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Abstract
In most applications of wireless sensor networks the specification of the corresponding topology can be useful for the

optimization of some important features, such as: node energy consumption, connectivity and coverage area. This is known

as the Sensor Allocation Problem (SAP). Our work proposes an approach based on memetic algorithm concepts to find

high-quality solutions. In our approach, each node can be associated with one of four operation modes (classified according

to its maximum range). The algorithm optimizes the position of each node and produces solution clusters. In order to

evaluate the efficiency of the method, we analyze case studies with different coverage areas that are then compared against

results previously found in the literature. Our experiments show that in order to achieve a smaller energy consumption and

an increase in network coverage area, one needs to operate with a sizeable number of sensors, but with few nodes operating

in larger transmission power modes (which require an increased energy expenditure).

Keywords Wireless Sensor Network � Combinatorial Optimization � Memetic Algorithms

1 Introduction

Wireless Sensor Networks (WSNs) are self-configured

entities composed by a set of sensors (distributed along an

area of interest to be monitored) which can freely com-

municate over short distances [1]. The popularity of WSNs

is in part attributed to their advantages of distributed con-

trol, scalability and self-organization [2, 3]. Accordingly,

they are an important technology for a wide range of real-

time applications [4–6]. In a WSN each sensor can perform

the following basic tasks: (i) sensing environmental fac-

tors; (ii) data storage; (iii) processing; and (iv) wireless

communication. Each node can collect environmental sig-

nals, such as temperature, humidity, pressure, and illumi-

nation [7], which can be used for distributed inference

purposes [8–10]. These pieces of information are for-

warded from the sensor nodes to a sink node, that is, in

general, computationally more powerful and has unre-

stricted access to energy.

A large-scale WSN may consist of hundreds of sensor

nodes able to transmit the information gathered without

requiring complicated communication backbones [11]. The

nodes are usually battery-powered, employ low-priced and
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computationally constrained hardware, have a limited

energy budget (which may be irreplaceable [12]) and may

be organized in a determined or random manner [13–15].

Due to their limited power supply, energy management is

an important issue for WSN [7, 16, 17]. Energy-con-

strained operation has become one of the major bottlenecks

holding back further dissemination and development of

WSNs [18]. WSNs can be, in theory, deployed with low

costs, due to the fact that they do not require fixed

infrastructures [19]. However, this can only be achieved

through a judicious sensor allocation strategy. In short, one

of the most important issues in WSNs is the achievement of

better system performance (e.g., network lifetime) by

sensor deployment strategies1 [1].

Furthermore, WSNs should be capable of preventing

problems, such as a sensor failure [14]. Namely, when a

sensor node fails, the WSN should establish a new route to

the sink, whilst keeping connectivity and preserving

autonomy. WSNs commonly use a cluster topology, that

divides the sensing area into small groups. Each cluster has

a data fusion node, denominated the cluster–head. The

nodes belonging to a cluster can collect data and send

information directly to the cluster–head, which is respon-

sible for storing, processing and providing data gathered by

its one–hop neighboring nodes. Generally, this type of

topology has the following objectives: (i) to save energy;

(ii) to be fault-tolerant; (iii) to ensure efficient network

communication; and (iv) to ensure efficient data dissemi-

nation [20]. In addition, in order to ensure good area

coverage sensing the sensor nodes must be placed in such a

way as to cover the whole interest region. Guaranteeing

every node in the WSN has connectivity, whilst keeping a

low energy consumption, are thus important issues for

network topology [21].

The aforementioned concepts of energy consumption,

connectivity and coverage area have real-world applica-

tions. Namely, in [22], the authors investigated the effects

of signal propagation on WSNs applied to landslide man-

agement. Transmitting and receiving antennas were placed

in order to perform real-world experiments. In [23], a

healthcare system based on WSNs was described. The

authors proposed a real-time heart pulse monitoring sys-

tem, collecting data from distinct people, whose data was

forwarded to smartphones. In [24] the authors implemented

a novel method for Structural Health Monitoring (SHM)

applications as a mechanism to perform structural damage

detection. The proposed system is wireless and works in

real-time. The work also describes the set of laboratory

tests that were performed as a way to evaluate the proposal.

The work presented in [25] detailed and implemented a

Software Defined Network-based energy efficient routing

protocol for WSN applications. The work was evaluated

through a real test bed, which made use of a Raspberry Pi.

The results showed that this strategy outperformed other

routing protocols found in the literature with respect to

metrics such as network lifetime, energy consumption,

packet delivery ratio and average delay.

1.1 Objectives and contributions

This paper proposes a mathematical model and the

implementation of a methodology based on memetic

algorithm (MA) concepts [26–28]. Our method aims to

define the best configuration of operation modes for the

sensor nodes belonging to a WSN. Our objective is to

optimize network efficiency in terms of coverage area and

energy consumption. This is a challenging combinatorial

optimization problem, one where complexity increases

exponentially as the instance (measured in terms of cov-

erage area) grows. Solving this problem allows for greater

monitoring autonomy since each operation mode defines

the maximum range of a given sensor, which is based on its

transmission power. This is directly related to network

energy consumption, since higher transmission power

requires larger energy expenditure.

In order to evaluate the performance of the MA–based

proposed methodology, our work considers several case

studies with cover areas of different sizes (in grids). This

approach is based on [29–31]. In addition to extending the

analysis and the results described in these papers, the main

contributions of our work are the following:

• Proposal of a mathematical model of integer linear

programming for the aforementioned SAP. This extends

the works [29, 31], which only presented the objective

functions of the considered optimization problem;

• Proposal of MA-based approach that can be reproduced

and adapted to other applications with different objec-

tive functions (OF). This is in contrast to the works

[29, 31], which only considered a genetic algorithm

(GA) method;

• Proposal evaluation in grid-based instances with dis-

tinct areas, reflecting more realistic scenarios. This

differs from the works [29, 31], which considered only

small 10� 10 grid-based instances.

The experimental results obtained indicate that the SAP

solution proposal can allocate sensor nodes in optimal

positions so as to minimize energy consumption whilst

retaining network connectivity. It is important to empha-

size that there is a trade-off between energy consumption

and sensing coverage, which calls for the establishment of

an operational choice during network design [6].

