
Chapter 1 - Introduction

Luis Tarrataca

luis.tarrataca@gmail.com

CEFET-RJ

L. Tarrataca Chapter 1 - Introduction 1 / 232

luis.tarrataca@gmail.com


1 Motivation

2 What is an operating system?

OS as an Extended Machine

OS as a Resource Manager

L. Tarrataca Chapter 1 - Introduction 2 / 232



3 Computer Hardware Review

Von Neumman architecture

Central Processing Unit

Central Processing Unit

Parallel Processing

Memory

I/O Devices

I/O Devices

Programmed I/O

I/O Commands

Interrupt-Driven I/O

Interrupt Processing

L. Tarrataca Chapter 1 - Introduction 3 / 232



4 DMA Module

Bus Structure

Data Lines

Address Lines

Control Lines

Booting the computer

Booting the computer

L. Tarrataca Chapter 1 - Introduction 4 / 232



5 Operating System Concepts

Processes

Process States

Address Spaces

Paging

Virtual Memory

Demand paging

Files

L. Tarrataca Chapter 1 - Introduction 5 / 232



6 System Calls

System calls for process management

System calls for file management

System calls for directory management

Miscellaneous system calls

L. Tarrataca Chapter 1 - Introduction 6 / 232



7 Operating System Structure

Monolithic Systems

Layered Systems

Mircrokernels

Client-Server Model

Virtual Machines

Exokernels

L. Tarrataca Chapter 1 - Introduction 7 / 232



Motivation

Motivation

Today’s class is about introducing Operating Systems:

But what is an operating system? Any ideas?

L. Tarrataca Chapter 1 - Introduction 8 / 232



Motivation

Motivation

Today’s class is about introducing Operating Systems:

But what is an operating system? Any ideas?

What does an operating system do? Any ideas?

L. Tarrataca Chapter 1 - Introduction 9 / 232



Motivation

Motivation

Today’s class is about introducing Operating Systems:

But what is an operating system? Any ideas?

What does an operating system do? Any ideas?

Why do we need an operating system? Any ideas?

L. Tarrataca Chapter 1 - Introduction 10 / 232



Motivation

Numerous reasons why an OS is important:

• OS are cool!

L. Tarrataca Chapter 1 - Introduction 11 / 232



Motivation

Numerous reasons why an OS is important:

• OS are cool!

• OS will help give meaning to your life!

L. Tarrataca Chapter 1 - Introduction 11 / 232



Motivation

Numerous reasons why an OS is important:

• OS are cool!

• OS will help give meaning to your life!

• If you are alone:

L. Tarrataca Chapter 1 - Introduction 11 / 232



Motivation

Numerous reasons why an OS is important:

• OS are cool!

• OS will help give meaning to your life!

• If you are alone:

• An OS will help you find a boyfriend / girlfriend

L. Tarrataca Chapter 1 - Introduction 11 / 232



Motivation

Numerous reasons why an OS is important:

• OS are cool!

• OS will help give meaning to your life!

• If you are alone:

• An OS will help you find a boyfriend / girlfriend

• If you already have a boyfriend / girlfriend:

L. Tarrataca Chapter 1 - Introduction 11 / 232



Motivation

Numerous reasons why an OS is important:

• OS are cool!

• OS will help give meaning to your life!

• If you are alone:

• An OS will help you find a boyfriend / girlfriend

• If you already have a boyfriend / girlfriend:

• An OS will help you find a better boyfriend / girlfriend

L. Tarrataca Chapter 1 - Introduction 11 / 232



Motivation

Numerous reasons why an OS is important:

• OS are cool!

• OS will help give meaning to your life!

• If you are alone:

• An OS will help you find a boyfriend / girlfriend

• If you already have a boyfriend / girlfriend:

• An OS will help you find a better boyfriend / girlfriend

• #NOT...

L. Tarrataca Chapter 1 - Introduction 11 / 232



Motivation

Now a little bit more serious. A computer consists of

• One or more processors;

• Main memory

• I/O devices, e.g.::

• Disks, printers, a keyboard, a mouse, a display, network interfaces

What would happen if a programmer had to manage all of these?

L. Tarrataca Chapter 1 - Introduction 12 / 232



Motivation

What would happen if a programmer had to manage all of these?

For those of you who did Computer Architecture with me:

L. Tarrataca Chapter 1 - Introduction 13 / 232



Motivation

What would happen if a programmer had to manage all of these?

• Too many things to manage:

• No useful code would ever get written;

• Furthermore, incredibly difficult to manage optimally these resources;

L. Tarrataca Chapter 1 - Introduction 14 / 232



Motivation

Idea:

• Create a program called an Operating System;

• OS job is to provide user programs with:

• A better, simpler, cleaner, model of the computer;

• Manage all the computer resources;

L. Tarrataca Chapter 1 - Introduction 15 / 232



Motivation

Simple overview of the main components:

Figure: Where the operating system fits in. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 1 - Introduction 16 / 232



Motivation

• First layer represents the hardware:

• Consisting of chips, memory, disks, etc...

• On top of the hardware is the software:

• Kernel mode:

• Complete access to all the hardware;

• Can execute any instruction the machine is capable of executing;

• OS runs in kernel mode;

• User mode:

• Only a subset of the machine instructions is available;

• Prohibited: Instructions that affect control of the machine or do I/O;

L. Tarrataca Chapter 1 - Introduction 17 / 232



Motivation

Everything running in kernel mode:

• Part of the OS;

However, some programs running outside the kernel mode:

• Are also part of the OS;

• Examples:

• chmod;

• passwd;

Sometimes it is difficult to draw a boundary.

L. Tarrataca Chapter 1 - Introduction 18 / 232



Motivation

Other important things about OS:

• OS are huge, complex, and long-lived:

• Windows 10 consists of around 50 - 60 million lines of codes;

• Excluding things like Windows Explorer, Windows Media Player, etc...

• Accordingly: OS are very hard to write and pieces are shared between OS;

L. Tarrataca Chapter 1 - Introduction 19 / 232



What is an operating system?

What is an Operating System?

Essentially, two perspectives exist:

• OS as an Extended Machine

• OS as a Resource Manager

Lets have a quick look at each one of these

L. Tarrataca Chapter 1 - Introduction 20 / 232



What is an operating system? OS as an Extended Machine

OS as an Extended Machine

• Computer Architecture at the machine-language level is primitive:

• Remember Pong? Arkanoid? Snake? Space Invaders?

• No sane programmer would want to deal with this nightmare

• Idea: OS abstracts devices and hides the complexity, e.g.:

• Read file;

• Write file;

• Program timer;

• Process interruptions;

L. Tarrataca Chapter 1 - Introduction 21 / 232



What is an operating system? OS as a Resource Manager

OS as a Resource Manager (1/2)

• OS job is to manage:

• Processors;

• Memories;

• I/O devices and the various programs competing for them;

• Keep track of:

• Which programs are using which resource

• Grant resource requests

• Account for usage

• Mediate conflicting requests from different programs and users

L. Tarrataca Chapter 1 - Introduction 22 / 232



What is an operating system? OS as a Resource Manager

OS as a Resource Manager (2/2)

Resource management includes multiplexing (sharing) resources (1/2):

• Time multiplexing:

• Different programs / users take turns using resource;

• Example: Single CPU multiplexing:

• OS allocates the CPU to one program;

• After a certain time another program gets to use the CPU;

• Then another and then eventually the first one again.

• OS responsible for managing the multiplexing;

L. Tarrataca Chapter 1 - Introduction 23 / 232



What is an operating system? OS as a Resource Manager

Resource management includes multiplexing (sharing) resources (2/2):

• Space multiplexing:

• Each program / user gets part of the resource;

• Example: main memory:

• Normally divided among several running programs;

• Assuming there is enough memory to hold multiple programs:

• More efficient to hold several programs in memory;

• Rather than give one of them all of it;

• Remember principle of locality from computer architecture?

• OS responsible for managing this multiplexing;

L. Tarrataca Chapter 1 - Introduction 24 / 232



Computer Hardware Review

Computer Hardware Review

Remember that semester you spend learning Computer Architecture?

L. Tarrataca Chapter 1 - Introduction 25 / 232



Computer Hardware Review

Computer Hardware Review

Remember that semester you spend learning Computer Architecture?

