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Abstract—The adjustable weights of adaptive filtering algo-
rithms are usually assumed to obey a Gaussian distribution. This
is somewhat natural under maximal-entropy considerations, since
most analyses in the open literature only take into account first-
and second-order statistics. This work investigates the third-order
statistical feature known as skewness of the least mean square
parameters distribution. Two theoretical analyses for skewness
estimation are proposed: i) one that employs the independence
assumption, which states that the excitation data is statistically
independent from the adaptive weights; ii) one derived from
the exact expectation analysis, a method that is able to predict
the learning capabilities of the least mean square algorithm
even when the step size is not infinitesimally small. This paper
shows that the skewness of the adaptive weights distribution may
present a large deviation from the common Gaussian assumption,
especially in the first phase of the learning. Furthermore, it is
also demonstrated that the skewness may grow without limit even
when adaptive weights present convergence in both average and
mean square behaviours.

Index Terms—Adaptive Filtering, Exact Expectation Analysis,
LMS, Convergence Analysis, Skewness.

I. INTRODUCTION

S
TOCHASTIC models of adaptive filtering algorithms usu-

ally adopt the Gaussian Assumption (GA), which states

that the marginal distributions of elements of the weight

vector1 w(k) ∈ R
N are Gaussian [1]–[3]. Relevant models

that exceptionally address the non-Gaussianity of the adaptive

weights can be observed in [4], [5], which focus on propor-

tionate adaptive algorithms. A stationary setting is assumed

in the following, so that each adaptive coefficient wi(k) ∈ R

ideally should have the optimal value w⋆
i . Consider m3,i(k) as

the third central moment and σi(k) as the standard deviation of

the deviation w̃i(k) , w⋆
i −wi(k) (for i ∈ {0, 1, . . . , N −1}).

Under GA, the skewness χi(k), defined as

χi(k) ,
m3,i(k)

σ3
i (k)

, (1)

is zero, which is also coherent with the asymptotic symmetry

results derived from the Fokker-Planck stochastic model [6].

Unfortunately, there is no theoretical guarantee that the coeffi-

cients skewness is approximately zero (which is most of time

implicitly assumed), except by a non-rigorous employment of

the central limit theorem [7].
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1All vectors in this paper are supposed to be of column-type.

Skewness is a measure of a probability density function

(pdf) asymmetry. Its analysis brings additional statistical infor-

mation about the distribution of the adaptive taps, which may

allow better control of the adaptive filter learning abilities [4],

[8]. Furthermore, this examination can be crucial when the

weight vector is directly used in a test statistic, which occurs

in adaptive line enhancer applications [9], adaptive detector

structures [10], [11], distributed detection over adaptive net-

works [12]–[14], when the filtered output is used as a test

statistic [15], [16], in time delay estimation [17] and when

the least mean squares (LMS) algorithm is employed as a

canceller in spread spectrum communications systems [18]–

[20]. In these cases, the first- and second-order statistics are

not sufficient to calculate error probabilities for the binary

decisions, the receiver operating characteristics (ROCs) (which

relates the detection and false alarm probabilities for the

detectors) and to compute decision boundaries [1], [6].

In this paper, two theoretical models for the evolution of

χi(k) are derived for the first time, considering the traditional

LMS algorithm. The first makes use of the independence

assumption (IA, or independence heuristic [21]), which states

that the adjustable weights and the input data are statistically

independent [22]. Although almost universal, IA-based models

are known to generate inaccurate predictions when the step

size β ∈ R+ assumes non-infinitesimal values. It is precisely

in this range of values that some potential advantages of adap-

tive filtering algorithms may become apparent [23]. In order

to circumvent this issue, the second advanced model employs

the exact expectation analysis (EEA) [24]–[29], a sophisticated

theoretical analysis that avoids the use of the IA. Adopting

EEA allows one to theoretically analyze setups where the

skewness significantly deviates from zero, a phenomenon more

frequent for large values of β. Furthermore, the adoption of

the ubiquitous IA tends to underestimate the deviation of the

adaptive weights marginal distribution from the Gaussian one.

