ξ(k)

)
λi

E [r4]
+ σ2

q

− 2

√
2

πξ(k)
β(k)exp

[
− γ2

2ξ(k)

]
λi

Tr[R]
λ̃i(k).(73)

Through various mathematical manipulations (akin to those
that gave rise to Equation (58)), one comes to the subsequent
fixed-point equation describing the asymptotic behavior of
the algorithm in the non-stationary setting:

ξ = σ2
ν +

β
√
πξ

2
√
2

erfc
(

γ√
2ξ

)
exp

[
−γ2

2ξ

] {Tr[R]}2

E [r4]

+
N
√
πξ

2
√
2β

Tr[R]

exp
[
−γ2

2ξ

]σ2
q , (74)

where the novel additive term N
√
πξ

2
√
2β

Tr[R]

exp
[
− γ2

2ξ

]σ2
q contains the

analytical contribution of the Markovian perturbation q(k) to
the asymptotic performance of the algorithm.

VII. DEFICIENT-LENGTH ANALYSIS
In practice, the length of the ideal plant is greater than
the adaptive filter length. Sometimes, the designer chooses
such a configuration in order to deal with computational
limitations [44] or when the convergence rate should be in-
creased [45]. Thus, it is important to characterize the algo-
rithm performance under suboptimal operation [46]. In the
following, a theoretical approach distinct from the previous
ones is described. The stochastic modelling is divided in two
parts: i) first-order analysis; and ii) second-order analysis.

A. FIRST-ORDER BEHAVIOR
In the deficient-length configuration, the desired signal can
be described as

d(k) = [w⋆]
T
x(k) + [w⋆]

T
x(k) + ν(k), (75)

where w⋆ ∈ RL and

x(k)≜
[
x(k − N ) x(k − N − 1) . . . x(k − N − L + 1)

]T ,
(76)

where the ideal vector has length N + L (with N denoting
the length of the adaptive filter, as before). In this setting,
recursion (22) is still valid when the error is written as

e(k) = w̃T (k)x(k) + [w⋆]
T
x(k) + ν(k). (77)

Thus, using (22) and (77), applying the expectation opera-
tor and the Prize heuristic alongside the independence noise
assumption leads to:

E [w̃(k + 1)] = E [w̃(k)]− β

√
2

πξ(k)
exp

[
− γ2

2ξ(k)

]
A

(78)
where

A ≜ E
{
x(k)xT (k)
∥x(k)∥2

w̃(k) +
xT (k)w⋆x(k)

∥x(k)∥2
+

x(k)ν(k)
∥x(k)∥2

}
.

(79)
Using the approximation E

[
1

∥x(k)∥2

]
≈ 1

Nσ2
x
yields:

E [w̃(k + 1)] = BE [w̃(k)]

− β

√
2

πξ(k)
exp

(
− γ2

2ξ(k)

)
ϑ, (80)

where

B ≜

(
I− β

√
2

πξ(k)
exp

[
− γ2

2ξ(k)

]
R

Nσ2
x

)
, (81)

and

ϑ ≜
E
[
xT (k)w⋆x(k)

]
Nσ2

x
. (82)

Assuming a white input, Equation (81) implies that the SM-
sign-NLMS algorithm is unbiased, in the sense that the adap-
tive weight vector converges in the mean to the first N ele-
ments of the ideal plant:

E [w̃(∞)]white = 0 ⇒ E [w(∞)] = w⋆. (83)

B. SECOND-ORDER ANALYSIS
The second-order behavior of the algorithm is more involved.
Using (77) leads to:

e2(k) = w̃T (k)x(k)xT (k)w̃(k) + 2w̃T (k)x(k)xT (k)w⋆

+ [w⋆]
T
x(k)xT (k)w⋆ + ν2(k) +O[ν(k)]. (84)

After the application of the expectation operator and the usual
statistical assumptions, one has:

E
[
e2(k)

]
= σ2

ν + [w⋆]
T
RN−Mw

⋆ + 2bTE [w̃(k)]

+ Tr {RRw̃(k)} , (85)
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where

b ≜ E
{[
xT (k)w⋆

]
x(k)

}
, (86)

RN−M ≜ E
[
x(k)xT (k)

]
. (87)

