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Abstract Due to the inherent feedback feature of adaptive
filtering algorithms, a comprehensive theoretical understand-
ing of their learning process is still challenging. In order
to make the mathematics tractable, most stochastic analyses
adopt simplifications. One of these is the independence as-
sumption, which presumes statistical independence between
adaptive weights and input signal samples. Furthermore, the
additive noise is usually assumed to be white, although it
may not be the case in practice. This paper advances a novel
theoretical model of the least mean square adaptive filter
that, under the independence assumption, does not presume
a white noise signal. Additionally, a theoretical result is es-
tablished which implies that the stability properties of such
an adaptive filter are not influenced by noise coloring. Such
a result does not employ the above-mentioned assumptions,
i.e., it is valid for both colored noise and non-infinitesimally
small step size values. An optimal step-size sequence that
minimizes the mean-square deviation and takes into account
the stochastic coupling of the excitation data and adaptive
weights is proposed. It is noteworthy that such a design does
not induce divergence in practice and does not assume, for
the first time, a white measurement noise. The theoretical
contributions are confirmed by simulations.

1 Introduction

Adaptive filtering algorithms are recursive stochastic esti-
mators of a set of parameters (such as the taps of an un-
known acoustic transfer function stored in the vector www? ∈
RN) that usually present numerical stability, ease of imple-
mentation, low computational burden and ability to address
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nonstationary environments [1, 2]. Similarly to the major-
ity of stochastic gradient descent methods, the least-mean-
square (LMS) algorithm employs an instantaneous error sig-
nal sample e(k) to adapt a linear filtering structure. The ob-
jective of such a time-variant structure is to extract from the
input signal x(k) the information of interest in an efficient
way [3]. Despite the simplicity of the LMS update equation,
it indeed implements a complex nonlinear estimator [4, 5].

The development of stochastic models capable of pre-
dicting both LMS performance and stability is of primary
importance, since it provides guidelines and guarantees for
the designer. However, modeling the LMS learning ability is
a difficult task, especially when common statistical assump-
tions are not employed [6]. Two of the most critical assump-
tions (which may introduce significant deviations between
theory and experiments) can be stated as follows:

? Independence Assumption (IA): the excitation vector1

xxx(k) ∈ RN is statistically independent from the adaptive co-
efficient vector www(k) ∈ RN . Although such an assumption is
common in the field of stochastic approximations [3], it im-
plies accurate predictions only when the step size β ∈R+ is
small [7].

? White Noise Assumption (WNA): the samples of the
noise signal ν(k) ∈ R are independent from each other. Al-
though it is almost universal, this hypothesis is clearly vio-
lated in practice when the reference signal d(k) ∈ R is cor-
rupted by an additive colored signal (such as a narrowband
or a speech signal) [8].

This paper focuses on stochastic properties of the LMS
algorithm without the usage of the ubiquitous WNA. The learn-
ing process under a colored noise signal is modeled using
IA (see Section 2). Furthermore, Section 3 presents for the
first time a proof (through Theorem 1) which establishes
that the stability features of the LMS are not influenced by

1In this paper, all vectors are assumed to be of column-type.
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the coloring of the additive noise signal. It is worth noting
that such a theorem is very general, since none of the pre-
vious assumptions are necessary to establish the result. Sec-
tion 4 devises a theoretical design procedure of an deter-
ministic and optimal step-size sequence that considers the
coloring of the noise and simultaneously avoids IA. Such
a sequence permits one to address in a convenient way the
trade-off between a fast convergence and a good steady-state
performance. Since this sequence is constructed without the
usage of IA, it is much less prone to induce divergence in
the first phase of the learning process [9]. Furthermore, it is
important to benchmark a given design against a theoreti-
cal optimum performance [10]. Theoretical predictions are
confirmed by simulations in Section 5, which precedes the
concluding remarks of the paper (Section 6).

