Chapter 8 - Virtual Memory

Luis Tarrataca
luis.tarratacalgmail.com

CEFET-RJ

Chapter 8- VimuaiMomory 1/82

luis.tarrataca@gmail.com

© Motivation

@ Operating System Functions

® OS a resource Manager

Scheduling
Process
Process States

Process Control Block

Scheduling Techniques

@ Memory Management
Memory Swapping
Memory Partitioning
Paging
Virtual Memory

Demand paging

Page Table Structure
Translation Lookaside Buffer

Translation Lookaside Buffer

© Where to focus your study

0O References

Chapter 8- Vit Momory 482

Motivation

Motivation

In computer architecture we have a series of components:

e CPU ® |/O module
) Memory ® USB;
e B ® SCSl;
.us . ® SATA

® Pipeline E '
elcC...

These components interact with each other at the hardware level.

Who is responsible for managing these resources? Any ideas? '

Chapter 8- VimuiMomory 582

Who is responsible for managing these resources? Any ideas? '

Operating System is a program that:
® Manages the computerOs resources;
® Schedules the execution of other programs;

® Acts as an interface between applications and the computer hardware;

What are the main functions of an OS?

Chapter 8- VinuaiMomory 7/82

What are the main functions of an OS? '

® An application is expressed in a programming language;
® But it would be difficult to have to worry about all computer components.
® To ease this task, the OS makes available a set of systems programs:

® Frequently used functions that assist in program creation;

® The management of files;

® And the control of I/O devices.

Operating System Functions

Operating System Functions (1/2)

Operating system:
® Masks the details of the hardware from the programmer;
® Provides the programmer with a convenient interface for using the system;
® Acts as mediator:

® Easier for the programmer/application to use resources.

Chapter 8- VinuaiMomory 982

Operating System Functions

Operating System Functions (2/2)

OS typically provides services in the following areas:
® Program execution:
® |nstructions and data must be loaded intfo main memory;
® |/O devices and files must be initialized;

® and other resources must be prepared.

Chapler 8. Vituaivomoy 1082

OS a resource Manager

OS as a resource Manager (1/2)

Computer is a set of resources for:
® Moving, storing and processing data;
® And for the control of these functions;
OS is responsible for managing these resources:
® OSis in control of the compu‘rer()s basic functions;

® But this control is exercised in a curious way...

Chapler 8. Vituaivomoy 11/82

OS a resource Manager

OS as a resource Manager (1/2)

OS acts as an unusual control mechanism, i.e.:

® OS provides instructions for the processor;
® OSis also a computer program that is executed by the processor;
® Key difference is in the intent of the program:
@ OS directs the processor in the use of system resources;
® OS directs the timing of processor execution of other programs;
@ OS must cease executing:
@ OS must allow for other programs to execute;

@ Eventually OS will regain control of the processor;

OS aresource Manager

Computer system
Meory . /O devices
Operating /O controller —>O Printers,
system :;lf‘-}'_lt):lﬂl'dsy
gital camera,
Softwars 1/0 controller —>O ete.
Programs
and data
Processor vae

Figure: The operating system as a resource manager (Source: (Stallings, 2015))

Luis Tarrataca

Chapter 8 - Virtual Memory 13 /82

OS aresource Manager

Main memory contains:
® A portion of the OS:
® Kernel: most frequently used functions in the OS;
® But also other OS portions that may be in use;
® User programs and data;
® Main memory is controlled jointly by:

® OS and memory-management hardware in the processor;

OS a resource Manager

OS is responsible for determining:
® When an I/O device can be used by a program;
® Access to and use of files.

® How processor fime is split for program execution;

15 /82

OS aresource Manager Scheduling

Scheduling

Lets take a look at another dimension of the OS:
® Imagine we want to execute a single program;

® pbut this program sometimes will have to wait for I/Os;

Program A | Run Wait Run Wait

Time -

Figure: Executing a single program (Source: (Stallings, 2015))

Is this an efficient use of the processor?

