Chapter 19 - Control Unit Operation

Luis Tarrataca
luis.tarratacalgmail.com

CEFET-RJ

Chapter 19 - ContolUnil Operation

1/67

luis.tarrataca@gmail.com

Table of Contents |

© Motivation

@ p-operations
Fetch cycle

Fetch cycle
Indirect cycle
Interrupt Cycle
Execution Cycle
Instruction Cycle

Control Unit Operation

Hardwired implementation

Chapter 19 Contol UntOperation 2767

Table of Contents |

©® Where to focus your study

@ References

Chapter 19 Contol UntOperation 3767

Motivation

Motivation

Remember when we talked about interruptions in Chapter 7?

Indirection Indirection

Instruction complete, Return for string
fetcth next instruction or vector data

Figure: Instruction Cycle State Diagram (Source: (Stallings, 2015))

Luis Tarrataca Chapter 19 - Control Unit Operation 4/ 67

Each instruction can be perceived as a sequence of operations:

® Fetch Instruction

Decode Instruction

Fetch Operands

Execute Instruction

® Operand Store

Look for interrupts

Today we will take a step further beyond these steps: micro-operations:

® Each one is very simple and accomplishes very little.

So, what is a micro-operation? Any ideas? '

Micro-operation:
® Program: sequence of instructions:
® Each instruction has multiple stages (fetch, decode, ..., interrupts):
® Each one of these involves one or more p-operations;
® These are atomic operations, not possible to go further than these;

® Function decomposition FTW =)

Program execution

Instruction cycle Instruction cycle . Instruction cycle

TR~

‘ Indirect | | Execute | |Interrupt|

Fetch
P OP

Figure: Constituent Elements of a Program Execution. (Source: (Stallings, 2015))

Luis Tarrataca Chapter 19 - Control Unit Operation 8/67

p-operations

p-operations

Assume the following organization:

CPU
PC ~ MAR | >
] f gMemory
b= H B

IR MBR K —

Address Data Control
bus bus bus
MBR = Memory buffer register
MAR = Memory address register
IR = Instruction register
PC = Program counter

Figure: Data Flow Fetch Cycle (Source: (Stallings. 2015))

Chapter 19 Control Ut Operation 9767

|-operations

Four registers are involved (1/2):
® Memory address register (MAR):
® Specifies the address in memory for a read or write operation
® Connected to the address lines of the system bus
® Memory buffer register (MBR):
® Contains one of two:
® Value to be stored in memory;
® |ast value read from memory;

® Connected to the data lines of the system bus,

-operations

Four registers are involved (2/2):
® Program counter (PC):
® Contains the address of an instruction to be fetched.

® Instruction register (IR):

® Contains the instruction most recently fetched.

Luis Tarrataca Chapter 19 - Control Unit Operation

11/67

Lets consider the fetch cycle:

What is the sequence of events regarding these processor registers? Any

ideas?

Chapter 19 Contol Ut Operation 12767

J1-operations Fetch cycle

Fetch Cycle

Imagine that the PC has address 1100100

MAR

MBR
PC|{0000000001100100
IR
AC

Figure: First step of the fetch - setup PC (Source: (Stallings, 2015))

® After the PC has been loaded what do we need to do?

Chapter 19 Control Ut Operation 1367

J1-operations Fetch cycle

Fetch Cycle

Imagine that the PC has address 1100100

MAR
MBR
PC| 0000000001100100

IR
AC

Figure: First step of the fetch - setup PC (Source: (Stallings, 2015))

® After the PC has been loaded what do we need to do?
® PC holds the address of the next instructions;

® We still need to load the instruction.

