Chapter 1 - Introduction

Luis Tarrataca
luis.tarratacalgmail.com

CEFET-RJ

Chapter 1 -ioducton 1/232

luis.tarrataca@gmail.com

© Motivation

©® What is an operating system?
OS as an Extended Machine

OS as a Resource Manager

Chapter 1 -ioducton 2232

©® Computer Hardware Review
Von Neumman architecture
Central Processing Unit
Central Processing Unit
Parallel Processing
Memory
I/O Devices
I/O Devices

Programmed 1/O

1/O Commands

Interrupt-Driven |/O

Interrupt Processing

Chapter 1 -ioducton 3252

@ DMA Module

Bus Structure
Data Lines
Address Lines

Control Lines
Booting the computer

Booting the computer

Chapter 1 - nroducton

4/232

0O Operating System Concepts

Processes

Process States
Address Spaces
Paging
Virtual Memory

Demand paging

Files

Chapter 1 - nroducton

5/232

0O System Calls
System callls for process management
System callls for file management
System calls for directory management

Miscellaneous system calls

Chapter 1 -ioducton 6232

@ Operating System Structure
Monolithic Systems
Layered Systems
Mircrokernels
Client-Server Model
Virtual Machines

Exokernels

Chapter 1 -ioducton 7252

i e

Today’s class is about introducing Operating Systems:

But what is an operating system? Any ideas? '

Chapter 1 -ioducton 8,232

i e

Today’s class is about infroducing Operating Systems:

But what is an operating system? Any ideas? '
What does an operating system do? Any ideas? '

Chapter 1 -ioducton 9252

i e

Today’s class is about infroducing Operating Systems:

But what is an operating system? Any ideas? '
What does an operating system do? Any ideas? '
Why do we need an operating system? Any ideas? '

Chapter 1 -intoducton 10252

Numerous reasons why an OS is important:

e OS are cool!

Chapter 1 -itoduction 117252

Numerous reasons why an OS is important:
e OS are cool!

e OS will help give meaning to your life!

Numerous reasons why an OS is important:
e OS are cool!
e OS will help give meaning to your life!

e [f you are alone:

Numerous reasons why an OS is important:
e OS are cool!
e OS will help give meaning to your life!

e [f you are alone:

e An OS will help you find a boyfriend / girlfriend

Numerous reasons why an OS is important:
e OS are cool!
e OS will help give meaning to your life!
e [f you are alone:

e An OS will help you find a boyfriend / girlfriend

o |f you already have a boyfriend / girlfriend:

Numerous reasons why an OS is important:
e OS are cool!
e OS will help give meaning to your life!
e [f you are alone:

e An OS will help you find a boyfriend / girlfriend

o |f you already have a boyfriend / girlfriend:

e An OS will help you find a better boyfriend / girlfriend

Numerous reasons why an OS is important:

e OS are cooll

OS will help give meaning to your lifel
e [f you are alone:

e An OS will help you find a boyfriend / girlfriend

If you already have a boyfriend / girlfriend:

e An OS will help you find a better boyfriend / girlfriend

#NOT...

Now a little bit more serious. A computer consists of
e One or more processors;
e Main memory
e |/O devices, e.g.:

o Disks, printers, a keyboard, a mouse, a display, network interfaces

What would happen if a programmer had to manage all of these?

Chapter 1 -intoducton 12/252

What would happen if a programmer had to manage all of these? '

For those of you who did Computer Architecture with me:

L. Tarrataca Chapter 1 - Infroduction 13 /232

What would happen if a programmer had to manage all of these? '

e Too many things to manage:

e No useful code would ever get written;

e Furthermore, incredibly difficult fo manage optimally these resources;

Chapter 1 -intoducton 14/252

Idea:
e Create a program called an Operating System;
e OS job is o provide user programs with:
e A better, simpler, cleaner, model of the computer;

e Manage all the computer resources;

Simple overview of the main components:

Hardware

E-mail Music
Web reader player
browser _f
\ /
User mode ‘ O
User interface program Software
Kernel mode { Operating system

Figure: Where the operating system fits in. (Source: (Tanenbaum and Bos, 2015))

Chapter 1 -intoducton 167252

o First layer represents the hardware:

e Consisting of chips, memory, disks, etc...

e On top of the hardware is the software:
¢ Kernel mode:
o Complete access to all the hardware;
e Can execute any instruction the machine is capable of executing:;
® OS runs in kernel mode;
e User mode:
® Only a subset of the machine instructions is available;

e Prohibited: Instructions that affect control of the machine or do I/O;

Everything running in kernel mode:
e Part of the OS;

However, some programs running outside the kernel mode:
e Are also part of the OS;

e Examples:
e chmod;

® passwd;

Sometimes it is difficult to draw a boundary.

Other important things about OS:
e OS are huge, complex, and long-lived:
e Windows 10 consists of around 80 - 60 million lines of codes;

e Excluding things like Windows Explorer, Windows Media Player, etc...

o Accordingly: OS are very hard to write and pieces are shared between OS;

What is an operating system?

What is an Operating System?

Essentially, two perspectives exist:
e OS as an Extended Machine
e OS as a Resource Manager

Lets have a quick look at each one of these

Chapter 1 -itoducton 20252

What is an operating system? OS as an Extended Machine

OS as an Extended Machine

o Computer Architecture at the machine-language level is primitive:
o Remember Pong? Arkanoid? Snake? Space Invaders?
e No sane programmer would want to deal with this nightmare
o |dea: OS abstracts devices and hides the complexity, e.g.:
* Read file;
e Write file;
e Program fimer;

o Process interruptions;

What is an operating system? OS as a Resource Manager

OS as a Resource Manager (1/2)

e OS job is to manage:

e Processors;

e Memories;

e |/O devices and the various programs competing for them;
o Keep track of:

e Which programs are using which resource

e Grant resource requests

e Account for usage

e Mediate conflicting requests from different programs and users

Chapter 1 -intoducton 2222

OS as a Resource Manager (2/2)

Resource management includes multiplexing (sharing) resources (1/2):
¢ Time multiplexing:
o Different programs / users take turns using resource;
e Example: Single CPU multiplexing:
® OS dllocates the CPU to one program;
e After a certain time another program gets to use the CPU;
® Then another and then eventually the first one again.

e OS responsible for managing the multiplexing;

Chapter 1 -intoducton 23252

What is an operating system? OS as a Resource Manager

Resource management includes multiplexing (sharing) resources (2/2):
* Space multiplexing:

e Each program / user gets part of the resource;

e Example: main memory:
e Normally divided among several running programs;
® Assuming there is enough memory to hold multiple programs:
e More efficient to hold several programs in memory;
® Rather than give one of them all of it;
® Remember principle of locality fromn computer architecture?

e OS responsible for managing this multiplexing;

Chapter 1 -intoducton 247252

Computer Hardware Review

N o
Computer Hardware Review

Remember that semester you spend learning Computer Architecture? '

Chapter 1 -intoducton 25252

Computer Hardware Review

N o
Computer Hardware Review

Remember that semester you spend learning Computer Architecture?

o Lets review the entire’s course syllabus in a single class ;)

Chapter 1 -intoducton 261252

Computer Hardware Review Von Neumman architecture

Von Neumman architecture

The main components of the von Neumann architecture:
o Memory module
¢ |/O module
e CPU

Lets have a look at each one of these

Chapter 1 -intoducton 2722

Computer Hardware Review Von Neumman architecture

Von Neumann Architecture:

CPU Main memory
e
N 1
. 2
Instruction :
Instruction N
Instruction
Data
Data
Data
Data
/O Module . no2
n-1
~€
N PC = Program counter
Buffers IR = Instruction register
MAR = Memory address register
MBR = Memory buffer register
LOAR = Input/output address register
I/OBR = Input/output buffer register

Figure: A top level view of the main computer components (Source: (Stallings, 2015))

Chapter 1 -intoducton 28252

Computer Hardware R Central Processing Unit

Central Processing Unit

e “'Brain’’ of the computer;

e Instruction cycle:

Instruction complete, Return for string.
fetch next instruction or vector data

Figure: Instruction Cycle State Diagram, with Interrupts (Source: (Stallings, 2015))

Chapter 1 -intoducton 2922

Computer Hardware Review Central Processing Unit

CPU has a set of internal registers (1/4):
® Program Counter (PC):
o Specifies the memory address of the next instruction to be executed.
o Instruction Register (IR):

e Holds the instruction currently being executed or decoded.

Chapter 1 -intoducton 30252

Computer Hardware Review Central Processing Unit

CPU has a set of internal registers (2/4):
e Stack Pointer (SP):
e Points to the top of the current stack in memory
e Stores inputs, local and temporary variables that are not kept in registers;
o Program Status Word (PSW):
e Holds the state of the processor (e.g: Z, C, O, N, etc)

e Additional bit for kernel mode and user mode.

