
Problem solving and quantum computation

Lúıs Tarrataca and Andreas Wichert
Department of Informatics

INESC-ID / IST - Technical University of Lisbon
Portugal

{luis.tarrataca,andreas.wichert}@ist.utl.pt

Abstract

Is quantum computing suitable for modeling problem solving, a do-

main which is traditionally reserved for the symbolic approach? We pro-

pose a hybrid quantum problem solving model. Our approach is moti-

vated by several important theories from the fields of physics, computer

science and psychology. We demonstrate our approach through a model

for a quantum production system, based on the n-puzzle. The developed

model can be extended in order to tackle any N-level depth search re-

quired by other problems. No preliminary knowledge concerning quantum

computation is required.

Keywords: Inference, quantum computation, problem solving, production sys-
tem, reversible computation

1 Introduction

Cognitive computation has focused for a long focused on concepts such as knowl-
edge representation and the reasoning processes that allow knowledge to be
applied. Traditionally, these concepts have been modeled with the assistance
of classical probability theory which allows the representation of possible state
transitions as a graph of probabilities. However, such an assumption may be
inadequate depending on the physical laws in play during possible applications.
This theory was exploited in [1, 2, 3, 4, 5] where quantum probability theory
was explored in order to justify empirical variations that classical probability
theory failed to explain. By employing quantum von Neumann probabilities the
authors were able to obtain a closer fit to experimental data.

Additionally, knowledge can be employed by problem-solving agents trying to
determine adequate actions when dealing with complex environments [6]. Il-
lustrating examples include IBM’s Deep Blue [7] and Watson initiatives which
focus, respectively, on chess playing and the Jeopardy! quiz show. Both these

1

system employ knowledge alongside massive amounts of parallel computation.
However, these tasks are routinely performed by human brains through neuronal
processing on a time-scale of 10−3 seconds. Manin draws attention to these facts
[8] and suggests quantum processing as a theoretical alternative. Additionally,
some of the possible relationships between artificial intelligence and quantum
computation have been established in [9]. In this work we extend these views by
introducing a possible problem-solving technique from a quantum computation
perspective. Our approach will be based on production system theory since it is
well suited for problem solving scenarios. The following sections are organized as
follows: Section 1.1 introduces some key concepts of production systems whilst
Section 1.2 establishes the links between production system theory and classical
search strategies.

1.1 Production System

The production system is a formalism proposed by Post [10] to describe com-
putational procedures through problem-solving primitives. Production system
theory describes how to form a sequence of actions leading to a goal state.
A production system is composed of condition-action pairs, i.e. if-then rules,
which are also called productions. The state description at any given time is
also referred to as working memory. On each cycle of operation, the working
memory is matched against the conditional part of all productions. A rule is ap-
plied when the conditional part is recognized to be part of the working memory.
Applying a rule results in implementing the associated action which describes a
form of problem-solving behaviour [11]. Applying an action results in the state
of the problem instance changing accordingly. At any given point, more than
one production might be deemed to be applicable. This subset of productions
represents the conflict set. A conflict resolution strategy is then employed to
this subset in order to determine an appropriate production. The operational
cycle is brought to a close when a goal state is reached or when no more rules
can be triggered [6]. A problem is described by the productions, the initial state,
and the goal state. The overall problem-solving behaviour can be interpreted as
a form of computation whose elementary steps are the individual productions
applied. This general architecture is illustrated in Figure 1.

Some of the best known examples of human cognition-based production systems
include the General Problem Solver [12] [13] [14] [15], ACT [16] and SOAR [17]
[18]. Production systems are closely related to the approach taken by Markov
algorithms [19]. Furthermore, both approaches can be shown to be equivalent
in power to the Turing machine [20]. The production system is also a model of
actual human problem-solving behavior [21, 22, 23, 24].

2

Control

Recognize Act

Working Memory

Prodution Rules
(Conditon, Action)

C1 A1

C2 A2

Cn An

Figure 1: General architecture for a production system (adapted from [6]).

1.2 Search as a decision problem

From a computer science perspective, the control structure of a production sys-
tem can be defined in terms of classical tree-search procedures which is appropri-
ate to artificial intelligence tasks trying to mimick problem-solving behaviour.
This fact makes production system theory particularly well suited for problem-
solving scenarios. In general, tree algorithms are applied when when we wish
to perform an exhaustive examination of all possible combinations for the state
space. For these cases, the search space can be viewed as forming a hierarchy
reflecting the spectrum of combinations. All that is required to formulate a
search problem is a set of states, a set of operators that map states into succes-
sor states, an initial state and a set of goal states [25]. The overall objective is
to find a sequence of operators that map the initial state to a goal state.

The operational behaviour of a production system requires the ability to, given
an initial state, determine which state is reached after applying a production
rule. As previously mentioned these actions are also an integral part of the
rules employed by production systems. This process is similar in function to
classical tree-search strategies where actions are applied to states, yielding as
a result new configurations, a process illustrated in Figure 2. The binary tree
presented depicts the nodes reached from a root node A by applying one of two
possible actions, respectively 0 or 1. The actions applied during the search are
the production system equivalent of applying rules. The cardinality of the set of
available actions is also referred to as the branching factor b. At a search depth
level d there exist a total of bd leaf nodes. Each leaf node translates into the
state reached after having applied d actions, e.g. node I is reach after applying
actions 0, 0 and 1. We will refer to a set of actions leading to a leaf node as the

3

path taken during the tree-search.

A

B

D E

H I J K

C

F G

L M N O

P
a
th
 2

0
0
1

P
a
th
 3

0
1
0

P
a
th
 4

0
1
1

P
a
th
 5

1
0
0

P
a
th
 6

1
0
1

P
a
th
 7

1
1
0

P
a
th
 8

1
1
1

H
e
ig
h
t
=
 3

Depth 0

Depth 1

Depth 2

Depth 3

0

0

0 0 0 0

0

1

1 1

1 1 1 1

P
a
th
 1

0
0
0

Figure 2: The possible paths for a binary search tree of depth 3.

1.3 Problem

Unfortunately, most classical tree-search procedures require exponential growth
search space, i.e. O(bd) time. The advent of quantum computation promised
sensational performance increases. Perhaps one of the most remarkable results
is due to Peter Shor’s algorithm for fast factorization [26] which delivered an
exponential speedup when compared against the best performing classical al-
gorithms. Later, Grover’s algorithm [27] allowed for a quadratic speedup to be
obtained when searching for a solution from amongst N elements. Although,
not as dramatic as Shor’s speedup, if we consider search spaces with bd elements
then the quantum search algorithm allows for an O(b

d
2) time, effectively cutting

the search depth in half. Accordingly, it would be interesting to consider how to
develop a mechanism incorporating classical tree-search concepts capable of be-
ing applied alongside Grover’s algorithm in order to produce a hybrid quantum
production system. Such a system would illustrate how to develop possible prob-
lem solving strategies from a quantum computation perspective. Our system
will be built upon the concepts of the sliding block puzzle, which is a common
example capable of illustrating problem-solving strategies. Others approaches
to quantum search have been detailed in [28], [29], [30] and [31].

All of the above issues will be key features of our quantum production system
which will be explored in the remainder of this work. We will start by present-
ing a brief introduction in Section 2 to reversible circuitry which is an integral
part of quantum computation. Section 3 discusses a possible approach to a re-
versible production system capable of solving instances of the 3-puzzle. Section

4

4 proceeds by providing the necessary background for a quantum extension of
our propositions. Section 5 presents the conclusions of our work.

