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Abstract Adaptive filtering algorithms implement an estimation of a set of
parameters. Frequently, the system to be identified is sparse, in the sense that
most of its energy is concentrated among a few coefficients. Adaptive algo-
rithms, such as the ℓ0-LMS, can incorporate this property in order to increase
the convergence rate. In this work, a stochastic model is proposed to predict
characteristics of transient, steady-state and tracking of the ℓ0-LMS algorithm,
implemented in a distributed way (i.e., with the incremental strategy). Such a
diffuse strategy is adequate in situations where the network energy is severely
limited. The advanced analysis does not require neither white nor Gaussian
input signals in order to predict the learning capabilities of the ℓ0-LMS algo-
rithm.
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1 Introduction

Adaptive filter algorithms update the coefficients wi(k) (i ∈ {0, 1, . . . , N − 1})
in a recursive way. The new values of these coefficients are obtained by means
of a correction term:

(
new parameter

values

)

=

(
old parameter

values

)

+

(
correction

term

)

, (1)

in which the correction term, in supervised contexts, depends on a reference
signal and an error signal, that roughly estimates (in a stochastic manner) the
discrepancy among the adaptive filter and its ideal values [55].

In practice, several transfer functions present energy concentration in a few
coefficients [51,50]. This information allows for adaptive algorithms to perform
a faster identification of the desired transfer function, which tends to be of great
interest for researchers [50]. The advent of electronic circuit miniaturization,
alongside the development of robust communication protocols, has given rise
to a set of applications (such as sensor networks [2]) in which a collection
of agents connected according to a certain topology can interact dynamically
with each other. These interactions eventually created the distributed adap-

tive filtering area, which was notable for outperforming consensus strategies
in terms of stability, convergence rate and tracking ability [23]. It is worth
mentioning that centralized solutions can result in higher energy usage and in-
creased communication resources. The existence of a critical point in the fusion
center is also a disadvantage. Namely, this results in less network autonomy
and is not scalable for large networks [32,37]. Distributed adaptive filtering
raises the need for modeling characteristics related to information aggrega-
tion, processing and diffusion across graphs, which are capable of modeling
the topology and neighborhoods of agent networks. Amongst the applications
in which diffuse adaptive networks are considered an efficient solution, it is
worth noting: modeling of complex behaviors exhibited by socioeconomic or
biological networks [23], targeting and tracking [57], environmental monitor-
ing [56], spectral sensing in mobile networks [42] and distributed optimization
problems [56]. Reaching consensus among agents is critical for successful infer-
ence on these issues [13].

1.1 Motivation

With severe energy and resource constraints on communications, cooperative
incremental strategies for the linear estimation problem are preferable to dif-
fuse schemes [32]. In incremental implementations, agents share data cyclically,
with only one node at a time communicating with their immediate neighbor
(to limit the waste of energy) [41]. This type of implementations does not
require an intermediate aggregation step, which reduces the demand for com-
putational resources [37]. The resulting algorithm is able to exploit the spatial
dimension and respond in real time to environmental changes. It also imbues
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the method with a distributed and cooperative behavior. As with classical
adaptive filtering algorithms, no knowledge of data statistics is required for
incremental strategies to work properly. The sequential flow of incremental
techniques allows the distributed solution to respond to new data.

Employing an adaptive algorithm requires theoretical safeguards in order to
guarantee its performance characteristics concerning, namely: (i) convergence
rate; (ii) steady-state performance; (iii) upper limit for the learning factor
to avoid divergence; and (iv) tracking ability and evolution of performance
metrics (such as MSE and MSD) over long iterations. Moreover, performance
analysis is a crucial task since: (i) it provides useful guidelines for adaptive
filter design [49]; (ii) supplies compromises between bias and variance [11];
(iii) predicts the impact that the eigenvalue dispersion of the input signal
autocorrelation matrix has on learning [12]; and (iv) reveals effects of a finite
arithmetic precision [47].

1.2 Objectives and Contributions

This paper performs steady-state, transient and tracking analyses for the ℓ0-
LMS algorithm, in its incremental version. Therefore, a new stochastic model
that predicts the learning capabilities of the considered adaptive network is
proposed. We derive recursive equations aiming at predicting the MSD over the
number of iterations. The proposed stochastic model is capable of estimating
the transient behavior of the considered incremental algorithm (l0-LMS). More-
over, the model allows the evaluation of the tracking capabilities of distributed
adaptive filtering algorithms. The performance of the model was evaluated by
performing a comparison between theoretical and simulation results, consider-
ing metrics such as the MSD and MSE. The results show the capabilities of
the analysis to predict both transient and steady-state behaviors. Furthermore,
the observed simulation data closely matches the theoretical performance.

1.3 Notation

This paper considers the following notation:

– Scalars: lower case letters (without bold) are used, such as x.
– Vectors: lower case letters (in bold) are used, such as x. All vectors are

column. Thus, xT is a row vector, since (·)T is the transpose operator.
– Matrices: upper case letters are used (in bold), such as R.
– Operators: Statistical average operator is denoted by E[·].

1.4 Structure of the Paper

The remainder of this work is organized as follows: Section 2 describes ap-
proaches for sparsity-aware algorithms. Section 3 details the ℓ0-LMS algorithm
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this paper focuses on. Section 4 presents some incremental implementations
of distributed adaptive filtering algorithms. The proposed analyses for the
l0-LMS algorithm in its incremental format are presented in Section 5. The-
oretical and computational results are discussed in Section 6. Section 7 lists
our concluding remarks.

2 Sparse Systems Identification

In practice, many systems are sparse [31,9]. As a result, researchers verified
that addressing sparsity in the design stage of algorithms [38] can lead to
several advantages. For example, in problems such as the Compressive Sens-
ing [8] this strategy resulted in a cost- and complexity- reduction of the data
gathering process [54]. The remainder of this section presents, succinctly, some
popular approaches for sparsity-aware adaptive filtering algorithms.

