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A Memory Abstraction: Address Spaces The Notion of an Address Space

The Notion of an Address Space

Lets start with some basic questions:

What is an address space? Any ideas?

In the context of multi-programming:

What are the main objectives that we need to guarantee for a program’s

address space? Any ideas?
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A Memory Abstraction: Address Spaces The Notion of an Address Space

In the context of multi-programming:

What are the main objectives that we need to guarantee for a program’s

address space? Any ideas?

Two problems have to be solved to allow multi-programming:

• Protection

• Relocation

What does this mean: protection and relocation? Any ideas?
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A Memory Abstraction: Address Spaces The Notion of an Address Space

Two problems have to be solved to allow multi-programming:

• Protection:

• How to guarantee that programs do not overwrite each other’s memory

space?

• Relocation:

• How to relocate programs in order to avoid overwriting each other’s

memory space?

Why is relocation important? Any ideas? (See Slide 20)
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A Memory Abstraction: Address Spaces The Notion of an Address Space

Solving these problems required a new abstraction, the address space:

• Set of addresses that a process can use to address memory;

• Each process has its own address space:

• Independent of those belonging to other processes;

• Except when processes want to share their address spaces
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A Memory Abstraction: Address Spaces The Notion of an Address Space

Multiprogramming allows for multiple programs to coexist:

How can we give each program its own address space? Any ideas?

Example:

• Address 28 in one program maps to physical address X

• Address 28 in another program maps to physical address Y
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A Memory Abstraction: Address Spaces The Notion of an Address Space

How can we give each program its own address space? Any ideas?

Answer: Equip each CPU with two special hardware registers:

• Base register: loaded with the physical address where program begins;

• Limit register: loaded with the program’s length;
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A Memory Abstraction: Address Spaces The Notion of an Address Space

Every time a process references memory the CPU:

• Automatically adds base value to the address generated by the process:

• Before sending the address out on the memory bus;

• Checks whether the address offered is ≤ than the limit value:

• In which case a fault is generated and the access is aborted;
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A Memory Abstraction: Address Spaces The Notion of an Address Space

If the original program starts in memory address 16384:

• Then the following address requested by the program:

JMP 28 / / R e l a t i v e address ;

• Would be converted to:

JMP 16412 / / Abso lute address (28 + 16384 ) ;

L. Tarrataca Chapter 3 - Memory Management 14 / 213



A Memory Abstraction: Address Spaces The Notion of an Address Space

Have you ever heard of a segmentation fault?

What do you think a segmentation fault is? Any ideas?
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A Memory Abstraction: Address Spaces The Notion of an Address Space

What do you think a segmentation fault is? Any ideas?

When a program attempts to:

• Access a memory location that it is not allowed to access;

• Attempts to access a memory location in a way that is not allowed:

• E.g.: write to a read-only location;
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A Memory Abstraction: Address Spaces Swapping

Swapping

In a typical computer: total amount of RAM needed by the processes:

• Often more than can fit in memory;

On a typical Windows, OS X, or Linux system:

• 50 - 100 processes may be started up as soon as the computer is booted:

• network connections, software update, etc...

• All of this before the first user program is loaded;
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A Memory Abstraction: Address Spaces Swapping

Conclusion:

• Keeping all processes in RAM would require a huge amount;

• Usually this cannot be done since there is insufficient memory.

What can be done to deal with memory overloading? Any ideas?

L. Tarrataca Chapter 3 - Memory Management 18 / 213



A Memory Abstraction: Address Spaces Swapping

What can be done to deal with memory overloading? Any ideas?

Two approaches to dealing with memory overload exist:

• Swapping:

• Load entire process into memory, run, then transfer to disk;

• Idle / blocked processes are mostly stored on disk;

• Virtual memory:

• Allows programs to run even when they are only partially in main memory;

• Load only pages that are required at a given instant in time;
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A Memory Abstraction: Address Spaces Swapping

Swapping example

Figure: Memory allocation changes as processes come into memory and leave it. The shaded regions are

unused memory. (Source: [Tanenbaum and Bos, 2015])
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A Memory Abstraction: Address Spaces Swapping

From the previous figure:

1 Initially, only process A is in memory;

2 Then processes B and C are created or swapped in from disk;

3 Process A is then swapped out to disk;

4 Then process D comes into memory;

5 Process B is removed from memory;

6 Finally, process A comes in again:

• A is at a different location: addresses must be relocated;

• For example, base and limit registers would work fine here;
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A Memory Abstraction: Address Spaces Swapping

Can you see any problem with the previous example? Any ideas?
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A Memory Abstraction: Address Spaces Swapping

Can you see any problem with the previous example? Any ideas?

Swapping creates multiple holes in memory...
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A Memory Abstraction: Address Spaces Swapping

Can you see any problem with the previous example? Any ideas?

Swapping creates multiple holes in memory...

What can be done to solve the memory holes introduced by swapping?
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A Memory Abstraction: Address Spaces Swapping

Can you see any problem with the previous example? Any ideas?

Swapping creates multiple holes in memory...

What can be done to solve the memory holes introduced by swapping?

Memory compaction...
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A Memory Abstraction: Address Spaces Swapping

Can you see any problem with the previous example? Any ideas?

Swapping creates multiple holes in memory...

What can be done to solve the memory holes introduced by swapping?

Memory compaction...

Can you see any problem with memory compaction?
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A Memory Abstraction: Address Spaces Swapping

Can you see any problem with the previous example? Any ideas?

Swapping creates multiple holes in memory...

What can be done to solve the memory holes introduced by swapping?

Memory compaction...

Can you see any problem with memory compaction?

Requires a lot of CPU time.... =’(
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A Memory Abstraction: Address Spaces Swapping

Also, how much memory should be allocated for a process when it is

created or swapped in?

If processes are created with a fixed size that never changes:

• Simple: OS allocates exactly what is needed;

• Unrealistic to assume that processes will not change in size;
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A Memory Abstraction: Address Spaces Swapping

Why is it unrealistic to assume that a process will never change in size?

Any ideas?
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A Memory Abstraction: Address Spaces Swapping

Why is it unrealistic to assume that a process will never change in size?

Any ideas?

Several examples:

• Process call stack...

• Data structure changes...

• Etc...
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A Memory Abstraction: Address Spaces Swapping

If processes data segments can grow (1/3):

• If a memory hole is adjacent:

• Process can be allowed to grow into the hole;
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A Memory Abstraction: Address Spaces Swapping

If processes data segments can grow (2/3):

• If another process is adjacent:

• Growing process will have to be moved to a large enough hole...

