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Motivation

Motivation

Today’s class is about introducing Operating Systems:

But what is an operating system? Any ideas?
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Motivation

Motivation

Today’s class is about introducing Operating Systems:

But what is an operating system? Any ideas?

What does an operating system do? Any ideas?

Why do we need an operating system? Any ideas?
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Motivation

Numerous reasons why an OS is important:

• OS are cool!
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Motivation

Numerous reasons why an OS is important:

• OS are cool!

• OS will help give meaning to your life!

• If you are alone:

• An OS will help you find a boyfriend / girlfriend

• If you already have a boyfriend / girlfriend:

• An OS will help you find a better boyfriend / girlfriend

• #NOT...
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Motivation

Now a little bit more serious. A computer consists of

• One or more processors;

• Main memory

• I/O devices, e.g.::

• Disks, printers, a keyboard, a mouse, a display, network interfaces

What would happen if a programmer had to manage all of these?
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Motivation

What would happen if a programmer had to manage all of these?

For those of you who did Computer Architecture with me:
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Motivation

What would happen if a programmer had to manage all of these?

• Too many things to manage:

• No useful code would ever get written;

• Furthermore, incredibly difficult to manage optimally these resources;
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Motivation

Idea:

• Create a program called an Operating System;

• OS job is to provide user programs with:

• A better, simpler, cleaner, model of the computer;

• Manage all the computer resources;
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Motivation

Simple overview of the main components:

Figure: Where the operating system fits in. (Source: [Tanenbaum and Bos, 2015])
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Motivation

• First layer represents the hardware:

• Consisting of chips, memory, disks, etc...

• On top of the hardware is the software:

• Kernel mode:

• Complete access to all the hardware;

• Can execute any instruction the machine is capable of executing;

• OS runs in kernel mode;

• User mode:

• Only a subset of the machine instructions is available;

• Prohibited: Instructions that affect control of the machine or do I/O;
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Motivation

Everything running in kernel mode:

• Part of the OS;

However, some programs running outside the kernel mode:

• Are also part of the OS;

• Examples:

• chmod;

• passwd;

Sometimes it is difficult to draw a boundary.
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Motivation

Other important things about OS:

• OS are huge, complex, and long-lived:

• Windows 10 consists of around 50 - 60 million lines of codes;

• Excluding things like Windows Explorer, Windows Media Player, etc...

• Accordingly: OS are very hard to write and pieces are shared between OS;
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What is an operating system?

What is an Operating System?

Essentially, two perspectives exist:

• OS as an Extended Machine

• OS as a Resource Manager

Lets have a quick look at each one of these
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What is an operating system? OS as an Extended Machine

OS as an Extended Machine

• Computer Architecture at the machine-language level is primitive:

• Remember Pong? Arkanoid? Snake? Space Invaders?

• No sane programmer would want to deal with this nightmare

• Idea: OS abstracts devices and hides the complexity, e.g.:

• Read file;

• Write file;

• Program timer;

• Process interruptions;
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What is an operating system? OS as a Resource Manager

OS as a Resource Manager (1/2)

• OS job is to manage:

• Processors;

• Memories;

• I/O devices and the various programs competing for them;

• Keep track of:

• Which programs are using which resource

• Grant resource requests

• Account for usage

• Mediate conflicting requests from different programs and users
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What is an operating system? OS as a Resource Manager

OS as a Resource Manager (2/2)

Resource management includes multiplexing (sharing) resources (1/2):

• Time multiplexing:

• Different programs / users take turns using resource;

• Example: Single CPU multiplexing:

• OS allocates the CPU to one program;

• After a certain time another program gets to use the CPU;

• Then another and then eventually the first one again.

• OS responsible for managing the multiplexing;
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What is an operating system? OS as a Resource Manager

Resource management includes multiplexing (sharing) resources (2/2):

• Space multiplexing:

• Each program / user gets part of the resource;

• Example: main memory:

• Normally divided among several running programs;

• Assuming there is enough memory to hold multiple programs:

• More efficient to hold several programs in memory;

• Rather than give one of them all of it;

• Remember principle of locality from computer architecture?

• OS responsible for managing this multiplexing;
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Computer Hardware Review

Computer Hardware Review

Remember that semester you spend learning Computer Architecture?
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Computer Hardware Review

Computer Hardware Review

Remember that semester you spend learning Computer Architecture?

• Lets review the entire’s course syllabus in a single class ;)
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Computer Hardware Review Von Neumman architecture

Von Neumman architecture

The main components of the von Neumann architecture:

• Memory module

• I/O module

• CPU

Lets have a look at each one of these
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Computer Hardware Review Von Neumman architecture

Von Neumann Architecture:

Figure: A top level view of the main computer components (Source: [Stallings, 2015])

Lets have a look at each one of these
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Computer Hardware Review Central Processing Unit

Central Processing Unit

• ‘‘Brain’’ of the computer;

• Instruction cycle:

Figure: Instruction Cycle State Diagram, with Interrupts (Source: [Stallings, 2015])
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Computer Hardware Review Central Processing Unit

CPU has a set of internal registers (1/4):

• Program Counter (PC):

• Specifies the memory address of the next instruction to be executed.

• Instruction Register (IR):

• Holds the instruction currently being executed or decoded.
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Computer Hardware Review Central Processing Unit

CPU has a set of internal registers (2/4):

• Stack Pointer (SP):

• Points to the top of the current stack in memory

• Stores inputs, local and temporary variables that are not kept in registers;

• Program Status Word (PSW):

• Holds the state of the processor (e.g: Z, C, O, N, etc)

• Additional bit for kernel mode and user mode.
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Computer Hardware Review Central Processing Unit

CPU has a set of internal registers (3/4):

• Memory address register (MAR):

• Specifies memory address to be read/written;

• Memory buffer register (MBR):

• Contains the data to be written into memory or...

