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Most adaptive filtering schemes employ the tapped-delay line. In part,

such a fact can be explained by the assumption that the plant they intend

to estimate is linear. Although such a hypothesis can be reasonable if

the input signal is constrained to a certain range, sometimes it may

not be valid. In this last case, the performance and stability guarantees

provided by stochastic models that presume linearity of the ideal system

are no longer valid. This paper advances an analytic model of the

least mean square learning capabilities when the ideal system is not

linear, with the additive noise including nonlinear functions of the

input samples. The proposed analysis does not assume neither that the

excitation signal is statistically independent from the adaptive weights,

nor that the additive noise is white and/or independent from input data.

Furthermore, it can be applied to non-Gaussian and/or non-white input

signals. Simulations show that the advanced model is more accurate than

traditional approaches.

Introduction: The least-mean-square (LMS) algorithm emerged as an

effective, yet simple, adaptive filtering scheme whose robustness against

perturbations and implementation errors is well-know [1–3]. Despite its

simplicity, the mathematical analysis of the LMS is complicated due

to its stochastic and nonlinear nature [4]. Furthermore, most analyses

assume that the ideal plant the adaptive filter intends to estimate1 is

linear [5]. Unfortunately, this may not be strictly valid in practice, due to a

plethora of phenomena, such as operation near the saturation region [6],

intermodulation distortion [7] and usage of high power amplifiers [8].

Since a small distortion engineered by a nonlinear component (NLC) in

such systems may dominate the overall identification performance [9],

analyses that do not take into account the NLC are not able to provide

neither performance nor stability guarantees. This paper advances, for the

first time, a stochastic model of the LMS performance that incorporates

the effets of the NLC. The proposed analysis does not employ the almost

ubiquitous independence assumption (IA), which states that the input

samples x(k) are statistically independent from the adaptive weights

wi(k) (for i∈ {0, 1, . . . , N}, where N denotes the adaptive filter length).

IA, although widely used in the field of stochastic approximations [1],

is recognized to provide accurate predictions only when the step size

is small [10]. The avoidance of IA engineers the exact expectation

technique [14–16], which is also able to provide a proper step-size upper

bound that guarantees convergence [15]. Furthermore, it can be employed

in the derivation of a deterministic theoretical step-size sequence that

optimizes performance [17].

This paper is structured as follows. We start by describing the adopted

nonlinear model of the plant to be identified. We then present the

advanced analysis, which can be employed to predict a stability region.

We then propose a method for deriving a deterministic step size sequence

that optimizes performance and takes into account the stochastic coupling

between the excitation data and the adaptive coefficients. This is followed

by the results. We then present the main conclusions of the paper.

Nonlinear System Model (NSM) : Nonlinear discrete-time systems can

be frequently modeled by Volterra series [13, 18–20], which is a

stable functional series expansion of a nonlinear time-invariant system.

Such series take into account memory effects, which can not be

performed with static nonlinear models [21, 22]. Considering N ∈N as

the memory depth, w⋆
p(n1, · · · , np)∈R as the coefficients of the p-th

order polynomial basis function and P ∈N as the maximum nonlinearity

order, in this paper the reference signal d(k) is modeled as the sum of

1 This paper focuses on the system identification task.

three components

d(k) = (w⋆)
T
x(k) + νM(k) (1)

+

,νNLC(k)
︷ ︸︸ ︷

P∑

p=2

N−1∑

n1=0

· · ·

N−1∑

nP=0

w
⋆
p(n1, . . . , nP )

p∏

l=1

x(n− nl),

where the first right-side term corresponds to the affine-in-the-parameters

linear component (LC, with w⋆ ∈RN denoting the unknown and ideal

coefficients of the LC), νM(k) is the measurement noise and νNLC(k)
corresponds to the nonlinear part (that is not captured by the linear

adaptive model). Note that the consecutive samples of the overall noise

ν(k), νM(k) + νNLC(k) can be correlated, so that the noise whiteness

(a very common hypothesis) is not assumed in this paper. The Volterra

model (1) is assumed to be symmetric (i.e, w⋆
p (n1, · · · , np) is invariant

w.r.t. the p! possible permutations of the indices n1, · · · , np [23, 24]).