Computer Hardware Review Central Processing Unit

CPU has a set of internal registers (3/4):
* Memory address register (MAR):
o Specifies memory address to be read/written;
o Memory buffer register (MBR):
e Contains the data to be written infto memory or...
o Receives the data read from memory;

e Used for interruption handling;

Chapter 1 - nroducton

32/232

Computer Hardware Review Central Processing Unit

CPU has a set of internal registers (4/4):
o |/O address register (I/OAR):
e Specifies a particular I/O device:
o /O buffer (I/OBR) register:

o Used for the exchange of data between an |/O module and the CPU;

Chapter 1 -intoducton 33252

Computer Hardware Review Central Processing Unit

Modern CPUs execute more than one instruction at the same time:

Do you remember how these mechanisms these are called? Any ideas?

Chapter 1 -intoducton 347252

Computer Hardware Review Central Processing Unit

Do you remember how these mechanisms these are called? Any ideas?

o Pipelines =)

Time

1 2 3 4 5 6 7 8 9 |10 |11 (12 |13 | 14
Instruction1 | FI | DI | CO | FO | EI |WO
Instruction 2 FI | DI | CO | FO | EI WO
Instruction 3 FI | DI | CO | FO | EI |WO
Instruction 4 FI | DI | CO | FO | EI | WO
Instruction 5 FI | DI |CO | FO | EI |WO
Instruction 6 FI | DI | CO | FO | EI WO
Instruction 7 FI | DI | CO | FO | EI |WO
Instruction 8 FI | DI | CO | FO | EI | WO
Instruction 9 FI | DI | CO|FO | EI |WO

Chapter 1 -intoducton 35252

Computer Hardware Review Central Processing Unit

Pipelines are complex structures, remember the following?
o RAW
o WAR
o WAW
o NOP
Pipelines are responsible for great headaches:

o They expose the complexities of the underlying machine;

Chapter 1 -intoducton 361252

Computer Hardware Review Central Processing Unit

Remember these ‘‘*headaches’’?

Time Branch penalty

1 2 3 4 5 6 7 8 9 (10 |11 |12 | 13 | 14
Instruction1 | FI | DI | CO | FO | EI | WO
Instruction 2 FI | DI | CO | FO | EI | WO
Instruction 3 FI | DI | CO | FO | EI | WO
Instruction 4 FI | DI | CO | FO
Instruction 5 FI | DI | CO
Instruction 6 FI | DI
Instruction 7 FI
Instruction 15 FI | DI | CO| FO | EI | WO
Instruction 16 FI | DI [CO|FO | EI | WO

Figure: Effect of a Conditional Branch on Instruction Pipeline Operation. Instruction 3 is a conditional branch
to instruction 15 (Source: (Stallings, 2015))

Computer Hardware Review Central Processing Unit

Do you know a structure more advanced than pipelines? Any ideas?

Chapter 1 -intoducton 38252

Computer Hardware Review Central Processing Unit

Do you know a structure more advanced than pipelines? Any ideas?

e Superscalar CPU;
e Simple idea: increase number of pipelines;
o Multiple execution units are present, e.g.::
o One for integer arithmetic;
e One for floating-point arithmetic;

e One for Boolean operations.

Computer Hardware Review Central Processing Unit

o Increase the number of ‘*headaches’”:
o Instructions are often executed out of order, remember?
® In-order issue out-of-order completion?
e Out-of-order issue out-of-order completion?

e Up to the hardware to make sure the result produced is the same.

Chapter 1 -intoducton 40,252

Computer Hardware Review Central Processing Unit

Simple idea: increase number of pipelines

Successive instructions

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: (Stallings, 2015))

Computer Hardware Review Central Processing Unit

Do you know of a structure similar to superscalar processors? Any ideas?

Chapter 1 -intoducton 42252

Computer Hardware Review Central Processing Unit

Do you know of a structure similar to superscalar processors? Any ideas?

e Superpipelining is an alternative performance method to superscalar:
* Many pipeline stages require less than half a clock cycle;
o A pipeline clock is used instead of the overall system clock:

e To advance between the different pipeline stages;

Chapter 1 -intoducton 43252

Computer Hardware Review Central Processing Unit

Simple idea: pipeline clock is used instead of the overall system clock

Successive instructions

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: (Stallings, 2015))

Chapter 1 -intoducton 4422

Computer Hardware Review Central Processing Unit

What else can be done to improve performance?

Chapter 1 -intoducton 45252

Computer Hardware Review Central Processing Unit

What else can be done to improve performance?

e Parallel Processing

Chapter 1 -intoducton 461252

Computer Hardware Re Parallel Processing

Parallel Processing

Remember this?

Processor organizations

Single instruction, Single instruction, Multiple instruction, Multiple instruction,
single data stream multiple data stream single data stream multiple data stream
(SISD) (SIMD) (MISD) (MIMD)
Uniprocessor
Vector Array Shared memory Distributed memory
processor processor (tightly coupled) (loosely coupled)
Clusters
Symmetric Nonuniform
multiprocessor ‘memory
(SMP) access
(NUMA)

Figure: A Taxonomy of Parallel Processor Architectures (Source: (Stallings, 2015))

Fun, right?
e

Computer Hardware R w Parallel Processing

Lets look at some architectures for multicore systems (1/2):

Vi memory] 39

Figure: Dedicated L1 cache - Ex: ARM11 Figure: Dedicated L2 cache - Ex: AMD Opteron
MPCore (Source: (Stallings, 2015)) (Source: (Stallings, 2015))

e L1-D data cache;

e L1-linstruction cache;

Chapter 1 -intoducton 48252

Computer Hardware R w Parallel Processing

Lets look at some architectures for multicore systems (2/2):

N menory] 0 Siammemory] @9

Figure: Shared L2 cache - Ex: Intel Core Duo Figure: Shared L3 cache - Ex: Intel Core i7
(Source: (Stallings, 2015)) (Source: (Stallings, 2015))

e L1-D data cache;

e L1-linstruction cache;

Chapter 1 -intoducton 49,22

Computer Hardware Review Parallel Processing

Multicore systems infroduce a specific problem, remember what it is?

Chapter 1 -intoducton 50252

Computer Hardware Review Parallel Processing

Multicore systems infroduce a specific problem, remember what it is?

e Cache coherence problem;

What is the Cache coherence problem? Any ideas?

Chapter 1 -intoducton 17252

Computer Hardware Review Parallel Processing

Multicore systems infroduce a specific problem, remember what it is?

e Cache coherence problem;

What is the Cache coherence problem? Any ideas?

e Changing a word in a cache may invalidate other copies;

Chapter 1 -intoducton 52/22

Computer Hardware Review Parallel Processing

Multicore systems infroduce a specific problem, remember what it is?

o Cache coherence problem;

What is the Cache coherence problem? Any ideas?

e Changing a word in a cache may invalidate other copies;

How can we solve the cache coherence problem? Any ideas?

Chapter 1 -inoducton 53252

Computer Hardware Review Parallel Processing

Multicore systems infroduce a specific problem, remember what it is? '

o Cache coherence problem;

What is the Cache coherence problem? Any ideas? '

e Changing a word in a cache may invalidate other copies;

How can we solve the cache coherence problem? Any ideas? '

e E.g.: MESI protocol;

Chapter 1 -intoducton 54/252

Computer Hardware Review Memory

Ideally, memory should be:

o Extremely fast
e Abundantly large;
o Dirt cheap.

Unfortunately: No current technology satisfies all of these goals.

What can be done to tackle this issue? Any ideas? '

Chapter 1 -intoducton 85/252

Computer Hardware Review Memory

What can be done to tackle this issue? Any ideas?

o We can have a memory hierarchy:

Typical access time Typical capacity
1 nsec <1 KB
2 nsec Cache 4 MB
10 nsec | Main memory I 1-8 GB
10 msec l Magnetic disk | 1-4TB

Figure: (Source: (Tanenbaum and Bos, 2015))

e Top layers have higher speed, smaller capacity, and greater cost per bit;

e Boftom layer have slower speed, higher capacity and lower cost per bit;

Chapter 1 -intoducton 56252

Computer Hardware Review Memory

Registers:
e Just as fast as the CPU;

o Extremely small amount of memory;

Chapter 1 -intoducton 5722

Computer Hardware Review Memory

Cache memory:

Constituted by cache lines;
Each line contains a block;
Each block contains K words;
Cache hit:
e When a word is searched in a cache and found;
Cache Miss:

e When a word is searched in a cache and not found;

Requires a mapping mechanism. Remember these?

o Direct, Associative, Set-Associative;

Chapter 1 -intoducton 58252

Computer Hardware Review Memory

Main memory:
o Usually called RAM;
o Set of sequentially numbered addresses:
e Each location contains binary information
e Data;

e Or instructions.

Chapter 1 - nroducton

59 /232

Computer Hardware Review Memory

Magnetic Disks:

Plates;

Surfaces;

o Tracks;

Sectors;

Surface 7

Surface 6
Surface 5

Surface 4
Surface 3

Surface 2
Surface 1

Surface 0

Read/write head (1 per surface)

=

e e
—-—

Direction of arm mation

Figure: (Source: (Tanenbaum and Bos, 2015))

Chapter 1 - nroducton

60 / 232

Computer Hardware Review 1/0O Devices

I/O Devices (1/2)

1/O module is responsible for:

o Transferring data from external devices to CPU and memory;

e And vice versa;

o Containing internal buffers for temporarily holding data;

Chapter 1 -intoducton 617252

Computer Hardware Review 1/0O Devices

I/O Devices (2/2)

Device Controller is responsible for:
o Presenting simple interface to the OS;

o Control of the device is complicated and detailed:

e A device driver is the software that interacts with a controller.

