Chapter 7 - Input / Output

Luis Tarrataca
luis.tarratacalgmail.com

CEFET-RJ

Chapter7-nput Ouput 1785

luis.tarrataca@gmail.com

Table of Contents |
© Motivation

@ Generic I/O Module

©® Generic Peripheral Device
O 1/O Modules

Module Function
Control and Timing
Processor Communication
Device communication
Data buffering

Error detection
|/O Module structure

Programmed I/O
Chapter7-nput Ouput 2185

Table of Contents I

1/O Commands

Interrupt-Driven |/O
Interrupt Processing

Interruption-based design issues

Chapter7-nput Ouput 3185

Table of Contents |

© DMA Module

O Where to focus your study

@ References

Chapter7-nput Ouput 4785

Motivation

Motivation

Computers need the ability to communicate with 1/O sources:
® Input: keyboard, mouse, etc.
® Qutput: monitor, printer, etc.

® Different devices have different requirements:
® Peripheral logic;
® Peripheral speed;

® Peripheral data protocol.

Chapter7-nput Ouput 5185

Generic 1/0 Module

Generic |/O Module

How can we perform this type of communication between processor and
external devices?

Chapter7-nput Ouput 6185

Generic 1/0 Module

How can we perform this type of communication between processor and

external devices?

Why not connect the peripherals directly to the bus? Any ideas? '

Chapter7-nput Ouput 7785

Generic 1/0 Module

Why not connect the peripherals directly to the bus? Any ideas? '

Reason 1: There are a wide variety of peripherals:
® Each with its method of operation;

® |Impractical to incorporate diverse set of logic within the processor;

Generic 1/0 Module

Why not connect the peripherals directly to the bus? Any ideas? '

Reason 2: Data transfer rates:
® Peripherals often operate much slower than processor speed or memory.

® |Impractical to use the high-speed system bus to communicate directly;

Generic 1/0 Module

Why not connect the peripherals directly to the bus? Any ideas? '

Reason 3: Data transfer rates:
® On the other hand:
® transfer rate may also be faster than that of the memory/processor;

® mismatch would lead to inefficiencies if not managed properly.

Generic 1/0 Module

Why not connect the peripherals directly to the bus? Any ideas? '

Reason 4: Data formats:

® Peripherals often use different communication protocol:
® data format not necessarily the same as the computer;

® word length not necessarily the same as the computer;

® The processor would have to convert these back-and-forth...

Generic 1/0 Module

Succinctly:
® Processor speed is usually faster than peripherals:

® No need to slow down the processor to do interaction with 1/O sources!

What can be done to solve this problem? Any ideas? '

Generic 1/0 Module

What can be done to solve this problem? Any ideas? '

Create a separate entity responsible for managing I/O sources:

® Manage the communication with the peripherals;
® Store the data input / output from and to peripherals;
® Detect errors.

This is known as the 1/O module

Generic 1/0 Module

Generic |/O Module

An 1/O module is required:

'] jJ Address Lines

/.,LP H—~ Data Lines
)))))
HH—H .1 Control Lines
I/O Module

Links to peripheral devices
Figure: Generic Model of an I/O Module. (Source: (Stallings, 2015))

Luis Tarrataca Chapter 7 - Input / Output 14 /85

Generic Peripheral Device

Generic Peripheral Device

There is a wide assorfment of external |/O devices:
® Means of exchanging data between environment and computer;

® External devices attaches to the computer by a link to an I/O module:

® link is used to exchange control, status, and data;

Chapter7-put Ouput 15,85

Generic Peripheral Device

We can broadly classify external devices into three categories:
® Human readable: Suitable for communicating with the computer user:
® E.g.:video display terminals and printers.
® Machine readable: Suitable for communicating with equipment
® FE.g.: magnetic disks, tape systems, sensors and actuators
® Communication: Suitable for communicating with remote devices:

® E.g.:wifi, modem

Generic Peripheral Device

What do you think are the main components of an external device? Any

ideas?