This work is structured as follows: Section II succinctly

describes the LMS algorithm. An IA-based model for the

evolution is presented in Section III. The EEA is described

in Section IV. Section V discusses how the empirical results

relate to the theoretical models, emphasizing the fact the

contributions presented contribute for further clarity into two

important theoretical problems concerning the behaviour of the

adaptive coefficients: what are the conditions that guarantee

that the learning process is stable and when does there exist

an asymptotic distribution for them [30]. Section VI presents

our concluding remarks.

II. LEAST MEAN SQUARES

Assuming a supervised context, the LMS algorithm updates

the weights of a filter (often with a tapped-delay-line structure)
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using the stochastic gradient of the instantaneous quadratic

error:

w(k + 1) = w(k) + βx(k)e(k), (2)

where x(k) ,
[

x(k) x(k − 1) . . . x(k −N + 1)
]T

is

the vector containing the N most recent input data samples

and e(k) ∈ R is the error signal, which is computed using

e(k) , d(k)− y(k) = d(k)−wT (k)x(k), (3)

where d(k) ∈ R is a reference signal (sometimes constructed

through ingenious ways), commonly generated according to

the following affine-in-the-parameters noisy regression model:

d(k) = [w⋆]
T
x(k) + ν(k), (4)

where w⋆ ∈ R
N is the ideal (and unknown) plant the adaptive

filter intends to emulate2 and ν(k) is an additive noise, usually

associated to measurement issues [31]. The adaptation process

induces an overall system behavior that is distinct from that

of a linear system, making it difficult to carry out a rigorous

mathematical analysis of the LMS learning abilities.

In order to render the mathematics tractable, most stochastic

models employ strong statistical hypotheses. The ubiquitous

noise assumption (NA), for example, states that the measure-

ment noise has zero mean and is statistically independent from

the remaining random variables. A less physically plausible

statistical hypothesis is IA, which can be stated as:

Independence assumption (IA): The adaptive weights

w(k) and the input vector x(k) are statistically independent.

Since the statistical properties of the input signal have

profound effects on filter performance [28], it is important

to avoid restricting the analysis of this paper to white input

signals. Thus, the following moving-average generation model

is adopted

x(k) =

M−1
∑

m=0

bmu(k −m), (5)

where u(k) derives from a white stationary process that is

statistically independent from the remaining random variables.

The pdf of u(k) is supposed to be symmetric, and the

respective moments are described by γn , E [un(k)].

III. IA-BASED SKEWNESS MODEL

Using (3)-(4), Eq. (2) may be converted into a recursion for

the deviations:

w̃(k + 1) =
[

IN − βx(k)xT (k)
]

w̃(k)− βx(k)ν(k), (6)

where IN denotes the N × N identity matrix. Note that the

distribution of adaptive weights can be easily recovered from

the distributions of the deviations, since

w̃(k) , w⋆ −w(k). (7)

Consider the configuration (N,M) = (1, 2), for pedagogi-

cal purposes. By applying the expectation operator in (6) and

using the IA and NA, a first-order stochastic recursion for the

deviation can be obtained

E[w̃0(k + 1)] = a0,0E[w̃0(k)] (8)

2This paper focuses on system identification tasks.

where a0,0 = (1 − b20βγ2 − b21βγ2). Assuming the algorithm

converges (i.e., limk→∞ E [w̃0(k + 1)] = limk→∞ E [w̃0(k)]),
recursion (8) means that, under the IA, the LMS consists of

an asymptotic unbiased estimator.

The variance σ2
i (k) of the adaptive weights depends on

second-order statistics, which can be obtained by squaring both

sides of (6) (combined with the application of both the IA and

the NA), which leads to

E[w̃2
0(k + 1)] = a1,1E[w̃

2
0(k)] + d1, (9)

where

a1,1 = (1− 2b20γ2β − 2b21γ2β + b
4

0β
2
γ4 + 6b20β

2
b
2

1γ
2

2 + b
4

1β
2
γ4),

and d1 = (b20 + b21)a
2
0σ

2
νβ

2γ2, with σ2
ν denoting the additive

noise variance. The mean-squared stability of the LMS is

guaranteed, under the IA, when |a1,1| < 1. In general,

second-order stochastic models, such as the ones based on

the energy conservation approach, are of great interest for the

designer [32], [33].