Multiplying (22) by its transpose and applying the expectation
operator with the usual simplifying assumptions leads to, after
some mathematical manipulations:

Rw̃(k + 1) = Rw̃(k)− gRw̃(k)R− gRRw̃(k)

− gE [w̃(k)]E
{
xT (k)

{
[w⋆]

T
x(k)

}}
+

β2

E [r4]
erfc

(
γ√
2ξ(k)

)
, (88)

where

g ≜
β

E [∥x(k)∥2]

√
2

πξ(k)
exp

[
− γ2

2ξ(k)

]
. (89)

Assuming a white input signal, utilizing the approximation
E
[
∥x(k)∥2

]
= Nσ2

x and applying the trace operator in (88)
yields:

θ(k + 1) = θ(k)− 2β

N

√
2

πξ(k)
exp

[
− γ2

2ξ(k)

]
θ(k)

+
Nβ2

E [r4]
erfc

(
γ√
2ξ(k)

)
, (90)

where
θ(k) ≜ Tr [Rw̃(k)] , (91)

is the mean square deviation (MSD) of the algorithm.
The assumption of a white Gaussian input signal simplifies

the recursion to:

θ(k + 1) = θ(k)− 2β

N

√
2

πξ(k)
exp

[
− γ2

2ξ(k)

]
θ(k)

+
β2Γ

(
N+2
2

)
2σ4

xΓ
(
N+4
2

)erfc( γ√
2ξ(k)

)
, (92)

where θ(k) and ξ(k) are related by:

ξ(k) = σ2
ν + σ2

x ∥w⋆∥2 + σ2
x θ(k). (93)

Equations (92) and (93) specify a coupled pair of fixed-
point equations. This implies that the asymptotic MSD and
MSE can be estimated through an iterative refinement of
an initial guess for θ(k). At each iteration, the current es-
timation of the MSD θ(k) leads to a novel estimate of the
MSE ξ(k) through (93) and the current estimates of ξ(k)
and θ(k) can be utilized for updating the estimate of θ(k)
through (92). Thus, Equations (92) and (93) provides theo-
retical estimates for both asymptotic MSD and MSE of the
advanced SM-sign-NLMS algorithm. Note that g presents a
strong stochastic coupling with the random vectors E [w̃(k)]
and E

{
xT (k)

{
[w⋆]

T
x(k)

}}
, which, by simplicity, was ne-

glected in the stochastic analysis. This independence assump-
tion unfortunately restricts the analysis for configurations
where the step size is small.

VIII. RESULTS
In the absence of explicit instructions to the contrary, the num-
ber of independent Monte Carlo trials was set to K ′ = 1000
for all experiments. Three distinct input signals are adopted
in the different scenarios considered. The first of them is sam-
pled from an unit-variance zero-mean white Gaussian process
(UZWG). Other alternatives are a fourth-orded autoregressive
(AR(4)) process computed through x(k) = 0.75x(k − 1) +
0.19x(k − 2) + 0.09x(k − 3) − 0.5x(k − 4) + g(k), where
g(k) is a zero-mean white Gaussian noise with unit variance
(see [47]) or a MA(2) process, where the input signal is ob-
tained by filtering an UZWGby the filter 1−0.8z−1+0.2z−2.
The unknown plants to be identified are the ones measured
and described in [48]. Unless stated to the contrary, the noise
signal ν(k) is zero mean, white and Gaussian. In all exper-
iments, the adaptive filter is initialized with zeros, and its
length is the same than the one of the ideal plant (except in
the deficient-length configuration).

A. COMPARISON WITH THE STANDARD SM-NLMS
ALGORITHM
The advantage of the advanced algorithm in an environment
subject to impulsive noise can be observed in a very simple
setup. Consider the unknown plant to be the sixth one of [48]
(N = 120). Additionally, τ = 5, βSM-sign = 0.01 and
βSM = 0.03. Learning coefficients were picked to ensure the
same asymptotic performance of the algorithms. The variance
of the additive noise is equal to σ2

ν = 10−6. Besides the
measurement noise ν(k), an impulsive noise η(k) is intro-
duced into the reference signal d(k). The impulsive noise
is created as η(k) = ωkNk , where ωk follows a Bernoulli
process with a success probability of P [ωk = 1] = 0.1, and
Nk is a zero-mean Gaussian noise with a variance equal to
σ2
η = 0.1. Figure 2 depicts the results. Note that the advanced

algorithm presents better rate convergence than the original
SM-NLMS algorithm. Furthermore, it presents a much lower
asymptotic probability of update (34.49%), less than half than
the one obtained by the SM-NLMS algorithm (74.87%). This
indicates that the proposed algorithm shows great potential in
terms of reducing computational burden, as well as in its data
censoring abilities.