• Receives the data read from memory;

• Used for interruption handling;
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Computer Hardware Review Central Processing Unit

CPU has a set of internal registers (4/4):

• I/O address register (I/OAR):

• Specifies a particular I/O device;

• I/O buffer (I/OBR) register:

• Used for the exchange of data between an I/O module and the CPU;

L. Tarrataca Chapter 1 - Introduction 33 / 232



Computer Hardware Review Central Processing Unit

Modern CPUs execute more than one instruction at the same time:

Do you remember how these mechanisms these are called? Any ideas?
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Computer Hardware Review Central Processing Unit

Do you remember how these mechanisms these are called? Any ideas?

• Pipelines =)

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: [Stallings, 2015])L. Tarrataca Chapter 1 - Introduction 35 / 232



Computer Hardware Review Central Processing Unit

Pipelines are complex structures, remember the following?

• RAW

• WAR

• WAW

• NOP

Pipelines are responsible for great headaches:

• They expose the complexities of the underlying machine;
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Computer Hardware Review Central Processing Unit

Remember these ‘‘headaches’’?

Figure: Effect of a Conditional Branch on Instruction Pipeline Operation. Instruction 3 is a conditional branch

to instruction 15 (Source: [Stallings, 2015])
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Computer Hardware Review Central Processing Unit

Do you know a structure more advanced than pipelines? Any ideas?
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Computer Hardware Review Central Processing Unit

Do you know a structure more advanced than pipelines? Any ideas?

• Superscalar CPU;

• Simple idea: increase number of pipelines;

• Multiple execution units are present, e.g.::

• One for integer arithmetic;

• One for floating-point arithmetic;

• One for Boolean operations.
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Computer Hardware Review Central Processing Unit

• Increase the number of ‘‘headaches’’:

• Instructions are often executed out of order, remember?

• In-order issue out-of-order completion?

• Out-of-order issue out-of-order completion?

• Up to the hardware to make sure the result produced is the same.
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Computer Hardware Review Central Processing Unit

Simple idea: increase number of pipelines

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: [Stallings, 2015])
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Computer Hardware Review Central Processing Unit

Do you know of a structure similar to superscalar processors? Any ideas?
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Computer Hardware Review Central Processing Unit

Do you know of a structure similar to superscalar processors? Any ideas?

• Superpipelining is an alternative performance method to superscalar:

• Many pipeline stages require less than half a clock cycle;

• A pipeline clock is used instead of the overall system clock:

• To advance between the different pipeline stages;
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Computer Hardware Review Central Processing Unit

Simple idea: pipeline clock is used instead of the overall system clock

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: [Stallings, 2015])
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Computer Hardware Review Central Processing Unit

What else can be done to improve performance?
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Computer Hardware Review Central Processing Unit

What else can be done to improve performance?

• Parallel Processing
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Computer Hardware Review Parallel Processing

Parallel Processing

Remember this?

Figure: A Taxonomy of Parallel Processor Architectures (Source: [Stallings, 2015])

Fun, right?
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Computer Hardware Review Parallel Processing

Lets look at some architectures for multicore systems (1/2):

Figure: Dedicated L1 cache - Ex: ARM11

MPCore (Source: [Stallings, 2015])

Figure: Dedicated L2 cache - Ex: AMD Opteron

(Source: [Stallings, 2015])

• L1-D data cache;

• L1-I instruction cache;
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Computer Hardware Review Parallel Processing

Lets look at some architectures for multicore systems (2/2):

Figure: Shared L2 cache - Ex: Intel Core Duo

(Source: [Stallings, 2015])

Figure: Shared L3 cache - Ex: Intel Core i7

(Source: [Stallings, 2015])

• L1-D data cache;

• L1-I instruction cache;
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Computer Hardware Review Parallel Processing

Multicore systems introduce a specific problem, remember what it is?
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Computer Hardware Review Parallel Processing

Multicore systems introduce a specific problem, remember what it is?

• Cache coherence problem;

What is the Cache coherence problem? Any ideas?
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Computer Hardware Review Parallel Processing

Multicore systems introduce a specific problem, remember what it is?

• Cache coherence problem;

What is the Cache coherence problem? Any ideas?

• Changing a word in a cache may invalidate other copies;
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Computer Hardware Review Parallel Processing

Multicore systems introduce a specific problem, remember what it is?

• Cache coherence problem;

What is the Cache coherence problem? Any ideas?

• Changing a word in a cache may invalidate other copies;

How can we solve the cache coherence problem? Any ideas?
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Computer Hardware Review Parallel Processing

Multicore systems introduce a specific problem, remember what it is?

• Cache coherence problem;

What is the Cache coherence problem? Any ideas?

• Changing a word in a cache may invalidate other copies;

How can we solve the cache coherence problem? Any ideas?

• E.g.: MESI protocol;
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Computer Hardware Review Memory

Memory

Ideally, memory should be:

• Extremely fast

• Abundantly large;

• Dirt cheap.

Unfortunately: No current technology satisfies all of these goals.

What can be done to tackle this issue? Any ideas?
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Computer Hardware Review Memory

What can be done to tackle this issue? Any ideas?

• We can have a memory hierarchy:

Figure: (Source: [Tanenbaum and Bos, 2015])

• Top layers have higher speed, smaller capacity, and greater cost per bit;

• Bottom layer have slower speed, higher capacity and lower cost per bit;
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Computer Hardware Review Memory

Registers:

• Just as fast as the CPU;

• Extremely small amount of memory;
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Computer Hardware Review Memory

Cache memory:

• Constituted by cache lines;

• Each line contains a block;

• Each block contains K words;

• Cache hit:

• When a word is searched in a cache and found;

• Cache Miss:

• When a word is searched in a cache and not found;

• Requires a mapping mechanism. Remember these?