Our work assumes an adaptive transversal structure, with x(k) denoting
the input signal and N the number of elements of the adaptive filter. Further-
more

y(k) , wT (k)x(k) (2)

is the filter output at the k-th iteration, where

w(k) ,
[
w0(k) w1(k) . . . wN−1(k)

]T
, (3)

and

x(k) ,
[
x(k) x(k − 1) . . . x(k −N + 1)

]T
. (4)

The work described in [21] proposed the PNLMS algorithm in the adaptive
filtering context. The method is a a particular case of the adaptive algorithm
of variable metric parallel projection [65] and gave rise the proportionate adap-

tation paradigm. In this strategy, coefficients with higher magnitudes receive
larger update energy. This energy can be interpreted as the effect of a man-
ager of scarce resources, which distributes the learning step and expedites the
identification process [27]. Other algorithms which consider this paradigm are:
PNLMS++ [25], IPNLMS [10], MPNLMS [18] and IMPNLMS [24].

Most of the proportionate algorithms can be derived from the following
optimization problem [27]:

min
w(k+1)

‖w(k + 1)−w(k)‖2
Λ

−1
k

subject to ep(k) =

(

1− β
‖x(k)‖2

Λk

‖x(k)‖2
Λk

+δ

)

e(k), (5)

where ‖x(k)‖2
Λ

−1
k

, xT (k)Λ−1
k x(k) is the norm of the vector x(k) weighted by

Λ
−1
k .
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The solution for (5), obtained by means of the Lagrange multipliers tech-
nique, consists in:

w(k + 1) = w(k) + β
Λkx(k)e(k)

‖x(k)‖2
Λk

+δ
, (6)

where Λk is a diagonal matrix, whose main diagonal elements are chosen dif-
ferently for distinct proportionate algorithms and δ is a regularization factor.
Commonly, the sum of these elements is unitary; in this case, [28] suggests
that the steady–state MSE is identical to the MSE of the NLMS algorithm
(keeping the β parameter equal). Thus, the main advantage of the proportion-
ate paradigm is the increased convergence rate. Recently, [33] proposed a more
sophisticated prediction model for the steady–state MSE of these algorithms.

Another research line is inspired by the IPAPA algorithm [30] (Improved

Proportionate Affine Projection Algorithm), which inherits the desirable con-
vergence properties of the affine projection algorithm. However, affine projec-
tion based algorithms often require matrix inversions (which are avoided in
some variants [66,6,5]), that can be ill posed. Commonly, one performs the
matrices regularization to be inverted by adding a positive constant in their
main diagonals. The optimal choice for this regularization parameter is depen-
dent on the noise variation. Because of this reason, there are proposals for the
adaptive choice of this parameter [48].

Although proportionate adaptation is still a very popular paradigm, sparsity–
aware adaptive filtering algorithms that were proposed in the last years tend
to employ some sparsity regularization, regarding the ℓ1 or ℓ0 norms.

The zero-attracting LMS algorithm (ZA–LMS) is one of the most popular
adaptive algorithms with sparsity regularization, which employs the ℓ1 norm.
Transient analyses of ZA–LMS can be seen in [60,14]. The ℓ1 norm is commonly
employed as substitute for the ℓ0 norm, which is non–convex [14]. The ZA–
LMS algorithm can be obtained by the (stochastic gradient) minimization of
the following cost function:

Fℓ1 [w(k + 1)] = e2(k) + γ‖w(k)‖1, (7)

which generates the following update equation:

w(k + 1) = w(k) + βe(k)x(k)− κs(k), (8)

where:
κ , βγ

and
s(k) ,

[
sign[w0(k)] sign[w1(k)] . . . sign[wN−1(k)]

]T

and sign(·) being the signal function, defined by:

sign(x) =







1, for x > 0
0, for x = 0
−1, for x < 0

. (9)
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3 The ℓ0-LMS Algorithm

Unfortunately, the zero–attraction term (−κs(k)) of the ZA–LMS updating
equation (8) intends to shrink to zero both the high magnitude coefficients
(those having values not close to zero) and the low magnitude coefficients
(those, as presumed by the sparsity assumption, close to zero). This property
of the ZA–LMS algorithm tends to degenerate its steady–state performance,
since there is a bias for the high magnitude coefficients estimates. The ℓ0–LMS
and ℓ0–NLMS, proposed in [26], have received great attention [61,63,62,52],
because they do not have the aforementioned disadvantage. Of these, the first
(ℓ0–LMS) can be derived by means of the stochastic gradient technique from
an approximation of the following cost function:

Fℓ0 [w(k + 1)] = e2(k) + γ‖w(k)‖0, (10)

where ‖w(k)‖0 denotes the ℓ0 norm (a pseudo–norm), which reflects the num-
ber of non–zero elements of w(k) and γ is a control parameter that penalizes
solutions that are not sparse. However, the ℓ0 norm is not derivable, and its
minimization leads to a NP–hard problem [26]. Thus, the most common ap-
proach to minimize (10) is to approximate the ℓ0 norm by a derivable function.
Among several employed approximations, the most popular is [26]:

‖w(k)‖0≈
N∑

i=0

Fρ[wi(k)] =

N−1∑

i=0

(

1− e−ρ|wi(k)|
)

, (11)

where ρ ∈ R+ is an adjustable parameter. From (11), the cost function in (10)
can be approximated by:

Fℓ0 [w(k + 1)] ≈ e2(k) + γ

N−1∑

i=0

(

1− e−ρ|wi(k)|
)

, (12)

which, at the stochastic gradient minimization paradigm, give rises to the
following algorithm (in scalar terms):

wi(k + 1) = wi(k) + βe(k)x(k − i)− κsign [wi(k)] e
−ρ|wi(k)|, (13)

for 0 ≤ i ≤ N , where κ , βγ.
Equation (13) refers to an algorithm that is not normalized by the energy

of the input signal. A possible normalized update equation could be:

wi(k + 1) = wi(k) + β
e(k)x(k − i)

‖x(k)‖2
− κsign [wi(k)] e

−ρ|wi(k)|, (14)

which has the advantage of having upper bounds for β that are independent
on the statistics of the input signal [55].