• Or one or more processes will have to be swapped out;
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A Memory Abstraction: Address Spaces Swapping

If processes data segments can grow (3/3):

• If a process cannot grow in memory and the swap area on the disk is full:

• Process will have to be suspended until some space is freed up;

• or growing process can also be killed...
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A Memory Abstraction: Address Spaces Swapping

If most processes are expected to grow:

• Probably a good idea to allocate a little extra memory;

• Reduces overhead associated with:

• Moving or swapping processes that no longer fit in their allocated memory.
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A Memory Abstraction: Address Spaces Swapping

Example in which space for growth has been allocated to two processes:

Figure: . (a) Allocating space for a growing data segment. (b) Allocating space for a growing stack and a

growing data segment. (Source: [Tanenbaum and Bos, 2015])
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A Memory Abstraction: Address Spaces Swapping

In the previous examples why are the stack and data segments growing

in opposite directions? Any ideas?
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A Memory Abstraction: Address Spaces Swapping

In the previous examples why are the stack and data segments growing

in opposite directions? Any ideas?

Best use of the available room for growth:

• Just a single growth segment is need;

• Instead of having:

• Stack growth segment;

• Data growth segment,
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A Memory Abstraction: Address Spaces Managing Free Memory

Managing Free Memory

When memory is assigned dynamically the OS must manage it:

How can the OS manage memory usage? Any ideas?
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A Memory Abstraction: Address Spaces Managing Free Memory

Managing Free Memory

When memory is assigned dynamically the OS must manage it:

How can the OS manage memory usage? Any ideas?

• There are two ways to keep track of memory usage:

• Bitmaps

• Free Lists

Lets have a look at these two methods...
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A Memory Abstraction: Address Spaces Managing Free Memory

Memory Management with Bitmaps

Memory is divided into allocation units:

• As small as a few words and as large as several kilobytes;

• Corresponding to each allocation unit is a bit in the bitmap:

What is a bitmap? Any ideas?
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A Memory Abstraction: Address Spaces Managing Free Memory

Memory Management with Bitmaps

Memory is divided into allocation units:

• As small as a few words and as large as several kilobytes;

• Corresponding to each allocation unit is a bit in the bitmap:

• With value 0 if the unit is free;

• With value 1 if the unit is occupied;
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A Memory Abstraction: Address Spaces Managing Free Memory

Example

Figure: (a) A part of memory with five processes and three holes. The tick marks show the memory allocation

units. The shaded regions (0 in the bitmap) are free. (b) The corresponding bitmap. (Source:

[Tanenbaum and Bos, 2015])
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A Memory Abstraction: Address Spaces Managing Free Memory

From the previous figure:

• 11111000

• Positions 1 through 5 are occupied;

• Position 6 through 8 are free;

• 11111111

• Positions 9 to 16 are occupied;

• 11001111

• Position 17 and 18 are occupied;

• Position 19 and 20 are free;

• Positions 21 through 24 are occupied;

• 11111000

• Positions 25 through 29 are occupied;

• Positions 30 through 32 are free;
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A Memory Abstraction: Address Spaces Managing Free Memory

Can you say anything about the size of the allocation unit? Any ideas?

Example:

• Allocation unit represents 16 bytes;

• Allocation unit represents 32 bytes;

• Allocation unit represents 64 bytes;

• Etc...
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A Memory Abstraction: Address Spaces Managing Free Memory

Can you say anything about the size of the allocation unit? Any ideas?

Size of the allocation unit is an important design issue:

• The smaller the allocation unit, the larger the bitmap:

• Multiple allocation units may be required for a process;

• The larger the allocation unit, the smaller the bitmap:

• May result in wasted space if process is small. Why?
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A Memory Abstraction: Address Spaces Managing Free Memory

Can you see any problems with using bitmaps? Any ideas?
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A Memory Abstraction: Address Spaces Managing Free Memory

Can you see any problems with using bitmaps? Any ideas?

• When a k-unit process needs to be brought into memory:

• OS must search for a k-unit consecutive space;

• Searching a bitmap for a space of a given length is a slow operation;
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A Memory Abstraction: Address Spaces Managing Free Memory

Can you see any problems with using bitmaps? Any ideas?

• When a k-unit process needs to be brought into memory:

• OS must search for a k-unit consecutive space;

• Searching a bitmap for a space of a given length is a slow operation;

What can be done to solve this problem? Any ideas?
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A Memory Abstraction: Address Spaces Managing Free Memory

Can you see any problems with using bitmaps? Any ideas?

• When a k-unit process needs to be brought into memory:

• OS must search for a k-unit consecutive space;

• Searching a bitmap for a space of a given length is a slow operation;

What can be done to solve this problem? Any ideas?

• Memory Management with Linked Lists;
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A Memory Abstraction: Address Spaces Managing Free Memory

Memory Management with Linked Lists

Track of memory through a list of allocated/free memory segments:

Figure: (a) A part of memory with five processes and three holes. The tick marks show the memory allocation

units. The shaded regions (0 in the bitmap) are free.(c) The same information as a list.(Source:

[Tanenbaum and Bos, 2015])
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A Memory Abstraction: Address Spaces Managing Free Memory

From the previous figure each list entry specifies:

• H specifies a hole;

• P specifies a process;

• Starting address;

• Length;

• Pointer to next list item;
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A Memory Abstraction: Address Spaces Managing Free Memory

How should this list be managed when a process terminates or is swapped

out? Any ideas?

L. Tarrataca Chapter 3 - Memory Management 52 / 213



A Memory Abstraction: Address Spaces Managing Free Memory

In the previous example segment list is kept sorted by address:

• Terminating process normally has two neighbours:

• Except when it is at the very top or bottom of memory;

• Neighbours may be either processes or holes, leading to four combinations:

Figure: Four neighbour combinations for the terminating process, X.(Source: [Tanenbaum and Bos, 2015])
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A Memory Abstraction: Address Spaces Managing Free Memory

Figure: Four neighbour combinations for the terminating process, X.(Source: [Tanenbaum and Bos, 2015])

• Figure (a) updating the list requires replacing a P by an H;

• Figure (b) and (c) two entries are merged into one;

• Figure (d) three entries are merged;
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A Memory Abstraction: Address Spaces Managing Free Memory

How can we allocate memory based on the list approach? Any ideas?
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A Memory Abstraction: Address Spaces Managing Free Memory

When processes and holes are kept on a list sorted by address:

• Several algorithms can be used to allocate memory for:

• Creating a process;

• Swapping an existing process from the disk;

• Examples of algorithms:

• First fit

• Next fit

• Best fit

Lets have a look at these...
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A Memory Abstraction: Address Spaces Managing Free Memory

First fit

• Memory manager scans list until it finds a hole that is big enough;

• Hole is then broken up into two pieces:

• One for the process;

• One for the unused memory;

• Except in the statistically unlikely case of an exact fit
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A Memory Abstraction: Address Spaces Managing Free Memory

Next fit

• Works the same way as first fit except that:

• Keeps track of where it is whenever it finds a suitable hole;

• Next time it is called to find a hole:

• Starts search from the place where it left off last time...