Chapter7-put Ouput 17,88

In very general ferms:

Control
signals from

| Status
1/O module

Data bits
signals to to and from
1/0 module /O module

Data (device-unique)
to and from

environment
Figure: Block Diagram of an External Device. (Source: (Stallings, 2015))

[m]

= z
Chapter 7 - Input / Output

18 /85

Generic Peripheral Device

Control Signals:
® To determine the function the device will perform, e.g.:
® Send data to the I/O module;
® Accept data from the 1/O module;
® Report status;

® Perform function particular to the device (e.g.: position a disk head)

Generic Peripheral Device

Data signails:
® Set of bits fo be sent to or received from the |/O module;
Status signals:

® To indicate the state of the device, e.g.:

® READY/NOT-READY to show whether the device is ready for data transfer
Control logic:

® Controls the device in response to direction from the I/O module;

Generic Peripheral Device

Transducer:
® Converts data:
® From electrical to other forms of energy during output;
® And from other forms to electrical during input
Buffer:

® To hold data.

1/0 Modules Module Function

Module Function

Major functions of an I/O module fall into the following categories:
® Control and fiming;
® Processor communication;
® Device communication;

® Data buffering:;

Error correction.

Chapter7-put Ouput 22,88

1/0 Modules Module Function

Control and Timing (1/4)

At any time the processor:
® May communicate with external devices in unpredictable patterns;
® This depends on the program’s need for I/O;
This means that:
® Main memory and the system bus must be shared with the I/O function.

® Thus, the I/O function includes a control and timing requirement:

® Coordinates flow of traffic between resources;

1/0 Modules Module Function

Control and Timing (2/4)

What do you think are the sequence of steps required for the processor
to interact with the |/O module? Any ideas?

Chapter7-iput Ouput 2488

1/0 Modules Module Function

Control and Timing (3/4)

Interaction example between processor and I/O module:
@ Processor interrogates the I/O module to check device status;
@ /O module returns the device status.

© If the device is operational and ready to fransmit:
® Processor requests data transfer to 1/O module;

® |/O module issues a data transfer command to device ;
@ 1/O module obtains data from device.

© Data are transferred from the 1/O module to the processor.

1/0 Modules Module Function

Control and Timing (4/4)

Each one of these interactions between processor and |/O module:

® involves one or more bus arbitrations

Chapter7-put Ouput 26,88

1/0 Modules Module Function

Preceding example illustrated that:

® |/O module must communicate with the processor and external device

What are the steps required to perform such a communication? Any

ideas?

1/0 Modules Module Function

Processor Communication

Processor communication involves the following (1/3):

® Command decoding:
® |/O module accepts commands from processor:
® Control bus signals
® E.g.:1/0 module commands for a disk drive:
® READ SECTOR;
® WRITE SECTOR;
® SEEK track number;

® SCAN sector ID.

Chapter7-put Ouput 28,88

1/0 Modules Module Function

Processor Communication

Processor communication involves the following (2/3):
® Dadata:
® Exchanged between the processor and the I/O module (data bus).
® Status reporting:
® |mportant to know the status of the I/O module;
® Eg.:
® Processor asks to read data from |/O module;
® But I/O module may not be ready:;
® This happens because it may still be working on previous I/O command;

® This needs to be reported with a status signal;

1/0 Modules Module Function

Processor Communication

Processor communication involves the following (3/3):

® Address recognition:
® Recall that each word of memory has an address;
® The same is valid for each |/O device;

® |/O module has one unique address for each peripheral it controls
Remember from the laboratory?

® Memory address for screen (FFFEh);
® Memory address for keyboard (FFFFh);

® Memory address for timer (FFF7h);

1/0 Modules Module Function

Device communication

I/O module must be able to perform device communication, involving:

Control Status Data bits
° . signals from signals to to and from
Commands; VO module /0 module U0 module
® Status information;
Control . Buffer
® Data logic
Transducer

Data (device-unigue)
to and from
environment

Figure: Block Diagram of an External Device. (Source:

1/0 Modules Module Function

Data buffering (1/4)

An essential task of an I/O module is data buffering:
® High transfer rate between main memory and processor;

® Whereas the rate is orders of magnitude lower for external devices.