Chapler 8. Vituaiomoy 16/82

Most of the time the processor is idle not doing anything.
® Processor executes orders of magnitude faster than I/O...

® Consider the following example:

Read one record from file 15 us

Execute 100 instructions J T
Write one record to file 15 us
TOTAL 31 ps

Percent CPU utilization = % = 0.032 = 3.2%

Figure: System utilisation Example (Source: (Stallings, 2015))

Instead of idling the system we could be running another program...

Program A | Run Wait Run Wait
Program B Wait| Run Wait Run Wait
. Run | Run . Run | Run .
Combined A B Wait 7 B Wait
Time >

Figure: Executing two programs (Source: (Stallings, 2015))

But this second program may eventually also ask for I/Os...

OS aresource Manager Scheduling

We can even add a third program...

Program A | Run Wait Run Wait

ProgramB Wait| Run Wait Run. Wait

Program C Wait . Wait . Wait

; Run | Run 3 Run | Run ;
Combined AlB - Wait A B . Wait
Time

Figure: Executing three programs (Source: (Stallings, 2015))

This way the processor idle times are diminished...

Luis Tarrataca Chapter 8 - Virtual Memory 19 /82

The component responsible for program switching is the scheduler:

® |n redlity the scheduler switches between processes;
® What is a process?
® Executable code;
® Memory
® variables, data, efc;
® Call stack
® to keep track of active subroutines and/or other events;
® Operating system descriptors of resources
® files, sockets, efc;

® Processor context;

Luis Tarrataca Chapter 8 - Virtual Memory

20/82

OS a resource Manager IS LT

Process States (1/2)

Process state will change over its lifetime:

4 Atlm:t

: Dispatch

Event
ocecurs

Figure: Five state process model (Source: (Stallings, 2015))

Luis Tarrataca Chapter 8 - Virtual Memory 21/82

OS aresource Manager Scheduling

Process States (2/2)

Process state will change over its lifetime:
® New: Process is created but not yet ready to execute.
® Ready: Process is ready to execute, awaiting processor availability;

® Running: Process is being executed by the processor;

Waiting: Process is suspended from execution waiting a system resource;

Halted: Process has terminated and will be destroyed by the OS.

OS aresource Manager Scheduling

Process Control Block

OS represents each process by a control block:

® |dentifier: Unique process identifier; e
State
® State: Current process state; Priority
Program counter
® Priority: Process priority level.; Slonniary Jlbies:
Context data
® Program counter: Next instruction; YOsatis
information
® Memory pointers: Process starting and Aceounting
information
ending memory locations;
® Context data: Processor state registers; :
® |/O status: I/O requests and /O devices;
® Accounting Info: E.g. processor time, Figure: Process Control Block (Source:

clock time, time limits,... (Stallings, 2015))

OS a resource Manager

Scheduling Techniques

Scheduling Techniques

Consider the following scenario:

Operating system Operating system i Operating system
S
= control =
Cserve nnair | 2100
rvi
Scheduler Scheduler Scheduler
Interrupt handler Interrupt handler Interrupt handler
A A
"Running'" " Waiting"

A
"Walting"
iy,

=Y =
= control =
ol
Ky
B B B
“Ready” Reaty” “Ruming®
Ay
.
—control >
N
Other partitions Other partitions. Other partitions

(a)

®) ©

Figure: Scheduling Example (Source: (Stallings, 2015))

Luis Tarrataca

Chapter 8 - Virtual Memory 24 /82

OS a resource Manager Scheduling Techniques

Initially process A is running and:
@ The processor is executing instructions from process A;

@ The processor then:
® Ceases to execute A;

® Begins executing OS instructions.

©® This will happen for one of three reasons:
@ Process A issues a service call (e.g., an I/O request) to the OS.
® Execution of A is suspended until this call is satisfied by the OS.
@ Process A causes an interrupt signall:
® When this signal is detected, the processor ceases to execute A;
® OS processes the interrupt signal;
©® An event unrelated to process A causes an interrupt.