• Direct, Associative, Set-Associative;
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Computer Hardware Review Memory

Main memory:

• Usually called RAM;

• Set of sequentially numbered addresses:

• Each location contains binary information

• Data;

• Or instructions.
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Computer Hardware Review Memory

Magnetic Disks:

Figure: (Source: [Tanenbaum and Bos, 2015])

• Plates;

• Surfaces;

• Tracks;

• Sectors;
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Computer Hardware Review I/O Devices

I/O Devices (1/2)

I/O module is responsible for:

• Transferring data from external devices to CPU and memory;

• And vice versa;

• Containing internal buffers for temporarily holding data;

L. Tarrataca Chapter 1 - Introduction 61 / 232



Computer Hardware Review I/O Devices

I/O Devices (2/2)

Device Controller is responsible for:

• Presenting simple interface to the OS;

• Control of the device is complicated and detailed:

• A device driver is the software that interacts with a controller.
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Computer Hardware Review I/O Devices

I/O Module structure

Lets take a closer look at a generic I/O module.

Figure: Block Diagram of an of an I/O Module. (Source: [Stallings, 2015])
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Computer Hardware Review I/O Devices

Organization of a generic I/O module (1/2):

• Module connects to computer through a set of signal lines;

• Data transferred to and from the module are buffered in data registers.

• Status registers provide status information:

• Also function as control registers, to accept processor control info;
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Computer Hardware Review I/O Devices

Organization of a generic I/O module (2/2):

• Logic within the module interacts with the processor via control lines:

• Processor uses the control lines to issue commands to the I/O module;

• Some of the control lines may be used by the I/O module

• E.g. arbitration and status signals;

• Module must also be able to recognize and generate addresses:

• For each device it controls

• I/O module contains logic specific for a set of interfaces;
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Computer Hardware Review I/O Devices

I/O module allows processor to view peripherals in a simple way:

• Presents a high-level interface to the processor;

• Taking most of the I/O processing burden away from the processor;

• Also called an I/O processor =)
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Computer Hardware Review I/O Devices

Now that we have an idea of the main components...

How can we manage the communication between the µP and the I/O

module?

• Any ideas?
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Computer Hardware Review I/O Devices

Essentially, there are three techniques are possible for I/O operations:

Figure: I/O Techniques (Source: [Stallings, 2015])

Lets have a look at each one of these =)
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Computer Hardware Review Programmed I/O

Programmed I/O

Data are exchanged between the processor and the I/O module:

1 Processor executes program controlling I/O operation;

• E.g.: sensing device status, read/write command, data transfer.

2 Once the processor issues a command to the I/O module:

• Processor must wait until the I/O operation is complete;

3 If the processor is faster than the I/O module:

• Wasteful of processor time =’(
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Computer Hardware Review Programmed I/O

I/O Commands

To execute an I/O-related instruction:

• Processor issues an address:

• Specifying the particular I/O module and external device;

• An I/O command which can be of the following type:

• Control, Test, Read and Write
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Computer Hardware Review Programmed I/O

I/O commands the processor can issue are of the following type (1/2):

• Control: Used to activate a peripheral and tell it what to do:

• E.g.: Rewind magnetic-tape; move to HD track;

• Test: test I/O module and its peripherals. E.g.:

• Is the peripheral powered on?

• Is the peripheral available for use?

• Has the most recent I/O operation completed? Did any errors occur?
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Computer Hardware Review Programmed I/O

I/O commands the processor can issue are of the following type (2/2):

• Read: I/O module obtains a data item from the peripheral:

• Placing the data in an internal buffer;

• Processor requests I/O module to place data on bus;

• Write: I/O module writes a data item to the peripheral:

• I/O module reads data from bus;

• I/O module transmits data to peripheral;
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Computer Hardware Review Programmed I/O

In flowchart form:

Figure: Programmed I/O technique for input of a block of data (Source: [Stallings, 2015])
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Computer Hardware Review Programmed I/O

Can you characterize the system from an efficiency perspective?
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Computer Hardware Review Programmed I/O

Very wasteful, recall that:

• Processor issues a command to the I/O module:

• then waits for I/O operation to complete.

• While waiting, processor repeatedly interrogates status of I/O module.

• If processor is faster than I/O module: wasteful of processor time.

Is it possible to do any better?
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Computer Hardware Review Interrupt-Driven I/O

Interrupt-Driven I/O

What is the ideal scenario for processor performance?

• Do not wait for I/O module;

• Instead, continue processing other tasks;

• And be notified when I/O module has something for processor;
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Computer Hardware Review Interrupt-Driven I/O

This is the concept of interruption, I.e.:

1 Ask for something from the I/O module;

2 Continue processing without waiting for the I/O module;

3 Be interrupted when the I/O module has something ready.
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Computer Hardware Review Interrupt-Driven I/O

From the point of view of the I/O module:

4 Module waits for processor to request data:

5 When request is made:

• When possible: module interacts with peripheral;

• Once the data is completely buffered;

• data are place on data bus;

6 An interrupt signal is sent to the processor over a control line;

7 Module becomes available for another I/O operation.
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Computer Hardware Review Interrupt-Driven I/O

From the point of view of the processor (1/2):

1 A READ command is issued to I/O module;

2 Processor goes off to do something else;

3 Processor checks for interrupts at the end of each instruction cycle;
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Computer Hardware Review Interrupt-Driven I/O

From the point of view of the processor (2/2):

4 When the interrupt from the I/O module occurs:

• Processor saves program context;

• Processor proceeds to read data from I/O module

• Processor stores data in memory;

5 Processor then restores previous program context;

6 Processes resumes execution of previous program
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Computer Hardware Review Interrupt-Driven I/O

In flowchart form:

Figure: Interrupt-driven I/O (Source: [Stallings, 2015])

L. Tarrataca Chapter 1 - Introduction 81 / 232



Computer Hardware Review Interrupt-Driven I/O

Interrupt Processing

Lets take a closer look at the interruption-based strategy.

• Interruption triggers a number of events

• Processor, hardware and software.

• Automatically, we can pose a series of questions:

• What happens to the program that is executing?

• What happens to the processor?

