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Motivation

Motivation

Remember when we talked about interruptions in Chapter 7?

Indirection Indirection

Instruction complete, Return for string
fetcth next instruction or vector data

Figure: Instruction Cycle State Diagram (Source: (Stallings, 2015))
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Each instruction can be perceived as a sequence of operations:

® Fetch Instruction

Decode Instruction

Fetch Operands

Execute Instruction

® Operand Store

Look for interrupts



Today we will take a step further beyond these steps: micro-operations:

® Each one is very simple and accomplishes very little.

So, what is a micro-operation? Any ideas? '




Micro-operation:
® Program: sequence of instructions:
® Each instruction has multiple stages (fetch, decode, ..., interrupts):
® Each one of these involves one or more p-operations;
® These are atomic operations, not possible to go further than these;

® Function decomposition FTW =)



Program execution

Instruction cycle Instruction cycle . Instruction cycle

TR~

‘ Indirect | | Execute | |Interrupt|

Fetch
P OP

Figure: Constituent Elements of a Program Execution. (Source: (Stallings, 2015))
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p-operations

p-operations

Assume the following organization:

CPU
PC ~ MAR | >
] f gMemory
b= H B

IR MBR K —

Address Data Control
bus bus bus
MBR = Memory buffer register
MAR = Memory address register
IR = Instruction register
PC = Program counter

Figure: Data Flow Fetch Cycle (Source: (Stallings. 2015))
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|-operations

Four registers are involved (1/2):
® Memory address register (MAR):
® Specifies the address in memory for a read or write operation
® Connected to the address lines of the system bus
® Memory buffer register (MBR):
® Contains one of two:
® Value to be stored in memory;
® |ast value read from memory;

® Connected to the data lines of the system bus,



-operations

Four registers are involved (2/2):
® Program counter (PC):
® Contains the address of an instruction to be fetched.

® Instruction register (IR):

® Contains the instruction most recently fetched.
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Lets consider the fetch cycle:

What is the sequence of events regarding these processor registers? Any

ideas?
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J1-operations Fetch cycle

Fetch Cycle

Imagine that the PC has address 1100100

MAR

MBR
PC|{0000000001100100
IR
AC

Figure: First step of the fetch - setup PC (Source: (Stallings, 2015))

® After the PC has been loaded what do we need to do?
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J1-operations Fetch cycle

Fetch Cycle

Imagine that the PC has address 1100100

MAR
MBR
PC| 0000000001100100

IR
AC

Figure: First step of the fetch - setup PC (Source: (Stallings, 2015))

® After the PC has been loaded what do we need to do?
® PC holds the address of the next instructions;

® We still need to load the instruction.
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[.-operations Fetch cycle

® Notice that the MAR is connected to the data lines of the bus;

® \We need to copy the PC value to MAR and...;

MAR | 0000000001100100
MBR
PC| 0000000001100100

IR

AC

Figure: Second step of the fetch - setup MAR (Source: (Stallings, 2015))

® .and issue a READ signal to the bus



[.-operations Fetch cycle

® After the READ we will have the instruction on the MBR:

MAR
MBR
PC
IR
AC

Figure: Third step of the fetch - setup MBR (Source: (Stallings, 2015))

0000000001100100

0001000000100000

0000000001100101

® \We also need to process the next instruction (PC+1);

Luis Tarrataca
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[.-operations Fetch cycle

® Cool, so what next?

® But before we can do that we need to copy the instruction to the IR;

MAR | 0000000001100100
MBR| 0001000000100000
PC| 0000000001100101
IR{0001000000100000
AC

Figure: Fourth step of the fetch - setup IR (Source: (Stallings, 2015))
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[.-operations Fetch cycle

Thus the fetch cycle actually consists of:
® three steps and
® four micro-operations.

Symbolically, we can write this sequence of events as follows:

t :MAR ¢ PC

fo :MBR <— Memory
PC < PC + |

13 IR <— MBR

Where [ is the instruction length.
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[.-operations Fetch cycle

This grouping would also have been valid:

t :MAR < PC
fo :MBR <— Memory
t3 :PC < PC + |

IR <— MBR

As long as:
® Proper sequence is followed;

® No read and write operations occur simultaneously on the same f1;;



Why is it possible to execute multiple instructions during time , or 137

Each p-operation involves movement of data into or out of a register:
® |f these movements do not inferfere with one another:

® several of them can take place during one step, saving time.