Chapter 1 -intoducton 62/252

Computer Hardware R 1/0O Devices

/O Module structure

Lets take a closer look at a generic I/O module.

Interface to Interface to
system bus external device

A Ay
—-l Data registers
=~{] =
—'i Status/control registers

Address

Data

‘T—

Status

Control

Data
lines External
o device
logi g face Status
Control logic
Tinies Control

Figure: Block Diagram of an of an I/O Module. (Source: (Stallings, 2015))

Chapter 1 -ioducton 63252

Computer Hardware Review 1/O Devices

Organization of a generic /O module (1/2):
e Module connects to computer through a set of signal lines;
e Data transferred to and from the module are buffered in data registers.

o Status registers provide status information:

o Also function as control registers, to accept processor control info;

Chapter 1 -inoducton 641252

Computer Hardware Review 1/O Devices

Organization of a generic 1/O module (2/2):
e Logic within the module interacts with the processor via control lines:
e Processor uses the control lines to issue commmands to the I/O module;

e Some of the control lines may be used by the 1/O module

e E.g. arbitration and status signals;

e Module must also be able to recognize and generate addresses:

e For each device it controls

® |/O module contains logic specific for a set of interfaces;

Chapter 1 -intoducton 65252

Computer Hardware Review 1/O Devices

I/O module allows processor to view peripherals in a simple way:
e Presents a high-level interface to the processor;
o Taking most of the 1/O processing burden away from the processor;

e Also called an I/O processor =)

Chapter 1 -intoducton 661252

Computer Hardware Review 1/0O Devices

Now that we have an idea of the main components...

How can we manage the communication between the pP and the I/O

module?

e Any ideas?

Chapter 1 -intoduction 6722

Computer Hardware Review 1/O Devices

Essentially, there are three techniques are possible for I/O operations:

No Interrupts

Use of Interrupts

1/O-to-memory transfer through processor

Programmed I/O

Interrupt-driven /O

Direct /O-to-memory transfer

Direct memory access (DMA)

Figure: 1/O Techniques (Source: (Stallings, 2015))

Lets have a look at each one of these =)

L. Tarrataca

Chapter 1 - Infroduction 68 / 232

Computer Hardware Review Programmed 1/0

Programmed I/O

Data are exchanged between the processor and the /O module:
@ Processor executes program controlling 1/O operation;
e E.g.:sensing device status, read/write command, data transfer.
@ Once the processor issues a command to the I/O module:
o Processor must wait until the |/O operation is complete;

© If the processor is faster than the I/O module:

o Wasteful of processor time ='(

Computer Hardware Review Programmed 1/O

[/O Commands

To execute an |/O-related instruction:
o Processor issues an address:
e Specifying the particular I/O module and external device;

e An I/O command which can be of the following type:

o Control, Test, Read and Write

Chapter 1 -intoducton 70252

Computer Hardware Review Programmed 1/O

I/O commands the processor can issue are of the following type (1/2):
e Control: Used to activate a peripheral and tell it what to do:
e E.g.: Rewind magnetic-tape; move to HD frack;
o Test: test I/O module and its peripherals. E.g.:
e |s the peripheral powered on?
e |s the peripheral available for use?

e Has the most recent I/O operation completed? Did any errors occur?

Computer Hardware Review Programmed 1/O

I/O commands the processor can issue are of the following type (2/2):
e Read: I/O module obtains a data item from the peripheral:
e Placing the data in an internal buffer;
o Processor requests /O module to place data on bus;
o Write: |/O module writes a data item to the peripheral:
e |/O module reads data from bus;

o |/O module transmits data to peripheral;

Computer Hardware Review Programmed 1/0

In flowchart form:

| commandto f§ CPU—1/O

0-CPU

Error
condition

from /O 1/0—CPU

CPU — Memory

Next instruction

Figure: Programmed I/O technique for input of a block of data (Source: (Stallings, 2015))

L. Tarrataca Chapter 1 - Infroduction 73 /232

Computer Hardware Review Programmed 1/O

Can you characterize the system from an efficiency perspective?

Chapter 1 -intoducton 74122

Computer Hardware Review Programmed 1/0

Very wasteful, recall that:

e Processor issues a command o the I/O module:
e then waits for I/O operation to complete.

e While waiting, processor repeatedly interrogates status of 1/O module.

o [f processor is faster than |/O module: wasteful of processor time.

Is it possible to do any better? i

Computer Hardware Review Interrupt-Driven 1/O

Interrupt-Driven 1/O

What is the ideal scenario for processor performance?
e Do not wait for I/O module;
® Instead, continue processing other tasks;

e And be notified when I/O module has something for processor;

Chapter 1 -intoducton 76122

Computer Hardware Review Interrupt-Driven 1/O

This is the concept of interruption, l.e.:
© Ask for something from the I/O module;
©® Continue processing without waiting for the I/O module;

© Be interrupted when the I/O module has something ready.

Computer Hardware Review Interrupt-Driven 1/O

From the point of view of the 1/0 module:
@ Module waits for processor to request data:

© When request is made:
e When possible: module interacts with peripheral;
o Once the data is completely buffered;

® data are place on data bus;
O An interrupt signal is sent to the processor over a control line;

@ Module becomes available for another I/O operation.

Computer Hardware Review Interrupt-Driven 1/0

From the point of view of the processor (1/2):
@ A READ command is issued to I/O module;
@ Processor goes off to do something else;

©® Processor checks for interrupts at the end of each instruction cycle;

Computer Hardware Review Interrupt-Driven 1/O

From the point of view of the processor (2/2):
@ When the interrupt from the 1/O module occurs:
o Processor saves program context;
e Processor proceeds to read data from /O module
e Processor stores data in memory;
© Processor then restores previous program context;

O Processes resumes execution of previous program

Chapter 1 - nroducton

80 /232

Computer Hardware Review Interrupt-Driven 1/0

In flowchart form:

CPU—= /O
Do something
~ Felse
Read status (o
of 110 Interrupt
module L0 —CPU

Error
condition

O—CPU

CPU — Memory

Next instruction

Figure: Interrupt-driven 1/O (Source: (Stallings, 2015))

L. Tarrataca Chapter 1 - Infroduction 81/232

Computer Hardware Review Interrupt-Driven 1/0

Interrupt Processing

Lets take a closer look at the interruption-based strategy.
e |nterruption triggers a number of events
e Processor, hardware and software.
e Automatically, we can pose a series of questions:
e What happens to the program that is executing?
o What happens to the processor?

e How is the interruption processed?

Chapter 1 -intoducton 82/252

Computer Hardware Review Interrupt-Driven 1/0

Hardware Software

|
|

!;ﬂu'symhnnlm
issues an interrupt e = 5
process state
information
Process interrupt I
Restore process state
information I

Restore old PSW
and PC

Figure: Simple Interrupt Processing (Source: (Stallings, 2015))

Chapter 1 -intoducton 83252

Computer Hardware Review Interrupt-Driven 1/O

When an |/O device completes an |/O operation (1/4):
@ Device issues an interrupt signal to the processor.
@ Processor finishes execution of the current instruction
e Before responding to the interrupt;

©® Processor tests for an interrupt:
e Determines if there is one;
® [f one exists, sends an acknowledgement signal to peripheral;

e Acknowledgment allows the device to remove its interrupt signal.

Chapter 1 -intoducton 847252

Computer Hardware Review Interrupt-Driven 1/O

When an I/O device completes an |/O operation (2/4):

@ Processor needs to transfer control to the interrupt routine;
e This is done by saving the program context:
® Processor status word;

® Program counter;

© Processor then loads the program counter associated with the
interrupt-handling routine.

Chapter 1 -intoducton 85252

Computer Hardware Review Interrupt-Driven 1/O

When an I/O device completes an |/O operation (3/4):

0O Interruption routine may use the registers:
e This means that these registers need to be saved;

o This happened when you were developing your CA project;
@ Typically, the interrupt handler will begin by saving all registers on the stack;

© Interrupt handler then processes the interrupt

Chapter 1 -intoducton 861252

Computer Hardware Review Interrupt-Driven 1/O

When an |/O device completes an |/O operation (4/4):
©® When interrupt processing is complete:
e Saved registers are retrieved from stack and restored;
@ Final act is to restore the PSW and program counter

o Next instruction to be executed will be from the previously interrupted
program.

Computer Hardware Review Interrupt-Driven 1/O

Interrupt 1/O is more efficient than programmed 1/O:

o Eliminates needless waiting...

Despite the improvement, can you see any potential upgrade that can

be performed with interrupt |/O?