1 In the literature, such techniques are also known as placement or

coverage schemes [6].
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1.2 Structure

The remainder of this paper is organized as follows. Sec-

tion 2 presents the related works and also highlights the

contributions of the proposed method against the existing

literature. The problem studied and respective mathemati-

cal model are presented in Sect. 3. Section 4 describes the

methodology for the proposed solution. Simulation results

are analyzed and discussed in Sect. 6. Concluding remarks

and future works are presented in Sect. 7.

2 Related works

Connectivity is crucial for the functionalities and capabil-

ities of WSNs [32]. For example, if all wireless devices

have the same transmission radius r in homogeneous ad

hoc networks, one has r-disk graphs [19]. Target coverage

and connectivity are critical issues in WSNs [33]. For

instance, reference [34] proposes the utilization of a local

search approximation algorithm for connectivity-aware

deployment algorithms able to generate a reasonable node

placement. Two centroid-based iterative deployment

schemes (i.e., blind-zone centroid-based and disturbed

centroid-based schemes) for sensor coverage in WSNs are

proposed in [35]. None of these schemes require manual

adjustments of their parameters.

A low-cost and connectivity-guarantee grid-based

deployment mechanism that employs ant colony opti-

mization metaheuristics is presented in [36]. Network

topology control and network coding are jointly considered

in [37] in order to reduce WSN energy consumption.

Despite the deployment problem being NP-complete [38] it

was mitigated in [39] by making use of a weighted sam-

pling scheme that matches the requested detection proba-

bilities. The minimization of the number of sensor nodes is

performed by using the local event occurrence rate while

employing the sensors detection capabilities [1].

It is important to emphasize which features this paper

does not consider. Note, for example, that the impact of

routing protocols is not taken into consideration. This is an

important issue in when modelling the cascading feature

present in some WSNs (see [40]). Another feature that is

not considered is the implementation of behavioral moni-

toring of sensor nodes, by selecting some of them as

watchdogs. These may be considered as a possible coun-

termeasure to attacks such as selective forwarding, that are

able to detect misbehaving nodes [41]. Furthermore,

specific strategies to reduce packet transfers are not taken

into account. As an example, one may cite duty-cycling

schemes (which merges sleep intervals with wake-up time

intervals [42]) and cluster node division, with the

respective cluster-heads sending the average values

directly to the sink [43].

In order to address the lack of adaptability to event

dynamics, several papers exploit the mobility of sensor

nodes [44]. Sink mobility is exploited in [45] as a way to

better balance the traffic load across the sensor nodes and

increase network lifetime. Hybrid sensor networks (i.e.,

which include both static and mobile sensor nodes) are

addressed in [46]. Both sensor faults and sensor noise are

considered in [47], which advocates the employment of a

weighted average of sensor measurements. The combina-

tion of WSNs with free space optical communication

technology is addressed in [3]. Since a good understanding

of the propagation impairments affecting the wireless links

may contribute to a successful design of WSNs, some

papers propose models for the involved path losses (e.g.,

[48]). In [49] the authors address the problem of coalition

formation among devices when considering energy avail-

ability, communication interest and physical ties. The work

proposes a distributed power control framework for

determining the optimal power characteristics.

Evolutionary strategies have been employed to address

challenges in WSNs. Namely, in [50] the authors present

an evolutionary game and respective evolution strategy for

addressing the joint spectrum sensing and access problem.

A review of computational intelligence techniques applied

to the challenges that arise from WSNs was presented in

[51]. The authors describe, categorize and present tax-

onomies for the state of the art in terms of fuzzy systems,

neural networks, evolutionary computation, swarm intelli-

gence, learning systems and their respective hybridizations

(amongst others). An optimization strategy based on brain

storm optimization was proposed in [52]. The authors

analyze the factors influencing this mechanism and then

improve on it by proposing an orthogonal learning frame-

work to improve its learning mechanism. A framework for

solving large-scale multiobjective and many-objective

optimization problems was presented in [53]. In this work,

the authors propose new algorithms that: (i) incorporate

reference vectors into the control variable analysis; and (ii)

optimize the decision variable by making use of an adap-

tive scalarization strategy. The offload of computationally

intensive tasks and associated challenges from WSNs to

accessible servers was addressed in [54].

MAs have been explored to optimize network lifetime

and fault tolerance. Simulation results from [55] showed

that the MA outperformed other heuristic methods in terms

of WSN lifetime. The MA-TOSCA proposed in [56] aims

to optimize network topology as a way to provide tolerance

against cascading failures. For this purpose, a local search

operator was designed based on a new network balancing

metric.
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In the context of this work, it is important to note that a

finite number of sensor modalities are employed, each of

them with a specific communication range (see Sect. 3).

Such a sensing model implies that the considered WSNs

are heterogeneous (as in a heterogeneous network [57]),

making their topology control and deployment more diffi-

cult [6, 58]. This advanced node deployment can be clas-

sified as grid-point based, which presents several

advantages against continued-point alternatives [59].

3 Mathematical model

Using graph theory terminology [60], a two-dimensional

area for sensor allocation can be modelled as a connected

graph, where V is the set of n nodes and A is the set of m

arcs. A node i 2 V represents a possible location to place a

sensor. The arc ði; jÞ 2 A, i 2 V and j 2 V , represents the

possible communication link between two sensors.

Figure 1 exemplifies the set of existing arcs between the

black-node and the other nodes of the network reachable by

it. In order to facilitate the visibility, only the arcs that are

incident to one specific node are depicted. The same pro-

cess must be repeated for each node of the graph in order to

obtain a comprehensive description of the network.

According to the sensors type considered in this work, the

maximum achievable range is two nodes (or two-hop)

distant. Thus, each node of the graph is adjacent, at best, to

a node that is at this transmission range (distance) from it,

as depicted by the number presented in each node (Fig. 2).