Although the equations (13) and (14) allow the implementation of sparsity–
aware algorithms, they usually are deprecated by computationally simpler ver-
sions, that try to avoid the exponential term e−ρ|wi(k)|, which is replaced by
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simpler linear approximations. Expanding the exponential in a first order Tay-
lor series around zero, leads to [26]:

e−ρ|wi(k)| ≈

{
1− ρ|wi(k)|, |wi(k)|≤

1
ρ

0, for the rest
, (15)

and the update equations for the ℓ0-LMS and ℓ0-NLMS can be described by:

wi(k + 1) = wi(k) + β̃(k)e(k)x(k − i) + κfρ [wi(k)] , (16)

where fρ [wi(k)] is defined as:

fρ [wi(k)] =







ρ2wi(k) + ρ, − 1
ρ
≤ wi(k) < 0

ρ2wi(k)− ρ, 0 < wi(k) ≤
1
ρ

0, for the rest

, (17)

and

β̃(k) =

{
β, for ℓ0-LMS,
β

xT (k)x(k)+δ
, for ℓ0-NLMS

. (18)

Reference [15] compared both proportionate and regularization approaches.
It concluded that the regularization method has a better trade-off between con-
vergence rate and steady-state performance than the proportionate approach.
As a result, our work intends to evaluate the transient and the tracking of
algorithms that employ norm regularization, specifically the ℓ0-LMS, in a dis-
tributed implementation. The next section describes the distributed adaptive
estimation scenario this paper is interested in.

4 Distributed Adaptive Filtering in the Incremental Modality

Consider a connected network composed of M local agents with some compu-
tational capacity. Their interconnections can be modeled by graphs, in which
vertices are the agents and the arcs represent the information exchange capac-
ity between any two agents. The neighborhood Nl of the l-th agent is the set of
agents that are connected to it by arcs; Suppose that this set always contains
the l-th agent. An undirected graph is assumed to be used. Accordingly, if
the l-th agent is a neighbor of the m-th agent then this implies that the m-th
agent is also a neighbor of the l-th one [59].

In a distributed context, it is up to the network of M agents to estimate a
parameter vector w⋆ ∈ R

N in order to minimize an objective function of the
network, such as [59]:

min
w

M∑

l=1

Jl(w), (19)

which associates with the l-th agent a cost Jl(w) ∈ R. We will assume that all
costs {Jl(w)} (l = 1, 2, . . . ,M) reach their minimum when their argument is
w⋆; that is, the minimum is the same for the various agents. In practice, this is
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a common situation whilst also sufficiently accommodating for the main ideas
of distributed adaptive filtering [59].

We are interested in how to perform this estimation process in a distributed
manner, where multiple agents, connected by a topology, aim to estimate an
optimal parameter vector. Such an architecture, relying solely on local inter-
actions, disregards sink nodes, which makes network processing more reliable
and with added resilience to nodes and links whilst also being scalable and
more resource efficient [4].

In this paper, we will assume that the l-th agent has access to a moving-
average model:

dl(k) =

N−1∑

n=0

w⋆(n)xl(k − n) + νl(k) = (w⋆)
T
xl(k) + νl(k), (20)

where xi(k) ,
[
xl(k) xl(k − 1) . . . xl(k −N + 1)

]
containsN consecutive sam-

ples of the input signal for the l-th node1 and νl(k) represents the k-th noise
sample (possibly from measurement) associated with the l-th agent.

Reference [59] provides an example of model (20) in a situation where M
agents intend to estimate the coefficients of a communication channel. If we
assume that agents are able to independently test the unknown model - and
observe its response to their respective excitements - then the system dynamics
for each agent matches the formulation of (20), which also models the presence
of additive-specific noise for each node.

For generality purposes, we will not assume that the statistical properties
of input signals and noise are constant throughout the nodes. Thus, the noise
variance of one node may be greater than that of another. This will enable
modeling of cases where measurements at some nodes are noisier than at oth-
ers.

The derivation of the incremental modality is presented next (as described
in [40]). Consider the minimization problem of (19). Then, assuming a sta-
tionary environment and minimizing the mean square error, each Jl(w) can
be written as:

Jl(w) , E

{[
dl(k)−w

Txl(k)
]2
}

(21)

= σ2
d,l − 2Rdx,lw +wTRx,lw, (22)

in which second order statistics are defined by:

σ2
d,l , E

[
d2l (k)

]
, (23)

Rx,l , E
[
xl(k)x

T
l (k)

]
, (24)

Rdx,l , E [dl(k)xl(k)] , (25)

1 In this paper we use the terms node and agent indistinctly.
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where we assume that the reference signals have zero mean on all nodes. Thus,
the minimization of (19) by the steepest-descent method occurs by:

w(k + 1) = w(k)− β′ [∇J(w(k))] ,

= w(k)− β′
M∑

l=1

[∇Jl(w(k))] ,

= w(k) +

=β
︷︸︸︷

2β′
M∑

l=1

(Rdx,l −Rx,lw(k))

= w(k) + β

M∑

l=1

(Rdx,l −Rx,lw(k)) , (26)

where β ∈ R+ is a learning step defined by the project designer and ∇J(w(k))
is the gradient vector of J(w) with respect to w evaluated at the point
w = w(k). The optimization method in (26) is not incremental, as this tech-
nique requires that each node has access to only its immediate neighbor in
the same cycle. Let ψl(k) be a local estimate of w⋆ at node l at time k. As-
sume that the l-th node has access to ψl−1(k) (that is, the estimate of w⋆

from its immediately neighbour node in the cycle). Therefore, an incremental

gradient algorithm must calculate the required gradient ∇Jl(·) in the local
estimate ψl−1(k) obtained from the index node l − 1. Thus, we have a coop-
erative scheme and an incremental distributed solution of the steepest-descent

algorithm (26) defined by:






ψ0(k) = w(k),
ψl(k) = ψl−1(k)− βl [∇Jl(ψ)] , l = 1, . . . ,M
w(k + 1) = ψM (k).