• ....instead of always at the beginning, as first fit does

• Simulations show that next fit gives slightly worse performance than first fit.
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A Memory Abstraction: Address Spaces Managing Free Memory

Best fit (1/2)

• Best fit searches the entire list, from beginning to end:

• For the smallest hole that is adequate;

• Rather than breaking up a big hole that might be needed later:

• tries to find a hole that is close to the actual size needed...

• ...to best match the request and the available holes.

• Slower than first fit: entire list must be searched every time;
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A Memory Abstraction: Address Spaces Managing Free Memory

Best fit (2/2)

• Surprisingly:

• Results in more wasted memory than first fit or next fit:

Why do you think this happens? Any ideas?
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A Memory Abstraction: Address Spaces Managing Free Memory

Best fit (2/2)

• Surprisingly:

• Results in more wasted memory than first fit or next fit:

Why do you think this happens? Any ideas?

• Because it tends to fill up memory with tiny, useless holes;

• First fit generates larger holes on the average.
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Virtual Memory

Virtual Memory

Can you see any other improvement that can be done to memory

management?
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Virtual Memory

Virtual Memory

Can you see any other improvement that can be done to memory

management?

OS always loads all the memory of a process...
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Virtual Memory

Virtual Memory

Can you see any other improvement that can be done to memory

management?

OS always loads all the memory of a process...

Does the OS always need to load the entire process into memory? Any

ideas?
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Virtual Memory

Virtual Memory

Can you see any other improvement that can be done to memory

management?

OS always loads all the memory of a process...

Does the OS always need to load the entire process into memory? Any

ideas?

Only load those pages that are required at a single moment:

• Due to the Space-time locality principle =)

• Concept of virtual memory
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Virtual Memory

Virtual Memory

Virtual memory basic idea:

• Each program’s address space is broken into chunks:

• Called pages;

• Each page is a contiguous range of addresses:

• Pages are mapped onto physical memory;

• Not all pages have to be in physical memory at the same time;

• This is due to the space-time locality principle;
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Virtual Memory

When the program references an address that:

• Is in physical memory:

• MMU maps virtual address to the corresponding physical address;

• Is not in physical memory:

• OS is alerted to get missing piece:

• This is known as a page fault;

• OS re-executes the failed instruction;
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Virtual Memory Paging

Paging

Addresses that are specific to a program are called virtual addresses

• Addresses only make sense in the context of a specific program;

• Addresses still need to be mapped to a physical address:

• Physical address can be generated using the base register;

• E.g.: Virtual address 28 can be mapped to physical address 666h

L. Tarrataca Chapter 3 - Memory Management 68 / 213



Virtual Memory Paging

When virtual memory is used:

• Virtual addresses do not go directly to the memory bus;

• Instead the go to a Memory Management Unit

• MMU maps virtual addresses onto physical addresses;

Figure: The position and function of the MMU. Here the MMU is shown as being a part of the CPU chip

because it commonly is nowadays. However, logically it could be a separate chip and was years ago.

(Source: [Tanenbaum and Bos, 2015])
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Virtual Memory Paging

Example (1/10)

Consider the following address spaces (virtual + physical):

Figure: (Source: [Tanenbaum and Bos, 2015])

To what physical address is virtual ad-

dress 0 mapped to? Any ideas?

To what physical address is virtual ad-

dress 8192 mapped to? Any ideas?

To what physical address is virtual ad-

dress 20500 mapped to? Any ideas?
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Virtual Memory Paging

Example (2/10)

• Computer generates 16-bit addresses: from 0 to 64K - 1:

• These are the virtual addresses;

• Computer however only has 32 KB of physical memory;

• 64-KB programs can be written but cannot be loaded entirely into memory;

• Program’s image must be present on the disk so that pieces can be loaded;
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Virtual Memory Paging

Example (3/10)

• Virtual address space consists of fixed-size units called pages:

• Corresponding units in the physical memory are called page frames.

• Pages and page frames are usually the same size;

• In this example: pages are 4KB:

• 64 KB of virtual memory implies 16 virtual pages;

• 32 KB of physical memory implies 8 page frames;

• Transfers between RAM and disk are always in whole pages;
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Virtual Memory Paging

Example (4/10)

To what physical address is virtual address 0 mapped to? Any ideas?
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Virtual Memory Paging

Example (4/10)

To what physical address is virtual address 0 mapped to? Any ideas?

• When program accesses virtual address 0:

• Virtual address is sent to MMU;

• MMU maps:

• page 0 to page frame 2;

• virtual address 0 to physical address (0 - 0) + (2 × 4KB) = 8192

• MMU produces output address 8192 onto the bus;

L. Tarrataca Chapter 3 - Memory Management 74 / 213



Virtual Memory Paging

Example (5/10)

To what physical address is virtual address 8192 mapped to? Any ideas?
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Virtual Memory Paging

Example (5/10)

To what physical address is virtual address 8192 mapped to? Any ideas?

• When program accesses virtual address 8192:

• Virtual address is sent to MMU;

• MMU maps:

• page 2 to page frame 6;

• virtual address 8192 to physical address (8192 - 8192) + 6×4KB = 24576

• MMU produces output address 24576 onto the bus;
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Virtual Memory Paging

Example (6/10)

To what physical address is virtual address 20500 mapped to? Any ideas?

L. Tarrataca Chapter 3 - Memory Management 77 / 213



Virtual Memory Paging

Example (6/10)

To what physical address is virtual address 20500 mapped to? Any ideas?

• When program accesses virtual address 20500:

• Virtual address is sent to MMU;

• MMU maps:

• page 5 to page frame 3;

• virtual address 20500 to physical address (20500-20K) + (3 × 4KB) = 12308;

• MMU produces output address 12308 onto the bus;
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Virtual Memory Paging

Example (7/10)

What happens if the program references an unmapped address?
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Virtual Memory Paging

Example (8/10)

What happens if the program references an unmapped address?

E.g.: CPU tries to access address 32780 from the previous example (1/2):

Figure: (Source: [Tanenbaum and Bos, 2015])
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Virtual Memory Paging

Example (9/10)

What happens if the program references an unmapped address?

E.g.: CPU tries to access address 32780 from the previous example (1/2):

• This is byte 12 within virtual page 8;

• MMU issues a page fault;

What can the OS do with this page fault? Any ideas?
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Virtual Memory Paging

Example (9/10)

What happens if the program references an unmapped address?

E.g.: CPU tries to access address 32780 from the previous example (1/2):

• This is byte 12 within virtual page 8;

• MMU: issues a page fault;

What can the OS do with this page fault? Any ideas?