• Lets review the entire’s course syllabus in a single class ;)

L. Tarrataca Chapter 1 - Introduction 26 / 232



Computer Hardware Review Von Neumman architecture

Von Neumman architecture

The main components of the von Neumann architecture:

• Memory module

• I/O module

• CPU

Lets have a look at each one of these

L. Tarrataca Chapter 1 - Introduction 27 / 232



Computer Hardware Review Von Neumman architecture

Von Neumann Architecture:

Figure: A top level view of the main computer components (Source: [Stallings, 2015])

Lets have a look at each one of these
L. Tarrataca Chapter 1 - Introduction 28 / 232



Computer Hardware Review Central Processing Unit

Central Processing Unit

• ‘‘Brain’’ of the computer;

• Instruction cycle:

Figure: Instruction Cycle State Diagram, with Interrupts (Source: [Stallings, 2015])

L. Tarrataca Chapter 1 - Introduction 29 / 232



Computer Hardware Review Central Processing Unit

CPU has a set of internal registers (1/4):

• Program Counter (PC):

• Specifies the memory address of the next instruction to be executed.

• Instruction Register (IR):

• Holds the instruction currently being executed or decoded.

L. Tarrataca Chapter 1 - Introduction 30 / 232



Computer Hardware Review Central Processing Unit

CPU has a set of internal registers (2/4):

• Stack Pointer (SP):

• Points to the top of the current stack in memory

• Stores inputs, local and temporary variables that are not kept in registers;

• Program Status Word (PSW):

• Holds the state of the processor (e.g: Z, C, O, N, etc)

• Additional bit for kernel mode and user mode.

L. Tarrataca Chapter 1 - Introduction 31 / 232



Computer Hardware Review Central Processing Unit

CPU has a set of internal registers (3/4):

• Memory address register (MAR):

• Specifies memory address to be read/written;

• Memory buffer register (MBR):

• Contains the data to be written into memory or...

• Receives the data read from memory;

• Used for interruption handling;

L. Tarrataca Chapter 1 - Introduction 32 / 232



Computer Hardware Review Central Processing Unit

CPU has a set of internal registers (4/4):

• I/O address register (I/OAR):

• Specifies a particular I/O device;

• I/O buffer (I/OBR) register:

• Used for the exchange of data between an I/O module and the CPU;

L. Tarrataca Chapter 1 - Introduction 33 / 232



Computer Hardware Review Central Processing Unit

Modern CPUs execute more than one instruction at the same time:

Do you remember how these mechanisms these are called? Any ideas?

L. Tarrataca Chapter 1 - Introduction 34 / 232



Computer Hardware Review Central Processing Unit

Do you remember how these mechanisms these are called? Any ideas?

• Pipelines =)

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: [Stallings, 2015])L. Tarrataca Chapter 1 - Introduction 35 / 232



Computer Hardware Review Central Processing Unit

Pipelines are complex structures, remember the following?

• RAW

• WAR

• WAW

• NOP

Pipelines are responsible for great headaches:

• They expose the complexities of the underlying machine;

L. Tarrataca Chapter 1 - Introduction 36 / 232



Computer Hardware Review Central Processing Unit

Remember these ‘‘headaches’’?

Figure: Effect of a Conditional Branch on Instruction Pipeline Operation. Instruction 3 is a conditional branch

to instruction 15 (Source: [Stallings, 2015])

L. Tarrataca Chapter 1 - Introduction 37 / 232



Computer Hardware Review Central Processing Unit

Do you know a structure more advanced than pipelines? Any ideas?

L. Tarrataca Chapter 1 - Introduction 38 / 232



Computer Hardware Review Central Processing Unit

Do you know a structure more advanced than pipelines? Any ideas?

• Superscalar CPU;

• Simple idea: increase number of pipelines;

• Multiple execution units are present, e.g.::

• One for integer arithmetic;

• One for floating-point arithmetic;

• One for Boolean operations.

L. Tarrataca Chapter 1 - Introduction 39 / 232



Computer Hardware Review Central Processing Unit

• Increase the number of ‘‘headaches’’:

• Instructions are often executed out of order, remember?

• In-order issue out-of-order completion?

• Out-of-order issue out-of-order completion?

• Up to the hardware to make sure the result produced is the same.

L. Tarrataca Chapter 1 - Introduction 40 / 232



Computer Hardware Review Central Processing Unit

Simple idea: increase number of pipelines

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: [Stallings, 2015])

L. Tarrataca Chapter 1 - Introduction 41 / 232



Computer Hardware Review Central Processing Unit

Do you know of a structure similar to superscalar processors? Any ideas?

L. Tarrataca Chapter 1 - Introduction 42 / 232



Computer Hardware Review Central Processing Unit

Do you know of a structure similar to superscalar processors? Any ideas?

• Superpipelining is an alternative performance method to superscalar:

• Many pipeline stages require less than half a clock cycle;

• A pipeline clock is used instead of the overall system clock:

• To advance between the different pipeline stages;

L. Tarrataca Chapter 1 - Introduction 43 / 232



Computer Hardware Review Central Processing Unit

Simple idea: pipeline clock is used instead of the overall system clock

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: [Stallings, 2015])

L. Tarrataca Chapter 1 - Introduction 44 / 232



Computer Hardware Review Central Processing Unit

What else can be done to improve performance?

L. Tarrataca Chapter 1 - Introduction 45 / 232



Computer Hardware Review Central Processing Unit

What else can be done to improve performance?

• Parallel Processing

L. Tarrataca Chapter 1 - Introduction 46 / 232



Computer Hardware Review Parallel Processing

Parallel Processing

Remember this?

Figure: A Taxonomy of Parallel Processor Architectures (Source: [Stallings, 2015])

Fun, right?

L. Tarrataca Chapter 1 - Introduction 47 / 232



Computer Hardware Review Parallel Processing

Lets look at some architectures for multicore systems (1/2):

Figure: Dedicated L1 cache - Ex: ARM11

MPCore (Source: [Stallings, 2015])

Figure: Dedicated L2 cache - Ex: AMD Opteron

(Source: [Stallings, 2015])

• L1-D data cache;

• L1-I instruction cache;

L. Tarrataca Chapter 1 - Introduction 48 / 232



Computer Hardware Review Parallel Processing

Lets look at some architectures for multicore systems (2/2):

Figure: Shared L2 cache - Ex: Intel Core Duo

(Source: [Stallings, 2015])

Figure: Shared L3 cache - Ex: Intel Core i7

(Source: [Stallings, 2015])

• L1-D data cache;

• L1-I instruction cache;

L. Tarrataca Chapter 1 - Introduction 49 / 232



Computer Hardware Review Parallel Processing

Multicore systems introduce a specific problem, remember what it is?

L. Tarrataca Chapter 1 - Introduction 50 / 232



Computer Hardware Review Parallel Processing

Multicore systems introduce a specific problem, remember what it is?

• Cache coherence problem;

What is the Cache coherence problem? Any ideas?

L. Tarrataca Chapter 1 - Introduction 51 / 232



Computer Hardware Review Parallel Processing

Multicore systems introduce a specific problem, remember what it is?

• Cache coherence problem;

What is the Cache coherence problem? Any ideas?

• Changing a word in a cache may invalidate other copies;

L. Tarrataca Chapter 1 - Introduction 52 / 232



Computer Hardware Review Parallel Processing

Multicore systems introduce a specific problem, remember what it is?

• Cache coherence problem;

What is the Cache coherence problem? Any ideas?

• Changing a word in a cache may invalidate other copies;

How can we solve the cache coherence problem? Any ideas?

L. Tarrataca Chapter 1 - Introduction 53 / 232



Computer Hardware Review Parallel Processing

Multicore systems introduce a specific problem, remember what it is?

• Cache coherence problem;

What is the Cache coherence problem? Any ideas?

• Changing a word in a cache may invalidate other copies;

How can we solve the cache coherence problem? Any ideas?

• E.g.: MESI protocol;

L. Tarrataca Chapter 1 - Introduction 54 / 232



Computer Hardware Review Memory

Memory

Ideally, memory should be:

• Extremely fast

• Abundantly large;

• Dirt cheap.

Unfortunately: No current technology satisfies all of these goals.

What can be done to tackle this issue? Any ideas?

L. Tarrataca Chapter 1 - Introduction 55 / 232



Computer Hardware Review Memory

What can be done to tackle this issue? Any ideas?