• How is the interruption processed?
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Computer Hardware Review Interrupt-Driven I/O

Figure: Simple Interrupt Processing (Source: [Stallings, 2015])
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Computer Hardware Review Interrupt-Driven I/O

When an I/O device completes an I/O operation (1/4):

1 Device issues an interrupt signal to the processor.

2 Processor finishes execution of the current instruction

• Before responding to the interrupt;

3 Processor tests for an interrupt:

• Determines if there is one;

• If one exists, sends an acknowledgement signal to peripheral;

• Acknowledgment allows the device to remove its interrupt signal.
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Computer Hardware Review Interrupt-Driven I/O

When an I/O device completes an I/O operation (2/4):

4 Processor needs to transfer control to the interrupt routine;

• This is done by saving the program context:

• Processor status word;

• Program counter;

5 Processor then loads the program counter associated with the

interrupt-handling routine.
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Computer Hardware Review Interrupt-Driven I/O

When an I/O device completes an I/O operation (3/4):

6 Interruption routine may use the registers:

• This means that these registers need to be saved;

• This happened when you were developing your CA project;

7 Typically, the interrupt handler will begin by saving all registers on the stack;

8 Interrupt handler then processes the interrupt
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Computer Hardware Review Interrupt-Driven I/O

When an I/O device completes an I/O operation (4/4):

9 When interrupt processing is complete:

• Saved registers are retrieved from stack and restored;

10 Final act is to restore the PSW and program counter

• Next instruction to be executed will be from the previously interrupted

program.
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Computer Hardware Review Interrupt-Driven I/O

Interrupt I/O is more efficient than programmed I/O:

• Eliminates needless waiting...

Despite the improvement, can you see any potential upgrade that can

be performed with interrupt I/O?
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Computer Hardware Review Interrupt-Driven I/O

Despite the improvement, can you see any potential upgrade that can

be performed with interrupt I/O?

Interrupt I/O still consumes a lot of processor time:

• Data is exchanged between memory and I/O module...

• But this exchange still needs to go through the processor....

• Processor spends time transferring data

• While it could be doing something more useful..
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DMA Module

DMA module

Idea: Copy data directly to memory, bypassing processor:

• Memory accesses are performed by DMA module;

• Unburdens the processor;

• Combine with interruption scheme for optimum efficiency.

This strategy is called Direct Memory Access (DMA)
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DMA Module

DMA involves an additional module on the system bus:

Figure: Typical DMA block diagram (Source: [Stallings, 2015])

• Uses the bus only when the processor does not need to;

• Forces the processor to suspend bus operations temporarily;
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DMA Module

Processor issues a command to the DMA module:

• The command contains (1/2):

• Whether a read or write is requested:

• Transmitted over the bus control lines;

• Address of the I/O device involved

• Transmitted over the bus data lines;

• Stored in the data register;
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DMA Module

Processor issues a command to the DMA module:

• The command contains (2/2):

• Starting location in memory to read from or write to:

• Communicated on the data lines and...

• Stored by the DMA module in its address register;

• Number of words to be read or written:

• Communicated via the data lines and stored in the data count register;
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Processor then continues with other work, i.e.:

• I/O operation delegated to DMA module;

• DMA module transfers block of data:

• Bypassing the processor;

• When the transfer is complete:

• DMA module sends interrupt signal;

• Processor is involved only at:

• Beginning of transfer;

• End of transfer;

Figure: DMA-driven I/O (Source: [Stallings, 2015])
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Bus Structure

Bus lines can be classified into three functional groups:

• Data:

• for moving data among system modules

• Address

• for specifying the source or destination of the data:

• Control

• for transmiting command information among the modules.

Lets have a quick look into each one of these...
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Figure: Bus Interconnection Scheme (Source: [Stallings, 2015])
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Data Lines

The data bus may consist of 32, 64, 128, or even more separate lines:

• A.k.a. width of the data bus;

Each line can carry only 1 bit at a time:

• Number of lines determines how many bits can be transferred at a time.

Data bus width is key to system performance, e.g.:

• If the data bus is 32 bits wide and each instruction is 64 bits long;

• Each instruction requires two memory acesses.
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Address Lines

Used to designate the source or destination of the data on the data bus:

• The width of the address bus determines the maximum system memory;

• The address lines are generally also used to address I/O addresses;

• Higher-order bits are used to select a particular module on the bus;

• Lower-order bits select a memory location or I/O port within the module.
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Control Lines

Command signals specify operations to be performed, e.g.:

• Memory write: write bus data to a memory address;

• Memory read: read memory at memory address;

• I/O write: write bus data to an I/O address;

• I/O read: read data from an I/O address;

• Bus request: a module needs to gain control of the bus;

• Bus grant: a requesting module has been granted bus control;

• Many more control signals...
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However, as processors and memories got faster:

• Ability of a single bus to handle all the traffic was strained;

• As a result, additional buses were added:

Figure: (Source: [Tanenbaum and Bos, 2015])
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Figure: (Source: [Tanenbaum and Bos, 2015])

This system has many buses, e.g.:

• Cache

• Memory

• PCIe (main bus)

• PCI, USB, SATA...

Each with a different transfer rate and function.
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Booting the computer

Now that we remembered a little bit of computer architecture:

How does the boot procedure of a computer works? Any ideas?

L. Tarrataca Chapter 1 - Introduction 102 / 232



DMA Module Booting the computer

The boot process is as follows.

1 Every PC has a motherboard containing the system BIOS:

• Containing low-level I/O software, e.g.::

• read the keyboard;

• write to the screen;

• do disk I/O
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2 BIOS is started and checks :

• How much RAM is installed;

• Keyboard and other basic devices;

• Buses to detect all the devices attached to them;

3 BIOS then determines the boot device:

• List of devices stored in the CMOS memory

4 First sector from the boot device is read into memory and executed:

• Sector contains a program;

• Program examines the partition table at the end of the boot sector:

• in order to determine which partition is active;
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5 Secondary boot loader is read in from that partition:

• Reads in the operating system from the active partition and starts it.