2 Insights into reversible computation

Reversibility is a key feature of quantum physics [32] [33] [34]. Changes oc-
curring to a quantum state can be described using the language of quantum
computation. A quantum computer is built from a quantum circuit containing
wires and elementary quantum gates to carry around and manipulate quan-
tum information [35]. This operational behaviour is similar to the one found
in classical computer logic employing circuits constituted by gates. In quantum
computation, it is possible to employ equivalent logical operations with a spe-
cific caveat, namely all operations must be performed in a reversible manner.
The origins of reversible computation can be traced back to [36], [37], [38] and
[39].

Mathematically, reversible circuits, and respective gate components, can also be
represented in linear algebra terms as matrices known as unitary operators. A
matrix A is said to be unitary if A’s transpose complex conjugate, denoted by

A∗T

, or simply by A†, is also the inverse matrix of A [40]. Notice that this is
equivalent to A−1 = A† and consequently A−1A = A†A = I. In this notation,
each matrix column describes the transformation suffered at a specific column
index. Additionally, unitary operators preserve the norm of the vectors. These
concepts correspond to those of bijective functions. In the remainder of this
document we will use the terms reversible circuit, reversible gate and unitary
operator in an equivalent manner.

Traditionally, classical computation is seen as an irreversible process, a direct
consequence from the use of many-to-one binary gates. A logical gate is a
function f : {0, 1}k → {0, 1}l from some fixed number k of input bits to some
fixed number l of outputs bits [41]. A computation is said to be reversible if
given the outputs we can uniquely recover the originating inputs [38] [42]. As
an example and counterexample consider, respectively, the logical gates NOT
and AND. The former gate is reversible because if the output is 1 we know that
the input must have been 0, and the same is also true the other way around.
However, the same cannot be said for the AND gate. More precisely, given
output 0 there are a total of three combinations which might have yielded the
stated result. So, the question naturally arises: Is there a general mechanism
for converting irreversible computations into reversible ones? It turns out that
there is such a mechanism. Each irreversible gate can be made reversible by
adding some additional input and output wires [43]. This conversion introduces
a certain number of inputs and outputs to each irreversible gate. It is this
additional information that provides for reversible computation. This process
is illustrated in Figure 3.

5

Irreversible

Function
Input Output

(a)

Reversible

Function

Input

Auxiliary
Input

Output

Auxiliary
Output

(b)

Figure 3: An irreversible function 3a can be mapped into a reversible function
3b through the introduction of a number of constants and auxiliary input and
output bits. (Source: [42])

Accordingly, given an irreversible function f , a reversible mapping can be con-
structed with the form illustrated in Expression 1 [43], where x is the input regis-
ter, and c is an auxiliary control bit. The reversible gate will require ⌈log2 x⌉+1
input bits and an additional ⌈log2 x⌉ + 1 output bits, i.e. a combined total of
2(⌈log2 x⌉+ 1) bits. Such behaviour contrasts with the irreversible counterpart
which would require ⌈log2 x⌉+1 bits. Accordingly, the number of bits employed
by both versions differs by a constant factor k = 2.

(x, c) 7→ (x, c⊕ f(x)) (1)

The conversion process of the irreversible AND gate to a reversible form can
be visualized as adding an additional input wire (for the control bit) and two
additional output wires (in order for the inputs to be part of the outputs). The
reversible AND gate and its truth table are presented, respectively, in Figure
4 and in Table 1. Notice that the AND operation of bits a and b, i.e. ab, is
effectively stored in the third output bit. Given that bit c is known from the
start, it is possible to uniquely recover ab through the operation c⊕ (c⊕ (ab)) =
ab. This simple mapping mechanism allows for maintaining a detailed account of
all inputs and outputs. Ergo, it is in accordance with the definition of reversible
computing.

AND gate

a

b

c

a

b

c (ab)

Figure 4: Reversible AND gate.

How can we build a unitary operator capable of expressing the inner-workings
of the reversible AND gate? Unitary matrices perform one-to-one mappings of
states. A quick analysis of Table 1 illustrates precisely this behaviour which,
in its essence, can be interpreted as the set of possible mappings between all
binary states. The majority of the state transitions map onto themselves, with
the exception of the transitions associated with binary inputs “110” and “111”.

6

Inputs Outputs
a b c a b c ⊕ (ab)
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Table 1: Truth table for the reversible AND gate.

More specifically, binary state “110” maps onto “111”, which we express as
110 → 111, or by employing an equivalent decimal representation, 6 → 7.
Additionally, state “111” maps to “110”, i.e. 7 → 6.

Constructing the unitary operator requires the ability to encode each one of
these mappings. In order to do so, we must first focus on how to represent each
state. This task can be performed by using an 2n dimensional vector x, where
n represents the number of bits. In quantum computation, the Dirac notation
[44] [45] is employed in order to represent vector x as |x〉. For the specific case
of the reversible AND, a vector with dimension 23 should be employed, with
each state being represented by an entry set 1 at the corresponding dimension,
and all remaining dimensions set to 0, e.g. state |0〉 = (1, 0, 0, 0, 0, 0, 0, 0)T ,
state |1〉 = (0, 1, 0, 0, 0, 0, 0, 0)T , ..., and state |7〉 = (0, 0, 0, 0, 0, 0, 0, 1)T . From a
mathematical point of view applying the reversible AND gate to an input corre-
sponds to multiplying the matching unitary operator by an input vector. This
operation is presented in Expression 2, where U denotes the unitary operator
for the reversible AND gate, |a〉 the input state and |b〉 the output state.

U |a〉 = |b〉 (2)

Notice that each input vector |a〉 specifies which columns of U should be taken
into consideration in order to form the output vector. For instance, input vec-
tor (1, 0, 0, 0, 0, 0, 0, 0)T effectively eliminates all but the first column from the
multiplication process. Accordingly, in order to define the mapping U |0〉 =
|0〉 = (1, 0, 0, 0, 0, 0, 0, 0)T we may specify (1, 0, 0, 0, 0, 0, 0, 0)T as the first col-
umn of U . As an additional example state consider the mapping U |7〉 =
|6〉 = (0, 0, 0, 0, 0, 0, 1, 0)T , accordingly the eighth column of U should spec-
ify (0, 0, 0, 0, 0, 0, 1, 0)T as the resulting transformation. Repeating this process
of column permutation for the remaining columns allows one to obtain the com-
plete form of U , which is presented in Expression 3 alongside with the associated
transformations as superscript indexes.

7

U =
(
U |0〉 U |1〉 U |2〉 U |3〉 U |4〉 U |5〉 U |6〉 U |7〉
|0〉 |1〉 |2〉 |3〉 |4〉 |5〉 |7〉 |6〉

)

=

U |0〉 U |1〉 U |2〉 U |3〉 U |4〉 U |5〉 U |6〉 U |7〉
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

(3)

In general, an irreversible circuit can be made reversible by substituting each
irreversible gate by an equivalent reversible gate [38]. Additionally, if each
element of the circuit is replaced with its respective inverse we are able to
perform the inverse operation of the original circuit. In practice, this means
that if we run the reversed circuit with an output, we will obtain the originating
input bit register.