B. STEADY-STATE BEHAVIOR
To assess the stochastic model against experimental data,
choose a configuration involving the first plant of [48] (N =
64), with γ = 5 and σ2

ν = 10−5. The fixed-point equa-
tion (42) was iterated from an initial value ξ0 = 10−2 until the
absolute difference between two consecutive estimates of the
MSE is less than 10−10. Based on Figure 3, one can infer that
the theoretical model demonstrates strong agreement with the
data, for both white and colored input signals. The largest
deviation between the theoretical prediction and simulated
results is observed at β = 1, with a discrepancy of 0.0961
dB (resp. 0.2862 dB) for white (resp. colored) input signals.
The increased discrepancy between theoretical predictions
and simulated data at higher β values is attributed to the fact
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FIGURE 2. Evolution of the MSE and probability of update of both
SM-sign-NLMS and SM-NLMS algorithms. (a) MSE; (b) Probability of
update. The curves were computed through 104 independent Monte Carlo
trials.
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FIGURE 3. Steady-state MSE (dB) of the advanced algorithm. (a) White
input signal; (b) AR(4) input signal.

that, in this case, ea(k) and ep(k) exhibit a stronger stochastic
coupling with respect to the input data, resulting in a less
accurate approximation (31).

C. TRANSIENT BEHAVIOR
The ability of the devised stochastic model for predicting the
transient behavior is assessed in a setup where the ideal plant
is the second one of [48] (N = 96), with β = 0.5 and
τ = 2. The comparison between the actual MSE curve and
the predicted one can be seen in Figure 4. One may observe
that the proposed model fits well the simulated curve, except
in the case of a colored input signal, where model has some
disparity in the final part of the transient regime. Neverthe-
less, it is important to observe that the model remains highly
accurate during the early iterations, as well as in the steady
state. Colored input signals elevate the stochastic coupling
among the adaptive coefficients, making it difficult for certain
theoretical models to precisely capture the behavior of the
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FIGURE 4. Transient behavior of the proposed algorithm. (a) White input
signal; (b) MA(3) input signal. Solid blue: simulated. Dashed red:
theoretical prediction.

learning algorithm.

D. VARIABLE STEP-SIZE SCHEME
As the SM-sign-NLMS algorithm is introduced in this paper,
there are no prior time-varying learning rate techniques that
can be applied to it. Therefore, we will assess the perfor-
mance of the proposed VSS method with various choices
of the learning rate parameter (assumed to be fixed across
iterations). It is known that small values of β favor asymptotic
performance, while higher values accelerate the convergence
rate. Consider τ = 3, σ2

ν = 10−6 and the unknown plant be-
ing the third one of [48] (withN = 96). Figure 5 demonstrates
that the VSS-based scheme outperforms the fixed step size
version, with distinct values of β. The benefit persists even
when the estimated variance of the noise variance is wrong
(see Fig. 5.(b)). Thus, the VSS presents better asymptotic
performance, without reduction in the convergence rate. The
fact that the performance of the VSS version of the algorithm
remains largely unchanged in the presence of a significant
error in noise variance estimation is relevant, given that the
process of estimating this variance is not straightforward.

E. TRACKING
Equation (74) provides a theoretical estimate of the steady-
state performance of the SM-sign-NLMS algorithm. For the
theoretical prediction, it was iterated from an initial value
ξ0 = 10−2 until the absolute difference between two consecu-
tive estimates of theMSE is less than 10−10. In this section, its
accuracy is assessed for both white and colored input signals.
Three distinct scenarios are taken into account:

• Scenario I: τ = 5, σ2
ν = 5× 10−6, σ2

q = 2× 10−5;
• Scenario II: τ = 4, σ2

ν = 10−6, σ2
q = 10−5;

• Scenario III: τ = 3, σ2
ν = 5× 10−7, σ2

q = 8× 10−6.