6 OS queries the BIOS to get the configuration information:

• For each device, it checks to see if it has the device driver;

• If not the driver needs to be supplied (CD, internet,...)

• Once it has all the device drivers, OS loads them into the kernel.

7 OS initializes data structures and starts up a login program or GUI.
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Operating System Concepts

Do you know any basic concepts from OS? Any ideas?
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Operating System Concepts

OS provide basic concepts such as:

• Processes

• System Calls

• Address Spaces

• Files

Lets look at these concepts briefly.
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Processes

A process is basically a program in execution (1/2):

• Associated with each process is its address space

• List of memory locations from 0 to some maximum:

• Which the process can read and write

• Address space contains:

• Executable program (instructions);

• Program data;

• Function call stack
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Processes

A process is basically a program in execution (2/2):

• Associated with each process is a set of resources:

• Registers (PC, SP, etc... );

• List of open files;

• Outstanding alarms;

• Lists of related processes;

• Other information needed to run the program;
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So, in your opinion what is a process? Any ideas?
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So, in your opinion what is a process? Any ideas?

Process is fundamentally a container that holds all the information needed to

run a program.
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Example

Consider a single-core multiprogramming system executing:

• Program converting a one-hour video to a certain format;

• Web browser ( Not Microsoft Edge =P );

• Email client ( Not Microsoft Outlook =P );

How do you think the OS manages these processes? Any ideas?
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How do you think the OS manages these processes? Any ideas?

Periodically the OS:

1 Decides to stop running one process;

• A.k.a. suspending the process;

2 Start running another process;
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But if we suspend a process and later need to run it again what needs to

happen? Any ideas?

L. Tarrataca Chapter 1 - Introduction 114 / 232



Operating System Concepts Processes

But if we suspend a process and later need to run it again what needs to

happen? Any ideas?

Process must be restarted in exactly the same state before stopping:

• Process information must be saved somewhere before the suspension;

• Registers (PC, SP, etc... );

• List of open files;

• For each file the number of bytes read;

• For each file the number of bytes written;

• Outstanding alarms;

• Lists of related processes;

• Other information needed to run the program;
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All the information about each process:

• Is stored in an OS table called the process table;

• Array of structures, one for each process currently in existence.
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Processes change over time...

What are some possible changes that you can envision? Any ideas?
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Processes change over time...

What are some possible changes that you can envision? Any ideas?

Some possible states:

• New

• Ready

• Running

• Blocked

• Terminated
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Processes change over time...

What are the set of transitions from the previous states? Any ideas?
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Process States (1/2)

During the lifetime of a process, its state will change a number of times:

Figure: Five state process model (Source: [Stallings, 2015])
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Process States (2/2)

During the lifetime of a process, its state will change a number of times:

• New: Process is created but not yet ready to execute.

• Ready: Process is ready to execute, awaiting processor availability;

• Running: Process is being executed by the processor;

• Waiting: Process is suspended from execution waiting a system resource;

• Halted: Process has terminated and will be destroyed by the OS.
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Example

Key process-management system calls are those dealing with:

• creation and termination of processes.

Example:

• A process called the shell reads commands from a terminal;

• User compiles a program;

• Shell must create a new process for the compiler;

• When the compiler process has finished:

• Executes a command to terminate the process;
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Conclusion: Processes can create other processes;

• Parent processes;

• Child processes;

Figure: A process tree. Process A created two child processes, B and C. Process B created three child

processes, D, E, and F. (Source: [Tanenbaum and Bos, 2015])
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How can a program request the OS to do something? Any ideas?
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How can a program request the OS to do something? Any ideas?

• System Calls
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How can a program request the OS to do something? Any ideas?

• System Calls

What is a system call then? Any ideas?

• Programmatic way in which a program requests a service from the kernel;

• Provide an interface between a process and the OS;
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Can you think of any examples of system calls? Any ideas?
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Can you think of any examples of system calls? Any ideas?

Examples of system calls (1/2):

• Open / Read / Write file;

• Request more memory (malloc, calloc, etc..);

• Release unused memory (free);

• Wait for a child process to terminate (wait);
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Can you think of any examples of system calls? Any ideas?

Examples of system calls (2/2):

• Set an alarm signal (e.g.: timer):

• Process an interruption (just like in Computer Architecture);

• The context needs to be saved;

• An interruption routine is then executed;

• The context is then restored;

• Many others exist...
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Other important OS concepts:

• UID (User IDentification):

• Each system user is assigned one by the administrator;

• Every process started has the UID of the user who started it;

• A child process has the same UID as its parent.

• Users can be members of groups:

• Each of which has a GID (Group IDentification).
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Do you know any OS users? Any ideas?
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Do you know any OS users? Any ideas?

• Superuser in Unix / Linux

• Administrator in Windows
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Address Spaces

Lets talk about another important OS concept

What is an address space? Any ideas?
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Address Spaces

Computers have main memory used to store:

• Instructions;

• Data;

Sophisticated OS allow multiple processes to be in memory:

• At the same time...

How can we stop programs from interfering with one another? Any ideas?
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How can we stop programs from interfering with one another? Any ideas?

• Some kind of protection mechanism is needed;

• This mechanism is hardware-based:

• But controlled by the OS;

• We will study this later on.
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Memory Partitioning (1/2)

How should the OS partition the memory?

• Should every process have the

same amount of memory?

• But what if we need less/more

space?

Figure: Equal size partitions (Source: [Stallings, 2015])
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Memory Partitioning (2/2)

How should the OS partition the memory?

• Or should different processes

have different amounts of

memory?

• When a process is brought into

memory, it is placed in the

smallest available partition that

will hold it.

Figure: Unequal size partitions (Source: [Stallings, 2015])
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Can you see any problem with this type of partitioning?
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Can you see any problem with this type of partitioning?