3 Sliding block puzzle

Our quantum production system will be based on the concepts of the sliding
block puzzle. The sliding block puzzle is a familiar problem commonly ap-
proached in the artificial intelligence community, which conveniently showcases
key problem-solving notions. The next couple of sections are organized as fol-
lows: Section 3.1 will start by describing a classical production system for the
sliding block 8-puzzle; Section 3.2 will then build on these results and develop
a simpler sliding block 3-puzzle; Section 3.3 presents the details for a reversible
circuit capable of solving instances of the 3-puzzle; Section 3.4 describes the
details surrounding the extensions to any n-puzzle.

3.1 Sliding block 8-puzzle

Many artificial intelligence applications involve composing a sequence of oper-
ations. The search space generated by an 8-puzzle sliding block puzzle is both
complex enough to be interesting and small enough to be tractable. It also lends
itself to solution using a production system [6].

8

According to [46] a sliding block puzzle challenges a player to shift pieces around
on a board without lifting them to establish a certain end-configuration. This
non-lifting property makes finding moves, and the paths opened up by each move
important parts of solving sliding block puzzles . Typically, both the initial- and
end-configuration might be chosen randomly, as illustrated by Figure 5. How-
ever, the end-configuration typically reflects some sort of logical arrangement, as
exemplified in Figure 5b. The final logical arrangement is specific to individual
problem instances of sliding block puzzles. The set of possible elements for the
8-puzzle, S8−puzzle, is presented in Expression 4.

S8−puzzle = {One, Two, Three, Four, F ive, Six, Seven,Eight, Blank} (4)

4

7

2

5 8

3

6

1

1 2 3

1

2

3

(a) Initial board configura-
tion.

4

7

2

5

8

3

6

1

1 2 3

1

2

3

(b) End board configuration.

Figure 5: A sliding block puzzle example with a board of dimension 3× 3.

Typically, each sliding block puzzle has a blank cell, which can be perceived to
move on a set of possible directions. This way we gain generality by thinking of
“moving the blank cell” rather than moving a numbered tile. In the case of the
sliding block puzzle exemplified in Figure 5 only diagonal movements are not
allowed. Accordingly, the set of possible movements for the blank cell consists of
actions Up, Down, Right and Left, as illustrated by Expression 5. A solution to
the problem is an appropriate sequence of actions, such as “‘move blank cell up,
move blank cell left, ..., etc‘””. Clearly, not all possible actions are applicable
to all positions within the board. In fact, only position (2, 2) is able to execute
the full range of motions. If the blank cell is in any of the remaining positions
of the board then only 2 to 3 moves can be executed.

Possible Actions = {Up,Down,Left, Right} (5)

Before advancing any further it is important to focus on a few points regarding
the complexity of solving sliding block puzzles. More precisely, is there any way
of determining if an end-configuration is obtainable from an initial configura-
tion? If so, what is the minimum set of movements for achieving the desired

9

Condition Action
goal state in working memory → halt
blank is not on the top edge → move the blank up
blank is not on the right edge → move the blank right

blank is not on the bottom edge → move the blank down
blank is not on the left edge → move the blank left

Table 2: Production rules set for the 8-puzzle. (Source: [6])

state? As is to be expected a wide number of authors have tried to tackle this
subject. Surprisingly, not a great deal of progress has been achieved. Short
of trial and error, it is impossible to present an answer to these questions [47].
This apparent inability to solve efficiently sliding block puzzles stems from com-
putational complexity theory. Sliding-block puzzles have been shown to belong
to a class of problems known as PSPACE-complete [48] [49]. PSPACE consists
of those problems which can be solved using few spatial resources but poten-
tially requiring significant time. PSPACE is thought to be even harder than
NP-complete, although this has never been proved.

As previously stated, in order to solve a problem using a production system,
we must specify the working memory, the productions and the control strategy.
Lets say we initialize the working memory with the initial board configuration
depicted in Figure 5a and we aim to reach the target board configuration illus-
trated in Figure 5b. We can then define an illustrating set of production rules
as presented in Table 2. The only remaining issue is due to the control strategy
employed, which might be defined as [6]

1. Try each production in order;

2. Do not allow loops;

3. Stop when goal state is reached.

3.2 Sliding block 3-puzzle

In order to proceed with the development of our quantum production system
we will concentrate on a board with dimension 2 × 2, i.e. a 3-puzzle. Figure 6
depicts a 2 × 2 sliding block puzzle with an initial board configuration (Figure
6a) and a target configuration (Figure 6b). The set of possible movements for
the blank element remains the same as in the case of the 8-puzzle, respectively
illustrated in Expression 5. However, for the 3-puzzle, at any given position
only two movements are deemed possible to be executed. Since the blank cell
always occupies a corner position, its movement can be perceived as performing
a clockwise or counter-clockwise movement. Figure 7 illustrates the states ob-
tained after performing counter-clockwise and clockwise movements for the ini-
tial board configuration presented in Figure 6a. The set of possible elements for
the 3-puzzle, S3−puzzle, is presented in Expression 6. We choose to focus on the
concepts surrounding a 3-puzzle board merely for practical reasons, since such

10

a problem requires fewer bits to encode and consequently demands a smaller-
sized reversible circuit. However, as we will demonstrate later, our model can
be extended in order to accommodate any N -puzzle, with N ≥ 3.

2 3

1

1 2

1

2

(a) Initial board con-
figuration.

2

3

1

1 2

1

2

(b) Target board con-
figuration.

Figure 6: A 3-puzzle example.

S3−puzzle = {One, Two, Three,Blank} (6)

2

31

(a) Blank-cell counter-
clockwise movement.

2 3

1

(b) Blank-cell clockwise
movement.

Figure 7: Movement example for the blank cell given the board configuration
depicted in Figure 6a.

3.3 Building the reversible circuit for the 3-puzzle

Since our proposal is to develop a reversible circuit representing the production
system for the 3-puzzle we need a proper binary representation for the board
configuration. Each possible board configuration incorporates four elements,
i.e. |S3−puzzle| = 4. Logic dictates that a total of log2 |S3−puzzle| = 2 bits are
required in order to represent each element of S3−puzzle.

1 Table 3 depicts a
possible bit encoding strategy for each element.

1Another possible strategy would consist in encoding each of the |S3−puzzle|! = 4! = 24
possible board configurations. This strategy would require ⌈log2 24⌉ = 5 bits, allowing for
three bits to be saved. However, such an encoding mechanism would make it harder to
understand the position of each element.

11

b1 b2 Element
0 0 Blank
0 1 One
1 0 Two
1 1 Three

Table 3: Binary encoding for elements of a 3-puzzle.

Board Position (1, 1) (1, 2) (2, 1) (2, 2)
Bits b1 b2 b3 b4 b5 b6 b7 b8

Initial Board Configuration 1 0 1 1 0 1 0 0
Target Board Configuration 0 1 1 0 1 1 0 0

Table 4: Binary strings depicting the board configurations presented in Figure
6a and Figure 6b.

Board configurations can now be perceived as a binary string of length 8 con-
taining the encodings for each position of the board. This process is illustrated
in Table 4. The binary representation for board configurations will be crucial
to the development of the reversible circuit.

In order to proceed with our analysis lets focus on a few design concepts.
Namely, in order to develop a production system capable of tackling a sliding
block puzzle we need the ability to:

Requirement 1 Determine if a given board configuration is a target board
configuration.