J1-operations Fetch cycle

Indirect cyle

Once an instruction is fetched, the next step is to fetch source operands:

® |f the instruction specifies a direct address,

1 :MAR <— Address( IR )
f» :MBR <— Memory

® If the instruction specifies an indirect address

1 :MAR < IR( Address )

t2 :MBR <— Memory

f3 :Address( IR ) <— MBR( Address )
ta :MAR < IR( Address )

ts :MBR <— Memory
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J1-operations Fetch cycle

Interrupt Cycle

Test to determine whether any interrupts have occurred:

® After the completion of the execute cycle.

® Example:

H
to

fn
Th1

fn+2

:MBR <+ PC
:MAR <— SaveMemoryAddress

PC < InterruptRoutineAddress

:MAR <— SaveMemoryAddress
:MBR < Memory
:PC <~ MBR
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[.-operations Fetch cycle

® Logic:
® Save the current PC info somne memory location;
® Where to? Stack Pointer usually contains an appropriate address;
® Load the address of the interruption handling routine;
® Execute the interruption handling routine;
® Once the interruption handling routine finishes:

® |oad the PC that was stored into memory.



J1-operations Fetch cycle

Execution Cycle

Fetch, indirect, and interrupt cycles are simple and predictable.
® Same micro-operations are repeated each time around.
This is not true of the execute cycle.

® Different opcodes possibilities imply different sequences.

ADD R1,X : ISZ X :
1 :MAR < IR( Address ) 1 :MAR < IRC Address )
t2 :MBR <— Memory t2 :MBR <— Memory
f3 :R1 <= R1 4+ MBR MBR <~ MBR + 1

Memory <— MBR
f3 :If MBR == 0 then PC <— PC + |

® |SZ = Increment and skip if zero;
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J1-operations Fetch cycle

Instruction Cycle

We can now put all these stages into a single instruction cycle
® We will employ an auxiliary register: instruction cycle code (ICC).
® |CC designates the state of the processor:
® 00: Fetch
® 01: Indirect
® 10: Execute

® 17: Interrupt
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R CL I Fetch cycle

At the end of each of the four cycles: ICC is set appropriately.
® |ndirect cycle is always followed by the execute cycle.
® Interrupt cycle is always followed by the fetch cycle

® What about the fetch cycle?

® Depends on whether direct or indirect addressing is used;

® What about the execute cycle?

® Depends whether an interruption was activated;

Luis Tarrataca Chapter 19 - Control Unit Operation
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R CL I Fetch cycle

11 (interrupt) / ce? \ 00 (fetch)
10 (execute) | | 01 indirect

Y

Setup Read Fetch
interrupt Orees address instruction
Execute
ICC=00 instruction ICC =10

Yes
for enabled

interrupt?

ICC=11 ICC=00

Figure: Flowchart for instruction cycle (Source: (Stallings, 2015))
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J1-operations Control Unit Operation

Control Unit Operation

p-operations fall info one of the following categories:
® Transfer data from one register to another;
® Transfer data from a register fo an external interface (e.g., system bus);
® Transfer data from an external intferface to a register;

® Perform an arithmetic operation;
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What do you think will be the functional requirement of the control unit?

Any ideas?
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What do you think will be the functional requirement of the control unit?

Any ideas?

Control unit performs two basic tasks:
® Sequencing: Go through a sequence of p-operations;

® Execution: causes each p-operation to be performed.



Lets have a look at the general diagram of a control unit:

| Instruction register |

Control signals
—_— within CPU
Flags .
.—y Control signals
Control from control bus
unit <
Clock —— >
Control signals
to control bus

Figure: Block diagram of the control unit (Source: (Stallings, 2015))

Control bus




The inputs are:
® Clock:
® Causes a set of simulfaneous micro-operations to be performed;
® Instruction register:
® Opcode and addressing mode o determine which p-operations to perform;
® Flags:
® Indicating status of the processor and outcome of previous ALU operations;
® Control signais:

® signals to the control unit.



The outputs are:
® Control signals within the processor:
® Those that cause data to be moved from one register to another;
® and those that activate specific ALU functions.
® Control signals to control bus:
® Control signals fo memory;

@ Control signals to the I/O modules.