Finally, the input vector x(k)∈RN is defined as

x(k),
[
x(k) x(k − 1) · · · x(k −N + 1)

]T
, (2)

so that there is a deterministic coherence between successive input

vectors.

Exact Expectation Analysis of LMS-Based NLS Identification: The LMS

update equation is a nonvanishing step-size version of a stochastic

gradient algorithm that intends to minimize the mean-squared error

(MSE) [25]:

w(k + 1) =w(k)− β∇
w(k)

[
1

2
e
2(k)

]

=w(k) + βe(k)x(k),

(3)
where β ∈R+ is the step size and the signal error e(k)∈R is defined by

e(k), d(k)−wT (k)x(k). (4)

In order to not restrict the analysis to white inputs, in the following

the input signal is assumed to be colored according to an M -th order

moving-average model:

x(k) =

M−1∑

m=0

bmu(k −m), (5)

where u(k) is an i.i.d. signal with even probability density function

(pdf) and γn ,E [un(k)]. Furthermore, its variance γ2, without loss of

generality, is supposed to be unitary.

The average performance of the adaptive identification depends on a

set of joint moments (or state variables), such as E
[
w̃2

0(k)u
2(k − 1)

]
,

where w̃i(k) is the i-th component of the deviation vector w̃(k),w⋆ −

w(k). When IA is employed, the number R of state variables (or number

of equations) is dramatically decreased, since under IA it is possible to

perform approximations such as

E
[
w̃2

0(k)u
2(k − 1)

]
≈E

[
w̃2

0(k)
]
E
[
u2(k − 1)

]
,

whereas it should be noted that even if IA is not assumed the identity

E
[
w̃2

0(k)u
2(k)

]
= γ2E

[
w̃2

0(k)
]

is strictly valid, since w(k) does not

depend on the sample u(k) (see (3)). In the following, joint moments

such as E [u(k)νM(k)] will be considered to be zero, due to the usage of

the following noise assumption (NA):

NA. The measurement noise νM(k) is a zero-mean i.i.d. stochastic

process, which is statistically independent from the input signal.

Remark: NA is a standard assumption in analyses of adaptive filtering

algorithms, and often is satisfied in practice [12, 26]. In this paper, the

overall noise ν(k) is neither i.i.d. nor statistically independent from the

excitation data.

For didactic purposes, consider the configuration N = 2, M = 1,

νNLC(k) = αx2(k − 1) and a first-order stochastic analysis. In scalar
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terms, the application of recursion (3) in w̃0(k) can be expressed as

w̃0(k + 1) = w̃0(k)− b
2
0u

2(k)β − b
2
0u(k)u(k − 1)β

− b0u(k)ν(k)β − b
3
0u(k)u

2(k − 1)αβ

+ b
2
0u

2(k)w̃0(k)β + b
2
0u(k)w̃1(k)u(k − 1)β, (6)

which is a deterministic recursion that can be converted to a stochastic

one by applying the expectation operator:

E[w̃0(k + 1)] = (1 + b20βγ2)E[w̃0(k)]− b20βγ2. (7)

By replicating the same steps to w̃1(k), one obtains

E[w̃1(k + 1)] = E[w̃1(k)]− b
2
0βγ2 + b

2
0βE[u

2(k − 1)w̃1(k)],
(8)

where the nuisance term E[u2(k − 1)w̃1(k)] appears. Such a state

variable is termed as a nuisance one due to the fact that one is not

primarily interested in it, but its computation is necessary in order to

evaluate the quantities of interest [11]. A recursion on such term can be

obtained if one multiplies both sides of recursion

w̃1(k + 1) = w̃1(k)− b
2
0u(k − 1)u(k)β − b

2
0u

2(k − 1)β

− b0u(k − 1)ν(k)β − b
3
0u

3(k − 1)αβ

+ b
2
0u(k − 1)w̃0(k)u(k)β + b

2
0u

2(k − 1)w̃1(k)β
(9)

by u2(k) before the application of operator E[·], which provides the

following recursion

E[u2(k)w̃1(k + 1)] = γ2E[w̃1(k)]− b20βγ
2
2

+b20βγ2E[u
2(k − 1)w̃1(k)]. (10)

Note that recursions (7), (9) and (10) can be employed to construct a

linear state equation system

y(k + 1) =Ay(k) + b, (11)

in which state vector y(k) contains the state variables E [w̃0(k)],

E [w̃1(k)] and E
[
u2(k − 1)w̃1(k)