• Wasted memory: even with the use of unequal fixed-size partitions;

• In most cases:

• A process will not require as much memory as provided by the partition;

• E.g. a process that requires 3M bytes of memory would be placed in the 4M

partition, wasting 1M that could be used by another process...
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Can you think of an alternative method for partitioning memory?
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Can you think of an alternative method for partitioning memory?

• What about variable-size partitions:

• When a process is brought into memory:

• Allocate exactly as much memory as it requires and no more.
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• What about variable-size partitions:

• When a process is brought into memory:

• Allocate exactly as much memory as it requires and no more.

Figure: Variable-size partitions (Source: [Stallings, 2015])
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Can you see any problems with this type of partitioning scheme?
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Can you see any problems with this type of partitioning scheme?

• This method starts out well:

• However, eventually the memory will be full of holes. The process either:

• Terminates;

• Is removed from main to secondary memory.

• From time to time:

• The OS compacts the processes in memory;

• This results in all the free memory being placed together in one block;

• This is a time-consuming procedure, wasteful of processor time.
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Figure: The effects of dynamic partitioning (Source: [Stallings, 2015])

L. Tarrataca Chapter 1 - Introduction 145 / 232



Operating System Concepts Address Spaces

Overall conclusion:

• Fixed-size and variable-size partitions are inefficient in the use of memory.

Can we do any better than these types of partitioning schemes?
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Paging

Lets consider an alternative partitioning scheme:

• Allow memory to be partitioned into equal fixed-size small chunks:

• Known as page frames

• Each process is also divided into small fixed-size chunks of some size:

• Known as pages

• Typically: frames have the same size as pages

• Each page can be assigned to a page frame, then:

• At most, wasted space for a process will be a fraction of the last page.
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Example

Figure: Allocation of free frames (Source: [Stallings, 2015])
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At a given point in time:

• Some of the frames in memory are in use and some are free;

• The list of free frames is maintained by the OS;

• Process A, stored on disk, consists of four pages.

• When it comes time to load this process the OS:

• Finds four free frames;

• Loads the four pages of the process A into the four frames.
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Do the frames need to be contiguous (1/2)?

• No! We can use the concept of logical address.

• OS maintains a page table for each process:

• Showing the frame location for each page of the process;

• Within the program each logical address consists of:

• a page number and a relative address within the page;

• Logical- to-physical address translation is done by processor.
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Do the frames need to be contiguous (2/2)?

• Processor must know how to access the process’s page table:

• Input is a logical address:

• (page number, relative address)

• Output is a physical address obtained through the process page table:

• (frame number, relative address)
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Figure: Logical and physical addresses (Source: [Stallings, 2015])
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Can you see any other improvement that can be done to memory

management?
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Can you see any other improvement that can be done to memory

management?

HINT: Space-time locality principle
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Can you see any other improvement that can be done to memory

management?

• The OS always loads all the memory of a process;

• IDEA: What if we only load those pages that are required at a single

moment?

• This is the concept of virtual memory...
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Virtual Memory

Each process page is brought in only when it is needed (1/2):

1 Procedure is known as demand paging;

2 Locality principle: the same values, or related storage locations, are

frequently accessed.

• Why then would we need to load every page? Wasteful...
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Each process page is brought in only when it is needed (2/2):

3 We can make better use of memory by loading in just a few pages

4 If the program attempts to access a page not in main memory:

• a page fault is triggered, and the OS brings in the desired page;

• These pages reside in secondary memory;

5 Virtual Memory refers to this much larger memory usable by the program.
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At any one time, only a few pages of a process are in memory:

• Therefore more processes can be maintained in memory.

• Time is saved because:

• Unused pages are not swapped in and out of memory;

• Less RAM/HD acesses;

• Consequence: Possible for a process to be larger than all of main memory.
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OS must be clever about how it manages this scheme:

• When it brings one page in, it must throw another page out;

• This is known as page replacement.

• OS might throw out a page just before it is about to be used:

• OS will just have to get that page again almost immediately;

• Too much of this leads to a condition known as thrashing:

• Processor spends most of its time swapping pages...

• ...rather than executing instructions

• extremely slowwww computerrrr...
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Do you have any idea how to solve this problem? Any ideas?

L. Tarrataca Chapter 1 - Introduction 160 / 232



Operating System Concepts Virtual Memory

Do you have any idea how to solve this problem? Any ideas?

• OS needs to guess which pages are least likely to be used:

• E.g. based on recent history.

• We have seen some when we studied Cache systems...
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Files

Another key concept of modern OS:

• Hides peculiarities of the disks and other I/O devices;

• Present the programmer with a transparent model;

• System calls exist for:

• Creating files;

• Removing files;

• Reading files;

• Writing files;
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Most OS have the concept of a directory (1/2):

Figure: A file system for a university department. (Source: [Tanenbaum and Bos, 2015])
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Most OS have the concept of a directory (2/2):

• Directory entries may be either files or other directories;

• System calls are then needed to:

• Create directories.

• Remove directories.

• Each process has a current working directory;
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Before a file can be read or written:

• File must be opened, at which time the permissions are checked:

• If the access is permitted:

• OS returns a small integer called a file descriptor;

• If the access is prohibited:

• error code is returned.
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Lets consider an additional requirement:

But what if two processes need to communicate with one another?
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Lets consider an additional requirement:

But what if two processes need to communicate with one another?

This is done through the pipe concept:

• A sort of file that can be used to connect two processes
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This is done through the pipe concept:

Figure: Two processes connected by a pipe. (Source: [Tanenbaum and Bos, 2015])

• Processes A and B must configure a pipe in advance;

• When process A wants to send data to process B:

• it writes on the pipe as though it were an output file.

• Process B can read the data by:

• reading from the pipe as though it were an input file.

• Pipe implementation is very much like that of a file;
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System Calls

Ok, based on what we have seen until now:

What are the main functions of an OS? Any ideas?
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System Calls

Ok, based on what we have seen until now:

What are the main functions of an OS? Any ideas?