(27)

Although solution (27) relies only on locally available information, it re-
quires the knowledge of the second order moments Rdx,l, Rx,l, necessary
for the calculation of local gradients ∇Jl(ψ). By substituting these statis-
tics for their stochastic approximations (i.e., Rdx,l ≈ dl(k)ul(k) and Rx,l ≈
ul(k)u

T
l (k)), the distributed incremental LMS algorithm is obtained:






ψl(k) = ψl−1(k) + βkxl(k)
[

dl(k)−ψ
T
l−1(k)xl(k)

]

,

l = 1, . . . ,M

w(k + 1) = ψM (k)

(28)

whose operation is described in Figure 1. A sparsity-aware variant (i.e., the
ℓ0-LMS incremental algorithm) of algorithm (28) will be the focus of this
paper. The analysis proposed in the following section is not simple, as each
node cooperates with an adjacent node to explore the spatial dimension while
performing local calculations on the temporal dimension [37]. As shall be seen,
each node converges to different MSE levels, depending on data statistical
diversity and the different noise levels [40].
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1

2

3

4

5

{d1(k),x1(k)}

{d2(k),x2(k)}

{d3(k),x3(k)}

{d4(k),x4(k)}

{d5(k),x5(k)}

Node 3, instant k

ψ2(k)
Remote Entry
(from node 2) Local Entry

(sensors)
{d3(k),x3(k)}

ψ2(k) + β3x3(k)
[

d3(k)−ψ
T
2 (k)x3(k)

]

ψ3(k) Node Output
(ready for usage)

Deliver to
neighbour (node 4)

Fig. 1 Data processing in a distributed adaptive structure with incremental collaboration
and M = 5 agents. Adapted from [40].

5 Analysis of the incremental ℓ0-LMS algorithm

5.1 Main theoretical analyses

In this work, we are essentially focused in examining the incremental ℓ0-LMS
algorithm in terms of: (i) transient analysis; (ii) stability; and (iii) tracking.
Doing so requires building a stochastic model capable of predicting perfor-
mance throughout the iterations for each network agent. When the number of
iterations is high, such a model should be able to provide to the designer an
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indication of algorithmic performance in the steady-state. In order to avoid
unnecessary restrictions in the theoretical predictions, each agent will have
specific β, ρ and κ parameters. In addition, we will also allow that the measure-
ment noise variance and the statistical properties of each agent to be different
for each agent. This type of modelling will allow for heterogeneous networks, in
which some nodes will employ norm-regularized algorithms, whilst others will
not2. Configurations such as these are capable of reducing the computational
cost, without necessarily implying a diminishing of the overall performance
of the distributed learning [17]. Work [16] provides guidelines for the optimal
choice of the nodes that should employ norm-regularization.

In the absence of noise, the analysis of adaptive algorithms usually falls in
an equation using homogeneous difference, whose divergence can be analyzed.
In practice, there will exist a measurement noise, which implies that in strict
terms the convergence is no longer possible. For this reason, the literature usu-
ally focuses on studying: (i) convergence on the mean and (ii) second order
statistics. In the former, the expected deviations between the adaptive coeffi-
cients and the optimal ones are evaluated to see if they approach zero when
the number of iterations approaches infinity. In the latter, the elements of the
autocorrelation matrix of the deviations are evaluated to see if they are finite,
in particular, in the steady-state regime [53].

Different transient analysis techniques have been proposed in the litera-
ture [19]. Most of which invokes the independence hypothesis H1, which can
be stated as follows:

H1. The filters ψi(k) are independent of xj(k), for i, j ∈ {1, . . . ,M}.

When the analysis is performed in non-distributed algorithms (the most
common scenario) it is possible to replace ψi(k) by w(k) and xj(k) by x(k).
It is also common to consider the hypothesis of spatial independence, which
assumes statistically independent input signals in different nodes [46]. Equiv-
alently, the independence hypothesis can also assume that xi(k1) is statisti-
cally independent of xi(k2) for whatever k1 6= k2 and i, j ∈ {1, . . . ,M}. Even
though this is clearly violated when the adaptive filter consists of a transversal
structure. Furthermore, this hypothesis provides consistent results, in partic-
ular when the learning factor β is small [55]. Reference [44] argues that the
analyzes employing H1 consider a first-order evaluation of the adaptive algo-
rithm. Consequently, it is implied that these analyzes predict real behaviour
only when β does not assume large values [36]. It should be noted that the in-
put signals of different nodes can present statistical correlation, depending on
the chosen topology, among other factors. In this case, the proposed stochastic
model can be less accurate, especially when large step sizes are adopted, which
increases the stochastic coupling between the excitation data and the adaptive
weights [34].

The most sophisticated transient analysis in the literature can be called of
exact expectation analysis [20,34–36], which can also predict with great accu-

2 By setting the κ parameter of a certain node to zero, its regularization term will be
automatically deactivated.
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racy the convergence, stability and performance characteristics in the steady-
state. Even though the main objective is to perform an "exact" analysis, some-
times divergences are observed between the experimental and the theoretical
curves obtained, which was partially explained in [45]. The main issue resides
in the complexity and the lack of clear intuitive results. The analysis expresses
the evolution of the expected values of interest contained in state vector yk.
This can be expressed through the following state equation that is time invari-
ant:

yk+1 = Ayk + b, (29)

where the dimension of the square matrix A is 28181 for the simple case in
which the LMS algorithm presents just six adaptive coefficients with a white
input signal. Given the extreme complexity of this analysis, we opted to not
undertake it in this work.

Another transient analysis technique is the flow energy approach [3]. The
method does not assume that the input signals are Gaussian and is based on
a fundamental relationship of energy conservation. This relationship was orig-
inally developed for the deterministic analysis of adaptive filtering algorithms
robustness [58]. Additionally, the method also revealed to provide an adequate
stochastic analysis of the steady-state of these algorithm [64].