2 Proposed Stochastic Analysis

Exact expectation analysis (EEA) [8, 11, 12, 9] is a sophis-
ticated technique for predicting both stability and perfor-
mance evolution of the LMS. One of the most useful metrics
for the evaluation of an adaptive algorithm performance is
the mean-squared error (MSE), defined as ξ (k), E

[
e2(k)

]
,

where E [·] denotes the expectation operator. MSE is depen-
dent on several joint statistical moments (or state variables)
of several random variables. When both IA and WNA are em-
ployed, it can be approximated by [1]

ξ (k)≈ σ
2
ν +Tr

{
E
[
xxx(k)xxxT (k)

]
RRRw̃ww(k)

}
, (1)

where

xxx(k),
[
x(k) x(k−1) . . .x(k−N +1)

]T
,

RRRw̃ww(k), E
[
w̃ww(k)w̃wwT (k)

]
is the autocorrelation matrix of the

deviation vector w̃ww(k) ∈RN (defined by w̃ww(k), www?−www(k)),
σ2

ν is the variance of the noise ν(k) and Tr[AAA] denotes the
trace of matrix AAA. Note that approximation (1) does not de-
pend on joint moments between input signal and deviation
coefficient random variables. When standard EEA is adopted,
such a fact is no longer valid. This analysis implements a
systematic procedure that generates a time-invariant state
equation system that permits an affine-in-the-parameters up-
date of the required state variables. Originally, in order to
avoid the IA it was proposed to incorporate the stochas-
tic coupling between deviation weights w̃i(k) ∈ R (for i ∈
{0,1, . . . ,N− 1}) and the input signal x(k), assumed to be
white [11]. The analysis performed in this paper (such as
those presented in [12, 9, 8]) does not have this last restric-
tion, since the excitation signal is assumed to be generated
through an M-th order moving average (MA) process

x(k) =
M−1

∑
m=0

bmu(k−m), (2)

where u(k) is an i.i.d. signal distributed according to an even-
symmetric pdf (which permits one to take into account zero-
mean uniform, Gaussian and Laplacian distributions, for ex-
ample).

The stochastic-gradient based update equation of the LMS
adaptive filter may be written as the following

www(k+1) = www(k)−β (k)∇www(k)

[
1
2

e2(k)
]

= www(k)+β (k)xxx(k)e(k), (3)

where β (k) is the step size, learning factor or convergence
factor in the k-th iteration [13], the error e(k) is given by
e(k), d(k)−wwwT (k)xxx(k) and

www(k),
[
w0(k) w1(k) . . . wN−1(k)

]T
.

WNA can be overcome by assuming that the noise signal
is obtained from an L-th order MA model [8]:

ν(k) =
L−1

∑
l=0

alη(k− l), (4)

where η(k) is a white signal whose pdf, for simplicity, has
the same restrictions than of the u(k). The EEA procedure
recursively incorporates into a state vector yyy(k) ∈ RP the
state variables required for the analysis, which eventually
provides a state space equation model

yyy(k+1) = AAAyyy(k)+bbb, (5)

where transition matrix AAA∈RP×P incorporates2 all informa-
tion necessary to predict the stability of the algorithm [12].
In a general setting, it is necessary to rewrite (3) in order to
derive a recursion of the deviation vector, which provides the
following non-homogeneous stochastic difference equation:

w̃ww(k+1) =
[
III−βxxx(k)xxxT (k)

]
w̃ww(k)−βxxx(k)ν(k). (6)

Note that (6) can be used to derive the following second-
order recursion:

w̃ww(k+1)w̃wwT (k+1) = w̃ww(k)w̃wwT (k)−β w̃ww(k)w̃wwT (k)xxx(k)xxxT (k)

+β
2xxx(k)xxxT (k)ν2(k)+O[ν(k)]

−βxxx(k)xxxT (k)w̃ww(k)w̃wwT (k)

+β
2xxx(k)xxxT (k)w̃ww(k)w̃wwT (k)xxx(k)xxxT (k),

(7)

where O[ν(k)] contains the first-order noise terms. In order
to illustrate the proposed analysis procedure, please consider
the case (N,M,L) = (1,2,2), Describing the MSE of such a
configuration requires an additional simplification:

2Note that P depends on N and M, as will be made clear further along.
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? Noise Independence Assumption (NIA): the zero-mean
noise signal ν(k) is statistically independent from the input
signal x(k).

Remark: note that NIA is an almost universal hypothesis,
which is plausible to assume in practice [14].