Requirement 2 Given a board configuration and a production rule determine
the new board configuration generated by applying the production;

When dealing with reversible computation, we find it helpful to first consider
the desired operational behaviour in terms of a classical gate. In doing so we
gain some useful insight into the inputs and outputs of the reversible operator.
Let us begin by concentrating our efforts on the first requirement. Theoretically,
we need to develop a gate capable of receiving as an argument a binary string
depicting the state of the board to be tested. In classical computation, we would
simply output a single bit, which would be set to 1 if the board presented was
the target board configuration and 0 otherwise. This computational process can
be represented as function f illustrated in Expression 7.

f(b1, b2, b3, b4, b5, b6, b7, b8
︸ ︷︷ ︸

board configuration

) =

{
1 if target board configuration
0 otherwise.

(7)

From the previously presented Expression 1 we know that the inputs should also
be outputted, i.e. the board configuration should also be part of the outputs.
The only issue is due to the result bit, which requires that a single control bit
be provided as an input. Accordingly, our reversible gate will have a total of 9
input and output bits, 8 of which are required for representing the board and 1

12

Inputs Outputs
b1 b2 b3 b4 b5 b6 b7 b8 c b1 b2 b3 b4 b5 b6 b7 b8 c ⊕ f(b)

0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0

0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1

0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0

0 0 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 1

0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 1 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 0

1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1

Table 5: A selected number of results from the truth table of the target board
unitary operator.

bit serving as control. This gate, which we will label as the target board unitary
operator, is illustrated in Figure 8 2. Table 5 showcases the gate’s behaviour for a
few board configurations, where f(b) denotes f(b1, b2, b3, b4, b5, b6, b7, b8). Notice
that when the gate determines that a board is a target board configuration it
effectively switches the control bit, as highlighted in Table 5.

Target Board
Unitary Operator

Description: Given board

configuration [b1, ..., b7] verify

if it is the target board

configuration

b1

b2

b3

b4

b5

b6

b7

b8

c c

b1

b2

b3

b4

b5

b6

b7

b8

f(b1, b2, b3, b4, b5, b6, b7, b8)f(b1, b2, b3, b4, b5, b6, b7, b8)

Figure 8: The target board unitary operator.

From a mathematical point of view, how can we express the inner-workings of
the reversible circuit illustrated in Figure 8? We have seen how to approach
unitary operator construction in Section 2. Accordingly, we need to specify
the set of column permutations. Let T denote the unitary operator responsible
for implementing the behaviour of function f . T is a matrix with dimensions
29×29. From Table 5 it should be clear that only two input states map onto other
states rather than themselves (when considering the target board configuration
of Figure 6b). Namely, T |216〉 → |217〉 and T |217〉 → |216〉. Accordingly, the
217th column of T should permute to |217〉, and the 218th column map to state
|216〉. All other remaining states would continue to map onto themselves.

Next, we draw our attention to the second requirement. As we have seen the

2We could extend this gate in order to receive as an input the desired target board con-
figuration. This addition would be carried out at a cost of 8 additional input and output
bits. However, since we are aiming for design simplicity, the target board configuration will
be “hard coded” into the gate. In doing so, we loose generality but gain a simpler design.

13

original board configuration provided as input should also be part of the outputs.
The new gate should also output a new board configuration. Also, in the context
of a production system we are interested in applying the move blank cell unitary
operator if and only if the inputted board configuration is not a target board
configuration. Otherwise, the production system would systematically discard
any potential solutions found. This process can be performed by including a
reference to function f in the new function g’s definition.

The only issue is due to how to output the new board configuration in a re-
versible manner. Expression 1 illustrated how this process could be performed
for a single result bit. In this specific case we are interested in having 8 result
bits representing the new board configuration. Accordingly, since the gate must
respect the principles of reversible computation, an additional 8 control bits
should be included as input. Expression 1 can be extended in order to accom-
modate any number of control bits, as illustrated by Expression 8 [43] where ci
are control bits, and f(x) = (y1, y2, · · · , yn).

(x, c1, c2, · · · , cn) 7→ (x, c1 ⊕ y1, c2 ⊕ y2, · · · , cn ⊕ yn) (8)

Such a reversible gate formulation will require 2(⌈log2 x⌉ + n) input and out-
put bits, whilst its irreversible equivalent would be satisfied with ⌈log2 x⌉ + n

bits. Again, both versions differ by a constant factor k = 2. From a compu-
tational complexity perspective such a factor effectively doubles the space em-
ployed by a reversible formulation when compared against classical irreversible
ones. However, since such growth is not exponential it can still be described as
moderate.

Expression 8 makes it possible to define a function g responsible for produc-
ing the new board configuration. Function g should receive as inputs the cur-
rent board configuration and a bit m indicating whether the blank cell should
perform a clockwise (m = 1) or counter-clockwise movement (m = 0). By
systematically checking for the position of the blank cell and with the move-
ment described in bit m we can generate the new board configuration. Let
g : {0, 1}9 → {0, 1}8 with g(b,m) = (y1, y2, y3, y4, y5, y6, y7, y8), where b denotes
a valid board configuration (b1, b2, b3, b4, b5, b6, b7, b8), and m the type of move-
ment. By valid board configuration we mean that a board configuration must be
an un-ordered collection of size four composed of distinct elements taken from

14

Table 1. The computational behaviour of g is presented in Expression 9.

g(b,m) =

(b5, b6, b3, b4, b1, b2, b7, b8) if f(b) = 0 and b1 = b2 = 0 and m = 0
(b3, b4, b1, b2, b5, b6, b7, b8) if f(b) = 0 and b1 = b2 = 0 and m = 1
(b3, b4, b1, b2, b5, b6, b7, b8) if f(b) = 0 and b3 = b4 = 0 and m = 0
(b1, b2, b7, b8, b5, b6, b3, b4) if f(b) = 0 and b3 = b4 = 0 and m = 1
(b1, b2, b3, b4, b7, b8, b5, b6) if f(b) = 0 and b5 = b6 = 0 and m = 0
(b5, b6, b3, b4, b1, b2, b7, b8) if f(b) = 0 and b5 = b6 = 0 and m = 1
(b1, b2, b7, b8, b5, b6, b3, b4) if f(b) = 0 and b7 = b8 = 0 and m = 0
(b1, b2, b3, b4, b7, b8, b5, b6) if f(b) = 0 and b7 = b8 = 0 and m = 1
(b1, b2, b3, b4, b5, b6, b7, b8) otherwise

(9)

With function g defined it becomes relatively simple to develop the correspond-
ing reversible gate. As before, we need to devote special attention in order
to endow the gate with reversibility. Accordingly, the unitary operator has to
incorporate the following characteristics:

• 8 input and output bits for the current board configuration;

• 1 input and output bit for describing the type of movement;

• 8 control and result bits in order to account for the new board configura-
tion.

The reversible gate, which we will refer to as the move blank cell unitary operator
M , is illustrated in Figure 9. M is a matrix of dimension 28+1+8 × 28+1+8

which can be built in a similar way to T , i.e. from the corresponding truth
table determine the mappings between states. These mappings can then be
translated as column permutations.

Move Blank Cell
Unitary Operator

Description: Given board

configuration [b1, ..., b8] and a

single movement bit m output

the board configuration

resulting from applying m to

[b1, ..., b8].

b1

b2

b3

b4

b5

b6

b7

b8

c1

c2

c3

c4

c5

c6

c7

c8

m

b1

b2

b3

b4

b5

b6

b7

b8

c1

c2

c3

c4

c5

c6

c7

c8

m

y1

y2

y3

y4

y5

y6

y7

y8

Figure 9: The move blank cell unitary operator.