Transient analysis via energy conservation also gives rise to a time-invariant
state equation which is simpler than the one derived by the exact expectation
analysis technique [3]. However, the application of this methodology in al-
gorithms with sparsity regularization (the main purpose of this article) is a
challenging process due to some terms of difficult analytical solution [29]. For
this reason, we are not aware of any application example of this approach to al-
gorithms with sparsity regularization (such as ℓ0-LMS). This happens despite
the fact that it is possible to apply this approach to proportional techniques.

A third technique, the most popular in the literature, consists in deter-
mining difference equations that describe in a recursive manner the evolution

of the autocorrelation matrix Rψ̃i(k) , E

[

ψ̃i(k)ψ̃
T

i (k)
]

from the deviation

ψ̃i(k), which can be defined as

ψ̃i(k) , w
⋆ −ψi(k). (30)

Determining Rψ̃i(k), which can consist of second order statistics, is very
useful in case we abdicate of using hypothesis H2, namely:

H2. The additive noise νi(k) is i.i.d. of null average and independent of
the signals νj(k) (for j 6= i) and xj(k) (for j ∈ {1, . . . ,M}).

Hypothesis H2 is not an exclusive attribute of the difference equations
technique. If one assumes H2 to be true, as well as H1, it is possible to
predict the MSE for the k-th iteration and for the i-th node as [19]

ξi(k) = Tr
{

Rx,iE
[

ψ̃i(k)ψ̃
T

i (k)
]}

+ σ2
νi
(k), (31)
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where Tr {X} represents the trace of the matrix X and σ2
νi
(k) denotes the

additive noise variance for the k-th iteration and for the i-th node.
Similarly, the MSD for the i-th node in the k-th iteration can be inferred

through:

MSDi(k) = Tr
{

E

[

ψ̃i(k)ψ̃
T

i (k)
]}

. (32)

This work will adopt the last analysis technique in order to find recursive
equations capable of estimating the MSD at each iteration (through (32)).

5.2 Recursive Equation Development

As we saw, the recursive determination of Rψ̃i(k) , E

[

ψ̃i(k)ψ̃
T

i (k)
]

is essen-

tial for the development of the intended analysis (i.e., via difference equations).
For the distributed case, the ℓ0-LMS algorithm update equation for the i-th
node can be written as [52,39]:

ψ̃l(k + 1) = ψl(k) + βl[dl(k)−ψ
T
l−1(k)xl(k)]xl(k)+

+κlfρl [ψl(k)] ,

= ψl(k) + βlel(k)xl(k) + κlfρl [ψl(k)] (33)

where el(k) , dl(k) − ψ
T
l−1(k)xl(k). Parameters βl, κl and ρl can be specific

to each node and

fρl [ψl(k)] ,
[
fρl [ψl,0(k)] fρl [ψl,1(k)] ...fρl [ψl,N−1(k)]

]T
,

where ψl,i(k) is the i-th coefficient of the vector ψl(k).
Equation (33) needs to be manipulated in order to represent a recursion in

the deviations (see (30)). Therefore3

ψ̃l(k + 1) = ψ̃l(k)− βlel(k)xl(k)− κlfρl [ψl(k)] . (34)

The next stage consists of rewriting the error el(k) as a function of the
deviations ψ̃l(k), which can be done through:

el(k) = dl(k)−ψ
T
l (k)xl(k),

= (wo)
T
xl(k) + νl(k)−ψ

T
l (k)xl(k),

= ψ̃
T

l (k)xl(k) + νl(k). (35)

Inserting (35) in (34) produces:

3 We will not express the argument of fρl
[·] in terms of deviations ψ̃l(k) to reduce the

size of the equations. Such a substitution can be easily performed after the mathematical
deductions.
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ψ̃l(k + 1) =
[
IN − βlxl(k)x

T
l (k)

]
ψ̃l(k)+

−βlxl(k)νl(k)− κlfρl [ψl(k)] , (36)

where IN is the identity matrix of dimension N ×N .

Expression (36) consists of an exact recursive and deterministic equation,
which is not capable of reflecting the average behaviour of the algorithm. In
order to do that, we need to employ the expectation operator, resulting in:

E

{

ψ̃l(k + 1)
}

= E

{[
IN − βlxl(k)x

T
l (k)

]
ψ̃l(k)

}

+

−κlE
{

fρl

[

ψ̃l(k)
]}

, (37)

where we employ H2 to eliminate the term E {βlxl(k)νl(k)}.

Calculating the right-hand terms of (37) is difficult since it requires deter-
mining the combined probability densities of several random variables. The
adoption of H1 can approximate (37), which results in

E

{

ψ̃l(k + 1)
}

= [IN − βlRx,l]E
{

ψ̃l(k)
}

+

−κlE
{
fρl [ψl(k)]

}
, (38)

where matrix Rx,l does not depend on k, since the input signals are assumed
to be stationary.

By only incorporating first-order statistics, Equation (38) is not sufficient
to characterize algorithmic performance since it is incapable of predicting insta-
bility. The latter of which only occurs when deviation variance (a second-order
statistic), grows without limit. Furthermore, performance measurement met-
rics such as MSE and MSD depend on second-order statistics. Therefore, it
is necessary to devise a second-order stochastic recursive equation describing

the expected value E

{

ψ̃l(k + 1)ψ̃
T

l (k + 1)
}

in terms of its values on the k-th

iteration. Additionally, the expression should also be derived from an equation
similar to (36). Doing that requires first transposing (36):

ψ̃
T

l (k + 1) = ψ̃
T

l (k)
[
IN − βlxl(k)x

T
l (k)

]
+

−βlx
T
l (k)νl(k)− κlf

T
ρl
[ψl(k)] . (39)

Multiplying (36) by (39) produces:
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Ψ̃(k + 1) = Ψ̃(k)

−βlψ̃l(k)ψ̃
T

l (k)xl(k)x
T
l (k)

−κlψ̃l(k)f
T
ρl
[ψl(k)] +

−βlxl(k)x
T
l (k)ψ̃l(k)ψ̃

T

l (k)

+β2
l xl(k)x

T
l (k)ψ̃l(k)ψ̃

T

l (k)xl(k)x
T
l (k)

+βlκlxl(k)x
T
l (k)ψ̃l(k)f

T
ρl
[ψl(k)] , (40)

+β2
l x

T
l (k)ν

2
l (k)− κlfρl [ψl(k)] ψ̃

T

l (k)

+βlκlfρl [ψl(k)] ψ̃
T

l (k)xl(k)x
T
l (k)

+κ2l fρl [ψl(k)]f
T
ρl
[ψl(k)]

+O [νl(k)]

where
Ψ̃(k) , ψ̃l(k)ψ̃

T

l (k) (41)

and the component O [νl(k)] incorporates the first-order terms of the noise
measurements of the l-th node νl(k). These, as will later be shown, will have
no impact on the final result of this analysis.