Using NIA, the MSE for the considered configuration
can be expressed as

ξ
(EEA)(k), b2

0γ2E[w̃2
0(k)]+b2

1E[u2(k−1)w̃2
0(k)]

−2b1a1b0a0σ
2
η βγ2 +(a2

0 +a2
1)σ

2
η , (8)

where γn , E [un(k)] and σ2
η is the variance of η(k). Note

that (8) presents two state variables: y0(k) = E[w̃2
0(k)] and

y1(k) = E[u2(k− 1)w̃2
0(k)], with the last of these being ap-

proximated by γ2E[w̃2
0(k)] in the common scenario where

IA is assumed to be valid. Since the MSE at the k-th itera-
tion is dependent on these state variables, it is necessary to
construct recursions for them. This permits one to predict
the performance evolution along the iterations. The recur-
sion for y0(k) can be found using (7), which degenerates in
the considered setting into a scalar identity. Using NIA and
the linearity property of the expectation operator, one ob-
tains:

E[w̃2
0(k+1)] = (b4

0β
2
γ4 +1−2b2

0γ2β )E[w̃2
0(k)]

+(6b2
0β

2b2
1γ2−2b2

1β )E[u2(k−1)w̃2
0(k)]

+b4
1β

2E[u4(k−1)w̃2
0(k)]

2b1a1β
2b0a0σ

2
η γ2−6b3

0β
3b1a1γ

2
2 a0σ

2
η

−2b3
1β

3a1b0a0σ
2
η γ4 +b2

0a2
0σ

2
η β

2
γ2

+b2
0a2

1σ
2
η β

2
γ2 +b2

1a2
0σ

2
η β

2
γ2

+b2
1a2

1σ
2
η β

2
γ2, (9)

where some time-invariant state variables are replaced by
their equivalent expressions (e.g., the term E[u(k− 1)v(k−
1)w̃0(k)] can be written as−b0a0σ2βγ2

η , which does not de-
pend on k). Note that (9) depends on state variables y0(k)
and y1(k) and also on a the nuisance term

y2(k) = E
[
u4(k−1)w̃2

0(k)
]
.

Joint moment y2(k) is denominated as a nuisance term
because one is not primarily interested in (see Eq. (8)), even
though its estimation is necessary to establish the recursion
for the statistical quantities of interest [15]. Multiplying both
sides of (7) by convenient terms before the application of
the expectation operator and using NIA, it is possible to ob-
tain recursions for both y1(k) and y2(k). These recursions
provide the foundation for the model (5), whose transition
matrix AAA and state vector yyy(k) (for the considered configu-
ration) can be described as

E[u(k)v(k)w̃0(k+1)] = −b0a0σ
2
η βγ2, (10)

E[u3(k)v(k)w̃0(k+1)] = −b0a0σ
2
η βγ4, (11)

E[u2(k)w̃2
0(k+1)] = (b4

0β
2
γ6 + γ2−2b2

0γ4β )E[w̃2
0(k)]

+(6b2
0β

2b2
1γ4−2b2

1βγ2)E[u2(k−1)w̃2
0(k)]

+b4
1β

2
γ2E[u4(k−1)w̃2

0(k)]2b1a1β
2
γ

2
2 b0a0σ

2
η

−6b3
0β

3b1a1γ4a0σ
2
η γ2−2b3

1β
3a1γ2b0a0σ

2
η γ4

+b2
0a2

0σ
2
η β

2
γ4 +b2

0a2
1σ

2
η β

2
γ4 +b2

1a2
0σ

2
η β

2
γ

2
2

+b2
1a2

1σ
2
η β

2
γ

2
2 . (12)

Recursions (9) and (12) are not self-contained, since they
depend on the nuisance term y2(k). Using a similar proce-
dure (i.e., multiplying (7) by a convenient term before the
application of the expectation operator), such a recursion
can be derived as

E[u4(k)w̃2
0(k+1)] = (b4

0β
2
γ8 + γ4−2b2

0γ6β )E[w̃2
0(k)]

+(6b2
0β

2b2
1γ6−2b2

1βγ4)E[u2(k−1)w̃2
0(k)]

+b4
1β

2
γ4E[u4(k−1)w̃2

0(k)]2b1a1β
2
γ4b0a0σ

2
η γ2

−6b3
0β

3b1a1γ6a0σ
2
η γ2−2b3

1β
3a1γ

2
4 b0a0σ

2
η

+b2
0a2

0σ
2
η β

2
γ6 +b2

0a2
1σ

2
η β

2
γ6 +b2

1a2
0σ

2
η β

2
γ4γ2

+b2
1a2

1σ
2
η β

2
γ4γ2, (13)

so that, for the considered configuration, model (6) can be
defined by (14)-(16).