Chapter 1 -intoducton 88252

Computer Hardware Review Interrupt-Driven 1/0

Despite the improvement, can you see any potential upgrade that can

be performed with interrupt I/O?

Interrupt 1/O still consumes a lot of processor time:
e Data is exchanged between memory and I/O module...
e But this exchange still needs to go through the processor....

o Processor spends time transferring data

e While it could be doing something more useful..

DMA Module

DMA module

Idea: Copy data directly to memory, bypassing processor:
o Memory accesses are performed by DMA module;
e Unburdens the processor;
o Combine with interruption scheme for optimum efficiency.

This strategy is called Direct Memory Access (DMA)

Chapter 1 -intoducton 90252

DMA Module

DMA involves an additional module on the system bus:

Data
{ count
Data lines D.ata
{ register
Address
Address lines register
R to DMA
Acknowledge from DMA
Interrupt C;mt.ml
Read ogic
‘Write

Figure: Typical DMA block diagram (Source: (Stallings, 2015))

e Uses the bus only when the processor does not need to;

e Forces the processor to suspend bus operations temporarily;

DMA Module

Processor issues a command to the DMA module:

e The command contains (1/2):
o Whether a read or write is requested:
e Transmitted over the bus control lines;
e Address of the I/O device involved
e Transmitted over the bus data lines;

e Stored in the data register;

Chapter 1 - nroducton

92 /232

DMA Module

Processor issues a command to the DMA module:

e The command contains (2/2):
e Starting location in memory to read from or write to:
® Communicated on the data lines and...
e Stored by the DMA module in its address register;
e Number of words o be read or written:

e Communicated via the data lines and stored in the data count register;

DMA Module

Processor then continues with other work, i.e.:

® |/O operation delegated to DMA module;
® DMA module fransfers block of data:
® Bypassing the processor;

® When the transfer is complete:

® DMA module sends interrupt signal;

Next instruction

® Processor is involved only at:
Figure: DMA-driven I/O (Source: (Stallings, 2015))
® Beginning of transfer;

® End of transfer;

DMA Module Bus Structure

Bus Structure

Bus lines can be classified into three functional groups:
e Data:
e for moving data among system modules

o Address

e for specifying the source or desfination of the data:

e Control

e for tfransmiting command information among the modules.

Lets have a quick look into each one of these...

Chapter 1 -intoducton 95252

DMA Module Bus Structure

1 S I — T —

| 0| lJII L1 IJ]‘

| 1]IM L |

Figure: Bus Interconnection Scheme (Source: (Stallings, 2015))

Chapter 1 -intoducton 961252

DMA Module Bus Structure

The data bus may consist of 32, 64, 128, or even more separate lines:

e Ak.a. width of the data bus;
Each line can carry only 1 bit at a fime:

o Number of lines determines how many bits can be transferred at a time.
Data bus width is key to system performance, e.g.:

o |f the data bus is 32 bits wide and each instruction is 64 bits long;

e Each instruction requires two memory acesses.

DMA Module Bus Structure

Address Lines

Used to designate the source or destination of the data on the data bus:
e The width of the address bus determines the maximum system memory;
e The address lines are generally also used to address I/O addresses;
e Higher-order bits are used to select a particular module on the bus;

e Lower-order bits select a memory location or I/O port within the module.

DMA Module Bus Structure

Control Lines

Command signals specify operations to be performed, e.g.:

Memory write: write bus data fo a memory address;

Memory read: read memory at memory address;

1/O write: write bus data to an I/O address;

I/O read: read data from an I/O address;

Bus request: a module needs to gain control of the bus;

Bus grant: a requesting module has been granted bus control;

Many more control signals...

Chapter 1 -intoducton 99252

DMA Module Bus Structure

However, as processors and memories got faster:
e Ability of a single bus to handle all the traffic was strained:

e As a result, additional buses were added:

Corel Core2
Cache | [Cache
Shared cache
GPUGores | -2 Graphios |
| DDR3 Memory |——{ Memory controllers |+—— DDR3 Memory |
|DMI
PCle slot SATA
PCle slot Platform USB 2.0 ports
Controller
PCle slot Hub USB 3.0 poris
[Poedor |
PCle slot FCie Gigabit Ethernet
More PCle devices

Figure: (Source: (Tanenbaum and Bos, 2015))

Chapter 1 -nioducton 100,232

DMA Module Bus Structure
C: e

‘Shared cache
PCle -
[_GPUCores]|~ Graphics
[DDR3 Memory }——H Memory controllers |H——{ DDRS Memory |

|DMI
PCle slot SATA
Pafom
Controller
PCle slot Hub USB 3.0 ports
o}
PCle slot FClo Gigabit Ethernet

[More PCle devices|

Figure: (Source: (Tanenbaum and Bos, 2015))

This system has many buses, e.g.:
e Cache

o Memory

PCle (main bus)

PCI, USB, SATA...

Each with a different transfer rate and function.

Chapter 1 -nioducton 101232

DMA Module Booting the computer

Booting the computer

Now that we remembered a little bit of computer architecture:

How does the boot procedure of a computer works? Any ideas? '

Chapter 1 -nioducton 102,232

DMA Module Booting the computer

The boot process is as follows.
@ Every PC has a motherboard containing the system BIOS:
e Containing low-level I/O software, e.g.:
® read the keyboard;

e write to the screen;

® dodisk I/O

Chapter 1 -nioducton 103232

DMA Module Booting the computer

@ BIOS is started and checks :
e How much RAM is installed;
e Keyboard and other basic devices;
e Buses to detect all the devices attached to them;
©® BIOS then determines the boot device:
o List of devices stored in the CMOS memory
@ First sector from the boot device is read into memory and executed:
e Sector contains a program;

e Program examines the partition table at the end of the boot sector:

® in order to determine which partition is active;

Chapter 1 -noducton 104232

DMA Module Booting the computer

© Secondary boot loader is read in from that partition:
e Reads in the operating system from the active partition and starts it.
O OS queries the BIOS to get the configuration information:
e For each device, it checks to see if it has the device driver;
e If not the driver needs to be supplied (CD, internet,...)

e Once it has all the device drivers, OS loads them into the kernel.

@ OS initializes data structures and starts up a login program or GUL.

Chapter 1 -nioducton 108232

Operating System Concepts

Operating System Concepts

Do you know any basic concepts from OS? Any ideas? '

Chapter 1 -nioducton 106232

Operating System Concepts

Operating System Concepts

OS provide basic concepts such as:
e Processes
o System Calls
o Address Spaces
o Files

Lets look at these concepts briefly.

Chapter 1 -nioducton 107232

Operating System Concepts Processes

Processes

A process is basically a program in execution (1/2):

o Associated with each process is its address space
e List of memory locations from 0 to some maximum:
e Which the process can read and write
e Address space contains:
e Executable program (instructions);
® Program data;

e Function call stack

Chapter 1 -noducton 108232

Operating System Concepts Processes

Processes

A process is basically a program in execution (2/2):
o Associated with each process is a set of resources:
® Registers (PC, SP, etc...);
o List of open files;

e Outstanding alarms;

Lists of related processes;

Other information needed to run the program;

Chapter 1 -nioducton 109,232

Operating System Concepts [l [I-EEN

So, in your opinion what is a process? Any ideas?

Chapter 1 -nioducton 110,232

Operating System Concepts [l [I-EEN

So, in your opinion what is a process? Any ideas?

Process is fundamentally a container that holds all the information needed to
run a program.

Chapter 1 -nioducton 111232

Operating System Concepts [l [I-EEN

Consider a single-core multiprogramming system executing:
e Program converting a one-hour video to a certain format;
o Web browser (Not Microsoft Edge =P);

o Email client (Not Microsoft Outlook =P);

How do you think the OS manages these processes? Any ideas? '

Chapter 1 -nioducton 112,232

Operating System Concepts [l [I-EEN

How do you think the OS manages these processes? Any ideas? '

Periodically the OS:

@ Decides to stop running one process;

e Ak.a. suspending the process;

@ Start running another process;

Chapter 1 -noducton 113,232

Operating System Concepts [l [I-EEN

But if we suspend a process and later need to run it again what needs to

happen? Any ideas?

Chapter 1 -nioducton 114232

Operating System Concepts Processes

But if we suspend a process and later need fo run it again what needs to

happen? Any ideas?

Process must be restarted in exactly the same state before stopping:

o Process information must be saved somewhere before the suspension;
e Registers (PC, SP, etc...);
o List of open files;
e For each file the number of bytes read;
e For each file the number of bytes written;
e Outstanding alarms;
o Lists of related processes;

o Other information needed to run the program;

Chapter 1 -nioducton 115,232

Operating System Concepts Processes

All the information about each process:

e [s stored in an OS table called the process table;

e Array of structures, one for each process currently in existence.

Chapter 1 -nioducton 116,232

Operating System Concepts [l [I-EEN

Processes change over time...

What are some possible changes that you can envision? Any ideas?

Chapter 1 -nioducton 117232

Operating System Concepts [l [I-EEN

Processes change over time...

What are some possible changes that you can envision? Any ideas?