• We can have a memory hierarchy:

Figure: (Source: [Tanenbaum and Bos, 2015])

• Top layers have higher speed, smaller capacity, and greater cost per bit;

• Bottom layer have slower speed, higher capacity and lower cost per bit;

L. Tarrataca Chapter 1 - Introduction 56 / 232



Computer Hardware Review Memory

Registers:

• Just as fast as the CPU;

• Extremely small amount of memory;

L. Tarrataca Chapter 1 - Introduction 57 / 232



Computer Hardware Review Memory

Cache memory:

• Constituted by cache lines;

• Each line contains a block;

• Each block contains K words;

• Cache hit:

• When a word is searched in a cache and found;

• Cache Miss:

• When a word is searched in a cache and not found;

• Requires a mapping mechanism. Remember these?

• Direct, Associative, Set-Associative;

L. Tarrataca Chapter 1 - Introduction 58 / 232



Computer Hardware Review Memory

Main memory:

• Usually called RAM;

• Set of sequentially numbered addresses:

• Each location contains binary information

• Data;

• Or instructions.

L. Tarrataca Chapter 1 - Introduction 59 / 232



Computer Hardware Review Memory

Magnetic Disks:

Figure: (Source: [Tanenbaum and Bos, 2015])

• Plates;

• Surfaces;

• Tracks;

• Sectors;
L. Tarrataca Chapter 1 - Introduction 60 / 232



Computer Hardware Review I/O Devices

I/O Devices (1/2)

I/O module is responsible for:

• Transferring data from external devices to CPU and memory;

• And vice versa;

• Containing internal buffers for temporarily holding data;

L. Tarrataca Chapter 1 - Introduction 61 / 232



Computer Hardware Review I/O Devices

I/O Devices (2/2)

Device Controller is responsible for:

• Presenting simple interface to the OS;

• Control of the device is complicated and detailed:

• A device driver is the software that interacts with a controller.

L. Tarrataca Chapter 1 - Introduction 62 / 232



Computer Hardware Review I/O Devices

I/O Module structure

Lets take a closer look at a generic I/O module.

Figure: Block Diagram of an of an I/O Module. (Source: [Stallings, 2015])

L. Tarrataca Chapter 1 - Introduction 63 / 232



Computer Hardware Review I/O Devices

Organization of a generic I/O module (1/2):

• Module connects to computer through a set of signal lines;

• Data transferred to and from the module are buffered in data registers.

• Status registers provide status information:

• Also function as control registers, to accept processor control info;

L. Tarrataca Chapter 1 - Introduction 64 / 232



Computer Hardware Review I/O Devices

Organization of a generic I/O module (2/2):

• Logic within the module interacts with the processor via control lines:

• Processor uses the control lines to issue commands to the I/O module;

• Some of the control lines may be used by the I/O module

• E.g. arbitration and status signals;

• Module must also be able to recognize and generate addresses:

• For each device it controls

• I/O module contains logic specific for a set of interfaces;

L. Tarrataca Chapter 1 - Introduction 65 / 232



Computer Hardware Review I/O Devices

I/O module allows processor to view peripherals in a simple way:

• Presents a high-level interface to the processor;

• Taking most of the I/O processing burden away from the processor;

• Also called an I/O processor =)

L. Tarrataca Chapter 1 - Introduction 66 / 232



Computer Hardware Review I/O Devices

Now that we have an idea of the main components...

How can we manage the communication between the µP and the I/O

module?

• Any ideas?

L. Tarrataca Chapter 1 - Introduction 67 / 232



Computer Hardware Review I/O Devices

Essentially, there are three techniques are possible for I/O operations:

Figure: I/O Techniques (Source: [Stallings, 2015])

Lets have a look at each one of these =)

L. Tarrataca Chapter 1 - Introduction 68 / 232



Computer Hardware Review Programmed I/O

Programmed I/O

Data are exchanged between the processor and the I/O module:

1 Processor executes program controlling I/O operation;

• E.g.: sensing device status, read/write command, data transfer.

2 Once the processor issues a command to the I/O module:

• Processor must wait until the I/O operation is complete;

3 If the processor is faster than the I/O module:

• Wasteful of processor time =’(

L. Tarrataca Chapter 1 - Introduction 69 / 232



Computer Hardware Review Programmed I/O

I/O Commands

To execute an I/O-related instruction:

• Processor issues an address:

• Specifying the particular I/O module and external device;

• An I/O command which can be of the following type:

• Control, Test, Read and Write

L. Tarrataca Chapter 1 - Introduction 70 / 232



Computer Hardware Review Programmed I/O

I/O commands the processor can issue are of the following type (1/2):

• Control: Used to activate a peripheral and tell it what to do:

• E.g.: Rewind magnetic-tape; move to HD track;

• Test: test I/O module and its peripherals. E.g.:

• Is the peripheral powered on?

• Is the peripheral available for use?

• Has the most recent I/O operation completed? Did any errors occur?

L. Tarrataca Chapter 1 - Introduction 71 / 232



Computer Hardware Review Programmed I/O

I/O commands the processor can issue are of the following type (2/2):

• Read: I/O module obtains a data item from the peripheral:

• Placing the data in an internal buffer;

• Processor requests I/O module to place data on bus;

• Write: I/O module writes a data item to the peripheral:

• I/O module reads data from bus;

• I/O module transmits data to peripheral;

L. Tarrataca Chapter 1 - Introduction 72 / 232



Computer Hardware Review Programmed I/O

In flowchart form:

Figure: Programmed I/O technique for input of a block of data (Source: [Stallings, 2015])

L. Tarrataca Chapter 1 - Introduction 73 / 232



Computer Hardware Review Programmed I/O

Can you characterize the system from an efficiency perspective?

L. Tarrataca Chapter 1 - Introduction 74 / 232



Computer Hardware Review Programmed I/O

Very wasteful, recall that:

• Processor issues a command to the I/O module:

• then waits for I/O operation to complete.

• While waiting, processor repeatedly interrogates status of I/O module.

• If processor is faster than I/O module: wasteful of processor time.

Is it possible to do any better?

L. Tarrataca Chapter 1 - Introduction 75 / 232



Computer Hardware Review Interrupt-Driven I/O

Interrupt-Driven I/O

What is the ideal scenario for processor performance?

• Do not wait for I/O module;

• Instead, continue processing other tasks;

• And be notified when I/O module has something for processor;

L. Tarrataca Chapter 1 - Introduction 76 / 232



Computer Hardware Review Interrupt-Driven I/O

This is the concept of interruption, I.e.:

1 Ask for something from the I/O module;

2 Continue processing without waiting for the I/O module;

3 Be interrupted when the I/O module has something ready.

L. Tarrataca Chapter 1 - Introduction 77 / 232



Computer Hardware Review Interrupt-Driven I/O

From the point of view of the I/O module:

4 Module waits for processor to request data:

5 When request is made:

• When possible: module interacts with peripheral;

• Once the data is completely buffered;

• data are place on data bus;

6 An interrupt signal is sent to the processor over a control line;

7 Module becomes available for another I/O operation.

L. Tarrataca Chapter 1 - Introduction 78 / 232



Computer Hardware Review Interrupt-Driven I/O

From the point of view of the processor (1/2):

1 A READ command is issued to I/O module;

2 Processor goes off to do something else;

3 Processor checks for interrupts at the end of each instruction cycle;

L. Tarrataca Chapter 1 - Introduction 79 / 232



Computer Hardware Review Interrupt-Driven I/O

From the point of view of the processor (2/2):

4 When the interrupt from the I/O module occurs:

• Processor saves program context;

• Processor proceeds to read data from I/O module

• Processor stores data in memory;

5 Processor then restores previous program context;

6 Processes resumes execution of previous program

L. Tarrataca Chapter 1 - Introduction 80 / 232



Computer Hardware Review Interrupt-Driven I/O

In flowchart form:

Figure: Interrupt-driven I/O (Source: [Stallings, 2015])

L. Tarrataca Chapter 1 - Introduction 81 / 232



Computer Hardware Review Interrupt-Driven I/O

Interrupt Processing

Lets take a closer look at the interruption-based strategy.

• Interruption triggers a number of events

• Processor, hardware and software.

• Automatically, we can pose a series of questions:

• What happens to the program that is executing?

• What happens to the processor?

• How is the interruption processed?