Chapter7-put Ouput 32,88

1/0 Modules Module Function

Data buffering (2/4)

Main memory data are sent to an I/O module in a rapid burst:
® Data are buffered in the |/O module;

® Then sent to peripheral device at a data rate it can sustain;

Chapter7-put Ouput 33,88

1/0 Modules Module Function

Data buffering (3/4)

In the opposite direction (I/O module to main memory):
® Data are buffered from peripheral;

® This is done so as not to fie up the memory in a slow transfer operation.

Chapter7-put Ouput 34,88

1/0 Modules Module Function

Data buffering (4/4)

If the I/O device operates at a rate higher than the memory access rate:

® |/O module performs the needed buffering operation.

Chapter7-put Ouput 3588

1/0 Modules Module Function

Error detection

I/O module is often responsible for error detection and reporting, e.g.:
® Mechanical and electrical malfunctions reported by the device:
® E.g.:paper jam, bad disk frack
® Unintentional bit changes during device transmission:

® Remember error detection and correction? (Chapter 5)

Chapter7-put Ouput 36,88

1/0 Modules 1/0 Module structure

/O Module structure

Lets take a closer look at a generic I/O module.

Interface to Interface to
system bus external device

~HA ~HA—

—-I Data registers
Da device
ta -
Tinds interface
logic

—’i Status/control registers

Data

-
:

Status

Control

Address
! Data
lines External
1o device
e R Status
ntrol logic
e Ve i Control

Figure: Block Diagram of an of an /O Module. (Source: (Stallings, 2015))

0 Mol stuchure

Organization of a generic /O module (1/2):
® Module connects fo computer through a set of signal lines;
® Data transferred to and from the module are buffered in data registers.

® Status registers provide status information:

® Also function as control registers, to accept processor control info;

0 Mol stuchure

Organization of a generic 1/O module (2/2):
® |ogic within the module interacts with the processor via control lines:
® Processor uses the control lines to issue commands to the I/O module;

® Some of the control lines may be used by the I/O module

® E.g. arbitration and status signals;

® Module must also be able to recognize and generate addresses:

® for each device it controls

® |/O module contains logic specific for a set of interfaces;

0 Mol stuchure

I/O module allows processor to view peripherals in a simple way:
® Presents a high-level interface to the processor;
® Taking most of the I/O processing burden away from the processor;

® Also called an I/O processor =)

V0 Moo shuctae

Now that we have an idea of the main components...

How can we manage the communication between the pP and the I/O

module?

® Any ideas?

Chapter7-put Ouput 41,88

0 Mol stuchure

Essentially, there are three techniques are possible for I/O operations:

No Interrupts

Use of Interrupts

1/O-to-memory transfer through processor

Programmed I/O

Interrupt-driven /O

Direct /O-to-memory transfer

Direct memory access (DMA)

Figure: 1/O Techniques (Source: (Stallings, 2015))

Lets have a look at each one of these =)

Luis Tarrataca

Chapter 7 - Input / Output 42 /85

1/0 Modules Programmed 1/0

Programmed I/O

Data are exchanged between the processor and the 1/O module:
@ Processor executes program controlling I/O operation;
® E.g.:sensing device status, read/write command, data fransfer.
©® Once the processor issues a command to the |/O module:
® Processor must wait until the 1/O operation is complete;

© If the processor is faster than the |/O module:

® Wasteful of processor time ='(

Chapter7-put Ouput 43,88

1/0 Modules Programmed 1/O

[/O Commands

To execute an |/O-related instruction:
® Processor issues an address:
® Specifying the particular I/O module and external device;

® An |/O command which can be of the following type:

® Control, Test, Read and Write

Chapter7-put /Ouput 44/ 88

i

I/O commands the processor can issue are of the following type (1/2):
® Control: Used to activate a peripheral and tell it what o do:
® E.g.: Rewind magnetic-tape; move to HD track;
® Test: test I/O module and its peripherals. E.g.:
® |s the peripheral powered on?
® |s the peripheral available for use?