The SAP proposed in this article was based on the

simplified problem presented in [29]. However, this work

proposes a mathematical formulation able to provide clear

specifications to the solution search procedure. Namely, the

model uses a set of binary decision variables sti, with t 2 S

and i 2 V , defined as follows:

sti ¼
1; if a sensor of operation mode t is placed at the i-th node

0; otherwise,

�

where the set S ¼ fx; y; z;wg represents all sensor types

used in the study, defined by their communication range,

and i 2 f1; . . .; ng, being n ¼ L� L. Nodes with z-sensors

(one-hop) and y-sensors (two-hops) communicate with x-

sensor nodes, and w-sensor nodes represent inactive oper-

ation sensors, which may be in sleep mode or even be

absent. L is the one-dimension size of the considered

square field. The SAP can be formulated as the following

integer linear programming problem:

min
Xo
j¼1

ajfj ð1Þ

st:X
t2S

sti � 1 8 i 2 V ð2Þ

X
i2V

sxi � 1 ð3Þ
X
i2V

X
t2S

sti ¼ L� L ð4Þ

sti 2 f0; 1g 8 i 2 V; 8 t 2 S ð5Þ

where |S| is the number of sensor types (operation mode)

considered, o is the number of OFs considered, aj is the

parameter that weighs the j-th OF and fj is the j-th OF.

We decided to map the textual descriptions of the

metrics employed in [29, 30] into the following set of

formulas that can be employed into the proposed linear

programming problem:

1. f1 ¼ FC: this OF represents the coverage and commu-

nication between the nodes (maximization function).

FC ¼

X
i2V

sxi þ
X
i2V

syi þ
X
i2V

szi

 !
�

X
i2V

swi þ NOR

 !

n
;

ð6Þ

where each individual sum is responsible for pre-

senting the number of x-, y-, z- and w-sensors allocated

in the solution, and the NOR term represents the number

of sensors of types y and z that are out of range of a

sensor of type x (see Eq. 11).

2. f2 ¼ OpCiE: this OF controls whether a cluster in

charge (x-sensor) is well distributed to minimize

overlaps.

(a) (b)

Fig. 1 Partial Graph representation of a two-dimensional area with

size L� L ¼ 4� 4, exemplifying the maximum range for the black-

nodes

Fig. 2 Chromosome representation of solution depicted in Figure 3
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OpCiE ¼ NoverlapsX
i2V

sxi
; ð7Þ

where Noverlaps (number of overlaps, see Eq. 14) rep-

resents the number of y- and z-sensors, reachable for

more than one sensor of mode x (minimization

function).

3. f3 ¼ SORE: this OF verifies how many sensors are out

of range of a x-sensor (cluster in charge), which

depends directly on the communication range of each

sensor and its position in the network. It is assumed

that the y-mode sensors have a circular cover equal to

2
ffiffiffi
2

p
units in length and the z-mode sensors have a

circular cover equal to
ffiffiffi
2

p
units in length (minimiza-

tion function).

SORE ¼ NORX
i2V

swi
: ð8Þ

Figure 3 exemplifies an instance of the positions for a

set of different sensors. Node a1;1, corresponding to an

x-sensor, distances one horizontal unit from node a1;2,

allocated to an z-sensor. In the same manner, node a1;1
is two vertical units and two horizontal units apart from

node a3;3.

4. f4 ¼ SpCi: this OF verifies that the y- and z-sensors are

in accordance with the traffic capacity, data manage-

ment and the physical communication capacity of the

x-sensors (maximization function).

SpCi ¼

X
i2V

syi þ
X
i2V

szi � NOR

X
i2V

sxi
: ð9Þ

5. f5 ¼ NE: this OF is a numerical measure of energy

consumption that depends directly on the network

topology and operating mode of each sensor. It is

assumed that the x-sensor consumes twice what y-

sensor does and four times more than the z-sensor [29]

(minimization function).

NE ¼
4
X
i2V

sxi þ 2
X
i2V

syi þ
X
i2V

szi

n
:

ð10Þ

6. NOR (number of sensors that are out of range), can be

defined as:

NOR ¼ Ny
OR þ Nz

OR; ð11Þ

where Ny
OR and Nz

OR are the number of y-sensors and z-

sensors that are out of range of a sensor of type x,

respectively. They are defined in Eqs. 12 and 13.

Nz
OR ¼

X
i2V

1�min 1;
X
k2Nz

i

sxk

0
@

1
A; ð12Þ

Ny
OR ¼

X
i2V

1�min 1;
X
k2Ny

i

sxk

0
@

1
A; ð13Þ

where Nz
i is the set of nodes in the neighborhood of a

z-sensor placed in the i-th node of the network, and Ny
i

is the analog for y-sensor. Both neighborhoods are

specified in detail by Eqs. 17-19.

7. Noverlaps is the number of z- and y-sensors that have

more than one x-sensor in their range. The number of

overlaps can be defined as:

Noverlaps ¼ Nz
overlaps þ Ny

overlaps ; ð14Þ

where Nz
overlaps (Eq. 15) and Ny

overlaps (Eq. 16) are the

number of overlapped z- and y-sensors, respectively:

Nz
overlaps ¼

X
i2V

jSzi � NxðNz
i Þj

� �
� Szi �

NxðNz
i Þ

NxðNz
i Þ þ 1

� �� 	
;

ð15Þ

Ny
overlaps ¼

X
i2V

jSyi � NxðNy
i Þjð Þ � Syi �

NxðNy
i Þ

NxðNy
i Þ þ 1

� �� 	
;

ð16Þ

NxðNz
i Þ ¼

X
k2Nz

i

Sxk; ð17Þ

NxðNy
i Þ ¼

X
k2Ny

i

Sxk: ð18Þ

Equations 17 and 18 define the number of x-sensors that

are present in a z- and y-sensor range, where Nz
i and Ny

i are,

respectively, the neighborhood of a z-sensor and y-sensor

placed in the i-th node. In this paper, the neighborhood of a

z-sensor placed in the i-th node is the set of nodes located

one-distance from such a node (see Fig. 1, nodes with flag

1). Similarly, the neighborhood of a y-sensor allocated in

the i-th node is the set of nodes placed two-distance from

such a node (see Fig. 1, nodes with flag 2). For a two-Fig. 3 Example of solution with L ¼ 4
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dimensional area, such as the one considered in the present

work, the neighborhood of size one can be defined as:

Nz
i ¼ ðq� 1ÞLð Þ þ uð Þ 8 q 6¼ R or u 6¼ C ; ð19Þ

where:

• u 2 fmaxf1; � � � ;C � 1g; � � � ;minðC þ 1; LÞg,
• q 2 fmaxf1; � � � ;R� 1g; � � � ;minðRþ 1; LÞg,
• C ¼ ði� 1Þ mod L,

• R ¼ bði� 1Þ=Lc and i ¼ f1; 2; � � � ; L� Lg, i.e., i 2 V .