AAA =

 1−2b2
0γ2β +b4

0β 2γ4 −2b2
1β +6b2

0β 2b2
1γ2 b4

1β 2

γ2−2b2
0γ4β +b4

0β 2γ6 −2b2
1βγ2 +6b2

0β 2b2
1γ4 b4

1β 2γ2
γ4−2b2

0γ6β +b4
0β 2γ8 −2b2

1βγ4 +6b2
0β 2b2

1γ6 b4
1β 2γ4

 , (14)

yyy(k) =
[
E[w̃2

0(k)] E[u2(k−1)w̃2
0(k)] E[u4(k−1)w̃2

0(k)]
]T

.

(15)

It is noteworthy that most state variables in (15) are not
nuisance terms. For more complex settings, such a fact is no
longer valid: typically the nuisance terms are much more nu-
merous than the joint moments we are primarily interested
in. Note that model (14)-(16) (recently derived in [8]) is
somewhat complex, although the underlying configuration
is very simple. This is due to the avoidance of IA. The first
contribution of this paper consists of combining IA with-
out using WNA, which allows one to simplify the final model.
This simplification is important, since the number of equa-
tions required in the standard EEA technique grows rapidly
with N and M. For instance, for the configuration (N,M) =
(8,1) the EEA needs P = 2,438,009 state equations (which
coincides with the number of rows P of matrix AAA), whereas
IA requires only 8 equations. Under the considered scenario,
the resulting model can be simplified to the following rela-
tion

E[w̃2
0(k+1)] = (1−2b2

0γ2β −2b2
1γ2β +b4

0β
2
γ4 +6b2

0β
2b2

1γ
2
2

+b4
1β

2
γ4)E[w̃2

0(k)]+b2
0a2

0σ
2
η β

2
γ2 +b2

0a2
1σ

2
η β

2
γ2

+b2
1a2

0σ
2
η β

2
γ2 +b2

1a2
1σ

2
η β

2
γ2, (17)
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bbb =

 2b1a1β 2b0a0σ2γ2−6b3
0β 3b1a1γ2

2 a0σ2−2b3
1β 3a1b0a0σ2γ4 +b2

0a2
0σ2β 2γ2 +b2

0a2
1σ2β 2γ2 +b2

1a2
0σ2β 2γ2 +b2

1a2
1σ2β 2γ2

2b1a1β 2γ2
2 b0a0σ2−6b3

0β 3b1a1γ4a0σ2γ2−2b3
1β 3a1γ2b0a0σ2γ4 +b2

0a2
0σ2β 2γ4 +b2

0a2
1σ2β 2γ4 +b2

1a2
0σ2β 2γ2

2 +b2
1a2

1σ2β 2γ2
2

2b1a1β 2γ4b0a0σ2γ2−6b3
0β 3b1a1γ6a0σ2γ2−2b3

1β 3a1γ2
4 b0a0σ2 +b2

0a2
0σ2β 2γ6 +b2

0a2
1σ2β 2γ6 +b2

1a2
0σ2β 2γ4γ2 +b2

1a2
1σ2β 2γ4γ2

 . (16)

which is much simpler than the previous one. It is note-
worthy that the proposed simplification implies less accu-
rate predictions (compared to the EEA approach), but still is
able to take into account the main factors driving algorithm
learning performance. In this paper, all required symbolic
manipulations are performed by a computationally-efficient
C++ code.

3 Stability Analysis

The main contribution of this paper (see Theorem 1 below)
is a demonstration that matrix AAA does not depend on the col-
oring of the additive measurement noise. Such a demonstra-
tion requires the following lemma.
Lemma 1 Expected value E

[
η(k− l)∏ j u(k−m j)

e j w̃i(k)
]

for l ∈ [0,L−1], m j ∈ [0,M−1], i∈ [0,N−1], e j ∈N, k ∈N
is time-invariant, i.e., it does not depend on k.