® Has the most recent |/O operation completed? Did any errors occur?

Chapter7-put Ouput 4588

i

I/O commands the processor can issue are of the following type (2/2):
® Read: I/O module obtains a data item from the peripheral:
® Placing the data in an internal buffer;
® Processor requests I/O module to place data on bus;
® Write: I/O module writes a data item o the peripheral:
® |/O module reads data from bus;

® |/O module transmits data to peripheral;

Chapter7-put Ouput 46,88

e

In flowchart form:

| commandto f§ CPU—1/O

0-CPU

Error
condition

from /O 1/0—CPU
module
1
Write word
i ey CPU — Memory

Next instruction

Figure: Programmed I/O technique for input of a block of data (Source: (Stallings, 2015))

arrataca Chapter 7 - Input / Output 47 / 85

e

Can you characterize the system from an efficiency perspective?

Chapter7-put Ouput 48,88

e

Very wastefull Recall that:

® Processor issues a command to the I/O module:
® then waits for I/O operation to complete.

® While waiting, processor repeatedly interrogates status of /O module.

® If processor is faster than I/O module: wasteful of processor time.

Is it possible to do any better? '

1/0 Modules Interrupt-Driven 1/0

Interrupt-Driven 1/O

What is the ideal scenario for processor performance?
® Do not wait for I/O module;
® |nstead, continue processing other tasks;

® And be notified when I/O module has something for processor;

Chapter7-put Ouput 50,88

This is the concept of interruption, l.e.:
© Ask for something from the I/O module;
©® Continue processing without waiting for the I/O module;

© Be interrupted when the I/O module has something ready.

From the point of view of the 1/0 module:
@ Module waits for processor to request data:

© When request is made:
® When possible: module interacts with peripheral;
® Once the data is completely buffered;

® data are place on data bus;
O An interrupt signal is sent to the processor over a control line;

@ Module becomes available for another I/O operation.

From the point of view of the processor (1/2):
@ A READ command is issued to I/O module;
@ Processor goes off to do something else;

©® Processor checks for interrupts at the end of each instruction cycle;

From the point of view of the processor (2/2):
@ When the interrupt from the 1/O module occurs:
® processor saves program context;
® processor proceeds to read data from /O module
® processor stores data in memry;
© Processor then restores previous program context;

O Processes resumes execution of previous program

1/0 Modules Interrupt-Driven 1/O

In flowchart form:

CPU—= /O
Do something
~ Felse
Read status (o
of 110 Interrupt
module L0 —CPU

Error
condition

O—CPU

CPU — Memory

Next instruction

Figure: Interrupt-driven 1/O (Source: (Stallings, 2015))

arrataca Chapter 7 - Input / Output 55 /85

1/0 Modules Interrupt-Driven 1/O

Interrupt Processing

Lets take a closer look at the inferruption-based strategy.
® |nterruption friggers a number of events
® Processor, hardware and software.
® Automatically, we can pose a series of questions:
® What happens to the program that is executing?
® What happens to the processor?

® How is the interruption processed?

Chapter7-put Ouput 86,85

Hardware Software

|
|

!;ﬂu'symhnnlm
issues an interrupt e = 5
process state
information
Process interrupt I
Restore process state
information I

Restore old PSW
and PC

Figure: Simple Interrupt Processing (Source: (Stallings, 2015))

When an |/O device completes an |/O operation (1/4):
@ Device issues an interrupt signal to the processor.
@ Processor finishes execution of the current instruction
® before responding to the interrupt;

©® Processor tests for an interrupt:
® determines if there is one;
® if one exists, sends an acknowledgement signal to peripheral;

® acknowledgment allows the device to remove its inferrupt signal.

When an I/O device completes an |/O operation (2/4):

@ Processor needs to transfer control to the interrupt routine;
@ This is done by saving the program context:
® processor status word;

® program counter;

© Processor then loads the program counter associated with the
interrupt-handling routine.