The evaluation of χi(k) requires third-order statistics

(see (1)). These quantities can be obtained by cubing (6),

applying the expectation operator E [·] and using the IA and

the NA, so that one derives the following recursion

E
[

w̃3
0(k + 1)

]

= a2,2E
[

w̃3
0(k)

]

+ a2,0E [w̃0(k)] , (10)

where

a2,2 , 1− 3b20γ2β − 3b21γ2β + 3b40γ4β
2 + 18b20γ

2

2β
2
b
2

1

+3b41γ4β
2
− b

6

0β
3
γ6 − 15b40β

3
b
2

1γ2γ4

−15b20β
3
b
4

1γ4γ2 − b
6

1β
3
γ6,

a2,0 , 3b20γ2a
2

0σ
2

νβ
2 + 3b21γ2a

2

0σ
2

νβ
2
− 3b40a

2

0σ
2

νβ
3
γ4

−18b20a
2

0σ
2

νβ
3
b
2

1γ
2

2 − 3b41a
2

0σ
2

νβ
3
γ4.

Recursions (8)-(10) can be concisely described as a state

space equation system

yIA(k + 1) = A(IA)y(IA)(k) + d(IA), (11)

where the state vector y(IA)(k) ∈ R
R contains the sta-

tistical quantities of interest (i.e., E[w̃0(k)], E[w̃2
0(k)] and

E[w̃3
0(k)], which are the state variables of the considered

setup). Note that the time-invariant transition matrix A(IA)

depends on β, and that LMS third-order stability is guaranteed

if the chosen step size value implies that ρ
[

A(IA)
]

< 1,

where ρ
[

A(IA)
]

stands for the spectral radius of A(IA) (i.e.,

ρ
[

A(IA)
]

, maxi

∣

∣

∣
λi

(

A(IA)
)
∣

∣

∣
, where λi is the i-th eigen-

value of A(IA)) [34]. It is noteworthy that the aforementioned

stability concept also takes into account third-order statistics.

Note that the presented derivation of a state space equation

system that models the dynamics of the LMS can be very

lengthy in more complex configurations. As the next section

demonstrates, avoiding the IA makes the associated mathemat-

ics even more difficult.
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IV. EXACT EXPECTATION ANALYSIS FOR THE SKEWNESS

Under large step size configurations, it is advisable to avoid
the IA in order to avoid modelling inaccuracies. In this case,
simplifications such as

E
[

u
2(k − 1)w̃2

i (k)
]

≈ E
[

u
2(k − 1)

]

E
[

w̃
2

i (k)
]

= γ2E
[

w̃
2

i (k)
]

are no longer valid, although E
[

u2(k)w̃2
i (k)

]

= γ2E
[

w̃2
i (k)

]

remains true, since u(k) is i.i.d. by hypothesis. Assuming the
same configuration of the last section (i.e., (N,M) = (1, 2)),
under EEA Eq. (8) should be rewritten as

E[w̃0(k+1)] = (1−b
2

0βγ2)E[w̃0(k)]−b
2

1βE[u
2(k−1)w̃0(k)], (12)

where one may note the emergence of the nuisance term

E[u2(k − 1)w̃0(k)]. This is considered as a nuisance because

one is not primarily interested in it, even though its estimation

is a required step to the update of one statistical quantity of

interest [35]. The EEA method is a systematic procedure that

should generate recursions for nuisance state variables, whose

structure may give rise to new nuisance terms. Due to the

limited time-lag correlation of the input sequence (see (5)), the

recursive generation of update equations eventually halts, al-

though it can require millions of equations in some setups [36].