Proof. We can write a scalar form of (6) as

w̃i(k+1) = w̃i(k)−βx(k− i)

[
N−1

∑
j=0

x(k− j)w̃ j(k)

]
−βν(k)x(k− i). (18)

By multiplying both sides of (18) by appropriate terms and
taking the expected value in order to obtain
E
[
η(k− l)∏ j u(k−m j)

e j w̃i(k)
]
, it is possible to derive the

following recursion:

E

[
η(k− l +1)∏

j
u(k−m j +1)e j w̃i(k+1)

]
=

E

[
η(k− l +1)∏

j
u(k−m j +1)e j w̃i(k)

]
+C1

−β

M−1

∑
m=0

N−1

∑
j=0

M−1

∑
m′=0

bmbm′E

[
η(k− l +1)∏

j
u(k−m j)

e j w̃ j(k)

]
, (19)

where C1 is time-invariant. Note that in (19) new terms ap-
pear which require new recursions. This recursive behaviour
eventually halts after l+1 steps (with the l-th step associated
with a time-invariant term Cl). This happens because of the
whiteness of η(k), which guarantees the emergence of a null
term in the expectation value of the base case. One may ob-
tain new recursive state equations by increasing the temporal
indices of η and u and multiplying the result by (18). After

applying the expectation operation and performing this pro-
cess l +1 times one has

E

[
η(k+1)∏

j
u(k−m j + l +1)e j w̃i(k)

]
=

E [η(k+1)]E

[
∏

j
u(k−m j + l +1)e j w̃i(k)

]
= 0. (20)

Finally, one obtains E
[
η(k− l)∏ j u(k−m j)

e j w̃i(k)
]
=

∑
L
l=1 Cl by recursively replacing previous state equations.

Theorem 1: Matrix AAA does not depend neither on the value
of ai nor σ2

v .

Proof. Squaring (18), one obtains:

w̃2
i (k+1) = w̃2

i (k)−2βx(k− i)

[
N−1

∑
j=0

x(k− j)w̃ j(k)

]
w̃i(k)

−2βν(k)x(k− i)w̃i(k)︸ ︷︷ ︸
∗

+β
2x2(k− i)

[
N−1

∑
j=0

x(k− j)w̃ j(k)

]2

−2β
2x2(k− i)ν(k)

[
N−1

∑
j=0

x(k− j)w̃ j(k)

]
︸ ︷︷ ︸

�
+β

2
ν

2(k)x2(k− i)︸ ︷︷ ︸
†

. (21)

Applying (4) and the expectation operator in terms contain-
ing ν(k) (see (†)):

E[β 2
ν

2(k)x2(k− i)] = β
2E[ν2(k)x2(k− i)] =

β
2
σ

2
η σ

2
u

L−1

∑
l=0

M−1

∑
m=0

a2
l b2

m. (22)

Looking at (∗) we have

E[−2βν(k)x(k− i)w̃i(k)] =

−2β

L−1

∑
l=0

M−1

∑
m=0

albmE[η(k− l)u(k− i−m)w̃i(k)]. (23)
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By Lemma 1, this is time-invariant. For (�) we have (24)
which, by Lemma 1, does not depend on k, with such terms
located in vector bbb (see Eq. (5)).

4 Variable Step-Size Design

As stated before, the employment of a fixed step size implies
a trade-off between small steady-state error and fast conver-
gence rate [16, 17]. Such an issue can be overcome by the
usage of a variable step size (VSS) scheme, which imposes
a fast convergence in the first phase of the learning process
and, after some iterations, reduces its magnitude in order to
enhance steady-state performance [18]. It is also desirable
that such a sequence guarantees good tracking ability and is
coherent with the state of the algorithm [13, 19]. The the-
oretical question concerning the optimal step size sequence
for a given application is crucial for the adjustment of the
algorithm’s parameters in order to enforce such a sequence
in practice [10].

The derivation of the optimal sequence is driven by the
underlying hypothesis and the performance metric one de-
sires to optimize. For example, assuming a zero-mean Gaus-
sian input, IA, NIA and WNA, the step-size sequence that min-
imizes the mean square deviation (MSD) ξ (k) defined by

ξ (k) = MSD(k), E
[
‖www?−www(k)‖2]= N−1

∑
i=0

E [w?
i −wi(k)]

2

(25)

is described by [10, 20]

β (k)=
Tr
[
RRR2

xxxRRRw̃ww(k)
]

Tr
[
RRR2

xxx
]

Tr [RRRxxxRRRw̃ww(k)]+2Tr
[
RRR3

xxxRRRw̃ww(k)
]
+σ2

ν Tr
[
RRR2

xxx
] ,
(26)

where σ2
ν denotes the variance of the white noise, and RRRxxx ,

E
[
xxx(k)xxxT (k)

]
and RRRw̃ww(k),E

[
w̃ww(k)w̃wwT (k)

]
are, respectively,

the autocorrelation matrices of the input data and of the de-
viation coefficients.