When an I/O device completes an |/O operation (3/4):

0O Interruption routine may use the registers:
® This means that these registers need to be saved;

® Remember Push and Pops from the laboratory?
@ Typically, the interrupt handler will begin by saving all registers on the stack;

O Interrupt handler next processes the interrupt

When an |/O device completes an |/O operation (4/4):
©® When interrupt processing is complete:
® the saved registers need to retrieved from the stack and restored;
@ Final act is to restore the PSW and program counter

® Next instruction to be executed will be from the previously interrupted
program.

Recall the instruction cycle:

Indirection Indirection

Multiple
operands

Instruction complete, Return for string
fetcth next instruction or vector data

Figure: Instruction Cycle State Diagram (Source: (Stallings, 2015))

Luis Tarrataca Chapter 7 - Input / Output 62 /85

1/0 Modules Interrupt-Driven 1/0

Interruption-based design issues

Almost invariably there will be multiple 1/O modules...

How does the processor determine which device issued the interrupt? '

If multiple interrupts have occurred, how does the processor decide which

one fo process?

Chapter7-put Ouput 63,88

How does the processor determine which device issued the interrupt? '

® Multiple interrupt lines:

® Impractical to dedicate more than a few bus lines to interrupt lines;

® Low number of interruption lines still means that we have to multiplex them.
® Software poll:

® Processors calls an inferrupt routine that polls each 1/O module.

® The I/O module responds positively if it set the interrupt.

® Disadvantage: time consuming!

Chapter7-put Ouput 6488

How does the processor determine which device issued the interrupt? '

® Daisy chain method:

® Al I/O modules share a common interrupt request line;
® When an interruption is detected an interrupt acknowledge (ACK) is sent;
® ACK goes through the 1/O modules until it gets to the requesting module;
® Requesting module responds by placing a word on the data lines;
® Word is either:

® Address of the I/O module or;

® Address of an adequate interruption handling technique.

Chapter7-put Ouput 65,88

If multiple interrupts have occurred, how does the processor decide which

one to process?

® Multiple interrupt lines
® Each line can have a predetermined priority;
® Just choose the highest priority interrupt line.
® Software polling / Daisy chain:

® The order with each the modules are polled determines the priority.

Chapter7-put Ouput 66,85

Interruption-based model is computationally more efficient, however:
® Processor has a “‘test and service a device’’ rate:
® This limits the 1/O fransfer rate...
® And accessing main memory is expensive...
® Processor is tied up in managing an |/O transfer:
® A number of instructions must be executed for each 1/O transfer

@ This time could be spent doing something more useful: real processing!

Interrupt 1/O is more efficient than programmed 1/O:

® Eliminates needless waiting...

Despite the improvement, can you see any potential upgrade that can

be performed with interrupt I/O?

Despite the improvement, can you see any potential upgrade that can

be performed with interrupt I/O?

Interrupt 1/O still consumes a lot of processor time:
® Data is exchanged between memory and I/O module...
® But this exchange still needs to go through the processor....

® Processor spends time transferring data

® while it could be doing something more useful..

DMA Module

DMA module

Idea: Copy data directly to memory, bypassing processor:
® Memory accesses are performed by DMA module;
® Unburdens the processor;
® Combine with interruption scheme for optimum efficiency.

This strategy is called Direct Memory Access (DMA)

Chapter7-put Ouput 70,88

DMA Module

DMA involves an additional module on the system bus:

Data
{ count
Data lines D.ata
{ register
Address
Address lines register
R to DMA
Acknowledge from DMA
Interrupt C;mt.ml
Read ogic
‘Write

Figure: Typical DMA block diagram (Source: (Stallings, 2015))

® Uses the bus only when the processor does not need to or...