The fourth plant of [48] (with N = 128) was adopted as
the ideal system. Note that a high degree of non-stationarity
was imposed, since σ2

q (the variance of the i.i.d. Gaussian
Markovian perturbation) is higher than the usual in the liter-
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FIGURE 5. Transient behavior of the VSS-SM-sign-NLMS algorithm,
compared against the original version with a fixed step size (for
β ∈ {0.1, 0.5, 1}). The input signal is AR(4). (a) estimated noise variance
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η ; (b) estimated noise variance σ̂2
η = 2σ2
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FIGURE 6. Steady-state performance of the advanced algorithm for
distinct values of β and three different scenarios. (a) White input signal;
(b) MA(3) input signal.

ature (see, e.g., [49], [50]). Figure 6 depicts the results. Note
that the theoretical model predicts in an accurate manner the
asymptotic performance of the algorithm, for both white and
colored input signals.

F. FIRST-ORDER ANALYSIS OF THE DEFICIENT-LENGTH
SCENARIO
Equation (83) implies that the proposed algorithm is asymp-
totically unbiased in the deficient-length case, in the sense
that the coefficients of the adaptive filter converge to the first
N coefficients of the optimal vector3. In order to quantita-
tively assess such a prediction, consider the case where the
ideal solution contains the first 30 elements of the fifth plant
of [48], whereas the adaptive filter operates with N = 20

3Note that the derivation of (83) assumed a white input signal.
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FIGURE 7. Mean behavior of the weights wi (k) (for i ∈ {2, 5, 9}) of a
deficient-length configuration of the sign-SM-NLMS algorithm. The input
signal is white.

adaptive taps. In this simulated scenario, τ = 2, σ2
ν =

10−6, and β = 5 × 10−3. Figure 7 depicts the asymptotic
convergence in the mean of three adaptive weights to the
corresponding coefficient of the optimal solution, as expected
by the devised theoretical model.

G. SECOND-ORDER ANALYSIS OF THE DEFICIENT-LENGTH
SCENARIO
The solution of the coupled pair of fixed-point Equations (92)
and (93) provides a theoretical estimate of the asymptotic
MSE of the deficient-length configuration. In order to assess
the theoretical prediction, consider a setup with τ = 2,
σ2
ν = 10−6, β = 10−3 and

w⋆
i = exp (−0.2i) cos(0.3i), (94)

for i ∈ {0, . . . , 39}. The quantities θ and ξ are initialized
with the value 10−2. They are iterated through Equations (92)
and (93) until the absolute difference between two consec-
utive estimates of the MSE is lesser than 10−10. Figure 8
allows one to conclude that the theoretical model described in
Section VII-B is able to estimate the asymptotic performance
of distinct suboptimal lengths of the adaptive filter. Note
however that the theoretical prediction slightly overestimates
the asymptotic performance of the algorithm. Indeed, the dif-
ference between the experimental steady-state performance
of the algorithm and the theoretical prediction is 0.593 dB
(resp. 0.8034 dB) when N = 30 (resp. N = 32).

IX. CONCLUSIONS
This paper advances a novel algorithm that combines the Set-
membership filtering concept with a signed normalized adap-
tive filter. The update equation is derived from a minimum
disturbance description. A theoretical fixed-point equation
that estimates its asymptotic MSE was derived, based on
energy-conservation arguments. A transient analysis of the
algorithm was provided, utilizing a simplified model for the
input vector, which divorces its radial distribution from its
(discrete) angular distribution. The transient analysis was
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configuration. The input signal is white.

employed to derive an efficient and nonparametric variable
step size scheme that combines a faster convergence rate with
better steady-state performance. Such an analysis also was
generalized in order to capture the asymptotic behavior of the
algorithm when the ideal plant is nonstationary and subjected
to a first-order Markovian perturbation. A novel stochastic
model for the deficient-length configuration was described,
that predicts the unbiasedness of the algorithmwhen the input
signal is white. Further, the mean square behavior of the
algorithm in the suboptimal-length setting was also predicted
from a stochastic model. The findings were confirmed by
extensive simulations.
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