Chapter 19 Control Ut Operation 14767

[.-operations Fetch cycle

® Notice that the MAR is connected to the data lines of the bus;

® \We need to copy the PC value to MAR and...;

MAR | 0000000001100100
MBR
PC| 0000000001100100

IR

AC

Figure: Second step of the fetch - setup MAR (Source: (Stallings, 2015))

® .and issue a READ signal to the bus

[.-operations Fetch cycle

® After the READ we will have the instruction on the MBR:

MAR
MBR
PC
IR
AC

Figure: Third step of the fetch - setup MBR (Source: (Stallings, 2015))

0000000001100100

0001000000100000

0000000001100101

® \We also need to process the next instruction (PC+1);

Luis Tarrataca

Chapter 19 - Control Unit Operation

[.-operations Fetch cycle

® Cool, so what next?

® But before we can do that we need to copy the instruction to the IR;

MAR | 0000000001100100
MBR| 0001000000100000
PC| 0000000001100101
IR{0001000000100000
AC

Figure: Fourth step of the fetch - setup IR (Source: (Stallings, 2015))

Luis Tarrataca Chapter 19 - Control Unit Operation 17 / 67

[.-operations Fetch cycle

Thus the fetch cycle actually consists of:
® three steps and
® four micro-operations.

Symbolically, we can write this sequence of events as follows:

t :MAR ¢ PC

fo :MBR <— Memory
PC < PC + |

13 IR <— MBR

Where [is the instruction length.

Luis Tarrataca Chapter 19 - Control Unit Operation

18 / 67

[.-operations Fetch cycle

This grouping would also have been valid:

t :MAR < PC
fo :MBR <— Memory
t3 :PC < PC + |

IR <— MBR

As long as:
® Proper sequence is followed;

® No read and write operations occur simultaneously on the same f1;;

Why is it possible to execute multiple instructions during time , or 137

Each p-operation involves movement of data into or out of a register:
® |f these movements do not inferfere with one another:

® several of them can take place during one step, saving time.

J1-operations Fetch cycle

Indirect cyle

Once an instruction is fetched, the next step is to fetch source operands:

® |f the instruction specifies a direct address,

1 :MAR <— Address(IR)
f» :MBR <— Memory

® If the instruction specifies an indirect address

1 :MAR < IR(Address)

t2 :MBR <— Memory

f3 :Address(IR) <— MBR(Address)
ta :MAR < IR(Address)

ts :MBR <— Memory

Chapter 19 Control Ut Operation 21767

J1-operations Fetch cycle

Interrupt Cycle

Test to determine whether any interrupts have occurred:

® After the completion of the execute cycle.

® Example:

H
to

fn
Th1

fn+2

:MBR <+ PC
:MAR <— SaveMemoryAddress

PC < InterruptRoutineAddress

:MAR <— SaveMemoryAddress
:MBR < Memory
:PC <~ MBR

Chapter 19 Contol UntOperation 22/67

[.-operations Fetch cycle

® Logic:
® Save the current PC info somne memory location;
® Where to? Stack Pointer usually contains an appropriate address;
® Load the address of the interruption handling routine;
® Execute the interruption handling routine;
® Once the interruption handling routine finishes:

® |oad the PC that was stored into memory.

J1-operations Fetch cycle

Execution Cycle

Fetch, indirect, and interrupt cycles are simple and predictable.
® Same micro-operations are repeated each time around.
This is not true of the execute cycle.

® Different opcodes possibilities imply different sequences.

ADD R1,X : ISZ X :
1 :MAR < IR(Address) 1 :MAR < IRC Address)
t2 :MBR <— Memory t2 :MBR <— Memory
f3 :R1 <= R1 4+ MBR MBR <~ MBR + 1

Memory <— MBR
f3 :If MBR == 0 then PC <— PC + |

® |SZ = Increment and skip if zero;

Chapter 19 Contol Ut Operation 24767

J1-operations Fetch cycle

Instruction Cycle

We can now put all these stages into a single instruction cycle
® We will employ an auxiliary register: instruction cycle code (ICC).
® |CC designates the state of the processor:
® 00: Fetch
® 01: Indirect
® 10: Execute

® 17: Interrupt

Chapter 19 Contol Ut Operation 2867

R CL I Fetch cycle

At the end of each of the four cycles: ICC is set appropriately.
® |ndirect cycle is always followed by the execute cycle.
® Interrupt cycle is always followed by the fetch cycle

® What about the fetch cycle?