Two main functions:

• Provide abstractions to programs;

• Manage computer resources;
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Two main functions:

• Provide abstractions to programs:

• E.g.: create, write, read and delete files.

• Manage computer resources:

• Largely transparent, since computers need not worry about:

• CPU, I/O, etc;

• Done Automatically;

• Conclusion:

• Interface between OS / Programs primarily deals with abstractions:
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• Conclusion:

• Interface between OS / Programs primarily deals with abstractions:

• To understand what an OS is we must examine this interface:

• This interface can be seen through the available system calls

• These vary from OS to OS:

• Although the underlying concepts are the same;

• We will focus on POSIX:

• A.k.a. International Standard 9945-1;

• Unix / Linux / BSD;
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Important:

• Implementation of systems calls is highly machine-dependent:

• They are often implemented in assembly;

• OS makes available a library:

• Effectively working as an interface;

• Allows for system calls to be made from programs:

• Program invokes system call (user mode);

• OS performs system call (kernel mode);

• Program continues execution (user mode);
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Figure: Computer Hardware and software structure (Source: [Stallings, 2015])
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Guess what we will be doing next? Any ideas?
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Guess what we will be doing next? Any ideas?

• We are going to see some of the available system calls ;)
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Example

Lets take a look at the read specific system call:

count = read ( fd , b u f fe r , nbytes )

• 1st parameter specifies the file to be read;

• 2nd parameter specifies the buffer where the content is read to;

• 3rd parameter specifies the number of bytes to read;

• This system call returns:

• Number of bytes actually read in count;

• -1 if an error occurred;
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Example

System calls are performed in a series of steps:

Figure: (Source: [Tanenbaum and Bos, 2015])
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The previous picture in textual form (1/3):

1 Push nbytes:

2 Push &buffer:

3 Push fd:

4 The actual call to the library procedure;

5 System call identification is placed in a register;
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The previous picture in textual form (2/3):

6 OS switches from user to kernel mode;

• This is a special instruction called trap;

7 System call is dispatched to the appropriate handler;

8 System call is executed;

9 Once execution finishes:

• control is returned to the user-space library;

10 Once library finishes:

• control is returned to the original program;
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The previous picture in textual form (3/3):

11 User program cleans up the stack:

• Removes from stack the system call arguments;

The program is now free to do whatever it wants!
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Linux makes all this information available through the terminal (1/2):
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Linux makes all this information available through the terminal (2/2):
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The read system call is just one example:

• POSIX has about 100 procedure calls

• All of which you should know for your exam
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The read system call is just one example:

• POSIX has about 100 procedure calls;

• All of which you should know for your exam ;)
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System calls for process management

Figure: Some of the major POSIX system calls. The return code s is −1 if an error has occurred. The return codes are as follows: pid is a process id,

fd is a file descriptor, n is a byte count, position is an offset within the file, and seconds is the elapsed time. (Source: [Tanenbaum and Bos, 2015])
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System call fork (1/4):

• Only way to create a new process in POSIX;

• Creates an exact duplicate of the original process, including:

• File descriptors;

• Registers;

• Everything!

• After the fork:

• The original process and copy go their separate ways;

• All the variables have identical values at the time of the fork

• However, since the parent’s data are copied to create the child:

• Subsequent changes do not affect the other one;
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System call fork (2/4):

• Fork returns a value:

• Value zero in the child;

• The child’s Process Identifier (PID) in the parent;

• In most cases:

• Child will execute different code;
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Consider the case of the shell in Linux:

How do you think the Linux shell works? Any ideas?
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System Calls System calls for process management

Consider the case of the shell:

1 Reads a command;

2 Forks off a child process (fork);

3 Waits for the child to execute (wait);

• input parameter indicates PID to wait for;

4 Childs executes different code (execve):

• 1st parameter: name of the file to be executed;

• 2nd parameter: pointer to argument array;

• 3rd parameter: pointer to environment array;

5 Reads the next command
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System Calls System calls for process management

# def ine TRUE 1

wh i l e ( TRUE ) { /∗ repeat f o r e v e r ∗/

type_prompt ( ) ; /∗ d i s p l a y prompt on the screen ∗/

read_command(command , parameters ) ; /∗ read i npu t from t e r m i n a l ∗/

i f ( ( pid = f o r k ( ) ) == 0 ) { /∗ f o r k o f f c h i l d proces s ∗/

/∗ Parent code . ∗/

wai t ( pid ) ; /∗ wai t f o r c h i l d to e x i t ∗/

} e l s e {

/∗ Chi ld code . ∗/

execve (command , parameters , 0 ) ; /∗ execute command ∗/

}

}
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System calls for file management

Figure: Some of the major POSIX system calls. The return code s is −1 if an error has occurred. The return codes are as follows: pid is a process id,

fd is a file descriptor, n is a byte count, position is an offset within the file, and seconds is the elapsed time. (Source: [Tanenbaum and Bos, 2015])
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System calls for directory management

Figure: Some of the major POSIX system calls. The return code s is −1 if an error has occurred. The return codes are as follows: pid is a process id,

fd is a file descriptor, n is a byte count, position is an offset within the file, and seconds is the elapsed time. (Source: [Tanenbaum and Bos, 2015])
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Miscellaneous system calls

Figure: Some of the major POSIX system calls. The return code s is −1 if an error has occurred. The return codes are as follows: pid is a process id,

fd is a file descriptor, n is a byte count, position is an offset within the file, and seconds is the elapsed time. (Source: [Tanenbaum and Bos, 2015])
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System Calls Miscellaneous system calls

Does this seems complicated?
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System Calls Miscellaneous system calls

Does this seems complicated?

• Completely normal:

• First time you are seeing it;

• But fear not...

• Linux provides all the manuals that you need!
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System Calls Miscellaneous system calls

Linux makes all this information available through the terminal (1/2):
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System Calls Miscellaneous system calls

Linux makes all this information available through the terminal (2/2):
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System Calls Miscellaneous system calls

But how can I discover the manual’s number?
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System Calls Miscellaneous system calls

But how can I discover the manual’s number?