L. Tarrataca Chapter 1 - Introduction 82 / 232



Computer Hardware Review Interrupt-Driven I/O

Figure: Simple Interrupt Processing (Source: [Stallings, 2015])

L. Tarrataca Chapter 1 - Introduction 83 / 232



Computer Hardware Review Interrupt-Driven I/O

When an I/O device completes an I/O operation (1/4):

1 Device issues an interrupt signal to the processor.

2 Processor finishes execution of the current instruction

• Before responding to the interrupt;

3 Processor tests for an interrupt:

• Determines if there is one;

• If one exists, sends an acknowledgement signal to peripheral;

• Acknowledgment allows the device to remove its interrupt signal.

L. Tarrataca Chapter 1 - Introduction 84 / 232



Computer Hardware Review Interrupt-Driven I/O

When an I/O device completes an I/O operation (2/4):

4 Processor needs to transfer control to the interrupt routine;

• This is done by saving the program context:

• Processor status word;

• Program counter;

5 Processor then loads the program counter associated with the

interrupt-handling routine.

L. Tarrataca Chapter 1 - Introduction 85 / 232



Computer Hardware Review Interrupt-Driven I/O

When an I/O device completes an I/O operation (3/4):

6 Interruption routine may use the registers:

• This means that these registers need to be saved;

• This happened when you were developing your CA project;

7 Typically, the interrupt handler will begin by saving all registers on the stack;

8 Interrupt handler then processes the interrupt

L. Tarrataca Chapter 1 - Introduction 86 / 232



Computer Hardware Review Interrupt-Driven I/O

When an I/O device completes an I/O operation (4/4):

9 When interrupt processing is complete:

• Saved registers are retrieved from stack and restored;

10 Final act is to restore the PSW and program counter

• Next instruction to be executed will be from the previously interrupted

program.

L. Tarrataca Chapter 1 - Introduction 87 / 232



Computer Hardware Review Interrupt-Driven I/O

Interrupt I/O is more efficient than programmed I/O:

• Eliminates needless waiting...

Despite the improvement, can you see any potential upgrade that can

be performed with interrupt I/O?

L. Tarrataca Chapter 1 - Introduction 88 / 232



Computer Hardware Review Interrupt-Driven I/O

Despite the improvement, can you see any potential upgrade that can

be performed with interrupt I/O?

Interrupt I/O still consumes a lot of processor time:

• Data is exchanged between memory and I/O module...

• But this exchange still needs to go through the processor....

• Processor spends time transferring data

• While it could be doing something more useful..

L. Tarrataca Chapter 1 - Introduction 89 / 232



DMA Module

DMA module

Idea: Copy data directly to memory, bypassing processor:

• Memory accesses are performed by DMA module;

• Unburdens the processor;

• Combine with interruption scheme for optimum efficiency.

This strategy is called Direct Memory Access (DMA)

L. Tarrataca Chapter 1 - Introduction 90 / 232



DMA Module

DMA involves an additional module on the system bus:

Figure: Typical DMA block diagram (Source: [Stallings, 2015])

• Uses the bus only when the processor does not need to;

• Forces the processor to suspend bus operations temporarily;

L. Tarrataca Chapter 1 - Introduction 91 / 232



DMA Module

Processor issues a command to the DMA module:

• The command contains (1/2):

• Whether a read or write is requested:

• Transmitted over the bus control lines;

• Address of the I/O device involved

• Transmitted over the bus data lines;

• Stored in the data register;

L. Tarrataca Chapter 1 - Introduction 92 / 232



DMA Module

Processor issues a command to the DMA module:

• The command contains (2/2):

• Starting location in memory to read from or write to:

• Communicated on the data lines and...

• Stored by the DMA module in its address register;

• Number of words to be read or written:

• Communicated via the data lines and stored in the data count register;

L. Tarrataca Chapter 1 - Introduction 93 / 232



DMA Module

Processor then continues with other work, i.e.:

• I/O operation delegated to DMA module;

• DMA module transfers block of data:

• Bypassing the processor;

• When the transfer is complete:

• DMA module sends interrupt signal;

• Processor is involved only at:

• Beginning of transfer;

• End of transfer;

Figure: DMA-driven I/O (Source: [Stallings, 2015])

L. Tarrataca Chapter 1 - Introduction 94 / 232



DMA Module Bus Structure

Bus Structure

Bus lines can be classified into three functional groups:

• Data:

• for moving data among system modules

• Address

• for specifying the source or destination of the data:

• Control

• for transmiting command information among the modules.

Lets have a quick look into each one of these...

L. Tarrataca Chapter 1 - Introduction 95 / 232



DMA Module Bus Structure

Figure: Bus Interconnection Scheme (Source: [Stallings, 2015])

L. Tarrataca Chapter 1 - Introduction 96 / 232



DMA Module Bus Structure

Data Lines

The data bus may consist of 32, 64, 128, or even more separate lines:

• A.k.a. width of the data bus;

Each line can carry only 1 bit at a time:

• Number of lines determines how many bits can be transferred at a time.

Data bus width is key to system performance, e.g.:

• If the data bus is 32 bits wide and each instruction is 64 bits long;

• Each instruction requires two memory acesses.

L. Tarrataca Chapter 1 - Introduction 97 / 232



DMA Module Bus Structure

Address Lines

Used to designate the source or destination of the data on the data bus:

• The width of the address bus determines the maximum system memory;

• The address lines are generally also used to address I/O addresses;

• Higher-order bits are used to select a particular module on the bus;

• Lower-order bits select a memory location or I/O port within the module.

L. Tarrataca Chapter 1 - Introduction 98 / 232



DMA Module Bus Structure

Control Lines

Command signals specify operations to be performed, e.g.:

• Memory write: write bus data to a memory address;

• Memory read: read memory at memory address;

• I/O write: write bus data to an I/O address;

• I/O read: read data from an I/O address;

• Bus request: a module needs to gain control of the bus;

• Bus grant: a requesting module has been granted bus control;

• Many more control signals...

L. Tarrataca Chapter 1 - Introduction 99 / 232



DMA Module Bus Structure

However, as processors and memories got faster:

• Ability of a single bus to handle all the traffic was strained;

• As a result, additional buses were added:

Figure: (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 1 - Introduction 100 / 232



DMA Module Bus Structure

Figure: (Source: [Tanenbaum and Bos, 2015])

This system has many buses, e.g.:

• Cache

• Memory

• PCIe (main bus)

• PCI, USB, SATA...

Each with a different transfer rate and function.

L. Tarrataca Chapter 1 - Introduction 101 / 232



DMA Module Booting the computer

Booting the computer

Now that we remembered a little bit of computer architecture:

How does the boot procedure of a computer works? Any ideas?

L. Tarrataca Chapter 1 - Introduction 102 / 232



DMA Module Booting the computer

The boot process is as follows.

1 Every PC has a motherboard containing the system BIOS:

• Containing low-level I/O software, e.g.::

• read the keyboard;

• write to the screen;

• do disk I/O

L. Tarrataca Chapter 1 - Introduction 103 / 232



DMA Module Booting the computer

2 BIOS is started and checks :

• How much RAM is installed;

• Keyboard and other basic devices;

• Buses to detect all the devices attached to them;

3 BIOS then determines the boot device:

• List of devices stored in the CMOS memory

4 First sector from the boot device is read into memory and executed:

• Sector contains a program;

• Program examines the partition table at the end of the boot sector:

• in order to determine which partition is active;

L. Tarrataca Chapter 1 - Introduction 104 / 232



DMA Module Booting the computer

5 Secondary boot loader is read in from that partition:

• Reads in the operating system from the active partition and starts it.

6 OS queries the BIOS to get the configuration information:

• For each device, it checks to see if it has the device driver;

• If not the driver needs to be supplied (CD, internet,...)

• Once it has all the device drivers, OS loads them into the kernel.

7 OS initializes data structures and starts up a login program or GUI.

L. Tarrataca Chapter 1 - Introduction 105 / 232



Operating System Concepts

Operating System Concepts

Do you know any basic concepts from OS? Any ideas?

L. Tarrataca Chapter 1 - Introduction 106 / 232



Operating System Concepts

Operating System Concepts

OS provide basic concepts such as:

• Processes

• System Calls

• Address Spaces

• Files

Lets look at these concepts briefly.