Nz
i in Eq. 19 is the neighborhood of size 1 from a node i,

i.e., one-hop distance. From this definition it is possible to

calculate the neighborhood of any size for a given node.

According to graph theory, we can use the concept of

reachability with the recursive process shown in Eqs. 20-23

to determine the neighborhood of size n of a given node v

[61]:

N1ðvÞ ¼NðvÞ; ð20Þ

N2ðvÞ ¼NðN1ðvÞÞ; ð21Þ

..

. ..
.

NnðvÞ ¼ NðNðn�1ÞðvÞÞ ð22Þ

NnðvÞ ¼
[n
i¼0

NiðvÞ; ð23Þ

where N1ðvÞ is the neighborhood of size 1 of a node v, thus

NnðvÞ is the neighborhood of size n of a node v, i.e., the

union of all neighbor sets of size smaller than n (Eq. 23).

For example, in this work, it is possible to find the

neighborhood of a y-sensor placed in the i-th node, through

its z-sensor neighborhood when it is allocated in the i-th

node. Thus Ny
i ¼ NðNz

i Þ is the neighborhood of size 2 from

a node i, i.e., the set of neighboring nodes of size 1 and the

neighbors of its neighbors.

Furthermore, the of (1) minimizes the network opti-

mization function described above2. Constraint (2) ensures

that only one sensor can be installed on each node (possible

position). Equation 3 guarantees that at least one x-sensor

will be allocated in the solution. Equation 4 assures that the

number of sensors (considering the inactive ones) will be

equal to the coverage area size. Constraint (5) defines all

variables as binaries.

4 Solution methodology

The principle behind heuristics and metaheuristics methods

is to provide quality solutions for the problem addressed in

a reasonable computational time. The solution method

developed for the instance of the SAP being tackled is

based on GA concepts and local search optimization pro-

cedures. These methods allow for high-quality solutions to

be found, albeit not guaranteeing an optimal solution.

However, empirical studies have shown that such tech-

niques have good performance in practice [62–65].

4.1 Proposed memetic algorithm

GAs are optimization algorithms that work in a randomly

oriented manner according to probabilistic rules which are

based on an analogy with the Darwinian principles of

species evolution and genetics [66, 67]. MAs were intro-

duced in [68] as a variation of GA, where the term

‘‘meme’’ denotes a cultural evolution and not only a gene

evolution.

MA is a search strategy in which a population of indi-

viduals that are being optimized cooperate and compete.

Each individual represents a solution to the addressed

problem. A candidate solution, not necessarily feasible, is

characterized by a chromosome representing a gene

sequence that encodes a possible solution. This coding is

defined by specifying the possible values (alleles) for each

chromosome positions (locus), arranging them in an

appropriate structure to the problem [67]. In the case of our

methodology, each individual of the population is a solu-

tion to the SAP, which is represented by a chromosome

consisting of integer numbers. The main memetic algo-

rithm concepts are presented below, namely: Sect. 4.1.1

describes the representation employed for each solution;

Sect. 4.1.2 details how to measure the intrinsic value of

each solution; Sect. 4.1.3 presents the pseudocode for

generating a feasible initial population. Section 4.1.4

characterizes the selection operator used to create an

intermediate population; Sect. 4.1.5 expands on how to

perform gene permutation; Sect. 4.1.6 reveals a mutation

operator responsible for introducing gene diversity;

Sect. 4.1.7 elaborates on how to make infeasible generated

solutions into feasible ones; Sect. 4.1.8 puts forward the

local search procedure that is applied to the offspring.

Finally, Sect. 4.1.9 introduces the pseudocode for the

memetic algorithm implemented.

4.1.1 Solution encoding

A chromosome representation for the SAP can be built

using a vector of integer numbers with dimension one and2 To obtain more specific information about the optimization

parameters, please refer to [29].
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size L� L. The length of the vector symbolizes the two-

dimensional monitoring region (size L� L). Each vector

position is associated with a location where a sensor can be

installed. The value assigned to each chromosome position

is in the interval [0, 3], representing the operating mode (w,

x, y and z) of each sensor. Value 0 means that the node is

inactive (i.e., w-sensor); value 1 corresponds to operating

mode x (cluster in charge), value 2 represents operating

mode y and value 3 operating mode z. Figure 2 exemplifies

the chromosome for the solution encoding presented in the

Fig. 3, which shows the position and communication

between each sensor. Each node presented in Fig. 3 has a

specific ai;j position where i and j correspond, respectively,

to a row and column of the L� L matrix. The chromosome

contains the information a1;1; � � � ; a1;L; a2;1; � � � ; a2;
L; � � � ; aL;1; � � � ; aL;L:

4.1.2 Fitness function

In each generation the chromosome of every individual is

evaluated by calculating its fitness value. This measure is

computed after the creation of the initial population and

recalculated after: (i) the genetic operators have been

applied; and (ii) the local search procedure has been per-

formed. As is typical in minimization problems, the fitness

function adopted in this paper is the inverse of the OF, as

presented in Eq. 24 (for more details please refer to

Sect. 3).

fitness ¼ 1Xn
i¼1

aiFi

:
ð24Þ

4.1.3 Initial population

A randomized constructive heuristic is employed to gen-

erate a feasible initial population, as described in Algo-

rithm 1. The procedure begins with an empty population

(line 1), and each main iteration (lines 2-19) constructs one

individual at a time. Each individual (I) starts without any

sensors (lines 3). In the inner loop, (lines 5-17), trials are

performed to allocate a sensor to every possible location.

The operation mode of the sensor assigned to a particular

position is determined according to a predetermined

probability. Namely, y-sensors have the highest occurrence

probability, this is then followed by z-sensors, then w-

sensors and the least likely x-sensors. The procedure

returns a population with Psize initial individuals. It should

be emphasized that population size (Psize) and the indi-

vidual size (cs, i.e., chromosome size) are parameters of the

algorithm. Algorithm 1 executes in HðPsize � csÞ time.