1 Picks a little-used page frame;

2 Writes its contents back to the disk;

3 Fetches from disk the page that was referenced;

4 Changes the map;

5 Restarts the trapped instruction;
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Virtual Memory Paging

Example (10/10)

E.g.: CPU tries to access address 32780 from the previous example (2/2):

• E.g. OS decides to:

• Evict page frame 1;

• Lots virtual page 8 at physical address 4096;

• Makes two changes to the MMU:

• Marks virtual page 1 as unmarked;

• Marks virtual page 8 with a 1;
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Virtual Memory Paging

Memory Management Unit

Now that we have seen virtual memory:

How do you think the MMU works? Any ideas?

Don’t forget that the MMU objective is to:

• Map virtual address spaces into physical addresses;
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Virtual Memory Paging

Memory Management Unit

Figure: The internal operation of the MMU with 16 4-KB pages. (Source: [Tanenbaum and Bos, 2015])
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Virtual Memory Paging

From the previous figure (1/2):

• Virtual address 819610 = 00100000000001002 needs to be mapped to;

• The 16-bit virtual address is split into:

• 4-bit page number:

• So that 16 pages of virtual memory can be addressed;

• 12-bit offset:

• So that we can address all of the 4096 bytes within a page;
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Virtual Memory Paging

From the previous figure (2/2):

• Page number is used as an index into the page table:

• Yielding corresponding page frame;

• If the Present / Absent bit is 0:

• Trap to OS is caused (page fault);

• If the Present / Absent bit is 1:

• Page frame number is copied to the high-order 3 bits of the output register;

• Along with the 12-bit offset which is copied unmodified;

• Together they form a 15-bit physical address;

• Output register is then put onto the memory bus;
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Virtual Memory Page Tables

Page Tables

Virtual address mapping onto physical addresses can be summarized as:

• Virtual address is split into:

• Virtual page number (high-order bits);

• Offset (low-order bits);

• E.g.: 16-bit address, 4-KB page size:

• Upper 4 bits specify one of the 16 virtual pages;

• Lower 12 bits specify the byte offset;
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Virtual Memory Page Tables

Virtual page number is used as an index into the page table:

• In order to find the virtual page entry:

• Allowing to find the page frame number (if any);

• Page frame number is attached to the high-order end of the offset:

• Replacing virtual page number:

• Forming a physical address that can be sent to the memory.
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Virtual Memory Page Tables

Structure of a Page Table Entry

Ok, now that we have a better understanding of page tables:

What are the details of a single page table entry? Any ideas?
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Virtual Memory Page Tables

Structure of a Page Table Entry

Ok, now that we have a better understanding of page tables:

What are the details of a single page table entry? Any ideas?

• Exact layout of an entry in the page table is highly machine dependent;

• However: information is roughly the same from machine to machine.
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Virtual Memory Page Tables

What information do you think should be part of a page table entry?
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Virtual Memory Page Tables

What information do you think should be part of a page table entry?

Several items are needed (1/3):

• Page frame number: most important information:

• After all, the goal is to map a page into a frame ;)

• Present / absent bit:

• Value 1:

• Valid entry and frame can be used;

• Value 0:

• Page fault!

• Page needs to be loaded into memory;
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Virtual Memory Page Tables

What information do you think should be part of a page table entry?

Several items are needed (2/3):

• Protection bits determine access type:

• read? write? execute?

• Modified bit:

• Set to 1 when page is modified;

• Referenced bit:

• Set to 1 whenever a page is referenced (read or write);

• Helps OS decide which page to evict when a page fault occurs:

• Choose pages that are not being used;
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Virtual Memory Page Tables

What information do you think should be part of a page table entry?

Several items are needed (3/3):

• Caching bit:

• Allows caching to be disabled for the page;

• Important for pages that map onto devices registers rather than memory;
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Virtual Memory Page Tables

Sample page table entry:

Figure: A typical page table entry. (Source: [Tanenbaum and Bos, 2015])

• Size varies: but 32 bits is a common size;
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Virtual Memory Speeding Up Paging

Speeding Up Paging

In any paging system, two major issues must be faced:

1 Mapping from virtual address to physical address must be fast:

• Virtual-to-physical mapping must be done on every memory reference;

• Several page table references per instruction:

• Fetch instruction;

• Fetch operands;

• Store results;
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Virtual Memory Speeding Up Paging

Speeding Up Paging

In any paging system, two major issues must be faced:

2 If the virtual address space is large, the page table will be large:

• Virtual address space of 32 bits and 4-KB page size:

• 2
32/2

12 = 2
20

pages;

• Virtual address space of 64 bits and 4-KB page size:

• 2
64/2

12 = 2
52

pages;
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Virtual Memory Speeding Up Paging

Lets focus on the first point:

• Mapping from virtual address to physical address must be fast:

How can we have fast page mapping? Any ideas?
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Virtual Memory Speeding Up Paging

Lets focus on the first point:

How can we have fast page mapping? Any ideas?

Simplest design is to:

• Have a page table consisting of an array of fast hardware registers;

• With one entry for each virtual page, indexed by virtual page number;

• When a process starts:

• OS loads registers with the process’ page table;

L. Tarrataca Chapter 3 - Memory Management 100 / 213



Virtual Memory Speeding Up Paging

Can you see any advantages with the previous scheme? Any ideas?
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Virtual Memory Speeding Up Paging

Can you see any advantages with the previous scheme? Any ideas?

• Page table entries are filled out when process is started:

• No more memory accesses are necessary in order to access the page table;

• Very simple to implement;
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Virtual Memory Speeding Up Paging

Can you see any disadvantages with the previous scheme? Any ideas?
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Virtual Memory Speeding Up Paging

Can you see any disadvantages with the previous scheme? Any ideas?

• Expensive if the page table is large;

• Having to load the full page at every context switch would kill

performance;
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Virtual Memory Speeding Up Paging

So what can we do to solve these issues? Any ideas?
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Virtual Memory Speeding Up Paging

So what can we do to solve these issues? Any ideas?

With a little help of our friend:

• Translation Lookaside Buffer;
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Virtual Memory Speeding Up Paging

Translation Lookaside Buffer

First things first:

Do you have any idea of what a Translation Lookaside Buffer is? Any

ideas?
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Virtual Memory Speeding Up Paging

Translation Lookaside Buffer

First things first:

Do you have any idea of what a Translation Lookaside Buffer is? Any

ideas?

• HINT: Are there program parts that execute more than others?
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Virtual Memory Speeding Up Paging

Translation Lookaside Buffer

First things first:

Do you have any idea of what a Translation Lookaside Buffer is? Any

ideas?

• HINT: Are there program parts that execute more than others?

• HINT: Space / Locality principle:

• If one instruction is accessed:

• Highly probable that neighbour instructions will be accessed;

• Highly probable that the instruction will be accessed again;
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Virtual Memory Speeding Up Paging

Translation Lookaside Buffer

What can we do to take advantage of the space / locality principle?