]
, A is a time-invariant transition

matrix and b is a vector that contains terms that do not depend on state

variables (such as βb20γ
2
2 ). In this first-order analysis of the considered

setting, matrix A has dimensions 3× 3. Since the mean behavior of

the adaptive weights leads to estimates for the range of stable operation

that are way off, a second-order analysis is desirable. In the considered

configuration, mean-square analysis requires the computation of five state

variables, since the MSE can be expressed (without employing IA) as

MSE(k), b
2
0γ2 − 2b20γ2E[w̃0(k)]

+ b
2
0γ2 − 2b20E[u

2(k − 1)w̃1(k)] + σ
2
ν

+ b
4
0α

2
γ4 − 2b30αE[u

3(k − 1)w̃1(k)] + b
2
0γ2E[w̃

2
0(k)]

+ b
2
0E[u

2(k − 1)w̃2
1(k)], (12)

and a recursion of these state variables requires 14 equations (due to

the need of computing the recursions for 9 nuisance state variables).

The number of state variables grows rapidly with the increase of N

and M [27], so that an efficient C++-code was written in order to

automatically derive the necessary recursions.

In short, the exact expectation analysis consists of a recursive

procedure that obtains the update equations of the involved state

variables. Since the input data is correlated only in a finite horizon

(see (5)), the generation of equations eventually halts. Note that the

algorithm convergence can be inferred from matrix A (which depends

on β). The stability is predicted if the maximum absolute eigenvalue of

A (which can be evaluated by the Power Method [28]) is not greater than

unity [15].

Results: In the following simulations, the input signal is obtained by

filtering an unitary-variance white Gaussian noise by the transfer function

H(z) = 1− 0.8z−1. The reference signal is described by

d(k) = [w⋆]T x(k) + 0.005x2(k) + ν(k), (13)

where ν(k) is an additive Gaussian noise with variance σ2
ν = 10−3.

The unknown vector w⋆ is composed by ones (i.e., w⋆
i = 1, for i∈

{0, 1, . . . , N − 1}).
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Fig. 1 Evolution of the mean value of adaptive weight w0(k) of the LMS

with N = 6 and β = 0.065. The empirical curve was obtained with 107

independent Monte Carlo trials.
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Fig. 2 Evolution of the mean square error of the LMS with N = 3 and β =
0.085. The empirical curve was obtained with 108 independent Monte Carlo

trials.

Fig. 1 compares the first-order evolution of the adaptive coefficient

w0(k) for both exact and standard theoretical analyses. Note that

the former is able to accurately predict the first-order dynamics of

the considered configuration. Fig. 2 permits one to conclude that

the exact expectation analysis also adheres better to experimental

second-order ensemble learning curves. Fig. 3 depicts the divergence

between IA-based predictions for steady-state performance with respect

to the empirical one. In order to empirically assess the probability of

divergence, the LMS is executed for 105 independent Monte Carlo trials

for 500 iterations. A specific realization is counted as divergent if the

absolute value of any adaptive coefficient surpasses 10 (i.e., if there exists

at least a single k for which |wi(k)|> 10, for i∈ {0, . . . , N − 1}). The

maximum value of β that implies algorithm stability can be inferred

from the transition matrices A, which can be constructed for both IA-

and EEA-based models. Fig. 4 depicts the probability of divergence for

different step-size values. Note that the upper bound established by the

EEA specifies the region in which the algorithm converges and that it

may indeed diverge in some cases where the IA-based model predicts

stable operation.
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Fig. 3 Steady-State MSE for the N = 2 configuration. The empirical results

were obtained by the usage of 106 independent Monte Carlo trials.
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Fig. 4 Divergence probability for N = 3. For this configuration, β(IA)
MAX

=

0.208149 and β(EEA)
MAX

= 0.0947366.

Conclusions: In this paper, a comprehensive model that predicts the

learning behaviour of the LMS algorithm when the ideal plant is

nonlinear is devised. The advanced analysis does not assumes neither

input signal Gaussianity, nor its whiteness. Simulations demonstrate that

the proposed stochastic model is able to accurately characterize both

transient and steady-state regimes. Furthermore, it provides a proper step

size upper bound that effectively avoids stability issues.
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