J1-operations Control Unit Operation

Example (1/3)

Consider fetch cycle, the control unit needs to:
® Transfer contents of the PC to MAR.

@ This is done by activating a control signal:

® Opening the gates between the bits of PC and the bits of MAR.

® Read a word from memory into MBR and increment PC.
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J1-operations Control Unit Operation

Example (2/3)

Control unit sends the following control signals simultaneously (1/2):

® Control signal that opens gates:

® Allowing contents of MAR onto the address bus;
® Memory read control signal on the control bus;

® Control signal that opens the gates:

® Allowing contfents of the data bus to be stored in MBR.
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J1-operations Control Unit Operation

Example (2/3)

Control unit sends the following control signals simultaneously (2/2):

® Control signals to logic thats
® Adds 1 to the contents of PC;

® Stores the result back to PC.
Then the control unit:

® Sends a control signal that opens gates between MBR and IR.

Chapter 19 Control Ut Operation 3667



J1-operations Control Unit Operation

Example (3/3)

Cs
Cit
Cio
Cy
AC
| IR | C-;—'—% %4—(:9
Cg—C
| —
L]
S-—C 3 ALU . C‘ontrol
—> , signals
| —
.
Control
Fl
unit o s
| —
t. - .L
Clock Control
signals

Figure: Data paths and control signals (Source: (Stallings, 2015))
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With each clock cycle control signals go to three destinations:
® Data paths, for each path to be controlled:
® A switch C; temporarily opens the gate to let data pass;
® ALU:
® Signals activate various logic circuits and gates within the ALU;
® System bus:
® Control signals are sent out onto the control lines of the system bus;

® E.g.. memory READ.



Control unit knows state of the instruction cycle:

® State-based sequence of control signals are emitted:

® causing p-operations to occur;

® System clock pulses are used to time the sequence of events;



What are the control signals necessary for the fetch cycle? Any ideas?
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J1-operations Control Unit Operation

Cs

Clock vlCc) ntmlL

Cycle | p-operations Active Control Signals
t : MAR < (PC)
Fetch | f» : MBR <— Memory
PC < (PC) + 1

t3 1 IR < (MBR)
Chapter 19 - Control Unit Operation a /67




J1-operations Control Unit Operation

Cs

Clock vlCc) ntmlL

Cycle | p-operations Active Control Signals
t : MAR <+ (PC) Cy

Fetch | t, : MBR <— Memory | Cs, Cp

PC < (PC) + 1
t3 1 IR < (MBR) Cy
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What are the control signals necessary for the indirect cycle? Any ideas?
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J1-operations Control Unit Operation

Cs

Clock vlCc) ntmlL

Cycle p-operations Active Control Signals

t : MAR < (IR(Address))

Indirect | f, : MBR <— Memory

13 : IRCAddress) <— (MBR(Address))

Chapter 19 Conirol Ut Operation 44/ 67



J1-operations Control Unit Operation

Cs

‘TContml
. signals
Clock lContmlL
signals
Cycle p-operations Active Control Signals
t : MAR < (IR(Address)) Cs
Indirect | 1, : MBR <— Memory Cs, Cp
13 : IRCAddress) <— (MBR(Address)) | Cy
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What are the control signals necessary for the interrupt cycle? Any ideas?
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J1-operations Control Unit Operation

Cs

Clock vlCc) ntmlL

Cycle u-operations Active Control Signals

H : MBR < (PC)

Interrupt | f» : MAR <— Save-address
PC < Routine-address

3 : Memory < (MBR)
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J1-operations Control Unit Operation

Cs

Clock vlCc) ntmlL

Cycle u-operations Active Control Signals

H : MBR <+ (PC) C

Interrupt | f» : MAR <— Save-address
PC < Routine-address

3 : Memory <— (MBR) Ci2, Cw
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J1-operations Control Unit Operation

Conclusions
Active Control
Micro-operations Signals
t;: MAR « (PC) C,
Fetch: t;: MBR < Memory Cs,Cr
PC—(PC) + 1
13 IR < (MBR) C,
t;: MAR < (IR(Address)) Cg
Indirect: t;: MBR < Memory Cs,Cr
t3: IR(Address) < (MBR(Address)) C,
t;: MBR < (PC) Cy
Interrupt: t;: MAR < Save-address
PC < Routine-address
t3: Memory < (MBR) Cyz, Cwy

Cr = Read control signal to system bus.
Cyw = Write control signal to system bus.