® E.g.is the completion of an I/O operation.

OS a resource Manager Scheduling Techniques

Process A therefore is going to block and control is passed to the OS:
© The OS saves:
® Current processor context (registers);
® PC;
@ The OS:
@ changes the state of A to blocked;
@ decides which process should be executed next;
© instructs the processor to restore BOs context data;

@ proceeds with the execution of B where it left off.

OS a resource Manager Scheduling Techniques

Interruption examples:
® Memory error:
® process attempts to access unauthorised memory location;
® |nstruction error:
® process aftempts to execute a privileged instructions;
® Timeout:

® each process is granted the processor for a short period at a time.

Memory Management

Memory Management

Now that we have seen processes consider the following:
® Few processes — high processor idle times — not efficient;
® Many processes — little processor idle times — efficient;

® Objective:

Memory needs to be allocated efficiently to pack as many processes

infto memory as possible.

Chapler 8 Vituaivomoy 2882

Memory Management

How does the OS handle the memory from each program? Any ideas?

Chapler 8 Vituaivomoy 2982

Memory Management Memory Swapping

Memory Swapping

Consider the following scenario:
® There are multiple processes to execute;
® |t is possible to perform process switching;
® Processor is much faster than 1/O:

® Even with multiprogramming:

® Processor could be idle most of the time.

Chapler 8. Vituaivomoy 3082

Memory Management Memory Swapping

What can we do to pack info main memory as many processes as

possible? Any ideas?

Chapler 8. Vituai Mooy 31/82

Memory Management Memory Swapping

What can we do to pack into main memory as many processes as

possible?

® |ncrease main memory (RAM);
® Expensive...;

® Any ideas?

Chapler 8. Vituaivomoy 3282

Memory Management Memory Swapping

What can we do to pack into main memory as many processes as

possible?

® |ncrease main memory (RAM);

® Expensive...;

® Can we use any other type of memory?

Chapler 8. Vituaivomoy 33/82

Memory Management Memory Swapping

What can we do to pack info main memory as many processes as

possible?

® |ncrease main memory (RAM);
® Expensive...;
® Can we use any other type of memory?

® Well, the hard drive is a type of memory ;)

Chapler 8 Vituaivomoy 3482

Memory Management Memory Swapping

Idea: Use the hard drive as memory for processes:
® Eventually: main memory will be full;

® Rather than the processor remain idle the OS:
® Swaps one of the blocked processes back out to disk;
® Selects one of the processes stored in disk to go to main memory;

® Execution then continues with the new process.

® This procedure is called memory swapping.

Memory Management Memory Swapping

Can you see any potential problem with memory swapping?

Chapler 8 Vituaivomoy 3682

Memory Management Memory Swapping

Can you see any potential problem with memory swapping?

® Well we are trying to minimize processor idle times;
® These usually happen when I/O operations occur;
® Accessing the hard disk is an I/O operation...
® But because disk I/O is generally the fastest I/O on a system:

® swapping will usually enhance performance.

Memory Management Memory Partitioning

Memory Partitioning (1/2)

How should the OS partition the memory?

® Should every process have the Operating system
same amount of memory? -
® But what if we need less/more -
space? &
s
s
s
s
s

Figure: Equal size partitions (Source: (Stallings, 2015))

Chapler 8. Vituaivomoy 38/82

Memory Management Memory Partitioning

Memory Partitioning (2/2)

How should the OS partition the memory? '

® Or should different processes Operating yten
have different amounts of =
memory? =

® When a process is brought into s

memory, it is placed in the
smallest available partition that
will hold it.

M

Chapler 8. Vituaivomory 3982

Memory Management Memory Partitioning

Can you see any problem with this type of partitioning?

Chapler 8. Vituaivomoy 40,82

Memory Management Memory Partitioning

Can you see any problem with this type of partitioning?