Multiple solutions exist:

• Command apropos

• Command man -wK
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Command apropos:
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Command man -wK:
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System Calls Miscellaneous system calls

As a curiosity lets look at Windows API:

Figure: (Source: [Tanenbaum and Bos, 2015])
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System Calls Miscellaneous system calls

Win32API also contains hundreds of system calls:

• All of which you should know for the exam

L. Tarrataca Chapter 1 - Introduction 204 / 232



System Calls Miscellaneous system calls

Win32API also contains hundreds of system calls:

• All of which you should know for the exam ;)
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System Calls Miscellaneous system calls

Win32API also contains hundreds of system calls:

• All of which you should know for the exam ;)

• Who cares about Windows =P
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Operating System Structure

Now we have a better understanding of the different OS components:

How should the OS be organized?

What are the different OS design possibilities?
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Operating System Structure

Operating System Structure

Now we have a better understanding of the different OS components:

How should the OS be organized?

What are the different OS design possibilities?

Essentially there are six designs:

• Monolithic Systems;

• Layered Systems;

• Microkernels;

• Client-Server systems;

• Virtual Machines;

• Exokernels; L. Tarrataca Chapter 1 - Introduction 208 / 232
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Monolithic Systems

First: What does monolithic means? Any ideas?
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Operating System Structure Monolithic Systems

Monolithic Systems

First: What does monolithic means? Any ideas?

• Large, indivisible and slow to change;
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Monolithic Systems

The entire OS runs as a program in kernel mode:

• Collection of procedures linked into a single executable;

• Any procedure can call any other procedure:

• Pros:

• Very efficient since there are no restrictions;

• Cons:

• Very difficult to understand;

• If a procedure crashes the entire OS crashes;
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Operating System Structure Monolithic Systems

For those of you who have seen Object Programming:

• No information is hidden;

• There is very little structure:

• All functions are accessible to every other function;

• As opposed to using modules or packages:

• Information is hidden away in modules or packages;

• Only official designated entry points can be called;
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Operating System Structure Monolithic Systems

Basic organization for monolithic OS (1/2):

• A main program invokes a service procedure;

• A set of service procedures that carry out the system calls:

• Each service call manages the system calls;

• A set of utility procedures that help the service procedures:

• E.g.: Fetch data from user programs;
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Operating System Structure Monolithic Systems

Basic organization for monolithic OS (2/2):

Figure: Simple structure model for a monolithic system(Source: [Tanenbaum and Bos, 2015])
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Layered Systems

Idea: Organize OS as a hierarchy of layers:

• Each layer is constructed upon the one below it, e.g.:

5 Computer user

4 User programs

3 I/O Management

2 Process Communication

1 Memory management

0 Processor management
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Mircrokernels

Traditionally: all layers are in the kernel

• Not necessary!

• Idea: put as little as possible in kernel model:

• Less code less probability of bugs in kernel mode;

• Less bugs less probability of bringing OS down;

• Idea: set user mode processes to do non-critical tasks:

• Bug in user mode may not be fatal;

• E.g.: bug in audio driver:

• Stops or ruins sound;

• But will not crash the computer;
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Operating System Structure Mircrokernels

Common desktop OS do not use microkernels:

• With the exception of Mac OS ;)

However, microkernels are dominant in:

• real-time OS;

• industrial avionics;

• military applications;
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Operating System Structure Mircrokernels

An example of a microkernel organization:

Figure: Simplified structure of the MINIX system (Source: [Tanenbaum and Bos, 2015])
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Client-Server Model

Idea: Distinguish between two processes:

• Servers:

• Provide some services;

• Clients

• Use the services provided;

• Slight variation of the microkernel:
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Operating System Structure Client-Server Model

Communication between clients and servers:

• Often done by message passing, e.g.:

• Client constructs message and sends to service;

• Server executes and sends back result;
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Operating System Structure Client-Server Model

Because of this structure:

• Clients and servers can run on different computers;

• Requests are sent and replies come back;

Figure: The client-server model over a network. (Source: [Tanenbaum and Bos, 2015])
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Virtual Machines

Have a single computer run different OS:

• Each virtual machine is given time to run;

• If one virtual machine crashes other virtual machines can continue;

• Allows for efficient use of machine:

• Hardware is never idle, always executing some VM;

• Brings costs down;

• Run Windows/Linux/Unix in the same machine
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But what are the different virtualization techniques? Any ideas?
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Operating System Structure Virtual Machines

Figure: Execute directly over hardware (Source: [Tanenbaum and Bos, 2015])

• Efficient but had some peculiarities:

• Virtual OS needs to execute in kernel mode...

• But Virtual OS is running in user mode...

• This was impossible to execute in some processors;
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What can be done to circumvent this problem? Any ideas?
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Operating System Structure Virtual Machines

What can be done to circumvent this problem? Any ideas?

• Provide a processor simulator;

• Execute privileged instructions in simulator;

• Solves problem but is inefficient;
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Operating System Structure Virtual Machines

Figure: Execute an host OS and a machine simulator (Source: [Tanenbaum and Bos, 2015])
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Operating System Structure Virtual Machines

What can be done to improve performance? Any ideas?
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Operating System Structure Virtual Machines

What can be done to improve performance? Any ideas?

• Add a kernel module to original OS for virtualization;

• This allows for better virtualization performance
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Operating System Structure Virtual Machines

Figure: Execute directly over hardware (Source: [Tanenbaum and Bos, 2015])
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Exokernels

Rather than cloning a machine:

• Give each VM a subset of the resources;

• At the bottom layer, running in kernel mode:

• Is a program called the Exokernel whose function is:

• Allocate resources to virtual machine;

• Check that each VM uses its own resources;

• Advantage: Saves a layer of mapping:

• Exorkernel keeps track of the resources allocated to each machine;

• No need to remap any resources which makes it simpler;
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