Figure: p-operations and control signals (Source: (Stallings, 2015))




J1-operations Hardwired implementation

Hardwired implementation

Now that we know what functions the control unit must perform:

How can we implement the control unit? '

Wide variety of techniques have been used, usually one of:

® Hardwired implementation;

® Microprogrammed implementation.
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WESCEIEL Y Hardwired implementation

Lets take a brief look at the hardwired implementation:

Instruction register

e
aat e
e

—T—
— . [———
Clock Timing Tl Control .
generator . unit *  Flags
—T,— D

T 1 T
G G e C,

Yoy Y

Figure: Control unit with decoded inputs (Source: (Stallings, 2015))



[.-operations Hardwired implementation

Lets use the Table from Slide 27:

® With a hardwired implementation:

® Boolean expressions need to be derived as a function of the inputs.

® Define two new control signals P and Q:

PQ | Description
00 | Fetch cycle
01 Indirect cycle
10 | Execute cycle
11 Interrupt cycle
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WESCEIEL Y Hardwired implementation

Then the following Boolean expression defines Cs:

Cs = PQT, + PQT,

Active Control
Micro-operations Signals
t;: MAR < (PC) C,
Fetch: t;: MBR <« Memory Cs, Cr
PC+ (PC) + 1
13 IR — (MBR) C,
t;: MAR < (IR(Address)) Cy
Indirect: t;: MBR «— Memory Cs, Cyr
t3: IR(Address) < (MBR(Address)) C,
t,: MBR « (PC) Ty
Interrupt: t: MAR <« Save-address
PC < Routine-address
t3: Memory < (MBR) Cpp, Cy

Cgr = Read control signal to system bus.

Cy = Write control signal to system bus.

Figure: Micro-operations and control signals (Source: (Stallings, 2015))



Herdte implemertaon

Then the following Boolean expression defines Cs;:

Cs = @TQ + I_DQTQ

Is this enough for defining Cs?
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Then the following Boolean expression defines Cs;:

Cs = @TQ + I_:’QTQ

Is this enough for defining Cs? '

® Not enough: Cs is also needed during the execute cycle.




Assume that there are only three instructions that read from memory:
® LDA;
° ADD;
® AND.

Now we can define Cs as:

Cs = PQT, + PQT, + PQ(LDA + ADD + AND)T,



Process would have to be repeated for every control signal:

® Resulting in a set of Boolean equations defining control unit behaviour.

Can you see any problems with the hardwired version?




WESCEIEL Y Hardwired implementation

Process would have to be repeated for every control signal:

® Resulting in a set of Boolean equations defining control unit behaviour.

Can you see any problems with the hardwired version?

In a modern processor:
® Number of boolean equations defining control unit behaviour is very large:

® Implementing a circuit satisfying these equations is extremely complex.



Herdte implemertaon

So what is the alternative to hardwired implementations? Any ideas?
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So what is the alternative to hardwired implementations? Any ideas?

® Hint 1: We have used the same concepts before...
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So what is the alternative o hardwired implementations? Any ideas?

® Hint 1: We have used the same concepts before...

® Hint 2: Concepts where used when we studied boolean circuits...



So what is the alternative to hardwired implementations? Any ideas? '

® Hint 1: We have used the same concepts before...

® Hint 2: Concepts where used when we studied boolean circuits...

® Hint 3: Von...



So what is the alternative to hardwired implementations? Any ideas? '

® Hint 1: We have used the same concepts before...
® Hint 2: Concepts where used when we studied boolean circuits...

® Hint 3: Von Neumann architecture, i.e.: programmable computer;

Chapter 19 Contol Ut Operation 6867



Idea: Apply Von Neumann architecture concepts to pi-operations:

® known as p-programming;

® This is the subject of the next chapter =)
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Where to focus your study

Where to focus your study

After this class you should be able to understand that:

® The execution of an instruction involves the execution of a sequence of
substeps, generally called cycles;

® Each cycle is in turn made up of a sequence of more fundamental
operations, called micro-operations;

® The control unit causes the processor to step through a series of
micro-operations in the proper sequence and generates the appropriate
control signals;
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Where to focus your study

Less important to know how these solutions were implemented:
® details of specific hardware solutions.

Your focus should always be on the building blocks for developing a solution
=)
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