Any ideas?
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Virtual Memory Speeding Up Paging

Translation Lookaside Buffer

What can we do to take advantage of the space / locality principle?

Any ideas?

• Cache systems;

• The Translation Lookaside Buffer is a memory cache;
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Virtual Memory Speeding Up Paging

Translation Lookaside Buffer

Translation lookaside buffer (TLB) (1/2):

• Cache used to reduce the time to map virtual to physical addresses;

• Part of the chip’s memory-management unit (MMU);

• Stores the recent translations of virtual memory to physical memory;
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Virtual Memory Speeding Up Paging

Translation Lookaside Buffer

Translation lookaside buffer (TLB) (2/2):

• Consists of a small number of entries: rarely more than 256

• Each entry contains information about one page, including:

• virtual page number;

• modified bit;

• protection bits (read/write/execute permissions);

• physical page frame;

• valid bit: indicates whether the entry is valid (i.e., in use) or not.
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Virtual Memory Speeding Up Paging

Example

Figure: A TLB to speed up paging. (Source: [Tanenbaum and Bos, 2015])
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Virtual Memory Speeding Up Paging

Example of a process that might generate previous TLB:

• Loop that spans virtual pages 19, 20, and 21:

• These TLB entries have protection codes for reading and executing;

• Main data currently being used:

• E.g: an array being processed;

• Pages 129 and 130;

• These TLB entries have protection codes for reading and writing;

• Page 140 contains the indices used in the array calculations;

• Stack is on pages 860 and 861.
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Virtual Memory Speeding Up Paging

With the addition of the TLB:

What is the process for converting a virtual address into a physical one?

Any ideas?
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Virtual Memory Speeding Up Paging

When a virtual address is presented to the MMU for translation (1/2):

1 Hardware checks if virtual page number is present in the TLB;

• This is done by comparing it to all the entries simultaneously (i.e., in parallel)

• Doing so requires special hardware, which all MMUs with TLBs have;

2 If match is found (TLB hit) and protection bits are not violated:

• Page frame is taken directly from the TLB, without going to the page table
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Virtual Memory Speeding Up Paging

When a virtual address is presented to the MMU for translation (2/2):

3 If match is found (TLB hit) and protection bits are violated:

• Protection fault is generated;

4 If match is not found (TLB miss) then the MMU:

• Does an ordinary page table lookup:

• Evicts one TLB entry and replaces it with the page table entry just looked up:

• TLB’s entry modified bit is copied back into the page table entry;
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Virtual Memory Page Tables for Large Memories

Page Tables for Large Memories

Lets focus on the second point:

• If the virtual address space is large, the page table will be large;

• Virtual address space of 32 bits and 4-KB page size:

• 2
32/2

12 = 2
20

pages;

• Virtual address space of 64 bits and 4-KB page size:

• 2
64/2

12 = 2
42

pages;

How to deal with very large virtual address spaces? Any ideas?

L. Tarrataca Chapter 3 - Memory Management 119 / 213



Virtual Memory Page Tables for Large Memories

Multilevel Page Tables

How to deal with very large virtual address spaces? Any ideas?

Idea: Avoid keeping all the page tables in memory all the time

• Pages that are not needed should not be kept around;

• This is the idea behind multilevel page tables;

Lets look at this through an example =)
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Virtual Memory Page Tables for Large Memories

Example (1/7)

E.g.: process that needs 12 MB:

• Bottom 4 MB of memory for program text;

• Next 4 MB for data;

• Top 4 MB for the stack.

• Between data and stack: hole that is not used.
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Virtual Memory Page Tables for Large Memories

Example (2/7)

Consider the following multilevel page table for a 32-bit virtual address:

• 10-bit PT1 field;

• 10-bit PT2 field;

• 12-bit offset field;

Figure: A 32-bit address with two page table fields. (Source: [Tanenbaum and Bos, 2015])
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Virtual Memory Page Tables for Large Memories

Example (3/7)

Figure: Two-level page tables. (Source:

[Tanenbaum and Bos, 2015])

Top-level page entries:

• Entry 0: program text;

• Entry 1: data;

• Entry 1023: stack;

• Entries 2-1022 (shaded): not

used;
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Virtual Memory Page Tables for Large Memories

Example (4/7)

Top-level page (left-most table) with 1024 entries (10-bit PT1 field):

• Each entry represents 4M of addresses (232/210 = 222 = 4M);

When a virtual address is presented to the MMU:

• PT1 field is extracted and used to index top-level page:

• Producing frame number of a second-level page table;

• Important: this is frame is also a page table;
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Virtual Memory Page Tables for Large Memories

Example (5/7)

Consider 32-bit virtual address 0x00403004 with decomposition:

Figure: A 32-bit address with two page table fields. (Source: [Tanenbaum and Bos, 2015])

How can we obtain the multilevel information from this address? Any

ideas?
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Virtual Memory Page Tables for Large Memories

Example (5/7)

Consider 32-bit virtual address 0x00403004

• 00403004(16) =
︸ ︷︷ ︸

PT1 Field

0000000001
︸ ︷︷ ︸

PT2 Field

0000000011
︸ ︷︷ ︸

Offset

000000000100(2)

• PT1 field = 1;

• PT2 field = 3;

• Offset field = 4;
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Virtual Memory Page Tables for Large Memories

Example (6/7)

1 MMU uses PT1 to index top-level page table:

• Entry 0: [0, 4M − 1];

• Entry 1: [4M, 8M − 1];

• Entry 2: [8M, 12M − 1];

• Entry 3: [12M, 16M − 1];

• · · ·

• Entry 1023: [1023 ∗ 4M, 1023 ∗ 4M + 4M − 1];
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Virtual Memory Page Tables for Large Memories

Example (6/7)

1 MMU uses PT1 to index top-level page table:

• Entry 0: [0, 4M − 1];

• Entry 1: [4M, 8M − 1] (PT1 field = 1);

• Entry 2: [8M, 12M − 1];

• Entry 3: [12M, 16M − 1];

• · · ·

• Entry 1023: [1023 ∗ 4M, 1023 ∗ 4M + 4M − 1];
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Virtual Memory Page Tables for Large Memories

Example (6/7)

2 MMU uses PT2 to index second-level page table:

• Each entry maps to a 4KB page frame (222/210):

• Entry 0: [0, 4K − 1];

• Entry 1: [4K , 8K − 1];

• Entry 2: [8K , 12K − 1];

• Entry 3: [12K , 16K − 1];

• · · ·

• Entry 1023: [1023 ∗ 4K , 1023 ∗ 4K + 4K − 1];
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Virtual Memory Page Tables for Large Memories

Example (6/7)

2 MMU uses PT2 to index second-level page table:

• Each entry maps to a 4KB page frame (222/210):

• Entry 0: [0, 4K − 1];

• Entry 1: [4K , 8K − 1];

• Entry 2: [8K , 12K − 1];

• Entry 3: [12K , 16K − 1] (PT2 field = 3);

• · · ·

• Entry 1023: [1023 ∗ 4K , 1023 ∗ 4K + 4K − 1];
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Virtual Memory Page Tables for Large Memories

Example (7/7)

This means that virtual address 0x00403004:

• PT1 field = 1;

• PT2 field = 3;

• Offset field = 4;

Maps to the following physical address:

PT1 × 4M + PT2 × 4K + offset

=1 × 4M + 3 × 4K + 4

=4 × 2
20 + 3 × 4 × 2

10 + 4

=4206596
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Virtual Memory Page Tables for Large Memories

Seems confusing?