Some possible states:
o New

o Ready

Running

Blocked

Terminated

Chapter 1 -noducton 118,232

Operating System Concepts [l [I-EEN

Processes change over time...

What are the set of transitions from the previous states? Any ideas?

Chapter 1 -noducton 119,232

Op g Syst oncepts Processes

Process States (1/2)

During the lifetime of a process, its state will change a number of fimes:

.‘Rﬂme y z
g Exit g

Dispaich

' | Admit]
G =>

Event
oceurs

Figure: Five state process model (Source: (Stallings, 2015))

L. Tarrataca Chapter 1 - Infroduction 120 / 232

Operating System Concepts Processes

Process States (2/2)

During the lifetime of a process, its state will change a number of fimes:
o New: Process is created but not yet ready to execute.
e Ready: Process is ready to execute, awaiting processor availability;

* Running: Process is being executed by the processor;

Waiting: Process is suspended from execution waiting a system resource;

Halted: Process has terminated and will be destroyed by the OS.

Chapter 1 -nioducton 121232

g System Concepts Processes

Example

Key process-management system calls are those dealing with:
e creation and termination of processes.
Example:
o A process called the shell reads commands from a terminal;
e User compiles a program;
e Shell must create a new process for the compiler;

o When the compiler process has finished:

e Executes a command to terminate the process;

Chapter 1 -nioducton 122,232

Operating System Concepts Processes

Conclusion: Processes can create other processes;
e Parent processes;

e Child processes;

Figure: A process tree. Process A created two child processes, B and C. Process B created three child
processes, D, E, and F. (Source: (Tanenbaum and Bos, 2015))

L. Tarrataca Chapter 1 - Infroduction 123 / 232

Operating System Concepts [l [I-EEN

How can a program request the OS to do something? Any ideas?

Chapter 1 -noducton 124232

Operating System Concepts [l [I-EEN

How can a program request the OS to do something? Any ideas?

o System Calls

Chapter 1 -noducton 125232

Operating System Concepts [l [I-EEN

How can a program request the OS to do something? Any ideas? '

o System Calls

What is a system call then? Any ideas? '

e Programmatic way in which a program requests a service from the kernel;

e Provide an interface between a process and the OS;

Chapter 1 -inoducton 126232

Operating System Concepts [l [I-EEN

Can you think of any examples of system calls? Any ideas?

Chapter 1 -noducton 127,232

Operating System Concepts Processes

Can you think of any examples of system calls? Any ideas? i

Examples of system callls (1/2):

e Open / Read / Wirite file;
® Request more memory (malloc, calloc, etc..);
e Release unused memory (free);

o Wait for a child process to terminate (wait);

Chapter 1 -noducton 128,232

Operating System Concepts Processes

Can you think of any examples of system calls? Any ideas? !

Examples of system calls (2/2):

e Set an alarm signal (e.g.: fimer):
e Process an interruption (just like in Computer Architecture);
e The context needs to be saved;
e An interruption routine is then executed;

o The contfext is then restored;

o Many others exist...

Chapter 1 -nioducton 129,232

Operating System Concepts Processes

Other important OS concepts:
o UID (User IDentification):
o Each system user is assigned one by the administrator;
o Every process started has the UID of the user who started it;
e A child process has the same UID as its parent.
e Users can be members of groups:

e Each of which has a GID (Group IDentification).

Chapter 1 -nioducton 130,232

Operating System Concepts Processes

Do you know any OS users? Any ideas?

Chapter 1 -nioducton 131232

Operating System Concepts [l [I-EEN

Do you know any OS users? Any ideas?

e Superuser in Unix / Linux

o Administrator in Windows

Chapter 1 -noducton 152,232

Operating System Concepts Address Spaces

Address Spaces

Lets talk about another important OS concept

What is an address space? Any ideas? '

Chapter 1 -noducton 133232

Operating System Concepts Address Spaces

Address Spaces

Computers have main memory used to store:

o Instructions;
e Data;
Sophisticated OS allow multiple processes to be in memory:

o At the same time...

How can we stop programs from interfering with one another? Any ideas? '

Chapter 1 -nioducton 134232

Operating System Concepts Address Spaces

How can we stop programs from interfering with one another? Any ideas? '

e Some kind of protection mechanism is needed;
e This mechanism is hardware-based:

e But controlled by the OS;

o We will study this later on.

Chapter 1 -nioducton 135,232

Operating System Concepts Address Spaces

Memory Partitioning (1/2)
How should the OS partition the memory? '

e Should every process have the —
same amount of memory?

e But what if we need less/more
space? o

Chapter 1 -nioducton 136,232

Operating System Concepts Address Spaces

Memory Partitioning (2/2)
How should the OS partition the memory? '

e Or should different processes Operating yten
have different amounts of o
memory? =

e When a process is brought into s

memory, it is placed in the
smallest available partition that
will hold it.

Chapter 1 -inroducton 137232

Operating System Concepts Address Spaces

Can you see any problem with this type of partitioning?

Chapter 1 -nioducton 138232

Operating System Concepts Address Spaces

Can you see any problem with this type of partitioning?

o Wasted memory: even with the use of unequal fixed-size partitions;

® In most cases:
e A process will not require as much memory as provided by the partition;

e E.g. aprocess that requires 3M bytes of memory would be placed in the 4M
partition, wasting 1M that could be used by another process...

Chapter 1 -noducton 139,232

Operating System Concepts Address Spaces

Can you think of an alternative method for partitioning memory?

Chapter 1 -nioducton 140,232

Operating System Concepts Address Spaces

Can you think of an alternative method for partitioning memory?

o What about variable-size partitions:
e When a process is brought infto memory:

e Allocate exactly as much memory as it requires and no more.

Chapter 1 -nioducton _ 141/232

Operating System Concepts Address Spaces

o What about variable-size partitions:
e When a process is brought info memory:

e Allocate exactly as much memory as it requires and no more.

Operating | [., Operating Operating Operating
system system system system
Process 1 20M Process 1 20M Process 1 % 20M
S6M Process 2 % 14M Process 2 } 14M
36M
27M Process 3 18M
Lam

Figure: Variable-size partitions (Source: (Stallings, 2015))

Chapter 1 -noducton 142,232

Operating System Concepts Address Spaces

Can you see any problems with this type of partitioning scheme?

Chapter 1 -noducton 143,232

Operating System Concepts Address Spaces

Can you see any problems with this type of partitioning scheme?

e This method starts out well:
o However, eventually the memory will be full of holes. The process either:
® Terminates;
® |s removed from main to secondary memory.
e From fime to fime:
e The OS compacts the processes in memory;
® This results in all the free memory being placed together in one block;

e This is a time-consuming procedure, wasteful of processor time.

Chapter 1 -noducton 144232

g System Concepts

Address Spaces

Operating %—m Operating Operating Operating
system system system system
Process1 (> 20M Process 1 20M Process 1 %ZOM
s6M Process 2 % 14M Process 2 %m\a
36M
M Process 3 | - 18M
+am
(@) (®) (© @
[Operating | Operating Operating Operating
system system system system
Process2 | - 14M
Process 1 20M Process 1 20M 20M %
Foem
14 Process 4 % M Process 4 M Process 4 % ™
oM oM toem
Process 3 18M Process 3 % 18M Process 3 } 18M Process 3 18M
aMm tam Fam +am
(&) ® @ ()

Figure: The effects of dynamic partitioning (Source: (Stallings, 2015))

Chapter 1 - Infroduction

145 / 232

Operating System Concepts Address Spaces

Overall conclusion:

o Fixed-size and variable-size partitions are inefficient in the use of memory.

Can we do any better than these types of partitioning schemes?

Chapter 1 -noducton 146,232

Operating System Concepts Paging

Lets consider an alternative partitioning scheme:
o Allow memory to be partitioned into equal fixed-size small chunks:
e Known as page frames
e Each process is also divided into small fixed-size chunks of some size:
e Known as pages
o Typically: frames have the same size as pages
e Each page can be assigned to a page frame, then:

e At most, wasted space for a process will be a fraction of the last page.

Chapter 1 -noducton 147232

Concepts Paging

Example

In
16 =
Free frame list
13 |
14 e
15
18 15 | P2220
20 of A
In
19| jee
20
(a) Before (b) After

Figure: Allocation of free frames (Source: (Stallings, 2015))

Chapter 1 -noducton 148232

Operating System Concepts Paging

At a given point in time:

Some of the frames in memory are in use and some are free;

The list of free frames is maintained by the OS;

Process A, stored on disk, consists of four pages.

When it comes time to load this process the OS:
e Finds four free frames;

e Loads the four pages of the process A into the four frames.

Chapter 1 -nioducton 149,232

Operating System Concepts Paging

[Do the frames need to be contiguous (1/2)?

— ——

No! We can use the concept of logical address.

OS maintains a page table for each process:

o Showing the frame location for each page of the process;

Within the program each logical address consists of:

e a page number and a relative address within the page;

Logical- fo-physical address translation is done by processor.