Isolating the terms ψ̃l(k)ψ̃
T

l (k), requires performing a mathematical ma-
nipulation that starts with the employment of operator vec(A). This operator,
when applied to a matrix vec(A), returns a column vector, generated by con-
catenating the columns of A. The symbol ⊗ is used to represent the Kronecker
product, which allows us to obtain the following relation [67]:

vec [XY Z] =
(

ZT ⊗X
)

vec(Y ). (42)

By applying operator vec(·) to (40) and being careful with expression (42),
we obtain the identity (43).

vec
[

ψ̃l(k + 1)ψ̃
T

l (k + 1)
]

=

{IN2 − βl
[
xl(k)x

T
l (k)⊗ IN

]

−βl
[
IN ⊗ xl(k)x

T
l (k)

]
+ β2

l

[
xl(k)x

T
l (k)⊗ xl(k)x

T
l (k)

]
}vec

[

ψ̃l(k)ψ̃
T

l (k)
]

+κl{βl
[
IN ⊗ xl(k)x

T
l (k)

]
− IN2}vec

[

ψ̃l(k)f
T
ρl
[ψl(k)]

]

(43)

+κl{βl
[
xl(k)x

T
l (k)⊗ IN

]
− IN2}vec

[

fρl [ψl(k)] ψ̃
T

l (k)
]

β2
l ν

2
l (k)vec

[
xl(k)x

T
l (k)

]
+ κ2l vec

{

fρl [ψl(k)]f
T
ρl
[ψl(k)]

}

+ vec {O[νl(k)]} .

The deterministic equation (43) can be converted into a stochastic equa-
tion through the application of the expectation operator. By defining vl(k) ,

E

{

vec
[

ψ̃l(k)ψ̃
T

l (k)
]}

, it is possible to obtain:
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vl(k + 1) =

,Dl
︷ ︸︸ ︷
{
IN2 − βlAl + β2

lBl

}
vl(k) + β2

l σ
2
ν,l(k)cl + κlZl(k), (44)

where the term E {O(νl(k))} was removed (through the H2 hypothesis) and
some expected values of the products of random variables were converted into
product of expected values, by means of H1. The term σ2

ν,l(k) , E
[
ν2l (k)

]
can

be singled out by the application of H2. Equation (44) presents some matrices
(or vectors) not yet mentioned, which can be defined by:

Al , E
{[
xl(k)x

T
l (k)⊗ IN

]
+
[
IN ⊗ xl(k)x

T
l (k)

]}
(45)

Bl ,E
{[
xl(k)x

T
l (k)⊗ xl(k)x

T
l (k)

]}
(46)

Cl ,E
{
vec
[
xl(k)x

T
l (k)

]}
(47)

Dl ,E
{
IN2 − βlAl + β2

lBl

}
(48)

Zl(k) , E {βl [IN ⊗Rx,l]− IN2}

+E

{

vec
[

ψ̃l(k)f
T
ρl
[ψl(k)]

]}

+κlE
{

vec
{

fρl [ψl(k)]f
T
ρl
[ψl(k)]

}}

+E {βl [Rx,l ⊗ IN ]− IN2}

+E

{

vec
[

fρl [ψl(k)] ψ̃
T

l (k)
]}

. (49)

Equations (37) and (44) are capable of providing a set of diverse informa-
tion about the learning process of the ℓ0-LMS incremental algorithm. Matrices
Al, Bl, Dl, Rx,l and the vector cl present a simple structure, that only de-
pends on statistics of the input signal. On the other hand, calculating vector
Zl(k) is more challenging, and it will be respectively our main focus next.

5.3 Evaluation of the Expected value of functions of the deviations

The terms

E

{

vec
[

ψ̃l(k)f
T
ρl
[ψl(k)]

]}

E

{

vec
{

fρl [ψl(k)]f
T
ρl
[ψl(k)]

}}

and

E

{

vec
[

fρl [ψl(k)] ψ̃
T

l (k)
]}

can be obtained if we have analytical expressions capable of calculating the
following expectation values:
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E

{

ψ̃l,i(k)fρl [ψl,j(k)]
}

, (50)

E

{

fρl

[

ψ̃l,i(k)
]

fρl [ψl,j(k)]
}

, (51)

for i, j ∈ {0, 2, . . . , N − 1}. Calculating the terms (50) and (51) is made easier
if hypothesis H3 is considered, namely:

H3. The adaptive coefficients ψl,i(k) (as well as the deviations ψ̃l,i(k)) are
guassian random variables.