® Depends on whether direct or indirect addressing is used;

® What about the execute cycle?

® Depends whether an interruption was activated;

Luis Tarrataca Chapter 19 - Control Unit Operation

26 /67

R CL I Fetch cycle

11 (interrupt) / ce? \ 00 (fetch)
10 (execute) | | 01 indirect

Y

Setup Read Fetch
interrupt Orees address instruction
Execute
ICC=00 instruction ICC =10

Yes
for enabled

interrupt?

ICC=11 ICC=00

Figure: Flowchart for instruction cycle (Source: (Stallings, 2015))

Luis Tarrataca Chapter 19 - Control Unit Operation 27 /67

J1-operations Control Unit Operation

Control Unit Operation

p-operations fall info one of the following categories:
® Transfer data from one register to another;
® Transfer data from a register fo an external interface (e.g., system bus);
® Transfer data from an external intferface to a register;

® Perform an arithmetic operation;

Chapter 19 Control Ut Opertion 2867

What do you think will be the functional requirement of the control unit?

Any ideas?

Chapter 19 Contol Ut Operation 2967

What do you think will be the functional requirement of the control unit?

Any ideas?

Control unit performs two basic tasks:
® Sequencing: Go through a sequence of p-operations;

® Execution: causes each p-operation to be performed.

Lets have a look at the general diagram of a control unit:

| Instruction register |

Control signals
—_— within CPU
Flags .
.—y Control signals
Control from control bus
unit <
Clock —— >
Control signals
to control bus

Figure: Block diagram of the control unit (Source: (Stallings, 2015))

Control bus

The inputs are:
® Clock:
® Causes a set of simulfaneous micro-operations to be performed;
® Instruction register:
® Opcode and addressing mode o determine which p-operations to perform;
® Flags:
® Indicating status of the processor and outcome of previous ALU operations;
® Control signais:

® signals to the control unit.

The outputs are:
® Control signals within the processor:
® Those that cause data to be moved from one register to another;
® and those that activate specific ALU functions.
® Control signals to control bus:
® Control signals fo memory;

@ Control signals to the I/O modules.

J1-operations Control Unit Operation

Example (1/3)

Consider fetch cycle, the control unit needs to:
® Transfer contents of the PC to MAR.

@ This is done by activating a control signal:

® Opening the gates between the bits of PC and the bits of MAR.

® Read a word from memory into MBR and increment PC.

Chapter 19 Contol Ut Opertion 34767

J1-operations Control Unit Operation

Example (2/3)

Control unit sends the following control signals simultaneously (1/2):

® Control signal that opens gates:

® Allowing contents of MAR onto the address bus;
® Memory read control signal on the control bus;

® Control signal that opens the gates:

® Allowing contfents of the data bus to be stored in MBR.

Chapter 19 Contol Ut Opertion 3667

J1-operations Control Unit Operation

Example (2/3)

Control unit sends the following control signals simultaneously (2/2):

® Control signals to logic thats
® Adds 1 to the contents of PC;

® Stores the result back to PC.
Then the control unit:

® Sends a control signal that opens gates between MBR and IR.

Chapter 19 Control Ut Operation 3667

J1-operations Control Unit Operation

Example (3/3)

Cs
Cit
Cio
Cy
AC
| IR | C-;—'—% %4—(:9
Cg—C
| —
L]
S-—C 3 ALU . C‘ontrol
—> , signals
| —
.
Control
Fl
unit o s
| —
t. - .L
Clock Control
signals

Figure: Data paths and control signals (Source: (Stallings, 2015))

Chapter 19 Contol Ut Opertion 5767

With each clock cycle control signals go to three destinations:
® Data paths, for each path to be controlled:
® A switch C; temporarily opens the gate to let data pass;
® ALU:
® Signals activate various logic circuits and gates within the ALU;
® System bus:
® Control signals are sent out onto the control lines of the system bus;

® E.g.. memory READ.