15

With both the target board and the move blank cell gates designed we are now in
a position to continue with the development of our reversible production system.
Recall that a production system has the following elements: working memory,
set of production rules and a control strategy. The auxiliary bits employed by
each of the previously defined gates can be perceived as the working memory of
the system. Functions f and g can be seen as enforcing the policies of a control
and act cycle specific to the problem at hand. For now we will be deliberately
omissive regarding the set of production rules. Instead, we will focus on certain
features of the working memory and control strategy.

In general, for the production system to work we need to verify if a target
board configuration has been reached after applying a production rule. The
move blank cell operator M incorporates in its design a test for determining
if the gate should be applied or not. Therefore, it is only required to check
if the final board configuration corresponds to a target board configuration.
This process is illustrated in Figure 10 where res has the value presented in
Expression 10. Alternatively, one could first employ the target board unitary
operator and then redirect the output containing the result to a modified move
blank cell gate. The modified version of the movement gate would employ that
outcome in order to determine if the input board was in a target configuration
or not. However, this would result in an unnecessary level of complexity to
be added to the solution. Since we are aiming for simplicity we chose the first
approach.

res = c9⊕f(c1⊕y1, c2⊕y2, c3⊕y3, c4⊕y4, c5⊕y5, c6⊕y6, c7⊕y7, c8⊕y8) (10)

Notice that the concept of working memory is contemplated through the initial
board configuration bits b1, b2, b3, b4, b5, b6, b7, b8 and the result bits c1⊕y1, c2⊕
y2, c3⊕y3, c4⊕y4, c5⊕y5, c6⊕y6, c7⊕y7, c8⊕y8. Also, the circuit design translates
the control strategy (although a very primitive one), i.e. if it is possible move
the blank cell and test if the new board is a target board. It is worthy to
draw attention to the fact that Figure 10 illustrates the application of a single
movement operator M alongside a target board operator T . Algebraically, we
can express this operation as presented in Expression 11, where I⊗9 = I ⊗ I ⊗
· · · ⊗ I repeated 9 times, since operator T should only take into consideration
bits c1, c2, · · · , c9. The unitary operator presented in Expression 11 would act on
Hilbert space H = Hb⊗Hm⊗Hc, where Hb is the Hilbert space spanned by the
basis states employed to encode the board configuration bits b = b1, b2, · · · , b8,
Hm is the Hilbert space spanned by the basis states employed to represent the
set of productions, and Hc is the Hilbert space spanned by the auxiliary control
bits.

(I⊗9 ⊗ T)M |b1, b2, · · · , b8,m, c1, c2, · · · , c8, c9〉 (11)

16

The previous strategy can be extended in order to apply any number of move-
ment operators, where the output of a movement gate is provided as input to
another movement operator. In doing so, we add a guarantee that, if possible,
another production rule is applied to the initial board configuration. This pro-
cess is illustrated in Figure 11 where two movement gates, i.e. productions, are
applied to an initial board configuration b1, b2, b3, b4, b5, b6, b7, b8. Accordingly,
two movement bits are required, namely m1 and m2. The former of which is fed
as input to a first movement gate M1, whilst the latter is provided as input to
a second movement gate M2. Consequently, res has the value presented in Ex-
pression 12. Notice that applying M2 requires that its application by “shifted”
by a total of 9 positions, whilst operator T should be applied after input bit
18. Algebraically, the overall circuit behaviour can be described as presented in
Expression 13.

res = c17⊕f(c9⊕y9, c10⊕y10, c11⊕y11, c12⊕y12, c13⊕y13, c14⊕y14, c15⊕y15, c16⊕y16)
(12)

b1

b2

b3

b4

b5

b6

b7

b8

m

c1

c2

c3

c4

c5

c6

c7

c8

c9

b1

b2

b3

b4

b5

b6

b7

b8

c1

c2

c3

c4

c5

c6

c7

c8

y1

y2

y3

y4

y5

y6

y7

y8

m

c1

c2

c3

c4

c5

c6

c7

c8

y1

y2

y3

y4

y5

y6

y7

y8

Target Board
Unitary Operator

Move Blank Cell
Unitary Operator

RES

Figure 10: A reversible circuit incorporating the application of a single produc-
tion rule for the 3-puzzle and a test condition in order to determine if the final
board is a target configuration board.

(I⊗18 ⊗ T)(I⊗9 ⊗M)M |b1, b2, · · · , b8,m1, c1, · · · , c8,m2, c9, · · · , c16, c17〉 (13)

3.4 Extending for any n-puzzle

How can we build on this result in order to accommodate any n-puzzle? Let E
be the set of possible elements for an n-puzzle, then the number of bits required

17

b1

b2

b3

b4

b5

b6

b7

b8

m1

c1

c2

c3

c4

c5

c6

c7

c8

b1

b2

b3

b4

b5

b6

b7

b8

m1

c1

c2

c3

c4

c5

c6

c7

c8

y1

y2

y3

y4

y5

y6

y7

y8

c9

c10

c11

c12

c13

c14

c15

c16

m2

c17

c9

c10

c11

c12

c13

c14

c15

c16

y9

y10

y11

y12

y13

y14

y15

y16

m2

Target Board
Unitary Operator

Move Blank Cell
Unitary Operator

Move Blank Cell
Unitary Operator

RES

Figure 11: A reversible circuit illustrating the application of two move blank
cell operators for the 3-puzzle and a target board gate in order to determine if
the final board is a target configuration board.

to encode each element is e = ⌈log2 |E|⌉. This implies that the number of bits
required to encode a board configuration is b = |E|e. Additionally, let P be the
set of possible productions for the same n-puzzle. Accordingly, p = ⌈log2 |P |⌉
bits will be required for each production. Each movement operator M will
require a total of b + p + b = 2b + p input and output bits, and each target
operator T will require a total of b+ 1 input and output bits.

How many bits will be required by the circuit? Suppose we wish to apply the
M operators a total of m times. The first operator M1 requires 2b + p bits.
Since a part of M1 outputs will be provided as input to M2 an additional b+ p

bits will be added to the circuit. This means that 2b+ p+ (m− 1)(b + p) bits
of the circuit are required just to move the blank element. Since operator T
requires a single control bit this implies that the overall circuit employs a total
of n = 2b+p+(m−1)(b+p)+1 bits. Of these n bits c = n− (b+mp) = mb+1
bits are control, or auxiliary, bits. These control bits can be perceived as the
working memory of the production system. Furthermore, the sequence of bit
indexes after which a movement operator M should be applied is V = {0, b +
p, 2(b+ p), 3(b+ p), · · · , (m− 1)(b+ p)}.
Based on these statements we can describe a general formulation for an n-puzzle
circuit C employing adequate M and T operators. This process is presented
in Expression 14. Unitary operator C would act on an input register |x〉 en-

18

compassing the initial board configuration, the set of productions and also the
auxiliary control bits. Accordingly, operator C would act upon a Hilbert space
H spanned by the computational basis states required to encode x.

C = (I⊗m(b+p) ⊗ T)
∏

k∈V

(
I⊗k ⊗M

)
(14)

Finally, the number of movement operators M grows linearly with the depth
of the search, which is a key component of the input register. The reversible
circuits presented in Figure 10 Figure 11 apply, respectively, one and two move-
ment gates, the former can be perceived as performing a depth-limited search
of level 1, whilst the latter performs a search up to depth 2. This is a com-
mon strategy in computer science where a cutoff is performed at a depth-level
d in order to provide an answer in a constant time. Traditionally, some type
of heuristic function is employed in order to help decide which state may be
closer to providing a solution. In addition, our proposition only contemplates
tree-search involving a constant branching factor. However, it is not unusual
for tree-search to deal with non-constant branching factors. Since potential en-
coding strategies are always required to reflect the complete range of actions
this fact can adversely affect the performance of the system when compared
against classical equivalent. This is due Grover’s speedup being a function of
the number of bits n employed. For more on these issues we refer the reader to
[50] which presents a detailed examination.