Hypothesis H3 is very popular in the literature [67], having been the object
of empirical studies in [52]. Though important, this hypothesis is insufficient
for obtaining analytical expressions. This is due to the terms (50) and (51)
requiring the resolution of bidimensional integrals, which do not presented
closed formulations. In the literature, the solution to this deadlock resides in
the following additional hypothesis [52,67]:

H4. The approximations

E

{

ψ̃l,i(k)fρl [ψl,j(k)]
}

≈ E

{

ψ̃l,i(k)
}

E {fρl [ψl,j(k)]}

E {fρl [ψl,i(k)] fρl [ψl,j(k)]} ≈ E {fρl [ψl,i(k)]}

E {fρl [ψl,j(k)]} (52)

are reasonably accurate. By employing H3-H4, the term E {fρl [ψl,j(k)]} can
be calculated by [52]:

E
{
fρl
(
ψl,j(k)

)}

=
1

√
2πσi,j,k

∫ ∞

−∞
fρl
[
ψl,j(k)

]
e
−

(ψl,j(k)−µi,k)2

2σ2
i,j,k dψl,j(k)

=
ρ2
l
σi,j,k
√
2π






e

−

(

µi,j,k+ 1
ρl

)2

2σ2
i,j,k − e

−

(

µi,j,k−

1
ρl

)2

2σ2
i,j,k







+
ρ2
l
µi,j,k

2

[

erf

(
µi,j,k + 1

ρl√
2σi,j,k

)

− erf

(
µi,j,k − 1

ρl√
2σi,j,k

)]

+
ρl

2

[

erf

(
µi,j,k + 1

ρl√
2σi,j,k

)

+erf

(
µi,j,k − 1

ρl√
2σi,j,k

)]

−ρlerf

(

µi,j,k
√
2σi,j,k

)

,

where erf(x) , 2√
π

∫ x

0
e−t

2

dt, µi,j,k , E [ψl,j(k)] and

σi,j,k ,

√

E

[

ψ2
l,j(k)

]

− µ2
i,j,k. (53)
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By calculating the expected values (50) and (51) (and by employing the
recursive equations (37) and (44)), we are able to establish a stochastical
model capable of predicting the transient behavior of the ℓ0-LMS incremental
algorithm.

5.4 Tracking analysis

One of the most important abilities of an adaptive filtering algorithm consists
in tracking modifications of the transfer function to be identified. A stochastic
model capable of predicting the transient, or the steady-state, of an adaptive
filtering algorithm in a non-stationary environment provides guarantees con-
cerning the tracking capabilities of the algorithm. Normally, such evaluations
are performed for the case in which the ideal transfer function varies over
time [64]. Furthermore, random walk model [7] is used for evaluation. In this
mode, the ideal function to be identified varies over time in accordance with:

w⋆(k + 1) = w(k) + q(k), (54)

where q(k) denotes a random perturbation. Accordingly, Eq. (36), in a tracking
context, can be rewritten as:

ψ̃l(k + 1) =
[
IN − βlxl(k)x

T
l (k)

]
ψ̃l(k)+

−βlxl(k)νl(k)− κlfρl [ψl(k)] + q(k). (55)

The first and second order statistical analysis of (55) require an additional
hypothesis, namely [64]:

H5. The vector sequence {q(k)} is stationary presenting zero mean inde-
pendent values. Furthermore, these vectors are independent from the xl(k)
and νl(k) signals.

Hypothesis H5 gives rise to a first-order Markov model (see [43] for an
alternative modelling example, which assumes a component that periodically
varies over time for an ideal transfer function). The application of the expec-
tation operator in (55) (accompanied by hypotheses H1 and H5) results in a
first-order update equation identical to the one presented in (38). Meanwhile,
in case of the second-order statistics, there is an additional term regarding (44)
which produces [22]:

vl(k + 1) ,Dlvl(k) + β2
l σ

2
ν,l(k)cl + κlZl(k) + ϑ, (56)

where ϑ , E
{
vec
[
q(k)qT (k)

]}
. Assuming H5, identity (56) reveals that a

small modification of (44) allows the stochastic model to be extended for the
tracking case.

Normally, a reduced learning factor βl implies a small misadjustment in
the steady-state regime [36]. However, in a tracking context, very small learn-
ing factors can imply performance degradation in the permanent regime since
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tracking capacity is reduced. Excessive coefficient oscillations related to the
choice of the elevated learning factors, allows us to conclude that raising them
inordinately does not solve the problem. Also, we did not take into consider-
ation here the real possibility that a significant increase of these factors may
result in a divergence of the algorithm. This means that it is very common
to have an optimal value for the learning factors, which is: (i) not very small
in order to not harm the tracking ability; (ii) nor to high, to avoid excessive
oscillations.

6 Results

Firstly, we should emphasize that it is possible to obtain MSE and MSD evolu-
tion estimates metrics for each agent both in the transient and the permanent
regime. Other evaluation metrics of network global performance consist of
global MSE and MSD, respectively defined as:

MSEglobal(k) ,
1

M

M∑

m=1

MSEm(k), (57)

MSDglobal ,
1

M

M∑

m=1

MSDm(k), (58)

which can be inferred from the local MSE and MSD values.
This section also compares the performance metrics predicted and simu-

lated for the case of identifying a transfer function varying over time, in ac-
cordance with a first-order Markov model. This was done in order to evaluate
the ℓ0-LMS incremental algorithm tracking properties.

In all of the following scenarios, the transfer functions to be identified
consist of the first N samples of the different models presented in [1], scaled by
an α factor. This was done to avoid adaptive coefficients with small magnitude.
Unless explicitly stated, the following items are uniformly distributed over the
respectively stated range: (i) the learning factors over a predetermined range
[βmin, βmax]; (ii) the coefficients of the zero attractors over range [κmin, κmax];
(iii) parameters ρl over range [ρmin, ρmax]; (iv) the additive measurement noise
variances (gaussian and white) over range [σ2

ν,min, σ
2
ν,max]. The independent

Monte Carlo trials in each scenario is represented by EMC.

6.1 Scenario 1

This first scenario employs N = 8 and the first model of [1] with α = 100 and
EMC = 1000. The ideal transfer function is depicted in Fig. 2. The network
consists of M = 4 agents, with the ranges for parameters β, ρ, κ e σ2

ν described
in Tab. 1.

This scenario focuses in comparing the transient behaviour and the steady-
state of the theoretical analysis with the results obtained via simulation. In
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Fig. 2 Ideal plant adopted in Scenario 1.

Table 1 Simulation parameters for Scenario 1

Parameter Minimum Value Maximum Value
β 10−3 10−4

κ 10−10 10−6

ρ 2 5
σ2
ν 10−6 1

Fig. 3 the blue filled lines describe empirical MSE evolution for each agent
whilst the dotted red lines present theoretical MSE evolution. A comparison
of both curves shows good model adherence to the Monte Carlo trials.