Control unit knows state of the instruction cycle:

® State-based sequence of control signals are emitted:

® causing p-operations to occur;

® System clock pulses are used to time the sequence of events;

What are the control signals necessary for the fetch cycle? Any ideas?

Chapter 19 Contol Ut Operation 4067

J1-operations Control Unit Operation

Cs

Clock vlCc) ntmlL

Cycle | p-operations Active Control Signals
t : MAR < (PC)
Fetch | f» : MBR <— Memory
PC < (PC) + 1

t3 1 IR < (MBR)
Chapter 19 - Control Unit Operation a /67

J1-operations Control Unit Operation

Cs

Clock vlCc) ntmlL

Cycle | p-operations Active Control Signals
t : MAR <+ (PC) Cy

Fetch | t, : MBR <— Memory | Cs, Cp

PC < (PC) + 1
t3 1 IR < (MBR) Cy

Chapter 19 - Control Unit Operation 42 /67

What are the control signals necessary for the indirect cycle? Any ideas?

Chapter 19 Control Ut Operation 4567

J1-operations Control Unit Operation

Cs

Clock vlCc) ntmlL

Cycle p-operations Active Control Signals

t : MAR < (IR(Address))

Indirect | f, : MBR <— Memory

13 : IRCAddress) <— (MBR(Address))

Chapter 19 Conirol Ut Operation 44/ 67

J1-operations Control Unit Operation

Cs

‘TContml
. signals
Clock lContmlL
signals
Cycle p-operations Active Control Signals
t : MAR < (IR(Address)) Cs
Indirect | 1, : MBR <— Memory Cs, Cp
13 : IRCAddress) <— (MBR(Address)) | Cy

Chapter 19 Control Ut Operction 4867

What are the control signals necessary for the interrupt cycle? Any ideas?

Chapter 19 Control Ut Operation 4667

J1-operations Control Unit Operation

Cs

Clock vlCc) ntmlL

Cycle u-operations Active Control Signals

H : MBR < (PC)

Interrupt | f» : MAR <— Save-address
PC < Routine-address

3 : Memory < (MBR)

Chapter 19 - Control Unit Operation 47/67

J1-operations Control Unit Operation

Cs

Clock vlCc) ntmlL

Cycle u-operations Active Control Signals

H : MBR <+ (PC) C

Interrupt | f» : MAR <— Save-address
PC < Routine-address

3 : Memory <— (MBR) Ci2, Cw

Chapter 19 - Control Unit Operation 48/67

J1-operations Control Unit Operation

Conclusions
Active Control
Micro-operations Signals
t;: MAR « (PC) C,
Fetch: t;: MBR < Memory Cs,Cr
PC—(PC) + 1
13 IR < (MBR) C,
t;: MAR < (IR(Address)) Cg
Indirect: t;: MBR < Memory Cs,Cr
t3: IR(Address) < (MBR(Address)) C,
t;: MBR < (PC) Cy
Interrupt: t;: MAR < Save-address
PC < Routine-address
t3: Memory < (MBR) Cyz, Cwy

Cr = Read control signal to system bus.
Cyw = Write control signal to system bus.

Figure: p-operations and control signals (Source: (Stallings, 2015))

J1-operations Hardwired implementation

Hardwired implementation

Now that we know what functions the control unit must perform:

How can we implement the control unit? '

Wide variety of techniques have been used, usually one of:

® Hardwired implementation;

® Microprogrammed implementation.

Chapter 19 Control Ut Operation 50767

WESCEIEL Y Hardwired implementation

Lets take a brief look at the hardwired implementation:

Instruction register

e
aat e
e

—T—
— . [———
Clock Timing Tl Control .
generator . unit * Flags
—T,— D

T 1 T
G G e C,

Yoy Y

Figure: Control unit with decoded inputs (Source: (Stallings, 2015))

[.-operations Hardwired implementation

Lets use the Table from Slide 27:

® With a hardwired implementation:

® Boolean expressions need to be derived as a function of the inputs.