In the pedagogical example of this paper, the recursion of

the nuisance term E[u2(k−1)w̃0(k)] is derived by multiplying

both sides of (6) by u2(k) before the application of the

expectation operator. Using the NA, one obtains

E[u2(k)w̃0(k + 1)] = (γ2 − b20βγ4)E[w̃0(k)]

−b21βγ2E[u
2(k − 1)w̃0(k)].(13)

The derivation of (13) illustrates the recursive feature of the
EEA, which systematically constructs a state space system that
describes the statistical learning dynamics of the LMS. It can
be proved that the evolution of E

[

w̃3
0(k)

]

fits into the recursion

E
[

w̃
3

0(k + 1)
]

= a0,0E
[

w̃
3

0(k)
]

+ a0,1E
[

u
2(k − 1)w̃3

0(k)
]

+a0,2E [w̃0(k)] + a0,3E
[

u
2(k − 1)w̃0(k)

]

+a0,4E
[

u
4(k − 1)w̃3

0(k)
]

+a0,5E
[

u
4(k − 1)w̃0(k)

]

+a0,6E
[

u
6(k − 1)w̃3

0(k)
]

, (14)

where

a0,0 = 1− 3b20γ2β + 3b40γ4β
2
− b

6

0β
3
γ6,

a0,1 = −3b21β + 18b20γ2β
2
b
2

1 − 15b40β
3
b
2

1γ4,

a0,2 = 3b20γ2a
2

0σ
2

νβ
2
− 3b40a

2

0σ
2

νβ
3
γ4,

a0,3 = 3b21a
2

0σ
2

νβ
2
− 18b20a

2

0σ
2

νβ
3
b
2

1γ2,

a0,4 = 3b41β
2
− 15b20β

3
b
4

1,

a0,5 = −3b41a
2

0σ
2

νβ
3
, a0,6 = −b

6

1β
3
.

Finally, the analysis up to the third-order of the considered
setting leads to R = 10 state variables:
{

E [w̃0(k)],E
[

u
2(k − 1)w̃0(k)

]

,E
[

w̃
3

0(k)
]

,E
[

u
2(k − 1)w̃3

0(k)
]

,

E
[

u
4(k − 1)w̃3

0(k)
]

,E
[

u
4(k − 1)w̃0(k)

]

,E
[

u
6(k − 1)w̃3

0(k)
]

,

E
[

w̃
2

0(k)
]

,E
[

u
2(k − 1)w̃2

0(k)
]

,E
[

u
4(k − 1)w̃2

0(k)
]}

,

which may be used to construct a state vector y(EEA)(k) ∈ R
10

whose evolution is governed by

y(EEA)(k + 1) = A(EEA)y(EEA)(k) + d(EEA), (15)

TABLE I
NUMBER R OF STATE VARIABLES FOR BOTH IA AND EEA METHODS IN

DIFFERENT CONFIGURATIONS (N,M).

N M R (IA) R (EEA) N M R (IA) R (EEA)

1 2 3 10 2 1 5 12
1 3 3 80 2 2 9 215
1 4 3 842 2 3 9 2342
1 5 3 10022 3 1 7 173
2 1 5 12 3 2 19 4611

where matrix A(EEA) and vector d(EEA) are not entirely

described, due to lack of space. The number R of equations

demanded for the theoretical analyses in some configurations

is presented in Table I. Unfortunately, such a quantity grows

rapidly when N and M are increased, which may impose a

prohibitively high computational burden for the EEA method,

even for values of N lower than 10.

V. RESULTS

In the following simulations, the coefficients of the ideal

plant are w⋆
i = 1, for i ∈ {0, 1, . . . , N −1}, the additive noise

is a white Gaussian signal and u(k) is an unitary-variance

signal, which can sampled from a Gaussian or a Laplacian

distribution. The computation of the empirical curves was

performed using K independent Monte Carlo trials, assuming

that the adaptive weights are initialized as zeros. An efficient

C++-based code was written to perform the required algebraic

operations and simplifications.