L. Tarrataca Chapter 1 - Introduction 107 / 232



Operating System Concepts Processes

Processes

A process is basically a program in execution (1/2):

• Associated with each process is its address space

• List of memory locations from 0 to some maximum:

• Which the process can read and write

• Address space contains:

• Executable program (instructions);

• Program data;

• Function call stack

L. Tarrataca Chapter 1 - Introduction 108 / 232



Operating System Concepts Processes

Processes

A process is basically a program in execution (2/2):

• Associated with each process is a set of resources:

• Registers (PC, SP, etc... );

• List of open files;

• Outstanding alarms;

• Lists of related processes;

• Other information needed to run the program;

L. Tarrataca Chapter 1 - Introduction 109 / 232



Operating System Concepts Processes

So, in your opinion what is a process? Any ideas?

L. Tarrataca Chapter 1 - Introduction 110 / 232



Operating System Concepts Processes

So, in your opinion what is a process? Any ideas?

Process is fundamentally a container that holds all the information needed to

run a program.

L. Tarrataca Chapter 1 - Introduction 111 / 232



Operating System Concepts Processes

Example

Consider a single-core multiprogramming system executing:

• Program converting a one-hour video to a certain format;

• Web browser ( Not Microsoft Edge =P );

• Email client ( Not Microsoft Outlook =P );

How do you think the OS manages these processes? Any ideas?

L. Tarrataca Chapter 1 - Introduction 112 / 232



Operating System Concepts Processes

How do you think the OS manages these processes? Any ideas?

Periodically the OS:

1 Decides to stop running one process;

• A.k.a. suspending the process;

2 Start running another process;

L. Tarrataca Chapter 1 - Introduction 113 / 232



Operating System Concepts Processes

But if we suspend a process and later need to run it again what needs to

happen? Any ideas?

L. Tarrataca Chapter 1 - Introduction 114 / 232



Operating System Concepts Processes

But if we suspend a process and later need to run it again what needs to

happen? Any ideas?

Process must be restarted in exactly the same state before stopping:

• Process information must be saved somewhere before the suspension;

• Registers (PC, SP, etc... );

• List of open files;

• For each file the number of bytes read;

• For each file the number of bytes written;

• Outstanding alarms;

• Lists of related processes;

• Other information needed to run the program;

L. Tarrataca Chapter 1 - Introduction 115 / 232



Operating System Concepts Processes

All the information about each process:

• Is stored in an OS table called the process table;

• Array of structures, one for each process currently in existence.

L. Tarrataca Chapter 1 - Introduction 116 / 232



Operating System Concepts Processes

Processes change over time...

What are some possible changes that you can envision? Any ideas?

L. Tarrataca Chapter 1 - Introduction 117 / 232



Operating System Concepts Processes

Processes change over time...

What are some possible changes that you can envision? Any ideas?

Some possible states:

• New

• Ready

• Running

• Blocked

• Terminated

L. Tarrataca Chapter 1 - Introduction 118 / 232



Operating System Concepts Processes

Processes change over time...

What are the set of transitions from the previous states? Any ideas?

L. Tarrataca Chapter 1 - Introduction 119 / 232



Operating System Concepts Processes

Process States (1/2)

During the lifetime of a process, its state will change a number of times:

Figure: Five state process model (Source: [Stallings, 2015])

L. Tarrataca Chapter 1 - Introduction 120 / 232



Operating System Concepts Processes

Process States (2/2)

During the lifetime of a process, its state will change a number of times:

• New: Process is created but not yet ready to execute.

• Ready: Process is ready to execute, awaiting processor availability;

• Running: Process is being executed by the processor;

• Waiting: Process is suspended from execution waiting a system resource;

• Halted: Process has terminated and will be destroyed by the OS.

L. Tarrataca Chapter 1 - Introduction 121 / 232



Operating System Concepts Processes

Example

Key process-management system calls are those dealing with:

• creation and termination of processes.

Example:

• A process called the shell reads commands from a terminal;

• User compiles a program;

• Shell must create a new process for the compiler;

• When the compiler process has finished:

• Executes a command to terminate the process;

L. Tarrataca Chapter 1 - Introduction 122 / 232



Operating System Concepts Processes

Conclusion: Processes can create other processes;

• Parent processes;

• Child processes;

Figure: A process tree. Process A created two child processes, B and C. Process B created three child

processes, D, E, and F. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 1 - Introduction 123 / 232



Operating System Concepts Processes

How can a program request the OS to do something? Any ideas?

L. Tarrataca Chapter 1 - Introduction 124 / 232



Operating System Concepts Processes

How can a program request the OS to do something? Any ideas?

• System Calls

L. Tarrataca Chapter 1 - Introduction 125 / 232



Operating System Concepts Processes

How can a program request the OS to do something? Any ideas?

• System Calls

What is a system call then? Any ideas?

• Programmatic way in which a program requests a service from the kernel;

• Provide an interface between a process and the OS;

L. Tarrataca Chapter 1 - Introduction 126 / 232



Operating System Concepts Processes

Can you think of any examples of system calls? Any ideas?

L. Tarrataca Chapter 1 - Introduction 127 / 232



Operating System Concepts Processes

Can you think of any examples of system calls? Any ideas?

Examples of system calls (1/2):

• Open / Read / Write file;

• Request more memory (malloc, calloc, etc..);

• Release unused memory (free);

• Wait for a child process to terminate (wait);

L. Tarrataca Chapter 1 - Introduction 128 / 232



Operating System Concepts Processes

Can you think of any examples of system calls? Any ideas?

Examples of system calls (2/2):

• Set an alarm signal (e.g.: timer):

• Process an interruption (just like in Computer Architecture);

• The context needs to be saved;

• An interruption routine is then executed;

• The context is then restored;

• Many others exist...

L. Tarrataca Chapter 1 - Introduction 129 / 232



Operating System Concepts Processes

Other important OS concepts:

• UID (User IDentification):

• Each system user is assigned one by the administrator;

• Every process started has the UID of the user who started it;

• A child process has the same UID as its parent.

• Users can be members of groups:

• Each of which has a GID (Group IDentification).

L. Tarrataca Chapter 1 - Introduction 130 / 232



Operating System Concepts Processes

Do you know any OS users? Any ideas?

L. Tarrataca Chapter 1 - Introduction 131 / 232



Operating System Concepts Processes

Do you know any OS users? Any ideas?

• Superuser in Unix / Linux

• Administrator in Windows

L. Tarrataca Chapter 1 - Introduction 132 / 232



Operating System Concepts Address Spaces

Address Spaces

Lets talk about another important OS concept

What is an address space? Any ideas?

L. Tarrataca Chapter 1 - Introduction 133 / 232



Operating System Concepts Address Spaces

Address Spaces

Computers have main memory used to store:

• Instructions;

• Data;

Sophisticated OS allow multiple processes to be in memory:

• At the same time...

How can we stop programs from interfering with one another? Any ideas?

L. Tarrataca Chapter 1 - Introduction 134 / 232



Operating System Concepts Address Spaces

How can we stop programs from interfering with one another? Any ideas?

• Some kind of protection mechanism is needed;

• This mechanism is hardware-based:

• But controlled by the OS;

• We will study this later on.

L. Tarrataca Chapter 1 - Introduction 135 / 232



Operating System Concepts Address Spaces

Memory Partitioning (1/2)

How should the OS partition the memory?

• Should every process have the

same amount of memory?

• But what if we need less/more

space?

Figure: Equal size partitions (Source: [Stallings, 2015])
L. Tarrataca Chapter 1 - Introduction 136 / 232



Operating System Concepts Address Spaces

Memory Partitioning (2/2)

How should the OS partition the memory?

• Or should different processes

have different amounts of

memory?

• When a process is brought into

memory, it is placed in the

smallest available partition that

will hold it.

Figure: Unequal size partitions (Source: [Stallings, 2015])
L. Tarrataca Chapter 1 - Introduction 137 / 232



Operating System Concepts Address Spaces

Can you see any problem with this type of partitioning?

L. Tarrataca Chapter 1 - Introduction 138 / 232



Operating System Concepts Address Spaces

Can you see any problem with this type of partitioning?

• Wasted memory: even with the use of unequal fixed-size partitions;

• In most cases:

• A process will not require as much memory as provided by the partition;

• E.g. a process that requires 3M bytes of memory would be placed in the 4M

partition, wasting 1M that could be used by another process...