Assuming a time-variant step size, matrix AAA (that de-
pends on β (k)) is no longer constant, so that model (5) should
be generalized to

yyy(k+1) = AAA(k)yyy(k)+bbb, (27)

where the MSD at the iteration k+1 can be written as

ξ (k+1) =
N−1

∑
j=0

yg j(k+1), (28)

where g j denotes the index of the term E
[
w̃2

j(k+1)
]

in

the vector yyy(k). Note that the sum ∑
N−1
i=0 E

[
w̃2

i (k+1)
]

is re-
quired to predict ξ (k+1) (see Eq. (25)). Each term yg j(k+

1) in Eq. (28) can be described as (see Eq. (27))

yg j(k+1) =
P−1

∑
i=0

ag j ,i(k)yg j(k)+bg j(k), (29)

where P is the number of rows of the square matrix AAA(k),
whose element at the (i, j) location is denoted by ai, j(k).
Using (28)-(29), one concludes that minimizing ξ (k+1) im-
plies finding the β (k) that enforces

∂

∂β (k)

{
N−1

∑
j=0

[
P−1

∑
i=0

ag j ,i(k)yg j(k)+bg j(k)

]}
= 0. (30)

Note that the solution of (30) for the first time takes
into account both the noise coloring as well as the statisti-
cal dependence between the excitation data and the adaptive
weights. Due to this last feature, the derivation of the theo-
retical sequence β (k) is suitable even for non-infinitesimal
step sizes. In variable step-size strategies, it is known that
the usage of IA for obtaining an optimal deterministic step-
size sequence can engineer divergence in practice [9]. It is
noteworthy that such a divergence can occur with low proba-
bility, which implies that employing a small number of inde-
pendent Monte Carlo trials may not reveal such an issue [9].
Since the derivation of the theoretical sequence β (k) (ob-
tained by solving (30)) does not employ IA, the employ-
ment of such a sequence does not engineer divergence in
practice. In the next section, such a claim is confirmed by
experiments.

5 Simulations

This section illustrates the theoretical contributions through
three simulations. In these experiments, signals u(k) and
η(k) are zero-mean Gaussian, σ2

u = 1, σ2
η = 0.01, and all

coefficients of the ideal transfer function are equal to one.

5.1 Simulation I

In this experiment, analytic expressions for steady-state per-
formance are derived under distinct assumptions. Such an
expression can be very lengthy. Accordingly, the simple sce-
nario (N,M,L) = (1,2,2) is assumed, with a0 = b0 = 1, and
a1 = b1 =−0.9. Due to the fact that the MSE depends on a
linear combination of some state variables (see (8)), a theo-
retical prediction of the steady-state performance can be de-
rived if one computes vector yyy∞ , limk→∞ yyy(k). If the algo-
rithm indeed converges, such a vector can be evaluated using
the closed-form expression yyy∞ = (III−AAA)−1 bbb [12]. By incor-
porating in the stochastic model the noise coloring without
the usage of IA, the steady-state MSE can be described as
in (31), whereas the adoption of IA results in a simpler ex-
pression.
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−2β
2E

[
x2(k− i)ν(k)

[
N−1

∑
j=0

x(k− j)w̃ j(k)

]]
=−2β

2
M−1

∑
m=0

M−1

∑
m′=0

M−1

∑
m′′=0

L−1

∑
l=0

N−1

∑
j=0

E[v(k− l)u(k− j−m)u(k− i−m′)u(k− i−m′′)w̃i(k)]. (24)

lim
k→∞

MSE(EEA)(k)≈ 4.3·10−4−8.1·10−3β 6+1.5·10−2β 5+6.7·10−3β 4−1.3·10−2β 3+3.8·10−3β 2−1.7·10−3β