In the first simulation, the colored input signal x(k) is

obtained by filtering u(k) by the transfer function B1(z) =
1+ 0.8z−1, and M = 2. Figures 1 and 2 depict the evolution

of both theoretical and empirical skewness of the first adaptive

coefficient. Note that the standard (i.e., based on IA) model un-

derestimates the deviation of the skewness from zero, whereas

the empiric curve fits well with the EEA-based prediction. This

result emphasizes that avoiding the ubiquitous IA may enhance

the theoretical understanding of the third-order behaviour of

the adaptive weights. More specifically, in the configuration of

Fig. 1, the skewness converges asymptotically to zero, which

coincides with both IA and EEA predictions and indicates that

GA may be reasonable after convergence in this setup3. Fig. 2

shows that it is not always the case, since under this setting

the steady-state skewness deviates from zero in a significant

manner.

Fig. 3 compares the empirical distribution of w0(k) at the

point where the theoretical skewness (under EEA) attains its

maximum (i.e., k = 16 in Fig. 1) with the usual Gaussian

model. The plot reveals that the actual marginal distribution

of an adaptive weight can be very distinct from a Gaussian

one (and much more peaky), which demonstrates that the

ever-present Gaussian model is not adequate for the adaptive

parameters actual distribution in every setup.

In the second configuration, the colored input signal x(k)
is obtained by filtering u(k) (sampled from a Gaussian distri-

bution) by the transfer function B2(z) = 1+0.8z−1+0.8z−2.

3It should be noted, however, that the non-Gaussianity can be in effect even
when the skewness is zero.
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Fig. 1. Evolution of the skewness of the first adaptive tap of the first
configuration, with N = 2, M = 2, β = 0.09, σ2

ν = 10−3, K = 1010, and
u(k) obeying a Gaussian distribution.
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Fig. 2. Evolution of the skewness of the first adaptive tap of the first
configuration, with N = 3, M = 2, β = 0.005, σ2

ν = 10−11, K = 106,
with u(k) obeying a Laplacian distribution.

The remaining parameters are N = 2, M = 3, and σ2
ν = 10−3.

Note that the maximum theoretical value of β that guarantees

stability can be computed using the power method [37],

since knowing the largest absolute eigenvalue is sufficient to

characterize convergence. In the second configuration, when

considering up to second-order statistics (see, e.g., [28]), such

an upper bound (under EEA) is β
(2)
max = 0.07055. Since this

paper extends EEA for third-order statistics, it is now possible

to compute this limit when such a statistic is taken into

account: β
(3)
max = 0.04616.

Fig. 4 allows one to compare the empirical MSE evolution

with the theoretical predictions provided by IA and EEA in

the second configuration, for a value of β = 0.04 < β
(3)
max,

where the MSE presents a stable behaviour, as expected.

Fig. 5 depicts the MSE evolution for a value of β that lies

on the interval
(

β
(3)
max, β

(2)
max

)

, which implies that third-order

statistics (usually overlooked by theoretical analyses) is no

longer convergent. Fig. 5 shows that the empirical MSE fits

well the EEA-based curve at the initial learning phase, and

that, after some iterations, the algorithm indeed converges

faster than predicted by the exact analysis. This phenomenon
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Fig. 3. Probability density function of w0(16), under the configuration of
Fig. 1. Solid line: analytic Gaussian model, whose mean and variance coin-
cides with empirical data. Dashed line: estimated distribution from empirical
data, computed with a Gaussian kernel whose kernel size is σ = 10−3. The
empirical quantities were obtained using K = 106.
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Fig. 4. Empirical and theoretical (i.e., from IA and EEA) MSE of the second
configuration with β = 0.04. The empirical curve was computed with K =
1011.
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Fig. 5. Empirical and theoretical (i.e., from IA and EEA) MSE of the second
configuration with β = 0.0665. The empirical curve was computed with
K = 1011.
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was already pointed out by [38], which utilized almost-sure

analysis tools for explaining it. Since the difference between

Fig. 4 and Fig. 5 basically relies on the third-order convergence

of the former, one may observe that third-order instability is

not necessarily harmful for the mean-square learning dynamics

of the LMS.

VI. CONCLUSIONS

This paper models for the first time third-order statistics of

the LMS adaptive weights, which allows predicting deviations

from the usual Gaussianity assumption. The often employed

IA has revealed to be inaccurate for predicting the skewness

evolution. The devised framework permits the computation of

proper theoretical upper bounds for the step size that guarantee

third-order stability of the algorithm.
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