• It is indeed a little bit confusing;

• Requires practice!
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Virtual Memory Page Tables for Large Memories

But is it useful to continue adding more levels? Any ideas?
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Virtual Memory Page Tables for Large Memories

But is it useful to continue adding more levels? Any ideas?

• Additional levels give more flexibility;

• Depends on the processor being used;

• Usually:

• After a certain level the entropy only increases;

• I.e. no information gains are achieved;
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Virtual Memory Page Tables for Large Memories

So what can be done besides increasing the number of levels? Any

ideas?
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Virtual Memory Page Tables for Large Memories

So what can be done besides increasing the number of levels? Any

ideas?

• Inverted page tables;
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Virtual Memory Page Tables for Large Memories

Inverted Page Tables

Alternative to ever-increasing levels:

• One table entry per page frame in real memory;

• Rather than one entry per page of virtual address space;

• Entry tracks which (process, virtual page) is located in the page frame;
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Virtual Memory Page Tables for Large Memories

Example

Consider a 64-bit virtual addresses, with 4-KB page size and 4-GB of RAM:

• Only 232

212 = 220 inverted page table entries are required;

• Instead of having to have 264

212 = 252 entries;

• If each entry requires 4 bytes (32 bits) difference between storing

• 220 × 32 = 32 MB;

• 252 × 32 = 128 PB;

Guess which one is better in terms of space saved? ;)

L. Tarrataca Chapter 3 - Memory Management 138 / 213



Virtual Memory Page Tables for Large Memories

Can you see any problems with inverted page tables? Any ideas?
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Virtual Memory Page Tables for Large Memories

Can you see any problems with inverted page tables? Any ideas?

Virtual-to-physical translation becomes much harder;

• Entry keeps track of which (process, virtual page) is located in the frame;

• Hardware can no longer index the table using the virtual page;

• Instead it must search the entire inverted page table for the entry:

• This must be done on every memory reference...;

• If table has N elements then O(N) time...
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Virtual Memory Page Tables for Large Memories

What can be done to avoiding have to search the inverted page table?

Any ideas?
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Virtual Memory Page Tables for Large Memories

What can be done to lessen the effects of having to search the inverted

page table? Any ideas?

Make use of TLB:

• TLB Hit: translation happens very fast;

• TLB Miss: table has to be searched;
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Virtual Memory Page Tables for Large Memories

However, a TLB miss still implies having to search...

What can be done to lessen the effects of having to search the inverted

page table? Any ideas?
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Virtual Memory Page Tables for Large Memories

However, a TLB miss still implies having to search...

What can be done to lessen the effects of having to search the inverted

page table? Any ideas?

Use a hash table hashing on the virtual address =)
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Virtual Memory Page Tables for Large Memories

Use a hash table hashing on the virtual address:

• Virtual pages with the same hash value are chained together;

• If the hash table has as many slots as the machine has physical pages:

• Average chain will be only one entry long;

• Greatly speeding up the mapping;

Once the page frame number has been found:

• Tuple (virtual, physical) is entered into the TLB;

L. Tarrataca Chapter 3 - Memory Management 145 / 213



Virtual Memory Page Tables for Large Memories

In conclusion:

Figure: Comparison of a traditional page table with an inverted page table. (Source:

[Tanenbaum and Bos, 2015])
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Page Replacement Algorithms

Page Replacement Algorithms

Lets have a look at another topic:

Why do we need page replacement algorithms? Any ideas?
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Page Replacement Algorithms

When a page fault occurs:

• OS has to choose a page to evict to make room for the incoming page;

• If the page to be removed has been modified while in memory:

• Page must be rewritten to disk;

• If, however, the page has not been changed:

• disk copy is already up to date: no rewrite is needed;

• page to be read overwrites page being evicted.
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Page Replacement Algorithms

What would be good ideias for choosing a page for replacement? Any

ideas?
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Page Replacement Algorithms

What would be good ideias for choosing a page for replacement? Any

ideas?

• Idea: Choose a page that is not used a lot ;)

• Whether from the process causing the fault;

• Or from some other process...
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Page Replacement Algorithms

There are several page replacement algorithms:

• Optimal Page Replacement Algorithm;

• Not Recently Used Page Replacement Algorithm;

• First-In, First-Out (FIFO) Page Replacement Algorithm;

• Second-Chance Page Replacement Algorithm;

• Clock Page Replacement Algorithm;

• Least Recently Used (LRU) Page Replacement Algorithm

• Working Set (WS) Page Replacement Algorithm

• WSClock Page Replacement Algorithm

Lets have a look at these algorithms:

• All of which you should know for the exam =)
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Page Replacement Algorithms Optimal Page Replacement Algorithm

Optimal Page Replacement Algorithm

Lets start by considering an example with two pages:

• One will not be used for 8 million instructions;

• Another will not be used for 6 million instructions

When a page fault occurs:

Which would you remove first? Any ideas?
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Page Replacement Algorithms Optimal Page Replacement Algorithm

Optimal Page Replacement Algorithm

Lets start by considering an example with two pages:

• One will not be used for 8 million instructions;

• Another will not be used for 6 million instructions

When a page fault occurs:

Which would you remove first? Any ideas?

Remove page that will need longer to be used (first one):

• Computers, like people, try to put off unpleasant events for as long as they

can ;)
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Page Replacement Algorithms Optimal Page Replacement Algorithm

Optimal Page Replacement Algorithm

When a page fault occurs:

• Page containing the instruction will be referenced next;

• Other pages may not be referenced until 10, 100 or 1000 instructions later:

For each page:

• Remember number of instructions that need to be executed:

• Before page is first referenced.

• Remove page that has highest label:

• I.e.: Page that will be referenced later when compared with other pages;
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Page Replacement Algorithms Optimal Page Replacement Algorithm

Can you see any problem with the previous algorithm? Any ideas?
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Page Replacement Algorithms Optimal Page Replacement Algorithm

Can you see any problem with the previous algorithm? Any ideas?