Chapter 1 -nioducton 160,232

Operating System Concepts Paging

Do the frames need to be contiguous (2/2)?

e Processor must know how to access the process’s page table:
e Input is a logical address:
® (page number, relative address)
e Output is a physical address obtained through the process page table:

e (frame number, relative address)

Chapter 1 -nioducton 181232

Operating System Concepts [T]

Main
memory

13

Page Relative address Frame Relative address Page 2 14
number u:n/llln page number within frame of A

‘lggi;:: ! m ":f;"’ 15

16

17
13

Process A
page table

Figure: Logical and physical addresses (Source: (Stallings, 2015))

Chapter 1 -noducton 162,232

Operating System Concepts LTI}

Can you see any other improvement that can be done to memory

management?

Chapter 1 -nioducton 163,232

Operating System Concepts LTI}

Can you see any other improvement that can be done to memory

management?

HINT: Space-time locality principle

Chapter 1 -noducton 184232

Operating System Concepts Paging

Can you see any other improvement that can be done to memory

management?

o The OS always loads all the memory of a process;

o IDEA: What if we only load those pages that are required at a single
moment?

o This is the concept of virtual memory...

Chapter 1 -nioducton 185,232

Operating System Concepts Virtual Memory

Virtual Memory

Each process page is brought in only when it is needed (1/2):
© Procedure is known as demand paging:

@ Locality principle: the same values, or related storage locations, are
frequently accessed.

e Why then would we need to load every page? Wasteful...

Chapter 1 -noducton 186,232

Operating System Concepts Virtual Memory

Each process page is brought in only when it is needed (2/2):
©® We can make better use of memory by loading in just a few pages

O If the program attempts to access a page not in main memory:
e a page fault is tiggered, and the OS brings in the desired page;

e These pages reside in secondary memory;

© Virtual Memory refers to this much larger memory usable by the program.

Chapter 1 -nioducton 187,232

Operating System Concepts Virtual Memory

At any one time, only a few pages of a process are in memory:
o Therefore more processes can be maintained in memory.

e Time is saved because:
e Unused pages are not swapped in and out of memory;

o Less RAM/HD acesses;

e Consequence: Possible for a process to be larger than all of main memory.

Chapter 1 -noducton 168,232

Operating System Concepts Virtual Memory

OS must be clever about how it manages this scheme:
e When it brings one page in, it must throw another page out;
o This is known as page replacement.
e OS might throw out a page just before it is about to be used:
o OS will just have to get that page again almost immediately;
e Too much of this leads to a condition known as thrashing:
® Processor spends most of its time swapping pages...
e ..rather than executing instructions

e extremely slowwww computerrrr...

Chapter 1 -nioducton 169,232

Operating System Concepts Virtual Memory

Do you have any idea how to solve this problem? Any ideas?

Chapter 1 -nioducton 160,232

Operating System Concepts Virtual Memory

Do you have any idea how to solve this problem? Any ideas? '

e OS needs to guess which pages are least likely to be used:
e E.g. based on recent history.

e We have seen some when we studied Cache systems...

Chapter 1 -noducton 161232

Operating System Concepts Files

Another key concept of modern OS:
o Hides peculiarities of the disks and other I/O devices;
o Present the programmer with a transparent model;
e System calls exist for:
o Creating files;
e Removing files;

e Reading files;

Writing files;

Chapter 1 -noducton 162,232

Operating System Concepts Files

Most OS have the concept of a directory (1/2):

Root directory

Students Faculty

Robbert Matty Leo Prof.Brown Prof.White

Figure: A file system for a university department. (Source: (Tanenbaum and Bos, 2015))

Chapter 1 -nioducton 163,232

Operating System Concepts Files

Most OS have the concept of a directory (2/2):
o Directory entries may be either files or other directories;

e System calls are then needed to:
o Create directories.

o Remove directories.

e Each process has a current working directory;

Chapter 1 -nioducton 164232

Operating System Concepts Files

Before a file can be read or written:
o File must be opened, at which time the permissions are checked:
o |f the access is permitted:
e OS returns a small integer called a file descriptor;

o |f the access is prohibited:

® error code is refurned.

Chapter 1 -nioducton 165,232

Operating System Concepts 71

Lets consider an additional requirement:

But what if two processes need to communicate with one another?

Chapter 1 -nioducton 166,232

Operating System Concepts Files

Lets consider an additional requirement:

But what if two processes need to communicate with one another? '

This is done through the pipe concept:

e A sort of file that can be used to connect two processes

Chapter 1 -nioducton 167232

Operating System Concepts Files

This is done through the pipe concept:

Process Process
Pipe

Figure: Two processes connected by a pipe. (Source: (Tanenbaum and Bos, 2015))

Processes A and B must configure a pipe in advance;

o When process A wants to send data to process B:

e it writes on the pipe as though it were an output file.

Process B can read the data by:

* reading from the pipe as though it were an input file.

Pipe implementation is very much like that of a file;

Chapter 1 -nioducton 168232

System Calls

N el
System Calls

Ok, based on what we have seen until now:

What are the main functions of an OS? Any ideas? '

Chapter 1 -noducton 169,232

System Calls

System Calls

Ok, based on what we have seen until now:

What are the main functions of an OS? Any ideas? '

Two main functions:

* Provide abstractions to programs;

* Manage computer resources;

Chapter 1 -noducton 170,232

Two main functions:

* Provide abstractions to programs:
e E.g.:create, write, read and delete files.

o Manage computer resources:
o Largely fransparent, since computers need not worry about:

e CPU,I/O, efc;

e Done Automatically;

e Conclusion:

o Interface between OS / Programs primarily deals with abstractions:

Chapter 1 -noducton 171232

o Conclusion:
o Interface between OS / Programs primarily deals with abstractions:
e To understand what an OS is we must examine this interface:

o This inferface can be seen through the available system caills
e These vary from OS to OS:
e Although the underlying concepts are the same;
e We will focus on POSIX:
® Ak.a. International Standard 9945-1;

e Unix / Linux / BSD;

Chapter 1 -noducton 172,232

Important:

e |Implementation of systems calls is highly machine-dependent:

o They are often implemented in assembly;
o OS makes available a library:
o Effectively working as an interface;
o Allows for system calls fo be made from programs:
® Program invokes system call (user mode);
e OS performs system call (kernel mode);

® Program continues execution (user mode):

Chapter 1 - nroducton

173 / 232

System Calls

Application
programming interface
Application

binary interface

Instruction set
architecture

Application programs

Libraries/utilities

Operating system

Execution hardware

Memory
System interconnect translation
(bus)
I/O devices Main
and
networking memory

Software

Hardware

Figure: Computer Hardware and software structure (Source: (Stallings, 2015))

L. Tarrataca

Chapter 1 - Infroduction

174 / 232

System Calls

Guess what we will be doing next? Any ideas?

Chapter 1 -noducton 175,232

System Calls

Guess what we will be doing next? Any ideas?

e We are going to see some of the available system calls ;)

Chapter 1 -nioducton 176232

System Calls

ke |

Lets take a look at the read specific system calll:

count = read(fd, buffer, nbytes)

o 1" parameter specifies the file to be read;
o 2" parameter specifies the buffer where the content is read to;
e 3¢ parameter specifies the number of bytes to read;

o This system call returns:
o Number of bytes actually read in count;

e -1 if an error occurred;

Chapter 1 -inoducton 177232

Example

System calls are performed in a series of steps:

Address
OXFFFFFFFF _
Return to caller Library
Trap to the kernel procedure
5| Put code for read in register read
10,
4
U
sarspace Increment SP. 11
r Call read i
3| Pushfd SBE program
2[Push 8butter caling raad
1| _Push nbytes
6 9
L
Kernel space
(Operating system)

0

Figure: (Source: (Tanenbaum and Bos, 2015))

Chapter 1 -nioducton 178,232

System Calls

The previous picture in textual form (1/3):
© Push nbytes:
@ Push &buffer:
©® Push fd:
@ The actual call to the library procedure;

@O System calll identification is placed in a register;

Chapter 1 -noducton 179,232

The previous picture in textual form (2/3):
O OS switches from user to kernel mode;
o This is a special instruction called trap;
@ System call is dispatched to the appropriate handler;
© System call is executed;
© Once execution finishes:
e conftrol is returned to the user-space library;
@ Once library finishes:

e control is returned to the original program;

Chapter 1 -nioducton 180,232

System Calls

The previous picture in textual form (3/3):
@ User program cleans up the stack:
e Removes from stack the system call arguments;

The program is now free to do whatever it wants!

Chapter 1 - nroducton

181 /232

System Calls

Linux makes all this information available through the terminal (1/2):

eno (=] Desktop — bash — 116x34

1uis-tarratacas-inac:Desktop Taka$ man 2 readf]

L. Tarrataca Chapter 1 - Introduction 182 / 232

System Calls

Linux makes all this information available through the terminal (2/2

[-NaNa) Desktop — less — 116x34

READ(2) 50 System C anual READ(2)

NAHE
pread, read, readv -- read input

LIBRARY

Standard C Library (libc,

SYNOPSIS
Finclude <sys/types.hr
Finclude <sysfuio.h>
Finclude <unistd.h>

t d, void *buf, size t nbyte, off t offset);

reade(int d,

DESCRIPTION
Read() attempts to read nbyte bytes of data from the obj t referenced by
into the buffer pointed to by buf, Readv() performs the same
into the vent buffers specified by the members of the iov array
iov[iowent-1], Pread() performs the same function, but ri on the specif
Tile without modifying the file pointer.