L. Tarrataca Chapter 1 - Introduction 139 / 232



Operating System Concepts Address Spaces

Can you think of an alternative method for partitioning memory?

L. Tarrataca Chapter 1 - Introduction 140 / 232



Operating System Concepts Address Spaces

Can you think of an alternative method for partitioning memory?

• What about variable-size partitions:

• When a process is brought into memory:

• Allocate exactly as much memory as it requires and no more.

L. Tarrataca Chapter 1 - Introduction 141 / 232



Operating System Concepts Address Spaces

• What about variable-size partitions:

• When a process is brought into memory:

• Allocate exactly as much memory as it requires and no more.

Figure: Variable-size partitions (Source: [Stallings, 2015])

L. Tarrataca Chapter 1 - Introduction 142 / 232



Operating System Concepts Address Spaces

Can you see any problems with this type of partitioning scheme?

L. Tarrataca Chapter 1 - Introduction 143 / 232



Operating System Concepts Address Spaces

Can you see any problems with this type of partitioning scheme?

• This method starts out well:

• However, eventually the memory will be full of holes. The process either:

• Terminates;

• Is removed from main to secondary memory.

• From time to time:

• The OS compacts the processes in memory;

• This results in all the free memory being placed together in one block;

• This is a time-consuming procedure, wasteful of processor time.

L. Tarrataca Chapter 1 - Introduction 144 / 232



Operating System Concepts Address Spaces

Figure: The effects of dynamic partitioning (Source: [Stallings, 2015])

L. Tarrataca Chapter 1 - Introduction 145 / 232



Operating System Concepts Address Spaces

Overall conclusion:

• Fixed-size and variable-size partitions are inefficient in the use of memory.

Can we do any better than these types of partitioning schemes?

L. Tarrataca Chapter 1 - Introduction 146 / 232



Operating System Concepts Paging

Paging

Lets consider an alternative partitioning scheme:

• Allow memory to be partitioned into equal fixed-size small chunks:

• Known as page frames

• Each process is also divided into small fixed-size chunks of some size:

• Known as pages

• Typically: frames have the same size as pages

• Each page can be assigned to a page frame, then:

• At most, wasted space for a process will be a fraction of the last page.

L. Tarrataca Chapter 1 - Introduction 147 / 232



Operating System Concepts Paging

Example

Figure: Allocation of free frames (Source: [Stallings, 2015])

L. Tarrataca Chapter 1 - Introduction 148 / 232



Operating System Concepts Paging

At a given point in time:

• Some of the frames in memory are in use and some are free;

• The list of free frames is maintained by the OS;

• Process A, stored on disk, consists of four pages.

• When it comes time to load this process the OS:

• Finds four free frames;

• Loads the four pages of the process A into the four frames.

L. Tarrataca Chapter 1 - Introduction 149 / 232



Operating System Concepts Paging

Do the frames need to be contiguous (1/2)?

• No! We can use the concept of logical address.

• OS maintains a page table for each process:

• Showing the frame location for each page of the process;

• Within the program each logical address consists of:

• a page number and a relative address within the page;

• Logical- to-physical address translation is done by processor.

L. Tarrataca Chapter 1 - Introduction 150 / 232



Operating System Concepts Paging

Do the frames need to be contiguous (2/2)?

• Processor must know how to access the process’s page table:

• Input is a logical address:

• (page number, relative address)

• Output is a physical address obtained through the process page table:

• (frame number, relative address)

L. Tarrataca Chapter 1 - Introduction 151 / 232



Operating System Concepts Paging

Figure: Logical and physical addresses (Source: [Stallings, 2015])

L. Tarrataca Chapter 1 - Introduction 152 / 232



Operating System Concepts Paging

Can you see any other improvement that can be done to memory

management?

L. Tarrataca Chapter 1 - Introduction 153 / 232



Operating System Concepts Paging

Can you see any other improvement that can be done to memory

management?

HINT: Space-time locality principle

L. Tarrataca Chapter 1 - Introduction 154 / 232



Operating System Concepts Paging

Can you see any other improvement that can be done to memory

management?

• The OS always loads all the memory of a process;

• IDEA: What if we only load those pages that are required at a single

moment?

• This is the concept of virtual memory...

L. Tarrataca Chapter 1 - Introduction 155 / 232



Operating System Concepts Virtual Memory

Virtual Memory

Each process page is brought in only when it is needed (1/2):

1 Procedure is known as demand paging;

2 Locality principle: the same values, or related storage locations, are

frequently accessed.

• Why then would we need to load every page? Wasteful...

L. Tarrataca Chapter 1 - Introduction 156 / 232



Operating System Concepts Virtual Memory

Each process page is brought in only when it is needed (2/2):

3 We can make better use of memory by loading in just a few pages

4 If the program attempts to access a page not in main memory:

• a page fault is triggered, and the OS brings in the desired page;

• These pages reside in secondary memory;

5 Virtual Memory refers to this much larger memory usable by the program.

L. Tarrataca Chapter 1 - Introduction 157 / 232



Operating System Concepts Virtual Memory

At any one time, only a few pages of a process are in memory:

• Therefore more processes can be maintained in memory.

• Time is saved because:

• Unused pages are not swapped in and out of memory;

• Less RAM/HD acesses;

• Consequence: Possible for a process to be larger than all of main memory.

L. Tarrataca Chapter 1 - Introduction 158 / 232



Operating System Concepts Virtual Memory

OS must be clever about how it manages this scheme:

• When it brings one page in, it must throw another page out;

• This is known as page replacement.

• OS might throw out a page just before it is about to be used:

• OS will just have to get that page again almost immediately;

• Too much of this leads to a condition known as thrashing:

• Processor spends most of its time swapping pages...

• ...rather than executing instructions

• extremely slowwww computerrrr...

L. Tarrataca Chapter 1 - Introduction 159 / 232



Operating System Concepts Virtual Memory

Do you have any idea how to solve this problem? Any ideas?

L. Tarrataca Chapter 1 - Introduction 160 / 232



Operating System Concepts Virtual Memory

Do you have any idea how to solve this problem? Any ideas?

• OS needs to guess which pages are least likely to be used:

• E.g. based on recent history.

• We have seen some when we studied Cache systems...

L. Tarrataca Chapter 1 - Introduction 161 / 232



Operating System Concepts Files

Files

Another key concept of modern OS:

• Hides peculiarities of the disks and other I/O devices;

• Present the programmer with a transparent model;

• System calls exist for:

• Creating files;

• Removing files;

• Reading files;

• Writing files;

L. Tarrataca Chapter 1 - Introduction 162 / 232



Operating System Concepts Files

Most OS have the concept of a directory (1/2):

Figure: A file system for a university department. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 1 - Introduction 163 / 232



Operating System Concepts Files

Most OS have the concept of a directory (2/2):

• Directory entries may be either files or other directories;

• System calls are then needed to:

• Create directories.

• Remove directories.

• Each process has a current working directory;

L. Tarrataca Chapter 1 - Introduction 164 / 232



Operating System Concepts Files

Before a file can be read or written:

• File must be opened, at which time the permissions are checked:

• If the access is permitted:

• OS returns a small integer called a file descriptor;

• If the access is prohibited:

• error code is returned.

L. Tarrataca Chapter 1 - Introduction 165 / 232



Operating System Concepts Files

Lets consider an additional requirement:

But what if two processes need to communicate with one another?

L. Tarrataca Chapter 1 - Introduction 166 / 232



Operating System Concepts Files

Lets consider an additional requirement:

But what if two processes need to communicate with one another?

This is done through the pipe concept:

• A sort of file that can be used to connect two processes

L. Tarrataca Chapter 1 - Introduction 167 / 232



Operating System Concepts Files

This is done through the pipe concept:

Figure: Two processes connected by a pipe. (Source: [Tanenbaum and Bos, 2015])

• Processes A and B must configure a pipe in advance;

• When process A wants to send data to process B:

• it writes on the pipe as though it were an output file.

• Process B can read the data by:

• reading from the pipe as though it were an input file.

• Pipe implementation is very much like that of a file;

L. Tarrataca Chapter 1 - Introduction 168 / 232



System Calls

System Calls

Ok, based on what we have seen until now:

What are the main functions of an OS? Any ideas?

L. Tarrataca Chapter 1 - Introduction 169 / 232



System Calls

System Calls

Ok, based on what we have seen until now:

What are the main functions of an OS? Any ideas?