2.4·10−2 +β 5−2.6·10−16β 4−7.2·10−1β 3+2.3·10−1β 2−10−1β
. (31)

lim
k→∞

MSE(IA)(k)≈ 5.93 ·10−2β 2

−9.83β 2 +3.62β
+1.81 ·10−2. (32)

Notice that both expressions yield the same value (i.e., the
noise variance) for the steady-state MSE when β → 0. More
complex configurations than the chosen setting present lengthy
steady-state equations, which cannot be shown in this paper,
due to lack of space. Fig. 1 compares theoretical and em-
pirical results, the last of these was obtained by using 106

Monte Carlo independent trials. Note that the IA-based the-
oretical curve underestimates the steady-state performance
of the adaptive filter, especially when β presents high val-
ues.
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Fig. 1: Steady-state MSE (in dB) for the config-
uration (N,M,L) = (1,2,2).

5.2 Simulation II

In this experiment, the LMS is executed for different β val-
ues, with bn = (−1)n

[ 10−n
10

]
(for n ∈ {0,1, . . . ,L− 1}). For

each step size value, 2×105 realizations of the LMS learn-
ing process are performed, each of them along 340 itera-
tions. If the absolute value of any adaptive coefficient sur-
passes 10 (i.e., if there exists at least a single k for which
|wi(k)|> 10, for i∈ {0,1, . . . ,N}), we consider that the real-
ization being evaluated has diverged. Different noise signals
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Fig. 2: Divergence probability of β for the configuration
(N,M) = (2,3).

are tested, for L = 1 (white noise), and L ∈ {5,10} (col-
ored noise). Consider β

(EEA)
MAX (resp. β

(IA)
MAX) as the maximum

value of β that guarantees that the respective transition ma-
trices (from analysis without IA and with IA, respectively)
have absolute eigenvalues lower than the unity. Such an upp-
per bound can be evaluated through the Power Method [21]
and theoretically specifies a stability region. Note in Fig. 2
that the empirical probability of divergence is zero when
β = β

(EEA)
MAX and is approximately 25% when β = β

(IA)
MAX. One

may so conclude that the employment of the EEA provides
a more reliable upper bound for the step size that guarant-
ess stability. Furthermore, the divergence probability, as in-
ferred from Theorem 1, is independent from the value of L.

5.3 Simulation III

Consider βEEA(k) (resp. βIA(k)) the optimal step-size derived
under EEA (resp. IA). Figure 3 depicts the theoretical step-
size sequences obtained for both standard (i.e., IA-based)
and exact analyses. Figure 4 presents the theoretical MSD
evolution (obtained by the usage of IA) using βIA(k). Note
that the empirical MSD curve is very different from the pre-
dicted one. This fact is due to the occurrence of divergence
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Fig. 3: Optimal theoretical step-size sequence
for configuration (N,M,L) = (3,2,3) employ-
ing both IA- and EA-based techniques.
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Fig. 4: Theoretical and empirical MSD (in dB)
for both EEA and IA. Configuration (N,M,L) =
(3,2,3).

in the first iterations, since one cannot guarantee that the
adaptive filter is stable under IA (see Fig. 2). However, em-
ploying EEA such a divergence is no longer observed (see [9]
for a related discussion about this phenomenon). Further-
more, there is a good adherence between simulated and the-
oretical performance evolution. Notice that combining the
optimal sequence β (k) (see Fig. 4) with the theoretical per-
formance evolution in Fig. 4 permits one to construct a learn-
ing plane, which provides to the designer the ability of ju-
diciously selecting parameters that maximize both transient
and steady-state performance of VSS-based schemes [10, 9].

6 Conclusions

This paper advances for the first time a simplified stochas-
tic model of the LMS adaptive filter that incorporates the
non-whiteness of the additive noise signal, assuming that IA
is strictly valid. Furthermore, a theorem was presented that
solves a long standing problem. Such a result forecasts that
the stability property of the LMS remains, independently
from noise coloring. This result is also remarkable because
it was proven under very weak assumptions (e.g., without
employing neither IA nor WNA). Furthermore, an optimal
and deterministic step-size sequence is derived for both IA
and EEA approches, without assuming a white noise signal.
Such a sequence is important for adjusting the parameters
of variable step-size algorithms. The theoretical results are
confirmed by simulations.
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