4 Quantum extensions

Hitherto, we have only focused on how to build a reversible circuit for the
3-puzzle. However, reversible computation by itself does not provide any com-
putational advantage. In order to gain a quantum advantage we need to employ
quantum superpositions alongside Grover’s algorithm. The following sections
are organized as follows: Section 4.1 presents the quantum superposition prin-
ciple; Section 4.2 introduces Grover’s algorithm and Section 4.3 builds on these
results to illustrate how the proposed reversible circuit can be extended in order
to reap the benefits provided by quantum computation.

4.1 Quantum superpositions

The quantum superposition principle allows a register to be in several states at
the same time. Associated with each quantum state i is an amplitude αi ∈ C.
By requiring the vector (α1, · · · , αn) to be unit-length preserving we ensure
that |α1|2 + · · · + |αn|2 = 1, where n is the number of states. Since we have
a set of values that sum up to 1 then the |αi|2 values may be considered as
translating the probability of observing state i. However, due to the effects of

19

a process known as quantum decoherence only one of the states conveying the
answer can be obtained. This collapse from a multitude of states into a single one
takes into account the probabilities associated with each state [40]. Accordingly,
states with a higher probability are more likely to be obtained, whilst states
with smaller probabilities are less likely to be obtained. Notice that this does
not imply that only those states with higher probabilities will be obtained.
The Hadamard gate allows one to configure an input register configured to
state |00 · · ·0〉 in an uniform superposition of 2n states, where n is the number
of bits of the input register. This behaviour is presented in Expression 15.
Traditionally, the |ψ〉 symbol is employed to denote a superposition of values.
Superposition |ψ〉 can be employed alongside unitary operator C, a procedure
translated as C|ψ〉, which effectively evaluates all possible states in a single
computational step.

|ψ〉 = H⊗n |00 · · · 0〉
︸ ︷︷ ︸

n bits

=
1√
2n

︸ ︷︷ ︸

amplitude

2n−1∑

x=0

|x〉 (15)

In order to proceed with our analysis lets concentrate on the circuit presented
in Figure 10. Conceptually, we can differentiate between three inputs, respec-
tively:

• the board configuration bits, b1, b2, · · · , b8 which we will refer to as an
8-bit register |b〉.

• the movement bit m, which is basically a one bit register |m〉;
• the control bits, c1, c2, · · · , c17, which we will refer to as a 17-bit register
|c〉.

Let Ug refer to the unitary operator characterizing the reversible circuit pre-
sented in Figure 10. The behaviour of Ug can be described as illustrated by
Expression 16.

Ug : |b〉|m〉|c〉 7→ |b〉|m〉|c1⊕y1, c2⊕y2, c3⊕y3, c4⊕y4, c5⊕y5, c6⊕y6, c7⊕y7, c8⊕y8, res〉
(16)

The input register |b〉|m〉|c〉 can be configured to a specified value and by apply-
ing Ug it becomes possible to obtain the respective result. In the specific case of
the unitary operator Ug we are interested in evaluating a combined superposi-
tion containing all possible board configurations and productions. The control
bits not need not to be placed in a superposition since they are only employed
in order to assist the overall process. Accordingly, the control bit register can
be configured to |0〉⊗c, where c is the number of control bits. Let |ψ〉 denote
the superposition of all board configurations, |ψb〉, and productions, |ψm〉 , as
illustrated in Expression 17.

20

|ψ〉 = |ψb〉|ψm〉|0〉⊗c

=
1√
28

28−1∑

x=0

|x〉 1√
21

21−1∑

x=0

|x〉|0〉⊗c

=
1√
29

29−1∑

x=0

|x〉|0〉⊗c (17)

Where each |x〉 should be interpreted as a state of the combined input register
|b〉|m〉. Since unitary operators obey linearity principles we are now in a position
to apply unitary operator Ug to the superposition register. In practice this
process means that all possible board configurations and productions encoded
in the superposition register are processed simultaneously. This operation is
illustrated in Expression 18.

Ug|ψ〉 =
1√
29

29−1∑

x=0

Ug|x〉|0〉⊗c (18)

4.2 Grover’s search

Not surprisingly a great deal of scientific research has focused on altering the
amplitudes, and consequently the probabilities, associated with each solution
state. Perhaps the best known example of such an amplitude amplification pro-
cess is Grover’s search algorithm [27] [51]. Grover’s algorithm was later experi-
mentally demonstrated in [52]. The algorithm provides a polynomial speed-up
when compared with the best-performing classical search algorithms. Any such
classical algorithm requires O(N) time in order to search N elements. Grover’s
algorithm requires O(

√
N) time, providing a quadratic speedup, which is consid-

erable when N is large. Suppose we wish to search through a problem’s search
space of dimension N and that it is possible to efficiently perceive potential so-
lutions to a problem. This is similar to the NP class of problems whose solutions
are verifiable in polynomial time O(nk) for some constant k, where n is the size
of the input to the problem [53]. Grover’s search algorithm employs quantum
superposition and reversible computation in order to query many elements of
the search space simultaneously. An oracle [54] representing a unitary opera-
tor Ug is employed in order to mark the solution states. This process can be
performed by adding an additional input bit c to a unitary operator combined
with a function g(x) which outputs 1 when x is a solution and 0 otherwise, as
shown in Expression 19.

Ug : |x〉|c〉 7→ |x〉|c⊕ g(x)〉 (19)

21

The algorithm then employs a process of amplitude amplification, known as
Grover’s iterate, in order to amplify the amplitudes of the solutions and in the
process diminish those of the non-solutions. This process is performed by setting
the control register c to a specified value, which, when combined with Grover’s
iterate can be mathematically proven to perform an inversion about the mean
of the amplitudes [43]. As a direct result of Grover’s iterate, the probability of
the solution states increases. However, the amplitude of the solution value is
amplified only in a linear way. If the function g is provided as a black box, then
Ω(

√
N) applications of the black box are necessary in order to solve the search

problem with high probability for any input [54] A number of improvements
have been proposed since Grover’s original work [55] [56]. These improvements
essentially targeted reduced time complexity bounds for non-query operations
and overall robustness. For a number of several novel search related applications
please refer to [51] [57] [58].