4.1.4 Selection

The goal of the selection operator is to choose pairs of

individuals in the current generation population to perform

the crossover. The operator implemented in this paper is

based on Roulette Selection, ensuring that all

individuals have a certain probability of being chosen that

is proportional to their fitness. Table 1 shows the fitness of

four individuals and Fig. 4 illustrates the respective

selection operator implemented. The roulette rotates as

many times as necessary to select the required number of

individuals to participate of the crossover.

4.1.5 Crossover

The purpose of the crossover operator is to generate an

intermediate population through genes permutation of the

parents that were produced from the selection operation. A

two-point crossover is applied, in which two cutting points

Table 1 Example of fitness and accumulated fitness by individual

Individual Fitness Accumulated fitness
i fi Xn

i¼1

fi

1 2.0 2.0

2 1.5 3.5

3 4.0 7.5

4 2.5 10.0
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are randomly selected to split the chromosomes from two

parents. These points determine what genetic information

will be copied from each parent to generate an offspring.

Each offspring takes one segment, in between adjacent cut

points, from each parent, thus each parent contributes with

part of its genes to generate a new individual. This pro-

cedure is exemplified in Fig. 5.

Algorithm 2 shows the pseudocode for the crossover

operation. I1 and I2, are the two individuals selected to

participate in the crossover, cs is the chromosome size and

Io is the offspring resulting from the crossover. The algo-

rithm starts by selecting two cut points (lines 1-2). These

points are sorted in ascending order (lines 3-7). The off-

spring is then composed by the first part of individual 1,

followed by the second part of individual 2 and, lastly, by

the third part of individual 1 (lines 8-16). The algorithm

executes in HðcsÞ time.

4.1.6 Mutation

The mutation operator is responsible for introducing

diversity in the current population. This is performed by

changing the genetic code of the constituent individuals

and happens in accordance with a mutation rate, which

dictates whether an offspring can mutate. When a locus is

selected for mutation the method considers four

possibilities:

1. position contains x-sensor: a y-sensor, z-sensor or w-

sensor is allocated instead of a x-sensor;

2. position contains y-sensor: a x-sensor, z-sensor or w-

sensor is allocated instead of a y-sensor;

3. position contains z-sensor: a x-sensor, y-sensor or w-

sensor is allocated instead of a z-sensor;

4. position contains w-sensor: a x-sensor, y-sensor or z-

sensor is allocated instead of a w-sensor.

The choice of which sensor will replace the previous one

obeys the probability distribution mentioned in Sect. 4.1.3.

Figure 6 exemplifies a possible mutation operation.

The pseudocode of the mutation operation is presented

in Algorithm 3. Io is the offspring resulting from the

crossover, mp is the probability of the mutation and cs is the

size of the chromosome. According to a certain probability,

each chromosome allele can be mutated (line 4). Whenever

an allele is chosen to be mutated, it is verified which sensor

is allocated at this position and one of the other three

modes of operation is chosen (lines 5-13). Similarly to the

crossover pseudocode, Algorithm 3 also executes in HðcsÞ
time with the ChooseSensor function requiring Oð1Þ time.

Fig. 4 Roulette selection example

Fig. 5 Example of two-point crossover

Fig. 6 Example of a mutation operation for an offspring instance
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4.1.7 Feasibility

The crossover and mutation operations may yield an indi-

vidual that does not respect Eq. 3, i.e., at least one x-sensor

needs to be allocated to the cover area. When this happens

the individual is said to be infeasible and a feasibility

procedure needs to be carried out. This can be done by

randomly selecting a locus and substituting by an x-sensor.

4.1.8 Local search

MAs are categorized as hybrid Evolutionary Algorithms

(EA) and are very successful in practice, forming a rapidly

growing research area with great potential. Commonly

combining an evolutionary and a heuristic method (a

hybrid EA) performs better than each one of those algo-

rithms alone [69]. In this kind of algorithms, the evolu-

tionary search is augmented by the addition of one or more

phases of local search.

This MA phase aims to examine a set of neighbors of the

current solution and replace it with a better one, if it exists.

Therefore, after performing the crossover and the mutation

operations, a first improvement local search (LS) procedure

is applied in the offspring. The LS proposed is based on an

exchange movement. For each chromosome position of the

individual, the LS procedure replaces the current sensor for

a different one. The choice is made according to the

probability presented in the mutation operator (see

Sect. 4.1.6). When the best individual does not improve

over a specific number of generations, the local search is

also applied to the best individual of the current population.

The pseudocode for the LS can be found in Algorithm 4.

The while cycle is responsible for OðcsÞ iterations. The

Fitness function that is being invoked in Line 14 grows

linearly with the size of the individual, and thus requires

HðcsÞ time. In addition, the ChooseSensor function exe-

cutes in Oð1Þ time. Overall, Algorithm 4 executes in Oðc2s Þ
time.
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4.1.9 Pseudocode of the memetic algorithm

Algorithm 5 shows the pseudocode for the memetic algo-

rithm proposed in this paper to solve the SAP. Variables r,

g and t control, respectively, the number of resets, the

number of GA generations and the number of generations

without improvement. The variables numMaxResets,

numMaxGeneration and numMaxWithoutImprovement are

input parameters. For each reset (lines 3-44), a new pop-

ulation is generated. A constructive heuristic generates the

initial population (line 6), after which the fitness of each

individual is calculated (line 7). To facilitate the execution

of the selection operator and the storage of the best indi-

vidual (line 9), the population is sorted from the best

individual to the worst (line 8).

For each MA generation (lines 10-42), n pairs of indi-

viduals are selected to participate of the crossover

operation and n offspring individuals are generated

(line 13). According to a certain probability (mp), each

offspring may suffer a mutation in its genetic code

(line 16). Function Random(0, 1) is a function that pro-

vides a random number in the interval [0, 1], according to

a uniform distribution. The LS procedure then follows

(line 19), after which the fitness of the offspring is calcu-

lated. The parents and respective offspring are then eval-

uated to determine who will remain in the population of the

next generation (lines 22-32). The best individual of each

generation is also stored (line 36). If the fitness of the best

individual fails to improve over a certain consecutive

number of generations then the LS is applied to it (line 39).