6.2 Scenario 2

Equation (38), which focuses on first order statistics, can be employed to obtain
the theoretical evolution for each adaptive coefficient through the iterations.
Evaluating such predictions, when compared against the results obtained via
simulation, is one of the objectives of the second scenario, which employs
N = 10 and the fourth model of [1] with α = 100 (see Fig. 4). The network
consists of M = 10 agents, with the ranges for parameters ρ, κ e σ2

ν presented
in Tab. 2. All the agents use the same β value. Fig. 5 presents the results for
some randomly chosen coefficients (arbitrarily chosen) through the network
for β = 10−3. Once more it is possible to observe the quality of the theoretical
predictions. The greater variability of the adaptive coefficients regarding the
first nodes was expected. This is due to these nodes having a measurement
noise whose variance is greater. By changing β for both nodes, it is possible to
compare theoretical estimates and the simulation data for global steady-state
MSD. A comparison performed in Fig. 6, which again reflects the accuracy of
the proposed stochastic model.
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Fig. 3 Empirical MSE evolution (blue-filled lines) and theoretical (red-dashed lines) for
Scenario 1. (a) First node; (b) second node; (c) third node; (d) fourth node. All figures are
presented in the same scale.

Table 2 Simulation parameters for Scenario 2.

Parameter Value for the Value for the
first node last node

κ 10−8 10−7

ρ 1 10
σ2
ν 10−2 10−3
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Fig. 4 Ideal plant adopted in Scenario 2.
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Fig. 5 Theoretical evolution (red-dashed lines) and experimental (blue-filled lines) for the
second scenario and the i-th adaptive coefficient of the l-th node ψl,i(k) (EMC = 10). (a)
first node and i = 0; (b) second node and i = 2; (c) third node and i = 4; (d) fourth node
and i = 6; (e) fifth node and i = 8 and (f) sixth node and i = 9.

6.3 Scenario 3

The third scenario evaluates model adherence when MSE in the steady-state
is compared as a function of κ. Model 4 of [1] was used with N = 12, M = 4
agents and EMC = 100. Fig. 7 depicts the employed ideal transfer function.
The remaining parameters were distributed along the nodes in accordance with
Tab. 3. As Fig. 8 shows, it is possible to observe good curve adherence whilst
κ varies by two orders of magnitude.
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Fig. 6 Theoretical steady-state MSD (red-dashed line) and experimental (blue-filled) line
for the second scenario, as a function of β (EMC = 1000). All nodes employ the same learning
factor.
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Fig. 7 Ideal plant adopted in Scenario 3.

Table 3 Simulation Parameters for Scenario 3.

Parameter Value for the Value for the
first node last node

β 10−3 5× 10−2

ρ 1, 25 1, 25
σ2
ν 10−2 10−3

6.4 Scenario 4

The fourth scenario evaluates the precision of the proposed model for the
challenging tracking case. This scenario makes use of the third model of [1]
with N = 8 (see Fig. 9), M = 10 agents and EMC = 100. The remaining
parameters were distributed along the nodes in accordance with Tab. 4.

A σ2
q = 10−11 variance was employed for the elements of the random pertur-

bation vector q(k). Fig. 10 presents the MSD in the steady-state as a function
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Fig. 8 Theoretical MSE in the steady-state regime (red-filled line) and experimental (blue-
filled line) for the third scenario as a function of κ, (EMC = 100).
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Fig. 9 Ideal plant adopted in Scenario 4.

Table 4 Simulation parameters for Scenario 4.

Parameter Minimum Value Maximum Value
κ 10−9 10−8

ρ 1 10
σ2
ν 10−6 10−4

of parameter β, which was employed for all the agents. This figure shows that
in a non-stationary scenario the MSD in the steady-state is not monotonically
increasing as β increases. As previously stated, a small β value harms the
algorithms tracking ability, which gives rise to an optimal β value that mini-
mizes the MSD in the steady-state. This value is accurately predicted by the
theoretical analysis, as is illustrated by the simulated and theoretical curves
of Fig. 10. The MSE evolution of the first node for a β value equal to 5×10−5

is presented in Fig. 11. Again, the plot shows a good correlation between the
predicted results and the simulated ones.
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Fig. 10 Global MSD in the theoretical steady-state (red-dashed line) and experimental
(blue-filled line) for the fourth scenario as a function of β. All the nodes employ the same
learning factor value. The variance of the random perturbation applied to each one of the
adaptive coefficients was σ2

q = 10−11.
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Fig. 11 First node MSE evolution for the fourth scenario with β = 5×10−5 and σ2
q = 10−11.

All the nodes employ the same learning factor value. Theoretical values are presented in red-
dashed lines, whilst experimental results are presented in blue.

7 Conclusions

The ℓ0-LMS is one of the most popular sparsity-aware adaptive filtering al-
gorithms, which also lends itself to be implemented in a distributed manner.
This article focused on the case where the algorithm is employed in an adaptive
network, operating in an incremental manner, that aims to identify a system
in a diffuse manner.

A stochastic model was proposed in order to model the empirical results
concerning the learning of the algorithm. Doing this required considering clas-
sical or popular approaches in the literature, such as the independence hy-
pothesis. The model was constructed in a general manner as to allow for: (i)
variation in the number of agents (each of which with a specific learning fac-
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tor); (ii) variation of the penalization factor; (iii) zero-attraction strength; and
(iv) statistical properties of the input signal.

The model is capable of accurately predicting the average evolution: (i)
of the coefficients; (ii) the MSE and MSD metrics that depend on second or-
der statistics; and (iii) the coefficient update probability, which impacts the
computational complexity of the algorithm. Furthermore, it is possible to pre-
dict steady-state performance. These allow for performance observation as a
function of a selected parameter. For the case in which the transfer function is
time variant (depending on a first-order Markov random walk) the algorithm’s
learning capability is also predicted.
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