For readv(), the jovec structure s defined as:

struct dovec {

L. Tarrataca Chapter 1 - Introduction 183 / 232

System Calls

The read system call is just one example:
o POSIX has about 100 procedure calls

o All of which you should know for your exam

Chapter 1 - nroducton

184 / 232

System Calls

The read system call is just one example:
o POSIX has about 100 procedure caills;

o All of which you should know for your exam ;)

Chapter 1 - nroducton

185 /232

System Calls System calls for process management

System calls for process management

Process management

Call Description
pid = fork() Create a child process identical to the parent
pid = waitpid(pid, &statloc, options) Wait for a child to terminate
s = execve(name, argv, environp) Replace a process’ core image
exit{status) Terminate process execution and return status

Figure: Some of the major POSIX system calls. The return code s is — 1 if an error has occurred. The return codes are as follows: pid is a process id,
fd is a file descriptor, n is a byte count, position is an offset within the file, and seconds is the elapsed time. (Source: (Tanenbaum and Bos, 2015))

Chapter 1 -nioducton 186,232

System Calls System calls for process management

System call fork (1/4):

e Only way to create a new process in POSIX;

e Creates an exact duplicate of the original process, including:
o File descriptors;
® Registers;
e Everything!

o After the fork:
o The original process and copy go their separate ways;
e All the variables have identical values at the fime of the fork
o However, since the parent’s data are copied to create the child:

® Subsequent changes do not affect the other one;

Chapter 1 -nioducton 187232

System Calls System calls for process management

System call fork (2/4):
e Fork returns a value:
e Value zero in the child;
o The child’s Process Identifier (PID) in the parent;
e In most cases:

o Child will execute different code;

Chapter 1 -nioducton 188,232

System Calls System calls for process management

Consider the case of the shell in Linux:

How do you think the Linux shell works? Any ideas?

Chapter 1 -noducton 189,232

System Calls System calls for process management

Consider the case of the shell:
© Reads a command;
©® Forks off a child process (fork);
©® Waits for the child to execute (wait);
e input parameter indicates PID to wait for;

@ Childs executes different code (execve):
o 1% parameter: name of the file to be executed;
e 2" parameter: pointer fo argument array;

e 3d parameter: pointer to environment array;

O Reads the next command

Chapter 1 - nroducton

190 / 232

System Calls System calls for process management

#define TRUE 1
while (TRUE){ /*x repeat forever x/

type_prompt(); /% display prompt on the screen x/
read_command(command, parameters); /* read input from terminal x/

if ((pid = fork()) == 0){ /+ fork off child process x/

/* Parent code. x/
wait(pid); /* wait for child to exit x/

}else{
/* Child code. x/

execve (command, parameters, 0); /x execute command */
}

Chapter 1 -nioducton 191232

System Calls System caills for file management

em calls for file management

File management

Call Description
fd = open(file, how, ...) Open a file for reading, writing, or both
s = close(fd) Close an open file
n = read(fd, buffer, nbytes) Read data from a file into a buffer
n = write(fd, buffer, nbytes) Write data from a buffer into a file
position = Iseek(fd, offset, whence) Move the file pointer
s = stat(name, &buf) Get a file’s status information

Figure: Some of the major POSIX system callls. The return code s is — 1 if an error has occurred. The return codes are as follows: pid is a process id,
fd is a file descriptor, n is a byte count, position is an offset within the file, and seconds is the elapsed time. (Source: (Tanenbaum and Bos, 2015))

Chapter 1 -nioducton 192,232

System Calls System caills for directory management

System calls for directory management

Directory- and file-system management

Call Description
s = mkdir(name, mode) Create a new directory
s = rmdir(name) Remove an empty directory
s = link(name1, name2) Create a new entry, name2, pointing to name1
s = unlink(name) Remove a directory entry
s = mount(special, name, flag) Mount a file system
s = umount(special) Unmount a file system

Figure: Some of the major POSIX system callls. The return code s is — 1 if an error has occurred. The return codes are as follows: pid is a process id,
fd is a file descriptor, n is a byte count, position is an offset within the file, and seconds is the elapsed time. (Source: (Tanenbaum and Bos, 2015))

Chapter 1 -nioducton 193,232

System Calls Miscellaneous system calls

Miscellaneous system calls

Miscellaneous
Call Description
s = chdir(dirname) Change the working directory
s = chmod(name, mode) Change a file’s protection bits
s = kill(pid, signal) Send a signal to a process
seconds = time(&seconds) Get the elapsed time since Jan. 1, 1970

Figure: Some of the major POSIX system calls. The return code s is — 1 if an error has occurred. The return codes are as follows: pid is a process id,
fd is a file descriptor, n is a byte count, position is an offset within the file, and seconds is the elapsed time. (Source: (Tanenbaum and Bos, 2015))

Chapter 1 -noducton 194232

System Calls Miscellaneous system calls

Does this seems complicated?

Chapter 1 -noducton 195,232

System Calls Miscellaneous system calls

Does this seems complicated?

o Completely normail:
o First time you are seeing it;
e But fear not...

e Linux provides all the manuals that you need!

Chapter 1 -nioducton 196,232

System Calls Miscellaneous system calls

Linux makes all this information available through the terminal (1/2):

ktop — bash — 11634

arratacas-inacibesktop Taka$ ma

L. Tarrataca Chapter 1 - Introduction 197 / 232

System Calls ,cellaneous system calls

Linux makes all this information available through the terminal (2/2):

@ nNno Desktop — less — 116x34

EXEC BSD Library Functions Manual

HAME
execl, execle, execlp, execy, execvp, execyP -- execute a file

LIBRARY
Standard C Library (libc, -lc)

SYHOPSIS
#include <unistd.h>

gxtern char **environ:
int
char *path, const char *argh, . (char =)0

(char *30 nst enwpl] ®4);

(chak *18 *73;

DESCRIPTION

L. Tarrataca Chapter 1 - Introduction 198 / 232

System Calls Miscellaneous system calls

But how can | discover the manual’s number?

Chapter 1 -nioducton 199,232

System Calls Miscellaneous system calls

But how can | discover the manual’s number?

Multiple solutions exist:
o Command apropos

o Command man -wkK

Chapter 1 -nioducton 200,232

Miscellaneous system calls

Command apropos:

takanbp:~ Taka$ apropos malloc

alloca(3), calloc(3), free(3), malloc(3), miap(3), reslloc(3) - general menory allocation operations
calloc(3), fres(3), malloc(3), realloc(3), reallocf(3), valloc(3) - memory allocation
- Filter or prune a call tree file generated by sample or nalloc_history
- List all the malloc-allocated buffers in the process’s hea
lber-nenory(3), ber_memalloc(3), ber_mencalloc(3), ber_nemrealloc(3), ber_menfres(3), ber_memvfree(3) - OpenlDAP LBER memory alloca
10ap_nenfres(3), 1dap_s ap_ . Gap_nenrealloc(3), ldap_stroup(3) - LDAP nenory allocation routines
Teaks(1) H
Tibgnalloc(3) - (Guard Malloc), an aggressive debugging malloc library
wALLoe_create zone(s), wallac_destroy zone(D), WLloc deTSLE Zone (3), WALLOC_Zone_fron pir(2), wallac_zone wsLec(3), wsllos_zane Callac(a), mallac_zone vaLec(3), wsllec_zane_real
10c(3), malloc_zone_nenalign(3), nalloc_zone_free(-based nenory allocatio
naliod good 17603, malloe s126(5) - WEmory aliocation inforaation
nalloc_histary(1) - Shou the malloc allocations that the process has perfor
stringdups(1) - Identify duplicate strings or other sbjects in nalloc blocks of a target process
Kanbp:~ Takas

Chapter 1 - Introduction 201 / 232

Miscellaneous system calls

Command man -wK:

takanbp:~ Taka$ man -kn nalloc

7opt/Local/share/nan/nanl/ Lvn-c++-4.2.1.g2
/opt/Local/share/nan/nanl/ TLvi-g++-4.2,1,¢2
7opt/Local/share/nan/nanl/ 1Lvn-gec-4.2.1. ¢:
“Ctakanbp i~ Takal

Chapter 1 - Introduction 202 / 232

System Calls Miscellaneous system calls

As a curiosity lets look at Windows API:

UNIX Win32 Description
fork CreateProcess Create a new process
waitpid | WaitForSingleObject Can wait for a process to exit
execve | (none) CreateProcess = fork + execve
exit ExitProcess Terminate execution
open CreateFile Create a file or open an existing file
close CloseHandle Close a file
read ReadFile Read data from a file
write WriteFile Write data to a file
Iseek SetFilePointer Move the file pointer
stat GetFileAttributesEx | Get various file attributes
mkdir CreateDirectory Create a new directory
rmdir RemoveDirectory Remove an empty directory
link (none) ‘Win32 dees not support links
unlink DeleteFile Destroy an existing file
mount | (none) Win32 does not support mount
umount | (none) ‘Win32 does not support mount, so no umount
chdir SetCurrentDirectory | Change the current working directory
chmed | (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals
time GetLocalTime Get the current time