® Forces the processor to suspend bus operations temporarily;

DMA Module

Processor issues a command to the DMA module:

® Command contains (1/2):
® Whether a read or write is requested:
® transmitted over the bus control lines;
® Address of the 1/O device involved

® fransmitted over the bus data lines;

72 /85

DMA Module

Processor issues a command to the DMA module:

® Command contains (2/2):
® Starting location in memory to read from or write to:
® communicated on the data lines and...
® stored by the DMA module in its address register;
® Number of words to be read or written:

® communicated via the data lines and stored in the data count register;

DMA Module

Processor then continues with other work, i.e.:

® |/O operation delegated to DMA module;
® DMA module fransfers block of data:
® bypassing the processor;

® When the transfer is complete:

® DMA module sends interrupt signal;

Next instruction

® Processor is involved only at:
Figure: DMA-driven I/O (Source: (Stallings, 2015))
® beginning of transfer;

® end of transfer;

DMA Module

Now that we know more about the DMA module:

How can the DMA module use the bus? Any ideas? '

Chapter7-put Ouput 75,88

DMA Module

Idea:
® Processor is potentially suspended just before it needs to use the bus;

® DMA module transfers one word and returns control to the processor

Time
Instruction cycle
Processor Processor Processor Processor Processor Processor
cycle cycle cycle cycle cycle cycle
Fetch Decode Fetch Execute Store Process
instruction | instruction operand | instruction result interrupt
DMA Interrupt
breakpoints breakpoint

Figure: DMA and interrupt breakpoints during an instruction cycle (Source: (Stallings, 2015))

DMA Module

Processor suspend procedure is not an interrupt:
® Processor does not save a context and do something else;
® Rather, the processor pauses for one bus cycle;
® QOverall effect: processor executes more slowly;

® Still, DMA is more efficient than interrupt-driven or programmed |/O.

DMA Module

Now that we know more about the DMA module:

Where should the DMA module be placed? Any ideas? '

Chapter7-put Ouput 78,88

DMA Module

DMA mechanism can be configured in a variety of ways (1/3):

(MMD|M|MD| I) ---

Figure: Single-bus, detached DMA (Source: (Stallings, 2015))

In this example:
® All modules share the same system bus;

® DMA module uses programmed I/O to:

® Exchange data between memory and an /O module;

® |nexpensive but inefficient:

® Each transfer of a word consumes mulfiple bus cycles.

DMA Module

DMA mechanism can be configured in a variety of ways (2/3):

= o

o
-l =l

Figure: Single-bus, integrated DMA-I/O (Source: (Stallings, 2015))

In this example:
® Number of bus cycles can be cut by infegrating DMA and 1/O;

® DMA module and I/O share a non-system bus connection.

DMA Module

DMA mechanism can be configured in a variety of ways (3/3):

System bus

1/O bus

VA
IE g
— g
3
4

= i.
IH
Ca—

Figure: 1/O bus (Source: (Stallings, 2015))

In this example:
® |/O modules are connected to the DMA module using an I/O bus;
® Reduces the number of I/O interfaces in the DMA module to one;

® Providing for an easily expandable configuration.

DMA Module

In essence:
® DMA is a co-processor: unburdens CPU;

® |/O module also used to unburden CPU;

Where to focus your study

Where to focus your study

After this class you should be able to:
® Explain the use of I/O modules as part of a computer organization.

® Understand the difference between programmed I/O and interrupt-driven
I/O and discuss their relative merits.

® Present an overview of the operation of direct memory access.

Chapter7-put Ouput 83,85

Where to focus your study

Less important to know how these solutions were implemented:
® details of specific programnmable peripheral interfaces;
® details of specific DMA controllers;
® details of specific external interfaces.

Your focus should always be on the building blocks for developing a solution
=)

Chapter7-put Ouput 84,85

References

References |

@ Stallings, W. (2015).
Computer Organization and Architecture: Designing for Performance.

Pearson Education, 10th edition edition.

Chapter7-put Ouput 85,85

	Motivation
	Generic I/O Module
	Generic Peripheral Device
	I/O Modules
	Module Function
	I/O Module structure
	Programmed I/O
	Interrupt-Driven I/O

	DMA Module
	Where to focus your study
	References