® Wasted memory: even with the use of unequal fixed-size partitions;

® |n most cases:
® A process will not require as much memory as provided by the partition;

® E.g. aprocess that requires 3M bytes of memory would be placed in the 4M
partition, wasting 1M that could be used by another process...

Memory Management Memory Partitioning

Can you think of an alternative method for partitioning memory?

Chapler 8. Vituaivomoy 42,82

Memory Management Memory Partitioning

Can you think of an alternative method for partitioning memory?

® What about variable-size partitions:
® When a process is brought info memory:

® Allocate exactly as much memory as it requires and no more.

Chapler 8. Vituaivomoy 4382

VA NGRS Memory Partitioning

® What about variable-size partitions:
® When a process is brought info memory:

® Allocate exactly as much memory as it requires and no more.

Operating | | ., Operating Operating Operating
system system system system
Process 1 20M Process 1 20M Process 1 %ZDM
56M Process 2 %14M Process 2 }MM
36M
— Process3 | - 18M
FaM

Figure: Variable-size partitions (Source: (Stallings, 2015))

Chapler 8. VituaiMomory 44/ 82

Memory Management Memory Partitioning

Can you see any problems with this type of partitioning scheme?

Chapler 8. Vituaivomory 4882

VA NGRS Memory Partitioning

Can you see any problems with this type of partitioning scheme?

® This method starts out well:

® However, eventually the memory will be full of holes.;

® This happens because the processes either:
® Terminate;
® are removed from main to secondary memory (HD, SSD, etc..).

® From time to fime:
® OS compacts the processes in memory;
® This results in all the free memory being placed together in one block:

® This is a time-consuming procedure, wasteful of processor time.

Chapler 8. Vituaivomoy 4682

[

56M

(2)

14M

4M

(e)

®

® L]
Figure: The effects of dynamic partitioning (Source: (Stalling:
o

s, 2015))
- z
Chapter 8 - Virtual Memory

47 /82

Memory Management Memory Partitioning

Overall conclusion:

® Fixed-size and variable-size partitions are inefficient in the use of memory.

Can we do any better than these types of partitioning schemes?

Memory Management Memory Partitioning

Overall conclusion:

® Fixed-size and variable-size partitions are inefficient in the use of memory.

Can we do any better than these types of partitioning schemes?

® Yes, we can through a mechanism called paging

Memory Management [E5ILT]

Consider an alternative partitioning scheme:
® Allow memory to be partitioned into equal fixed-size small chunks:
® known as page frames
® Each process is also divided into small fixed-size chunks of some size:
® known as pages
® Each page can be assigned to a page frame, then:

® At most, wasted space for a process will be a fraction of the last page.

Memory Management

In In
16 nse 16 —
Free frame list = Free frame list =
13 20
14 17 e 17 me
15 Process A
18 table Page 0
In In
1] et E wf =
i . E)
(a) Before (b) After

Luis Tarrataca Chapter 8 - Virtual Memory 51/82

Memory Management Paging

At a given point in time:

® some of the frames in memory are in use and some are free;

the list of free frames is maintained by the OS;
® process A, stored on disk, consists of four pages.

® When it comes time to load this process the OS:
® finds four free frames;

® loads the four pages of the process A into the four frames.

Memory Management Paging

Do the frames need to be contiguous (1/2)? '

® No they do not. We can use the concept of logical address.

® OS maintains a page table for each process:

® Showing the frame location for each page of the process;
® Within the process each logical address consists of:

® a page number and a relative address within the page;

® |ogical- fo-physical address translation is done by processor.

Memory Management [E5ILT]

Do the frames need to be contiguous (2/2)?