L. Tarrataca

Figure: (Source: (Tanenbaum and Bos, 2015))

Chapter 1 - Infroduction

203 / 232

System Calls Miscellaneous system calls

Win32API also contains hundreds of system calls:

o All of which you should know for the exam

Chapter 1 -nioducton 204232

System Calls Miscellaneous system calls

Win32API also contains hundreds of system calls:

o All of which you should know for the exam ;)

Chapter 1 -nioducton 208232

System Calls Miscellaneous system calls

Win32API also contains hundreds of system calls:
o All of which you should know for the exam ;)

o Who cares about Windows =P

Chapter 1 - nroducton

206 / 232

Operating System Structure

N i
Operating System Structure

Now we have a better understanding of the different OS components:

How should the OS be organized? '
What are the different OS design possibilities? '

Chapter 1 -nioducton 207232

Operating System Structure

Operating System Structure

Now we have a better understanding of the different OS components:

How should the OS be organized? '
What are the different OS design possibilities? '

Essentially there are six designs:

Monolithic Systems;

Layered Systems;

o Microkernels;

Client-Server systems;

e Virtual Machines;

Chapter 1 -nioducton 208232

Operating System Structure Monolithic Systems

Monolithic Systems

First: What does monolithic means? Any ideas? '

Chapter 1 -nioducton 209,232

Operating System Structure Monolithic Systems

Monolithic Systems

First: What does monolithic means? Any ideas? '

e Large, indivisible and slow to change;

Chapter 1 -nioducton 210,232

Operating System Structure Monolithic Systems

Monolithic Systems

The entire OS runs as a program in kernel mode:
o Collection of procedures linked into a single executable;
e Any procedure can call any other procedure:
o Pros:
e Very efficient since there are no restrictions;
e Cons:
e Very difficult to understand;

e If a procedure crashes the entire OS crashes;

Chapter 1 -nioducton 211232

Operating System Structure Monolithic Systems

For those of you who have seen Object Programming:
* No information is hidden;
o There is very little structure:
e All functions are accessible to every other function;
e As opposed to using modules or packages:
e Information is hidden away in modules or packages;

e Only official designated entry points can be called;

Chapter 1 -noducton 212232

Operating System Structure Monolithic Systems

Basic organization for monolithic OS (1/2):
® A main program invokes a service procedure;

o A set of service procedures that carry out the system calls:

e Each service call manages the system calls;

o A set of utility procedures that help the service procedures:

e FE.g.: Fetch data from user programs;

Chapter 1 -noducton 213232

Operating System Structure Monolithic Systems

Basic organization for monolithic OS (2/2):

Main
procedure

Service
procedures

Utility
procedures

Figure: Simple structure model for a monolithic system(Source: (Tanenbaum and Bos, 2015))

L. Tarrataca Chapter 1 - Infroduction 214 /232

Operating System Structure Layered Systems

Layered Systems

Idea: Organize OS as a hierarchy of layers:

e Each layer is constructed upon the one below it, e.g.:

5 Computer user

4 User programs

3 I/O Management

2 | Process Communication
1 Memory management

0 | Processor management

Chapter 1 -nioducton 215,232

Operating System Structure Mircrokernels

Mircrokernels

Traditionally: all layers are in the kernel

e Not necessary!

o |dea: put as little as possible in kernel model:
o Less code less probability of bugs in kernel mode;
o Less bugs less probability of bringing OS down;

o |dea: set user mode processes to do non-critical tasks:
e Bug in user mode may not be fatal;
e E.g.:bug in audio driver:

e Stops or ruins sound;

e But will not crash the computer;

Chapter 1 -nioducton 216232

Operating System Structure Mircrokernels

Common desktop OS do not use microkernels:
e With the exception of Mac OS ;)
However, microkernels are dominant in:
e real-time OS;
e industrial avionics;

e military applications;

Chapter 1 - nroducton

217 / 232

Operating System Siructure VST EE

An example of a microkernel organization:

___—Process

User programs

User

mede Servers

Drivers

Microkernal handles interrupts, processes,
scheduling, interprocess communication

Figure: Simplified structure of the MINIX system (Source: (Tanenbaum and Bos, 2015))

L. Tarrataca Chapter 1 - Infroduction 218 /232

Operating System Structure Client-Server Model

Client-Server Model

Idea: Distinguish between two processes:
* Servers:

o Provide some services;

e Clients

o Use the services provided:;

o Slight variation of the microkernel:

Chapter 1 -nioducton 219,232

Operating System Structure Client-Server Model

Communication between clients and servers:

e Offen done by message passing. e.g.:
o Client constructs message and sends fo service;

o Server executes and sends back result;

Chapter 1 - nroducton

220 / 232

Operating System Structure Client-Server Model

Because of this structure:
e Clients and servers can run on different computers;

e Requests are sent and replies come back;

Machine 1 Machine 2 Machine 3 Machine 4
Client A File server Process server Terminal server
L Kernel I Kernel Kernel Kernel ..

Network

I < I
Message from
client to server

Figure: The client-server model over a network. (Source: (Tanenbaum and Bos, 2015))

Chapter 1 -noducton 221232

Operating System ure Virtual Machines

Virtual Machines

Have a single computer run different OS:
e Each virtual machine is given time to run;
o [If one virtual machine crashes other virtual machines can continue;
o Allows for efficient use of machine:
e Hardware is never idle, always executing some VM;
e Brings costs down;

e Run Windows/Linux/Unix in the same machine

Chapter 1 -noducton 222,232

Operating System Structure Virtual Machines

But what are the different virtualization techniques? Any ideas?

Chapter 1 -noducton 228232

Operating System Structure Virtual Machines

Excel Word Mplayer Apollon

Type 1 hypervisor

Figure: Execute directly over hardware (Source: (Tanenbaum and Bos, 2015))

o Efficient but had some peculiarities:
o Virtual OS needs to execute in kernel mode...
e But Virtual OS is running in user mode...

e This was impossible to execute in some processors;

Chapter 1 -noducton 224232

Operating System Structure Virtual Machines

What can be done to circumvent this problem? Any ideas?

Chapter 1 -nioducton 225232

Operating System Structure Virtual Machines

What can be done to circumvent this problem? Any ideas?

e Provide a processor simulator;
e Execute privileged instructions in simulator;

e Solves problem but is inefficient;

Chapter 1 -noducton 226232

GGuest QS5 process

Host OS
©o o [

R ey e ey e

Machine simulator O O

Host operating system

Figure: Execute an host OS and a machine simulator (Source: (Tanenbaum and Bos, 2015))

Chapter 1 -noducton 227232

Operating System Structure Virtual Machines

What can be done to improve performance? Any ideas?

Chapter 1 -noducton 228232

Operating System Structure Virtual Machines

What can be done to improve performance? Any ideas?

e Add a kernel module to original OS for virtualization;

o This allows for better virtualization performance

Chapter 1 - nroducton

229 / 232

Operating System Structure Virtual Machines

Guest OS process

é) O O Kernel

e e module
Guest OS ‘

Type 2 hypervisor O O

Host operating system

Figure: Execute directly over hardware (Source: (Tanenbaum and Bos, 2015))

Chapter 1 -nioducton 230,232

Operating System Structure Exokernels

Exokernels

Rather than cloning a machine:
e Give each VM a subset of the resources;
e At the bottom layer, running in kernel mode:
e |s a program called the Exokernel whose function is:
® Allocate resources to virtual machine;
® Check that each VM uses its own resources;
e Advantage: Saves a layer of mapping:
o Exorkernel keeps frack of the resources allocated to each machine;

* No need to remap any resources which makes it simpler;

Chapter 1 -nioducton 231232

References

References |

@ Stallings, W. (2015).
Computer Organization and Architecture.
Pearson Education.

Tanenbaum, A. and Bos, H. (2015).
Modern Operating Systems.

Pearson Education Limited.

Chapter 1 -noducton 252,232

	Motivation
	What is an operating system?
	OS as an Extended Machine
	OS as a Resource Manager

	Computer Hardware Review
	Von Neumman architecture
	Central Processing Unit
	Central Processing Unit
	Parallel Processing
	Memory
	I/O Devices
	I/O Devices
	Programmed I/O
	Interrupt-Driven I/O

	DMA Module
	Bus Structure
	Booting the computer
	Booting the computer

	Operating System Concepts
	Processes
	Address Spaces
	Paging
	Virtual Memory
	Files

	System Calls
	System calls for process management
	System calls for file management
	System calls for directory management
	Miscellaneous system calls

	Operating System Structure
	Monolithic Systems
	Layered Systems
	Mircrokernels
	Client-Server Model
	Virtual Machines
	Exokernels

	References