Two main functions:

• Provide abstractions to programs;

• Manage computer resources;

L. Tarrataca Chapter 1 - Introduction 170 / 232



System Calls

Two main functions:

• Provide abstractions to programs:

• E.g.: create, write, read and delete files.

• Manage computer resources:

• Largely transparent, since computers need not worry about:

• CPU, I/O, etc;

• Done Automatically;

• Conclusion:

• Interface between OS / Programs primarily deals with abstractions:

L. Tarrataca Chapter 1 - Introduction 171 / 232



System Calls

• Conclusion:

• Interface between OS / Programs primarily deals with abstractions:

• To understand what an OS is we must examine this interface:

• This interface can be seen through the available system calls

• These vary from OS to OS:

• Although the underlying concepts are the same;

• We will focus on POSIX:

• A.k.a. International Standard 9945-1;

• Unix / Linux / BSD;

L. Tarrataca Chapter 1 - Introduction 172 / 232



System Calls

Important:

• Implementation of systems calls is highly machine-dependent:

• They are often implemented in assembly;

• OS makes available a library:

• Effectively working as an interface;

• Allows for system calls to be made from programs:

• Program invokes system call (user mode);

• OS performs system call (kernel mode);

• Program continues execution (user mode);

L. Tarrataca Chapter 1 - Introduction 173 / 232



System Calls

Figure: Computer Hardware and software structure (Source: [Stallings, 2015])

L. Tarrataca Chapter 1 - Introduction 174 / 232



System Calls

Guess what we will be doing next? Any ideas?

L. Tarrataca Chapter 1 - Introduction 175 / 232



System Calls

Guess what we will be doing next? Any ideas?

• We are going to see some of the available system calls ;)

L. Tarrataca Chapter 1 - Introduction 176 / 232



System Calls

Example

Lets take a look at the read specific system call:

count = read ( fd , b u f fe r , nbytes )

• 1st parameter specifies the file to be read;

• 2nd parameter specifies the buffer where the content is read to;

• 3rd parameter specifies the number of bytes to read;

• This system call returns:

• Number of bytes actually read in count;

• -1 if an error occurred;

L. Tarrataca Chapter 1 - Introduction 177 / 232



System Calls

Example

System calls are performed in a series of steps:

Figure: (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 1 - Introduction 178 / 232



System Calls

The previous picture in textual form (1/3):

1 Push nbytes:

2 Push &buffer:

3 Push fd:

4 The actual call to the library procedure;

5 System call identification is placed in a register;

L. Tarrataca Chapter 1 - Introduction 179 / 232



System Calls

The previous picture in textual form (2/3):

6 OS switches from user to kernel mode;

• This is a special instruction called trap;

7 System call is dispatched to the appropriate handler;

8 System call is executed;

9 Once execution finishes:

• control is returned to the user-space library;

10 Once library finishes:

• control is returned to the original program;

L. Tarrataca Chapter 1 - Introduction 180 / 232



System Calls

The previous picture in textual form (3/3):

11 User program cleans up the stack:

• Removes from stack the system call arguments;

The program is now free to do whatever it wants!

L. Tarrataca Chapter 1 - Introduction 181 / 232



System Calls

Linux makes all this information available through the terminal (1/2):

L. Tarrataca Chapter 1 - Introduction 182 / 232



System Calls

Linux makes all this information available through the terminal (2/2):

L. Tarrataca Chapter 1 - Introduction 183 / 232



System Calls

The read system call is just one example:

• POSIX has about 100 procedure calls

• All of which you should know for your exam

L. Tarrataca Chapter 1 - Introduction 184 / 232



System Calls

The read system call is just one example:

• POSIX has about 100 procedure calls;

• All of which you should know for your exam ;)

L. Tarrataca Chapter 1 - Introduction 185 / 232



System Calls System calls for process management

System calls for process management

Figure: Some of the major POSIX system calls. The return code s is −1 if an error has occurred. The return codes are as follows: pid is a process id,

fd is a file descriptor, n is a byte count, position is an offset within the file, and seconds is the elapsed time. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 1 - Introduction 186 / 232



System Calls System calls for process management

System call fork (1/4):

• Only way to create a new process in POSIX;

• Creates an exact duplicate of the original process, including:

• File descriptors;

• Registers;

• Everything!

• After the fork:

• The original process and copy go their separate ways;

• All the variables have identical values at the time of the fork

• However, since the parent’s data are copied to create the child:

• Subsequent changes do not affect the other one;

L. Tarrataca Chapter 1 - Introduction 187 / 232



System Calls System calls for process management

System call fork (2/4):

• Fork returns a value:

• Value zero in the child;

• The child’s Process Identifier (PID) in the parent;

• In most cases:

• Child will execute different code;

L. Tarrataca Chapter 1 - Introduction 188 / 232



System Calls System calls for process management

Consider the case of the shell in Linux:

How do you think the Linux shell works? Any ideas?

L. Tarrataca Chapter 1 - Introduction 189 / 232



System Calls System calls for process management

Consider the case of the shell:

1 Reads a command;

2 Forks off a child process (fork);

3 Waits for the child to execute (wait);

• input parameter indicates PID to wait for;

4 Childs executes different code (execve):

• 1st parameter: name of the file to be executed;

• 2nd parameter: pointer to argument array;

• 3rd parameter: pointer to environment array;

5 Reads the next command

L. Tarrataca Chapter 1 - Introduction 190 / 232



System Calls System calls for process management

# def ine TRUE 1

wh i l e ( TRUE ) { /∗ repeat f o r e v e r ∗/

type_prompt ( ) ; /∗ d i s p l a y prompt on the screen ∗/

read_command(command , parameters ) ; /∗ read i npu t from t e r m i n a l ∗/

i f ( ( pid = f o r k ( ) ) == 0 ) { /∗ f o r k o f f c h i l d proces s ∗/

/∗ Parent code . ∗/

wai t ( pid ) ; /∗ wai t f o r c h i l d to e x i t ∗/

} e l s e {

/∗ Chi ld code . ∗/

execve (command , parameters , 0 ) ; /∗ execute command ∗/

}

}

L. Tarrataca Chapter 1 - Introduction 191 / 232



System Calls System calls for file management

System calls for file management

Figure: Some of the major POSIX system calls. The return code s is −1 if an error has occurred. The return codes are as follows: pid is a process id,

fd is a file descriptor, n is a byte count, position is an offset within the file, and seconds is the elapsed time. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 1 - Introduction 192 / 232



System Calls System calls for directory management

System calls for directory management

Figure: Some of the major POSIX system calls. The return code s is −1 if an error has occurred. The return codes are as follows: pid is a process id,

fd is a file descriptor, n is a byte count, position is an offset within the file, and seconds is the elapsed time. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 1 - Introduction 193 / 232



System Calls Miscellaneous system calls

Miscellaneous system calls

Figure: Some of the major POSIX system calls. The return code s is −1 if an error has occurred. The return codes are as follows: pid is a process id,

fd is a file descriptor, n is a byte count, position is an offset within the file, and seconds is the elapsed time. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 1 - Introduction 194 / 232



System Calls Miscellaneous system calls

Does this seems complicated?

L. Tarrataca Chapter 1 - Introduction 195 / 232



System Calls Miscellaneous system calls

Does this seems complicated?

• Completely normal:

• First time you are seeing it;

• But fear not...

• Linux provides all the manuals that you need!

L. Tarrataca Chapter 1 - Introduction 196 / 232



System Calls Miscellaneous system calls

Linux makes all this information available through the terminal (1/2):

L. Tarrataca Chapter 1 - Introduction 197 / 232



System Calls Miscellaneous system calls

Linux makes all this information available through the terminal (2/2):

L. Tarrataca Chapter 1 - Introduction 198 / 232



System Calls Miscellaneous system calls

But how can I discover the manual’s number?

L. Tarrataca Chapter 1 - Introduction 199 / 232



System Calls Miscellaneous system calls

But how can I discover the manual’s number?