The best individual found is returned with the conclusion

of the GA (line 45). The overall time complexity of the

algorithm is OðnumMaxResetsðPsizecs þ Psize logPsize þ Psize þnum

MaxGenerationðnðcs þ c2s Þ þnðcsÞÞ þ Psize þ cs þ c2s Þ.
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5 Hyperparameter optimization

Both the GA and the MA employ a set of hyperparameters

whose values need to be determined. As a result, this

section presents an hyperparameter optimization process

based on a statistical analysis in order to grant the results

greater reliability (Sect. 6). This is then followed by a

comparison study of both algorithms for synthetic instances

of different sizes. Later, a comparison against previously

reported results is carried out. In all simulations of this

paper, the values of aj (for j ¼ 1; . . .; o) are the same as

those used in [29, 30].
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Given that both algorithms proposed are non-determin-

istic, each hyperparameter combination was executed 30

times. During the hyperparameter optimization procedure

an L ¼ 10 instance was employed, resulting in a vertex grid

of dimension 10� 10. The individual stages of the opti-

mization procedure can be briefly stated as follows:

1. Execute each hyperparameter combination 30 times;

2. Calculate the median (md) for each combination;

3. Select the 5 best value combinations;

4. Calculate the interquartile range (IR) of the 5 best

combinations;

5. Choose the combination with the smallest IR value.

5.1 Genetic algorithm hyperparameter
optimization

The above procedure was applied to validate the hyper-

parameter values for the GA. A brief description of each

hyperparameter, alongside the set of respective values

evaluated, can be found in Table 2.

5.1.1 Phase 1 - baseline behavior performance

In order to perform the tests, the combination of hyper-

parameters resulted in a search space of size

7� 7� 6� 5 ¼ 1470. Given that each combination was

executed 30 times, a total of 44100 GA executions were

performed in this first experiment. Subsequently, the 5

combinations that yielded the best results in terms of OF

were selected according to median value and interquartile

range. Table 3 lists the combinations (C) with the best

hyperparameters classification, alongside the respective

average (x), median value (md), interquartile range (IR),

standard deviation r and execution time in seconds.

The solutions presented are ordered by IR. It is possible

to see that the combinations listed present the same md

value and IR values that are close to each other. The

boxplot of the 5 best combinations is presented in Fig. 7,

where the y-axis represents the OF values for the solutions

obtained. The data demonstrates the occurrence of few

outliers (namely in C1, C4 and C5). In addition, there is also

similarity in the dispersion value of the solutions obtained

for each combination. Combinations C1 and C5 present the

best dispersions, although, combination C1 presents the

best IR result according to Table 3.

Figure 8 presents a line plot with the median values of

the OF according to the number of generations and for each

combination of set C. The main goal is to verify whether a

tendency for convergence is occurring or has already

materialized for each combination. The plot depicts an

accelerated initial decrease followed by a deceleration after

4000 generations that yields diminishing returns in terms of

improving the OF. Combination C1 presents the best IR

results the first test stage.

5.1.2 Phase 2 - extending the number of maximum
generations

Due to the fact that the 5 best combinations presented in

Table 3 produced results very close to each other, we opted

to re-execute the test. We chose to maintain the same set of

hyperparameter values with the exception of the maximum

number of generations genm, which was extended to 20000.

The same test and analysis procedures were repeated,

resulting in 5� 30 ¼ 150 GA executions. The results

obtained are presented in Table 4 alongside the respective

D hyperparameter variations from Table 3. A quick

inspection reveals that the md values remained the same

and the IR worsened.

The boxplot results for Table 4 are presented in Fig. 9.

Combinations C11 and C41 still exhibit some outliers and

overall solution dispersal remains close, mimicking the

behaviour previously shown. However, if we examine the

corresponding line plot with the median values of the OF,

respectively presented in Fig. 10, it is possible to verify

that after 7500 generations there exists a convergence

tendency from all combinations. Configuration C11 still

exhibits the best performance, albeit with a smaller dif-

ference when compared against the others.

5.1.3 Phase 3 - addition of a reset operator

Figure 10 also shows that from generation 7500 up to,

approximately, generation 18500 each combination

remained stagnant performance-wise. A possible technique

Table 2 GA hyperparameters

alongside respective values

evaluated

Hyperparameter Description Value set

mr Mutation rate f0:05; 0:06; 0:07; 0:08; 0:09; 0:10; 0:20g
cr Crossover rate f0:20; 0:25; 0:30; 0:35; 0:40; 0:45; 0:50g
ps Population size f250; 500; 750; 1000; 1500; 2000g
genm Maximum number of generations f1000; 3000; 5000; 10000; 15000g
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to deal with such a behaviour is to apply a population reset

after a predetermined number of generations without

improvement. Accordingly, we implemented a reset oper-

ator and examine its impact for the reset values

f300; 500; 1000; 2000; 5000; 10000g. The hyperpa-

rameter combinations employed remained the same as in

Phase 2 (Table 4). In this stage a total of 5� 6� 30 ¼ 900

GA executions were performed. The best results where

found for reset value 5000 and are listed in Table 5

alongside the respective D hyperparameter variations from

Table 4. Combination C22 presented the best md and IR

values and the second best time. Figure 11 presents the

boxplot for each of these combinations. Combinations C22

Table 3 Five best

hyperparameter combinations

concerning OF and ordered by

IR (Phase 1)

C mr cr ps genm x md IR r Time(s)

C1 0.05 0.25 1500 10000 �23:89 �24:69 2:69 2.19 343

C2 0.06 0.25 1500 10000 �23:56 �24:69 3.13 2.37 365

C3 0.08 0.30 1500 15000 �23:44 �24:69 3.23 2.24 545

C4 0.09 0.45 1000 15000 �23:06 �24:69 3.85 3.18 515

C5 0.07 0.25 2000 10000 �24:05 �24:69 3.89 2.55 487

Fig. 7 Box plot for the 5 best hyperparameter combinations presented

in Table 3 (Phase 1)