Algorithm is unrealizable:

• No way of knowing when each of the pages will be referenced next;
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Page Replacement Algorithms Not Recently Used Page Replacement Algorithm

Not Recently Used Page Replacement Algorithm

Use two bits R (referenced) and M (modified) for each page table entry:

• When a process is started up:

• Both page bits for all its pages are set to 0 by the OS;

• Periodically the R bit is cleared:

• Distinguish pages that have not been referenced recently;
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Page Replacement Algorithms Not Recently Used Page Replacement Algorithm

On a page fault OS inspects pages and divides them into four categories

• Class 0 - not referenced, not modified (R̄M̄)

• Class 1 - not referenced, modified (R̄M)

• Class 2 - referenced, not modified (RM̄)

• Class 3 - referenced, modified (RM)
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Page Replacement Algorithms Not Recently Used Page Replacement Algorithm

NRU (Not Recently Used) algorithm removes:

• Random page from the lowest-numbered nonempty class;

• Idea:

• Better to remove a modified page that has not been referenced lately...

• ...than a clean page that is in heavy use.
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Page Replacement Algorithms Not Recently Used Page Replacement Algorithm

NRU algorithm is:

• Easy to understand;

• Performance: not optimal but may be adequate.
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Page Replacement Algorithms First-In, First-Out (FIFO) Page Replacement Algorithm

First-In, First-Out (FIFO) Page Replacement Algorithm

OS maintains a list of all pages currently in memory:

• Most recent arrival at the tail;

• Least recent arrival at the head

On a page fault:

• Page at the head is removed;

• New page added to the tail of the list;
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Page Replacement Algorithms First-In, First-Out (FIFO) Page Replacement Algorithm

Can you see any problem with the FIFO approach? Any ideas?
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Page Replacement Algorithms First-In, First-Out (FIFO) Page Replacement Algorithm

Can you see any problem with the FIFO approach? Any ideas?

• Oldest page may still be useful...

• For this reason, FIFO in its pure form is rarely used.

L. Tarrataca Chapter 3 - Memory Management 163 / 213



Page Replacement Algorithms Second-Chance Page Replacement Algorithm

Second-Chance Page Replacement Algorithm

Can you think of a method to improve the FIFO approach? Any ideas?
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Page Replacement Algorithms Second-Chance Page Replacement Algorithm

Can you think of a method to improve the FIFO approach? Any ideas?

Modify FIFO to avoid throwing out a heavily used page:

• Inspect the R bit of the oldest page:

• If it is R = 0:

• Page is both old and unused: replace immediately

• If the R = 1:

• Bit is cleared and page is put onto the end of the list of pages;

• Search continues;
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Page Replacement Algorithms Second-Chance Page Replacement Algorithm

Figure: Operation of second chance. (a) Pages sorted in FIFO order. (b) Page list if a page fault occurs at

time 20 and A has its R bit set. The numbers above the pages are their load times. (Source:

[Tanenbaum and Bos, 2015])

• Load times: time pages arrived in memory;
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Page Replacement Algorithms Second-Chance Page Replacement Algorithm

From the previous figure:

• Suppose that a page fault occurs at time 20:

• Oldest page is A, which arrived at time 0, when the process started

• If A has R=0: evict from memory;

• If the R = 1:

• A is put onto the end of the list;

• A’s ‘‘load time’’ is reset to the current time (20);

• A’s R bit is also cleared

• Search for a suitable page continues with B.
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Page Replacement Algorithms Second-Chance Page Replacement Algorithm

But what happens if all pages have R = 1? Any ideas?
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Page Replacement Algorithms Second-Chance Page Replacement Algorithm

But what happens if all pages have R = 1? Any ideas?

If all the pages have been referenced:

• One by one OS moves the pages to the end of the list:

• clearing the respective R bits;

• Eventually all pages will have R cleared (R=0):

• And the list will be in the exact same initial order;

• Degenerating into pure FIFO
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Page Replacement Algorithms Clock Page Replacement Algorithm

Clock Page Replacement Algorithm

Can you see any problems with the 2nd chance algorithm? Any ideas?

L. Tarrataca Chapter 3 - Memory Management 170 / 213



Page Replacement Algorithms Clock Page Replacement Algorithm

Can you see any problems with the 2nd chance algorithm? Any ideas?

Constantly moving pages around the list is inefficient...

What can be done to avoid always moving pages? Any ideas?
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Page Replacement Algorithms Clock Page Replacement Algorithm

Can you see any problems with the 2nd chance algorithm? Any ideas?

Constantly moving pages around the list is inefficient...

What can be done to avoid always moving pages? Any ideas?

Better approach: keep all page frames on a circular list (clock)
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Page Replacement Algorithms Clock Page Replacement Algorithm

Figure: The clock page replacement algorithm. (Source: [Tanenbaum and Bos, 2015])
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Page Replacement Algorithms Clock Page Replacement Algorithm

From the previous figure:

• On a page fault: page being pointed to by the hand is inspected:

• If R=0:

• Page is evicted, the new page is inserted into the clock in its place

• Hand is advanced one position

• If R=1:

• R is cleared (R=0);

• Hand is advanced to the next page

• Process is repeated until a page is found with R = 0.
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Least Recently Used (LRU) Page Replacement Algorithm

Observation:

• Pages heavily used will probably be heavily used again;

• Pages that have not been heavily used will probably remain unused;

Idea:

• On a page fault:

• Throw out the page that has been unused for the longest time

• Strategy is called LRU (Least Recently Used) paging.
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Can you see any problems with the LRU approach? Any ideas?
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Can you see any problems with the LRU approach? Any ideas?

Not cheap to implement:

• Necessary to maintain a linked list of all pages in memory:

• Most recently used page at the front;

• Least recently used page at the rear;

• List must be updated on every memory reference:

• Main difference to the FIFO method;

• Time consuming operations:

• Finding a page in the list;

• Deleting a page in the list;

• Moving a page to the front of the list;
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Working Set Page Replacement Algorithm

Idea:

• Keep track of each process working set (WS) of pages:

• Obviously over time this set will change...

• Make sure that set is in memory before letting the process run.
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WS algorithm:

• OS keeps track of pages in the WS;

• On a page fault:

• Find a page not in the process WS and evict it;

• WS can have several definitions:

• Definition 1:

Set of pages used in the k last memory references

• Definition 2:

Set of pages used used during the past X msec of execution time

(Preferred Definition)
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Basic idea:

• Find a page that is not in the WS and evict it;

• Each entry contains at least two items:

• Time the page was last used;

• R (Referenced) bit.
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Example

Figure: The WS algorithm.(Source: [Tanenbaum and Bos, 2015])
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The algorithm works as follows (1/2):

• Hardware is assumed to set the R and M bits

• Clock interrupt clears the R bit periodically;

• On every page fault:

• Page table is scanned to look for a suitable page to evict;

• Process each entry and examine R bit:
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The algorithm works as follows (2/2):

• As each entry is processed, the R bit is examined:

• If R = 1:

• Set time of last use to current time...