® Define two new control signals P and Q:

PQ | Description
00 | Fetch cycle
01 Indirect cycle
10 | Execute cycle
11 Interrupt cycle

Chapter 19 Control Ut Operation 52/67

WESCEIEL Y Hardwired implementation

Then the following Boolean expression defines Cs:

Cs = PQT, + PQT,

Active Control
Micro-operations Signals
t;: MAR < (PC) C,
Fetch: t;: MBR <« Memory Cs, Cr
PC+ (PC) + 1
13 IR — (MBR) C,
t;: MAR < (IR(Address)) Cy
Indirect: t;: MBR «— Memory Cs, Cyr
t3: IR(Address) < (MBR(Address)) C,
t,: MBR « (PC) Ty
Interrupt: t: MAR <« Save-address
PC < Routine-address
t3: Memory < (MBR) Cpp, Cy

Cgr = Read control signal to system bus.

Cy = Write control signal to system bus.

Figure: Micro-operations and control signals (Source: (Stallings, 2015))

Herdte implemertaon

Then the following Boolean expression defines Cs;:

Cs = @TQ + I_DQTQ

Is this enough for defining Cs?

Chapter 19 Control Ut Opertion 54767

Then the following Boolean expression defines Cs;:

Cs = @TQ + I_:’QTQ

Is this enough for defining Cs? '

® Not enough: Cs is also needed during the execute cycle.

Assume that there are only three instructions that read from memory:
® LDA;
° ADD;
® AND.

Now we can define Cs as:

Cs = PQT, + PQT, + PQ(LDA + ADD + AND)T,

Process would have to be repeated for every control signal:

® Resulting in a set of Boolean equations defining control unit behaviour.

Can you see any problems with the hardwired version?

WESCEIEL Y Hardwired implementation

Process would have to be repeated for every control signal:

® Resulting in a set of Boolean equations defining control unit behaviour.

Can you see any problems with the hardwired version?

In a modern processor:
® Number of boolean equations defining control unit behaviour is very large:

® Implementing a circuit satisfying these equations is extremely complex.

Herdte implemertaon

So what is the alternative to hardwired implementations? Any ideas?

Chapter 19 Control Ut Operation 5967

So what is the alternative to hardwired implementations? Any ideas?

® Hint 1: We have used the same concepts before...

Chapter 19 Control Ut Operation 6067

So what is the alternative o hardwired implementations? Any ideas?

® Hint 1: We have used the same concepts before...

® Hint 2: Concepts where used when we studied boolean circuits...

So what is the alternative to hardwired implementations? Any ideas? '

® Hint 1: We have used the same concepts before...

® Hint 2: Concepts where used when we studied boolean circuits...

® Hint 3: Von...

So what is the alternative to hardwired implementations? Any ideas? '

® Hint 1: We have used the same concepts before...
® Hint 2: Concepts where used when we studied boolean circuits...

® Hint 3: Von Neumann architecture, i.e.: programmable computer;

Chapter 19 Contol Ut Operation 6867

Idea: Apply Von Neumann architecture concepts to pi-operations:

® known as p-programming;

® This is the subject of the next chapter =)

64 /67

Where to focus your study

Where to focus your study

After this class you should be able to understand that:

® The execution of an instruction involves the execution of a sequence of
substeps, generally called cycles;

® Each cycle is in turn made up of a sequence of more fundamental
operations, called micro-operations;

® The control unit causes the processor to step through a series of
micro-operations in the proper sequence and generates the appropriate
control signals;

Chapter 19 Control Ut Operation 48./67

Where to focus your study

Less important to know how these solutions were implemented:
® details of specific hardware solutions.

Your focus should always be on the building blocks for developing a solution
=)

Chapter 19 Control Ut Operation 4667

References

References |

@ Stallings, W. (2015).
Computer Organization and Architecture: Designing for Performance.

Pearson Education, 10th edition edition.

Chapter 19 Contol Ut Opertion 6767

	Motivation
	-operations
	Fetch cycle
	Fetch cycle
	Control Unit Operation
	Hardwired implementation

	Where to focus your study
	References