Fig. 8 Median value plot of the OF according to the number of

generations (Phase 1)

Table 4 Hyperparameter combinations for C1; . . .;C5 with genm extended to 20000 (Phase 2)

C mr cr ps genm x Dx md Dmd IR D IR r Dr Time(s)

C11 0.05 0.25 1500 20000 �23:31 0.58 �24:69 0 2:94 0.25 3.10 0.91 701

C21 0.06 0.25 1500 20000 �23:71 �0:15 �24:69 0 3.91 0.78 2.28 �0:09 726

C31 0.08 0.30 1500 20000 �23:17 0.27 �24:69 0 3.39 0.16 2.65 0.41 841

C41 0.09 0.45 1000 20000 �22:64 0.42 �24:69 0 3.39 �0:46 4.60 1.42 714

C51 0.07 0.25 2000 20000 �23:42 0.63 �24:69 0 5.68 1.79 3.02 0.47 956

Fig. 9 Box plot for the 5 best hyperparameter combinations presented

in Table 4 (Phase 2)
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and C12 present the smallest dispersals, with the former of

these having a more balanced md value.

Figure 12 presents the line plot with the median values

of the OF for the third phase in terms of number of gen-

erations. The plot shows that, for all combinations, there

does not occur an interval greater than 5000 generations

without some improvement being observed. This behaviour

enables the combinations evaluated to achieve better

results during the same number of generations. Therefore,

the addition of the reset operator allowed for an improve-

ment in the evolution of the solutions. Overall, combina-

tion C22 presents the best results, according to the md, IR

and time values.

5.2 Memetic algorithm results
for hyperparameter optimization of GA

This stage employed the five best combinations that were

obtained during the GA experiments. The values of each

hyperparameter can be found in the left side of Table 6

whilst the right side present the results achieved with the

MA execution and a reset value of 5000 alongside the

respective D hyperparameter variations from Table 5.

Table 6 shows that for all combinations the average and

median values were the same, respectively, 26.24. This

result can be better explained by looking at the plot of

Fig. 13 which shows the median OF value evolution for the

selected combinations. Notice that, after a steep decline, all

combinations start to converge to the same OF value.

Accordingly, we believe this is the optimal value for an

instance of this dimension. Consequently, the standard

deviation and interquartile range presented value zero. This

result is due to the local search employed by the MA that

helps in exploring the search space. Given the similarity

Fig. 10 Median value plot of the OF according to the number of

generations and with genm ¼ 20000 (Phase 2)

Table 5 Results for the five best performing hyperparameter combinations of phase 1 with population reset value 5000 (Phase 3).

C mr cr ps genm x Dx md Dmd IR D IR r Dr Time(s)

C12 0.05 0.25 1500 20000 �24:77 �0:88 �24:69 0 2.60 �0:09 1.54 �0:65 650

C22 0.06 0.25 1500 20000 �24:97 �1:41 �25:87 �1:18 1:85 �1:28 1.62 �0:75 696

C32 0.08 0.30 1500 20000 �24:38 �1:32 �24:69 0 4.65 1.42 2.22 �0:96 818

C42 0.09 0.45 1000 20000 �23:86 �0:8 �24:69 0 4.80 0.95 2.56 0.01 711

C52 0.07 0.25 2000 20000 �24:43 �0:38 �25:69 0 3.10 �0:79 2.35 �0:2 1.252

Fig. 11 Box plot for the 5 best hyperparameter combinations

presented in Table 5 (Phase 3)

Fig. 12 Median value plot of the OF according to the number of

generations and reset value of 5000 (Phase 3)
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that all the results present, the combination selected was

C42 since it required the least computational time.

6 Simulation and results

This section evaluates and compares the results obtained by

the GA and the MA for three different sizes of instances.

The algorithms were implemented in C?? and the

experiments were performed in a computer with an Intel

Core i5 7300HQ processor with 8 GB of RAM. The same

procedure realized for hyperparameter optimization was

performed here in order to evaluate the performance of the

algorithms and avoid bias results. Thus, each algorithm

was executed 30 times for every instance. The vertex grids

examined consisted of 100 (L ¼ 10), 225 (L ¼ 15) and 400

(L ¼ 20) nodes, which is a far more complex scenario than

the previously addressed in the literature [29, 30]. The

hyperparameter values employed in the experiments were

the ones determined to be the best in Sects. 5.1.3 and 5.2.

The average (x), median (md), interquartile range (IR),

standard deviation (r) and average mean time are presented

in Table 7, with the best values being presented in bold

font. Figures 14, 15 and 16 present the average and median

OF evolution of the GA and the MA for the selected

instances.

The numerical and visual data presented shows that the

MA presented the best results for the L ¼ 10 instance.

Besides obtaining the best results the algorithm was also

able to converge faster on the solution. Overall, the MA

also exhibited the best behavior for the L ¼ 15 instance,

with the exception of the time dimension. Albeit, the MA

presented a steeper decrease in OF than the GA; for

genm ¼ 20000 both algorithms failed to demonstrate a

clear convergence tendency, which might indicate some

room for further improvement. For L ¼ 20 the GA show-

cased the best average, median and time values, whilst the

MA exhibited the best IR and standard deviation. It is

important to emphasize that the hyperparameter perfor-

mance study performed in Sect. 5 employed an L ¼ 10 size

instance. This set of hyperparameter values may not be the

most suitable for larger instances.

Furthermore, the population size that exhibited the best

behavior for the MA contained 500 less individuals than

the leading GA combination. The significant increase in the

quantity of nodes, alongside the population growth, can be

a justification for the MA not having outperformed the GA

for the largest test instance. The considerable increase in

execution time for the biggest instances can be attributed to

the fact that the MA carries out a local search.

From the WSN perspective there are some aspects that

should be highlighted. The average and median results

demonstrate that the MA outperformed the GA for the L ¼
10 and L ¼ 15 instances. This implies that the proposed

heuristic was able to generate an optimal topology with

respect to cover area and energy consumption, by allocat-

ing the best amounts of the different kinds of sensor nodes.