® Processor must know how to access the process’s page table:
® |nput is a logical address:
® (page number, relative address)
® Qutput is a physical address obtained through the process page table:

® (frame number, relative address)

Chapler 8. Vituaivomory 54/82

Memory Management [E5ILT]

Main
memory

13
Page Relative address Frame Relative address Page 2 14
number within page number within frame of A
Logical \ / Physical \ / Page 3
address | 1 m address of A 15

16

17
)
E PRt 10

Process A
page table

Figure: Logical and physical addresses (Source: (Stallings, 2015))

Chapler 8. Vituaivomory 5/2

Memory Management [E5ILT]

Can you see any other improvement that can be done to memory

management?

Chapler 8. Vituaivomoy 86/82

Memory Management [E5ILT]

Can you see any other improvement that can be done to memory

management?

® With the previous scheme:

® OS always loads all the memory of a process;

Memory Management [E5ILT]

Can you see any other improvement that can be done to memory

management?

® With the previous scheme:

® OS always loads all the memory of a process;

Do we really need to always load an entire program?

Chapler 8 Vituaivomoy 88/82

Memory Management [E5ILT]

Do we really need to always load an entire program?

® Space-Time locdlity principle...

Chapler 8. Vituaivomoy 8982

Memory Management [E5ILT]

Do we really need to always load an entire program?

® Space-Time locdlity principle...
® |dea:
® What if we only load those pages that are required at a single moment?

® This is the concept of vitual memory

Memory Management Virtual Memory

Virtual Memory

Each process page is brought in only when it is needed (1/2):
© Procedure is known as demand paging:

@ Locality principle:
® Same values, or related storage locations, are frequently accessed.

® Why then would we need to load every page? Wasteful...

Chapter 8. Vituaivomoy 61/2

Memory Management R[N Y Y T0Y

Each process page is brought in only when it is needed (2/2):
©® We can make better use of memory by loading in just a few pages
O If the program attempts to access a page not in main memory:
® a page fault is triggered: OS brings in the desired page;

® These pages reside in secondary memory;

© Virtual Memory refers to this much larger memory usable by the program.

Memory Management Virtual Memory

Can you see any implication of using virtual memory? Any ideas?

Chapler 8. Vituaivomoy 63/82

Memory Management R[N Y Y T0Y

Can you see any implication of using virtual memory? Any ideas?

At any one time, only a few pages of a process are in memory:
® Therefore more processes can be maintained in memory.
® Time is saved because:

® Unused pages are not swapped in and out of memory;
® Less RAM/HD acesses;
® Consequence:

® Possible for a process to be larger than all of main memory.

Chapler 8. Vituaivomoy 64/82

Memory Management R[N Y Y T0Y

OS must be clever about how it manages this scheme: (1/2)

® When it brings one page in, it must throw another page out;

® this is known as page replacement.

Chapler 8. Vituaivomory 652

Memory Management R[N Y Y T0Y

OS must be clever about how it manages this scheme: (2/2)
® OS might throw out a page just before it is about to be used:
@ OS will just have to get that page again almost immediately;
® Too much of this leads to a condition known as thrashing:
® Processor spends most of its time swapping pages...
® ..rather than executing instructions

® extremely slowwww computerrrr...

Chapler 8. Vituaivomoy 6682

Memory Management Virtual Memory

Do you have any idea how to solve this problem? Any ideas?

Chapler 8. Vituaiveomoy 6782

Memory Management Virtual Memory

Do you have any idea how to solve this problem? Any ideas?

® OS needs to guess which pages are least likely o be used:
® E.g. based on recent history.
® We have seen some when we studied cache systems:
® FIFO;
® LFU;

® LRU;

Memory Management Virtual Memory

Example (1/2)

VAX architecture:
® Each process can have 2 bytes of virtual memory;
® Each process has pages of size 22 bytes

31
® Therefore we need to index 22—9 = 222 pages per process...
® Amount of memory devoted to page tables would be very high:;

® How can we solve this problem?