• ...Indicating page was in use at the time the fault occurred.

• ...thus the page is in WS and is not suitable for removal;

• If R = 0:

• Page not referenced recently and may be a candidate for removal;

• Pages that are older than threshold τ can be removed;
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WSClock Page Replacement Algorithm

Can you see any problems with the WS approach?

L. Tarrataca Chapter 3 - Memory Management 184 / 213



Page Replacement Algorithms Clock Page Replacement Algorithm

Can you see any problems with the WS approach?

Requires scanning entire page table at each page fault:

• Until a suitable candidate is located...
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Can you see any problems with the WS approach?

Entire page table has to be scanned at each page fault until a suitable

candidate is located...

Can you think of a better method? Any ideas?
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Can you see any problems with the WS approach?

Entire page table has to be scanned at each page fault until a suitable

candidate is located...

Can you think of a better method? Any ideas?

Use a a circular list of page frames (clock)
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Data structure needed is a circular list of page frames:

• Initially: list is empty:

• When the first page is loaded, it is added to the list.

• As more pages are added: ring is formed;

• Each list entry contains:

• Time of last use field;

• R and M bits;
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As with the clock algorithm (1/2):

1 Each page fault: page pointed to by the hand is examined first;

2 If R = 1: not ideal candidate to remove since it was used recently:

• R bit is then set to 0: hand advances to next page;

• Search continues until an R = 0 is found;
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Figure: Operation of the WSClock algorithm. (a) and (b) give an example of what happens when R = 1. (

(Source: [Tanenbaum and Bos, 2015])
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As with the clock algorithm (2/2):

3 If R=0

• If the age ≥ τ and the page is not modified:

• Page is not in working set;

• Page can be removed;

• If the age ≥ τ and the page is modified:

• Page can be removed after being written to disk;
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Figure: c) and (d) give an example of R = 0. Current virtual time = 2204 ( (Source: [Tanenbaum and Bos, 2015])
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Summary of Page Replacement Algorithms

Figure: Page replacement algorithms discussed in the text. (Source: [Tanenbaum and Bos, 2015])
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Design Issues For Paging Systems

The following slides discuss issues that impact the paging system:

• Local versus Global Allocation Policies

• Load Control

• Page Size

• Shared Pages

• Cleaning Policy
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Local versus Global Allocation Policies

How should memory be allocated among the competing runnable pro-

cesses? Any ideas?
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Example

Figure: Local versus global page replacement.

(Source: [Tanenbaum and Bos, 2015])

How memory should be al-

located among the compet-

ing runnable processes? Any

ideas?
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Example

Figure: Local versus global page replacement.

(Source: [Tanenbaum and Bos, 2015])

From the figure on the left:

• Three processes - A, B, C;

• Suppose A gets a page fault;

• Which pages should be

considered?

• All pages from A, B and C?

• Only pages from A?
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Example

If we employ an LRU strategy only to A’s pages:

• then A5 is replaced by A6:

Figure: Original configuration (Source:

[Tanenbaum and Bos, 2015])

Figure: Local page replacement. (Source:

[Tanenbaum and Bos, 2015])
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Example

If we employ an LRU strategy to all pages:

• then B3 is replaced by A6:

Figure: Original configuration (Source:

[Tanenbaum and Bos, 2015])
Figure: Local page replacement. (Source:

[Tanenbaum and Bos, 2015])
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Decision between local and global pages:

• Local: only considers pages from the process’s address space;

• Global: considers pages from all address spaces;

In general: global algorithms work better. Why? Any ideas?
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In general: global algorithms work better. Why? Any ideas?

If a local algorithm is used and working set grows:

• Pages will be replaced even if there are free page frames;

• Trashing will occur!

If a local algorithm is used and working set shrinks:

• Pages from original set will be replaced:

• Instead of considering that the working set is shrinking...

• Resulting in wasted memory!
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If a global algorithm is used (1/2):

• OS must decide how many page frames to assign to each process:

• Bigger processes should get higher number of page frames;

• Smaller processes won’t have a big demand for page frames;

• Start each process with a number of pages proportional to the process size;
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If a global algorithm is used (2/2):

• If the page fault frequency starts increasing:

• Signals to increase a process’ page allocation

• If the page fault frequency starts decreasing:

• Signals to decrease a process’ page allocation
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Load Control

What happens whenever the combined working sets of all processes

exceed the capacity of memory?

Trashing can be expected:

• System will spend a lot of time copying data from disk to memory;

• If the wrong pages are evicted from memory:

• They will have to be loaded again very soon;

• This results in a lot of wasteful copying... A.k.a. as trashing

L. Tarrataca Chapter 3 - Memory Management 204 / 213



Design Issues For Paging Systems Load Control

What can be done to minimize the chances of trashing? Any ideas?
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What can be done to minimize the chances of trashing? Any ideas?

Possible strategy:

• Swap some of the processes to disk:

• Freeing up all the pages they are holding;

• Free page frames can be attributed to trashing processes;

• Continue swapping processes until trashing stops;

L. Tarrataca Chapter 3 - Memory Management 206 / 213



Design Issues For Paging Systems Page Size

Page Size

OS chooses page size:

How should the OS select a page size? Any ideas?
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Design Issues For Paging Systems Page Size

Page Size

OS chooses page size:

How should the OS select a page size? Any ideas?

Determining best size requires balancing several competing factors...

• Choose a page size too big:

• Possibility for wasted memory;

• Choose a page size too small:

• OS needs to maintain larger page table;

• Using valuable space in the TLB;

• Conclusion: There is no overall algorithm...
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Shared Pages

Sometimes it is useful to share pages among processes:

• E.g.: user may be running several programs that use the same library;

• Efficient to share pages: avoid multiples copies of the same page;

• Problem is that not all pages are sharable:

• Pages that are read-only, such as program text, can be shared;

• Sharing data pages is more complicated...

L. Tarrataca Chapter 3 - Memory Management 209 / 213



Design Issues For Paging Systems Shared Pages

When two or more processes share some code;

• Special care needs to be employed with shared pages;

• When a process is removed from memory:

• Shared paged need to stay in memory:

• Otherwise: other processes will start generating page faults;

• Therefore: essential to discover shared pages still in use:

• Searching all page tables is expensive;

• Special data structures are needed;
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Cleaning Policy

Paging works best when:

• There is an abundant supply of free page frames;

• Such frames can be claimed as page faults occur;

If every page frame is full and modified:

• Before a new page can be brought in:

• Old page must first be written to disk
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Periodically a paging daemon process is executed:

• Responsible for inspecting memory:

• And freeing frames if too few page frames are free;

• Pages are evicted according to some page replacement algorithm;

• If pages have been modified: they are written to disk.
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