However, the results presented in Table 7 demonstrate that

the MA requires a longer time to obtain the optimal solu-

tion for the L ¼ 15 and L ¼ 20 instances. This behavior

may have an impact on intended applications. Namely,

topology control is a strategy applied beforehand to plan

optimal sensor allocation. Accordingly, it may not be

interesting (or even feasible) to have to wait a long time to

Table 6 Five best hyperparameter combinations for the MA and with a reset of 5000.

C mr cr ps genm x Dx md Dmd IR D IR r Dr Time(s)

C12 0.05 0.25 1500 20000 �26:24 �1:47 �26:24 �1:55 0 �2:60 0 �1:54 532

C22 0.06 0.25 1500 20000 �26:24 �1:27 �26:24 �0:37 0 �1:85 0 �1:62 522

C32 0.08 0.30 1500 20000 �26:24 �1:86 �26:24 �1:55 0 �4:65 0 �2; 22 592

C42 0.09 0.45 1000 20000 �26:24 �2:38 �26:24 �1:55 0 �4:80 0 �2:56 338

C52 0.07 0.25 2000 20000 �26:24 �1:81 �26:24 �0:55 0 �3:10 0 �2:35 981

Fig. 13 Median value plot of the OF according to the number of

generations for the MA
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get the network up and running. Therefore, there may be a

trade-off between the optimal MA solution and the time

available to deploy a WSN. Nevertheless, the MA per-

formed better than the GA in all metrics, including simu-

lation time, for an L ¼ 10 instance. Thus, this may indicate

that the MA can be directly used when small instances are

considered. On the other hand, for larger instances (e.g.:

L ¼ 15) the time required for the network deployment must

be taken into account when choosing which heuristic to be

apply.

Table 7 GA versus MA for

different instances size
Algorithm mr cr ps genm x md IR r Time(s)

L ¼ 10 - 100 nodes

GA 0.06 0.25 1500 20000 �24:97 �25:87 1.85 1.62 696

MA 0.09 0.45 1000 20000 �26:24 �26:24 0 0 338

L ¼ 15 - 225 nodes

GA 0.06 0.25 1500 20000 �19:08 �19:33 3.15 1.98 1192

MA 0.09 0.45 1000 20000 �23:23 �23:38 2:10 1:88 10652

L ¼ 20 - 400 nodes

GA 0.06 0.25 1500 20000 �13:52 �13:52 1.22 1.16 3318

MA 0.09 0.45 1000 20000 �12:11 �11:97 0:85 0:72 18294

(a) (b)

Fig. 14 GA vs MA comparison - L ¼ 10

(a) (b)

Fig. 15 GA vs MA comparison - L ¼ 15
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Table 8 presents a comparison between our GA and MA

proposals alongside results from [29], with the addition of

results from larger instances. For the smallest instance

(L ¼ 10), our methods achieved a larger fitness value, with

the same number of x-sensors, when compared to [29]. Our

solution also obtained larger f1 and f4 functions values, and

reduced ones for f5, which translates into a smaller energy

footprint. Results for L ¼ 15 demonstrate that the MA

outperforms the GA, generating an optimal topology with

less sensor nodes and decreased energy consumption.

However, the larger instances require more computational

time, specially for the MA, which uses a local search

procedure. The GA performed better than the MA for the

L ¼ 20 instance with the latter generating a network with

more x-sensors and increased out-of-range-sensors.

7 Conclusions

This paper investigates the utilization of an evolutionary

heuristic to solve the SAP for topology control in WSNs.

Network topology can be optimized with respect to cover

area and energy expenditure, providing the sensor nodes

with increased monitoring autonomy. The WSN considered

was composed by nodes with distinct operational modes

that presented different ranges based on transmission

power. Such an optimization problem can be succinctly

described as finding optimal locations and number of each

kind of sensor, in order to balance energy expenditure

whilst covering an L� L area.

The SAP was formulated as an integer linear program-

ming problem and approaches based on a GA as well as a

MA were implemented. The instances considered covered

areas of dimension L ¼ 10 (10� 10 sensor nodes), L ¼ 15

(15� 15 sensor nodes) and L ¼ 20 (20� 20 sensor nodes),

extending the work presented in [29]. The results obtained

demonstrate that the MA outperforms the GA with respect

to the covered area for both the L ¼ 10 and L ¼ 15

instances. The algorithm also presents the smallest execu-

tion time for the instance (L ¼ 10). For L ¼ 15, the MA

found a better solution, but required a longer time. For the

larger instance (L ¼ 20), the GA outperformed the MA.

Depending on the WSN application to be considered, this

suggests a trade-off between optimal sensor placement

(a) (b)

Fig. 16 GA vs MA comparison - L ¼ 20

Table 8 Results comparison

between [29] and our GA and

MA proposals for L ¼ 10.

Detailed result information for

L ¼ 15 and L ¼ 20 is also

presented

Results Fitness x y z w Out-of-range Overlapping f1 f2 f3 f4 f5

L ¼ 10� 100 nodes

[29] �23.89 4 75 16 5 0 0 0.90 0 0 22.75 2.46

GA �26.24 4 64 32 0 0 0 1.00 0 0 24.00 1.76

MA �26.24 4 64 32 0 0 0 1.00 0 0 24.00 1.76

L ¼ 15� 225 nodes

GA �24.22 9 151 51 14 0 0 0.88 0 0 22.45 1.73

MA �25.55 9 139 72 5 0 0 0.96 0 0 23.45 1.72

L ¼ 20� 400 nodes

GA �15.75 22 244 92 28 14 4 0.79 0.18 0.04 14.64 1.67

MA �13.89 23 189 135 30 23 4 0.74 0.18 0.06 13.09 1.52
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(leading to a better network energy balance when com-

pared to a sub-optimal solution) and computational time,

when one compares both evolutionary algorithms.

As future work, we intend to improve the proposed

methodology designing one structured algorithm that is

able to maintain the exploratory abilities of the proposed

one, along with a smaller execution time. Further, an

evaluation of the relationship between the evolutionary

process and the solutions quality will be carried out. The

authors intend to conduct case studies using real-world

networks with areas that are not square. Thus, we intend to

use the information of the coordinates of each node and

consequently to calculate the distance between them and

use this information, along with the sensor range, to solve

the SAP.
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