Chapler 8 Vituaivomoy 6982

Memory Management Virtual Memory

Example (2/2)

VAX architecture:
® Each process can have 2 bytes of virtual memory;
® Each process has pages of size 29 bytes
: 281 522
¢ Therefore we need to index 7 = 2 pages...
® Amount of memory devoted to page tables is very high;
® How can we solve this problem?
® We use virtual memory for processes;

® We can dlso use virtual memory for process page tables;

® This way we only load entries on a on-demand basis.

Memory Management Translation Lookaside Butfer

Translation Lookaside Buffer

Every virtual memory reference can cause two physical memory
accesses:

® One to fetch the appropriate page table entry;

® And one to fetch the desired data.

Can you see any problem with this? '

Chapler 8. Vituaivomoy 71/82

Memory Management Translation Lookaside Butfer

Translation Lookaside Buffer

Every virtual memory reference can cause two physical memory
accesses:

® one tfo fetch the appropriate page table entry;

® and one to fetch the desired data.

Can you see any problem with this? '

® We are doubling the number of memory accesses;

® Therefore we are also doubling the memory access time...

Chapler 8 Vituaivomoy 7282

Memory Management Translation Lookaside Butfer

What do we always do when we need to reduce memory accesses?

Chapler 8. Vituaivomory 7382

Memory Management Translation Lookaside Butfer

What do we always do when we need to reduce memory accesses?

® Use cache for page table entries ;)
® Translation lookaside buffer (TLB)
® Functions in the same way as a memory cache;
® Contains those page table entries that have been most recently used.

® Physical piece of hardware

Memory Management Translation Lookaside Butfer
— (=

faulted i

Figure: Operation of paging and translation look aside buffer (Source: (Stallings, 2015))

Memory Management Translation Lookaside Buffer

A virtual address will have the form (page number, offset).
@ Memory consults TLB to see if the matching page table entry is present:
® If it is: physical address is generated;
® If not: entry is accessed from a page table.
@ Once the real address is generated:
® Cache is consulted to see if the block containing that word is present:
® Do not confuse this cache with the TLB, different “‘caches’’;
® |f the word is present, it is returned to the processor;

® If not, the word is retrieved fromm main memory.

Memory Management Translation Lookaside Buffer

Virtual memory must interact with system cache (1/2):
© TLB is checked to see if page table entry is present:
® [f yes: physical address is generated;
® [f not: entry is accessed from a page table;
@ Once physical address is generated:
® Cache is checked to see if the block containing that word is present:
® |f yes: word is return to processor;

® |f not: word is fetched from main memory;

Memory Management Translation Lookaside Butfer

Virtual memory must interact with system cache (2/2):

Figure: Translation lookaside buffer and cache operation (Source: (Stallings, 2015))

Chapler 8. Vituaivomory 7882

Memory Management Translation Lookaside Buffer

Notice the complexity of a single memory reference:
® Virtual address needs to be translated to physical address:
@ This involves reference to a page table which may be:
® in the TLB, in main memory, or on disk.
® Once the physical address of the word is obtained:

® word may be in cache, in main memory, or on disk

Where to focus your study

Where to focus your study

After this class you should be able to:
® Summarize, at a top level, the key functions of OS;
® Explain the concept of scheduling;

® Understand the reason for memory partitioning ;

Explain the various techniques for memory partitioning:;

Define virtual memory;

® Assess the relative advantages of paging.

Chapler 8. Vituaivomoy 80,82

Where to focus your study

Less important to know how these solutions were implemented:
® details of specific memory management units;

Your focus should always be on the building blocks for developing a solution
=)

References

References |

@ Stallings, W. (2015).
Computer Organization and Architecture: Designing for Performance.

Pearson Education, 10th edition edition.

Chapler 8. Vituaivomoy 82/82

	Motivation
	Operating System Functions
	OS a resource Manager
	Scheduling
	Scheduling Techniques

	Memory Management
	Memory Swapping
	Memory Partitioning
	Paging
	Virtual Memory
	Translation Lookaside Buffer
	Translation Lookaside Buffer

	Where to focus your study
	References