4.3 Oracle development

Ideally, in order to take advantage of Grover’s algorithm our reversible circuit
approach towards production systems should mimic the behaviour illustrated
in Expression 19 as opposed to the one presented in Expression 16. In order
to perform such a mapping we start with a simple observation, namely that
Expression 19 effectively means that all the inputs, excluding bit c, should also
be part of the outputs. Accordingly, the circuits presented in Figure 10 and
Figure 11 should somehow undo their computation. As previously stated in
Section 2, this operation can be performed by building a “mirror“ circuit, where
each component is the inverse operation of original circuit. Then, with both
circuits developed, it is just a matter of establishing the appropriate connections,
i.e. the outputs of the original circuit are provided as inputs to the mirror. The
application of these operations to the reversible circuit presented in Figure 10
is illustrated in Figure 12 whose unitary operator computes Ug : |b〉|m〉|c〉 7→
|b〉|m〉|c〉. Logically, this overall operation has the unpleasant, but also coveted,
consequence of ending up in the same place where it started. Equivalently, it is
possible to state this result in terms of the unitary operator C of Expression 14
as C−1C|x〉 = |x〉.
Consequently, an additional form of control has to be incorporated into the
circuit design in order for the circuit’s overall computation to be saved, respec-
tively, the res value of Expression 12. This operation can be performed with the
introduction of another control bit alongside a controlled-NOT gate, denoted
CNOT, which is a famous gate in quantum computation. The gate acts on
two bits, labelled the control bit and the target bit. The control bit is always
unaffected by the CNOT gate. The target bit is switched, i.e. applied the NOT
operation, if the control bit is set to 1. Otherwise, if the control bit has value 0,
the gate does nothing. The truth table for the CNOT gate is presented in Table
6. The introduction of the CNOT gate allows the result to be saved in a re-

22

b1

b2

b3

b4

b5

b6

b7

b8

m

c1

c2

c3

c4

c5

c6

c7

c8

c9

b1

b2

b3

b4

b5

b6

b7

b8

m

c1

c2

c3

c4

c5

c6

c7

c8

c9

Move Blank
Cell^(-1)

Unitary Operator

Move Blank Cell
Unitary Operator

Target Board
Unitary Operator

Target Board^(-1)
Unitary Operator

Figure 12: A reversible circuit showcasing the application of a single movement
gate for the 3-puzzle, and then undoing the previously performed computations.

Inputs Outputs
c t c c ⊕ t

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Table 6: Truth table for the CNOT gate.

versible manner, which, as previously mentioned, is pre-requisite for describing
operations in quantum computation. The combination of the reversible circuit
presented in Figure 12 alongside the CNOT gate is shown in Figure 13. The
circuits overall computation is presented in Expression 20 where res has the
value shown in Expression 10. If we label the input register |b〉|m〉|c〉 as |x〉 then
Expression 20 is equivalent to Expression 19.

Ug : |b〉|m〉|c〉
︸ ︷︷ ︸

input

|c10〉
︸︷︷︸

oracle’s control bit

7→ |b〉|m〉|c〉|c10 ⊕ res〉 (20)

This result can be stated in more general terms if the previously constructed
operator C of Expression 14 is used, as illustrated by Expression 21.

Ug = C−1(I⊗2b+p+(m−1)(b+p)CNOT)C|b〉|m〉|c〉|cmb+2〉 (21)

In both cases the Hilbert space H of the input register is augmented with the
basis states required to encode the additional auxiliary control bit, accordingly
H = Hb ⊗Hm ⊗Hc ⊗Hcmb+2

. The reversible circuit presented in Figure 13 in
conjunction with Grover’s algorithm provides for a quantum mechanism capable
of performing a hierarchical search of depth level 1. As a consequence it becomes
possible to, given a given board configuration b and a single production, verify

23

b1

b2

b3

b4

b5

b6

b7

b8

m

c1

c2

c3

c4

c5

c6

c7

c8

c9

b1

b2

b3

b4

b5

b6

b7

b8

m

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10 CNOT

Move Blank
Cell^(-1)

Unitary Operator

Move Blank Cell
Unitary Operator

Target Board
Unitary Operator

Target Board^(-1)
Unitary Operator

RES

Figure 13: A reversible circuit showcasing the application of a single movement
gate for the 3-puzzle whilst incorporating the principles of an oracle.

if a target board configuration is obtained. This behaviour is equivalent in
function to that of a classical production system. However, there is a crucial
difference since with our quantum proposition we are able to query all possible
combinations simultaneously, and in the process obtain a solution quadratically
faster.

5 Conclusions

In this work we presented a possible model for a quantum production sys-
tem capable of solving instances of the n-puzzle. The proposed model can
be viewed as an hybrid proposition combining a quantum search mechanism
alongside production system theory adjusted so as to convey a clear emphasis
on reversible computation. Developing the adequate reversible circuit requires a
modest overhead on the number of bits employed relative to classical irreversible
versions. These concepts, combined with the quantum superposition principle,
can be used in order to query the search space spanned by all possible combina-
tions of initial board configurations and paths up to depth-level d quadratically
faster than its classical counterparts. Classical search strategies require O(bd)
time, while a hierarchical search mapping to quantum computation employing
Grover’s algorithm allows this time to be reduced to O(

√
bd). From a prac-

tical point-of-view such an improvement translates as cutting search depth in
half.

Furthermore, the proposed model hints at the possible existence of a universal
quantum production system. Hence, it would be interesting to determine if such
a system exists and study the consequent implications. Namely, questions re-
garding the performance of the system and how well it would compare against its

24

classical counterpart would be relevant. In addition, the dynamics of production
system theory make it well suited for exploitation by classical learning mecha-
nisms. This makes it plausible for the unitary operator, and consequently the
reversible circuit associated, to be developed by such mechanisms. Additional
issues may focus on determining appropriate choices for search-depth d and if a
related technique is used during problem solving by human cognition.

6 Acknowledgments

This work was supported by FCT (INESC-ID multiannual funding) through the
PIDDAC Program funds and FCT grant DFRH - SFRH/BD/61846/2009.

References

[1] Busemeyer JR, Wang Z, Townsend JT. Quantum dynamics of human
decision-making. Journal of Mathematical Psychology. 2006;50(3):220 –
241. Jean-Claude Falmagne: Part II.

[2] Busemeyer JR, Trueblood J. Comparison of Quantum and Bayesian Infer-
ence Models. In: Bruza P, Sofge D, Lawless W, van Rijsbergen K, Klusch
M, editors. Quantum Interaction. vol. 5494 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg; 2009. p. 29–43. 10.1007/978-3-642-
00834-4-5.

[3] Busemeyer JR, Wang Z, Lambert-Mogiliansky A. Empirical comparison of
Markov and quantum models of decision making. Journal of Mathematical
Psychology. 2009;53(5):423 – 433. Special Issue: Quantum Cognition.

[4] Pothos EM, Busemeyer JR. A quantum probability explanation for vio-
lations of ‘rational’ decision theory. Proceedings of the Royal Society B:
Biological Sciences. 2009;.

[5] Trueblood J, Busemeyer JR. A Comparison of the Belief-Adjustment Model
and the Quantum Inference Model as Explanations of Order Effects in
Human Inference. In: COGSCI 2010 The annual meeting of the cognitive
science society; 2010. p. 1166–1171.

[6] Luger GF, Stubblefield WA. Artificial Intelligence: Structures and
Strategies for Complex Problem Solving: Second Edition. The Ben-
jamin/Cummings Publishing Company, Inc; 1993.

[7] Campbell M, Hoane Jr AJ, Hsu Fh. Deep Blue. Artificial Intelligence.
2002;134:57–83.

[8] Manin YI. Classical computing, quantum computing, and Shor’s factoring
algorithm. ArXiv Quantum Physics e-prints. 1999 Mar;.

25

[9] Ying M. Quantum computation, quantum theory and AI. Artificial Intel-
ligence. 2010;174:162–176.

[10] Post E. Formal reductions of the general combinatorial problem. American
Journal of Mathematics. 1943;65:197–268.

[11] Brownston L, Farell R, Kant E, Martin N. Programming Expert Systems
in OPS5: An Introduction to Rule-Based Programming. Addison-Wesley;
1985.