Multiple solutions exist:

• Command apropos

• Command man -wK

L. Tarrataca Chapter 1 - Introduction 200 / 232



System Calls Miscellaneous system calls

Command apropos:

L. Tarrataca Chapter 1 - Introduction 201 / 232



System Calls Miscellaneous system calls

Command man -wK:

L. Tarrataca Chapter 1 - Introduction 202 / 232



System Calls Miscellaneous system calls

As a curiosity lets look at Windows API:

Figure: (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 1 - Introduction 203 / 232



System Calls Miscellaneous system calls

Win32API also contains hundreds of system calls:

• All of which you should know for the exam

L. Tarrataca Chapter 1 - Introduction 204 / 232



System Calls Miscellaneous system calls

Win32API also contains hundreds of system calls:

• All of which you should know for the exam ;)

L. Tarrataca Chapter 1 - Introduction 205 / 232



System Calls Miscellaneous system calls

Win32API also contains hundreds of system calls:

• All of which you should know for the exam ;)

• Who cares about Windows =P

L. Tarrataca Chapter 1 - Introduction 206 / 232



Operating System Structure

Operating System Structure

Now we have a better understanding of the different OS components:

How should the OS be organized?

What are the different OS design possibilities?

L. Tarrataca Chapter 1 - Introduction 207 / 232



Operating System Structure

Operating System Structure

Now we have a better understanding of the different OS components:

How should the OS be organized?

What are the different OS design possibilities?

Essentially there are six designs:

• Monolithic Systems;

• Layered Systems;

• Microkernels;

• Client-Server systems;

• Virtual Machines;

• Exokernels; L. Tarrataca Chapter 1 - Introduction 208 / 232



Operating System Structure Monolithic Systems

Monolithic Systems

First: What does monolithic means? Any ideas?

L. Tarrataca Chapter 1 - Introduction 209 / 232



Operating System Structure Monolithic Systems

Monolithic Systems

First: What does monolithic means? Any ideas?

• Large, indivisible and slow to change;

L. Tarrataca Chapter 1 - Introduction 210 / 232



Operating System Structure Monolithic Systems

Monolithic Systems

The entire OS runs as a program in kernel mode:

• Collection of procedures linked into a single executable;

• Any procedure can call any other procedure:

• Pros:

• Very efficient since there are no restrictions;

• Cons:

• Very difficult to understand;

• If a procedure crashes the entire OS crashes;

L. Tarrataca Chapter 1 - Introduction 211 / 232



Operating System Structure Monolithic Systems

For those of you who have seen Object Programming:

• No information is hidden;

• There is very little structure:

• All functions are accessible to every other function;

• As opposed to using modules or packages:

• Information is hidden away in modules or packages;

• Only official designated entry points can be called;

L. Tarrataca Chapter 1 - Introduction 212 / 232



Operating System Structure Monolithic Systems

Basic organization for monolithic OS (1/2):

• A main program invokes a service procedure;

• A set of service procedures that carry out the system calls:

• Each service call manages the system calls;

• A set of utility procedures that help the service procedures:

• E.g.: Fetch data from user programs;

L. Tarrataca Chapter 1 - Introduction 213 / 232



Operating System Structure Monolithic Systems

Basic organization for monolithic OS (2/2):

Figure: Simple structure model for a monolithic system(Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 1 - Introduction 214 / 232



Operating System Structure Layered Systems

Layered Systems

Idea: Organize OS as a hierarchy of layers:

• Each layer is constructed upon the one below it, e.g.:

5 Computer user

4 User programs

3 I/O Management

2 Process Communication

1 Memory management

0 Processor management

L. Tarrataca Chapter 1 - Introduction 215 / 232



Operating System Structure Mircrokernels

Mircrokernels

Traditionally: all layers are in the kernel

• Not necessary!

• Idea: put as little as possible in kernel model:

• Less code less probability of bugs in kernel mode;

• Less bugs less probability of bringing OS down;

• Idea: set user mode processes to do non-critical tasks:

• Bug in user mode may not be fatal;

• E.g.: bug in audio driver:

• Stops or ruins sound;

• But will not crash the computer;

L. Tarrataca Chapter 1 - Introduction 216 / 232



Operating System Structure Mircrokernels

Common desktop OS do not use microkernels:

• With the exception of Mac OS ;)

However, microkernels are dominant in:

• real-time OS;

• industrial avionics;

• military applications;

L. Tarrataca Chapter 1 - Introduction 217 / 232



Operating System Structure Mircrokernels

An example of a microkernel organization:

Figure: Simplified structure of the MINIX system (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 1 - Introduction 218 / 232



Operating System Structure Client-Server Model

Client-Server Model

Idea: Distinguish between two processes:

• Servers:

• Provide some services;

• Clients

• Use the services provided;

• Slight variation of the microkernel:

L. Tarrataca Chapter 1 - Introduction 219 / 232



Operating System Structure Client-Server Model

Communication between clients and servers:

• Often done by message passing, e.g.:

• Client constructs message and sends to service;

• Server executes and sends back result;

L. Tarrataca Chapter 1 - Introduction 220 / 232



Operating System Structure Client-Server Model

Because of this structure:

• Clients and servers can run on different computers;

• Requests are sent and replies come back;

Figure: The client-server model over a network. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 1 - Introduction 221 / 232



Operating System Structure Virtual Machines

Virtual Machines

Have a single computer run different OS:

• Each virtual machine is given time to run;

• If one virtual machine crashes other virtual machines can continue;

• Allows for efficient use of machine:

• Hardware is never idle, always executing some VM;

• Brings costs down;

• Run Windows/Linux/Unix in the same machine

L. Tarrataca Chapter 1 - Introduction 222 / 232



Operating System Structure Virtual Machines

But what are the different virtualization techniques? Any ideas?

L. Tarrataca Chapter 1 - Introduction 223 / 232



Operating System Structure Virtual Machines

Figure: Execute directly over hardware (Source: [Tanenbaum and Bos, 2015])

• Efficient but had some peculiarities:

• Virtual OS needs to execute in kernel mode...

• But Virtual OS is running in user mode...

• This was impossible to execute in some processors;

L. Tarrataca Chapter 1 - Introduction 224 / 232



Operating System Structure Virtual Machines

What can be done to circumvent this problem? Any ideas?

L. Tarrataca Chapter 1 - Introduction 225 / 232



Operating System Structure Virtual Machines

What can be done to circumvent this problem? Any ideas?

• Provide a processor simulator;

• Execute privileged instructions in simulator;

• Solves problem but is inefficient;

L. Tarrataca Chapter 1 - Introduction 226 / 232



Operating System Structure Virtual Machines

Figure: Execute an host OS and a machine simulator (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 1 - Introduction 227 / 232



Operating System Structure Virtual Machines

What can be done to improve performance? Any ideas?

L. Tarrataca Chapter 1 - Introduction 228 / 232



Operating System Structure Virtual Machines

What can be done to improve performance? Any ideas?

• Add a kernel module to original OS for virtualization;

• This allows for better virtualization performance

L. Tarrataca Chapter 1 - Introduction 229 / 232



Operating System Structure Virtual Machines

Figure: Execute directly over hardware (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 1 - Introduction 230 / 232



Operating System Structure Exokernels

Exokernels

Rather than cloning a machine:

• Give each VM a subset of the resources;

• At the bottom layer, running in kernel mode:

• Is a program called the Exokernel whose function is:

• Allocate resources to virtual machine;

• Check that each VM uses its own resources;

• Advantage: Saves a layer of mapping:

• Exorkernel keeps track of the resources allocated to each machine;

• No need to remap any resources which makes it simpler;

L. Tarrataca Chapter 1 - Introduction 231 / 232



References

References I

Stallings, W. (2015).

Computer Organization and Architecture.

Pearson Education.

Tanenbaum, A. and Bos, H. (2015).

Modern Operating Systems.

Pearson Education Limited.

L. Tarrataca Chapter 1 - Introduction 232 / 232


	Motivation
	What is an operating system?
	OS as an Extended Machine
	OS as a Resource Manager

	Computer Hardware Review
	Von Neumman architecture
	Central Processing Unit
	Central Processing Unit
	Parallel Processing
	Memory
	I/O Devices
	I/O Devices
	Programmed I/O
	Interrupt-Driven I/O

	DMA Module
	Bus Structure
	Booting the computer
	Booting the computer

	Operating System Concepts
	Processes
	Address Spaces
	Paging
	Virtual Memory
	Files

	System Calls
	System calls for process management
	System calls for file management
	System calls for directory management
	Miscellaneous system calls

	Operating System Structure
	Monolithic Systems
	Layered Systems
	Mircrokernels
	Client-Server Model
	Virtual Machines
	Exokernels

	References