[12] Newell A, Shaw JC, Simon HA. Report on a general problem-solving pro-
gram. In: Proceedings of the International Conference on Information
Processing; 1959. p. 256–264.

[13] Newell A. A guide to the general problem-solver program GPS-2-2. Santa
Monica, CA, USA: RAND Corporation; 1963. RM-3337-PR.

[14] Ernst GW, Newell A. GPS: a case study in generality and problem solving.
Academic Press; 1969.

[15] Newell A, Simon HA. Human problem solving. 1st ed. Prentice Hall; 1972.

[16] Anderson JR. The Architecture of Cognition. Cambridge, Massachusetts,
USA: Harvard University Press; 1983.

[17] Laird JE, Rosenbloom PS, Newell A. Chunking in Soar: The anatomy of
a general learning mechanism. Machine Learning. 1986 03;1(1):11–46.

[18] Laird JE, Newell A, Rosenbloom PS. SOAR: An architecture for general
intelligence. Artificial Intelligence. 1987;33(1):1–64.

[19] Markov A. A theory of algorithms. USSR: National Academy of Sciences;
1954.

[20] Turing AM. On Computable Numbers, with an Aoolication to the Entschei-
dungsproblem. ProcLondonMathSoc. 1936;42(2):230–265.

[21] Newell A, Simon HA. Human Problem Solving. Prentice-Hall; 1972.

[22] Anderson JR. The Architecture of Cognition. Harvard University Press;
1983.

[23] Klahr P, Waterman DA. Expert Systems: Techniques, Tools and Applica-
tions. Addison-Wesley; 1986.

[24] Newell A. Unified Theories of Cognition. Harvard University Press; 1990.

[25] Hart TP, Edwards DJ. The tree prune (TP) algorithm. Artificial Intelli-
gence project memo 30. Cambridge, Massachusetts: Massschusetts Insti-
tute of Technology; 1961.

[26] Shor PW. Algorithms for quantum computation: discrete logarithms and
factoring. In: Proceedings 35th Annual Symposium on Foundations of
Computer Science; 1994. p. 124–134.

26

[27] Grover LK. A fast quantum mechanical algorithm for database search. In:
STOC ’96: Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing. New York, NY, USA: ACM; 1996. p. 212–219.

[28] Hogg T, Huberman BA, Williams CP. Phase transitions and the search
problem. Artif Intell. 1996;81(1-2):1–15.

[29] Hogg T. Quantum computing and phase transitions in combinatorial
search. J Artif Int Res. 1996;4(1):91–128.

[30] Hogg T. A Framework for Structured Quantum Search. PHYSICA D.
1998;120:102.

[31] Hogg T. Quantum search heuristics. Phys Rev A. 2000 Apr;61(5):052311.

[32] Feynman RP. Simulating Physics with Computers. International Journal
of Theoretical Physics. 1982;21(6):467–488.

[33] Feynman RP. Quantum mechanical computers. Foundations of Physics.
1986;16(6):507–531.

[34] Deutsch D. Quantum theory, the Church-Turing principle and the universal
quantum computer. In: Proceedings of the Royal Society of London- Series
A, Mathematical and Physical Sciences. vol. 400; 1985. p. 97–117.

[35] Deutsch D. Quantum Computational Networks. In: Proceedings of the
Royal Society of London A. vol. 425; 1989. p. 73–90.

[36] Bennett CH. Logical Reversibility of Computation. IBM Journal of Re-
search and Development. 1973 November;17:525–532.

[37] Toffoli T. Computation and construction universality of reversible cellular
automata. Journal of Computer and System Sciences. 1977;15(2):213–231.

[38] Toffoli T. Reversible Computing. In: Proceedings of the 7th Colloquium
on Automata, Languages and Programming. London, UK: Springer-Verlag;
1980. p. 632–644.

[39] Fredkin E, Toffoli T. Conservative logic. International Journal of Theoret-
ical Physics. 1982;21:219–253.

[40] Hirvensalo M. Quantum Computing. Berlin Heidelberg: Springer-Verlag;
2004.

[41] Mano MM, Kime CR. Logic and Computer Design Fundamentals: 2nd
Edition. Prentice Hall; 2002.

[42] Toffoli T. Reversible Computing. Massschusetts Institute of Technology,
Laboratory for Computer Science; 1980.

[43] Kaye PR, Laflamme R, Mosca M. An Introduction to Quantum Computing.
USA: Oxford University Press; 2007.

27

[44] Dirac PAM. A New Notation for Quantum Mechanics. In: Proceedings of
the Cambridge Philosophical Society. vol. 35; 1939. p. 416–418.

[45] Dirac PAM. The Principles of Quantum Mechanics - Volume 27 of Interna-
tional series of monographs on physics (Oxford, England) Oxford science
publications. Oxford University Press; 1981.

[46] Hordern E. Sliding Piece Puzzles. Recreations in Mathematics, No 4.
Oxford University Press, USA; 1987.

[47] Gardner M. The hypnotic fascination of sliding-block puzzles. Scientific
American. 1964;210:122–130.

[48] Hearn RA, Demaine ED. PSPACE-completeness of sliding-block puzzles
and other problems through the nondeterministic constraint logic model of
computation. Theoretical Computer Science. 2005;343(1-2):72 – 96. Game
Theory Meets Theoretical Computer Science.

[49] Hearn RA. The Complexity of Sliding-Block Puzzles and Plank Puzzles.
In: Tribute to a mathemagician. A K Peters; 2005. p. 1–11.

[50] Tarrataca L, Wichert A. Tree search and quantum computation. Quantum
Information Processing. 2010;p. 1–26. 10.1007/s11128-010-0212-z. Avail-
able from: http://dx.doi.org/10.1007/s11128-010-0212-z.

[51] Grover LK. A framework for fast quantum mechanical algorithms. In:
STOC ’98: Proceedings of the thirtieth annual ACM symposium on Theory
of computing. New York, NY, USA: ACM; 1998. p. 53–62.

[52] Chuang IL, Gershenfeld N, Kubinec M. Experimental Implementation of
Fast Quantum Searching. Phys Rev Lett. 1998 Apr;80(15):3408–3411.

[53] Edmonds J. Paths, Trees, and Flowers. Canadian Journal of Mathematics.
1965;17:449–467.

[54] Nielsen MA, Chuang IL. Quantum Computation and Quantum Informa-
tion. Cambridge University Press; 2000.

[55] Grover LK. Trade-offs in the quantum search algorithm. Phys Rev A. 2002
Nov;66(5):052314.

[56] Grover LK. Fixed-Point Quantum Search. Phys Rev Lett. 2005
Oct;95(15):150501.

[57] Grover LK. Quantum Computers Can Search Rapidly by Using Almost
Any Transformation. Phys Rev Lett. 1998 May;80(19):4329–4332.

[58] Grover LK. Quantum Search on Structured Problems. Chaos, Solitons &
Fractals. 1999;10(10):1695 – 1705.

28

http://dx.doi.org/10.1007/s11128-010-0212-z

	Introduction
	Production System
	Search as a decision problem
	Problem

	Insights into reversible computation
	Sliding block puzzle
	Sliding block 8-puzzle
	Sliding block 3-puzzle
	Building the reversible circuit for the 3-puzzle
	Extending for any n-puzzle

	Quantum extensions
	Quantum superpositions
	Grover's search
	Oracle development

	Conclusions
	Acknowledgments

