
Chapter 16 - Instruction-Level Parallelism and Superscalar

Processors

Luis Tarrataca

luis.tarrataca@gmail.com

CEFET-RJ

Luis Tarrataca Chapter 16 - Superscalar Processors 1 / 90

luis.tarrataca@gmail.com


Table of Contents

1 Overview

Scalar Processor

Superscalar Processor

Superscalar vs. Superpipelined

Constraints

Luis Tarrataca Chapter 16 - Superscalar Processors 2 / 90



Table of Contents

2 Design Issues

Machine Parallelism

Instruction Issue Policy

In-order issue with in-order completion

In-order issue with out-of-order completion

Out-of-Order issue with Out-Of-Order Completion

Register Renaming

3 Superscalar Execution Overview

4 References

Luis Tarrataca Chapter 16 - Superscalar Processors 3 / 90



Overview

Scalar Processor

The first processors were known as scalar:

What is a scalar processor? Any ideas?

Luis Tarrataca Chapter 16 - Superscalar Processors 4 / 90



Overview Scalar Processor

Scalar Processor

The first processors were known as scalar:

What is a scalar processor? Any ideas?

In a scalar organization, a single pipelined functional unit exists for:

• Integer operations;

• And one for floating-point operations;

Functional unit:

• Part of the CPU responsible for calculations;

Luis Tarrataca Chapter 16 - Superscalar Processors 5 / 90



Overview Scalar Processor

Scalar Processor

In a scalar organization, a single pipelined functional unit exists for:

• Integer operations;

• And one for floating-point operations;

Figure: Scalar Organization (Source: [Stallings, 2015])

Luis Tarrataca Chapter 16 - Superscalar Processors 6 / 90



Overview Scalar Processor

But why do we need to separate pipelines? Any ideas?

Luis Tarrataca Chapter 16 - Superscalar Processors 7 / 90



Overview Scalar Processor

But why do we need to separate pipelines? Any ideas?

Integer and floating point processing is different:

• We studied this in Chapter 10 of the book;

Luis Tarrataca Chapter 16 - Superscalar Processors 8 / 90



Overview Scalar Processor

Pipelines allow for performance increases through parallelism:

Remember how is parallelism achieved through a pipeline? Any ideas?

Luis Tarrataca Chapter 16 - Superscalar Processors 9 / 90



Overview Scalar Processor

Pipelines allow for performance increases through parallelism:

Remember how is parallelism achieved through a pipeline? Any ideas?

Parallelism is achieved by:

• Enabling multiple instructions to be at different stages of the pipeline

Luis Tarrataca Chapter 16 - Superscalar Processors 10 / 90



Overview Superscalar Processor

Superscalar Processor

Term superscalar refers to a processor that is designed to:

• Improve the performance of the execution of scalar instructions;

• Represents the next evolution step;

Luis Tarrataca Chapter 16 - Superscalar Processors 11 / 90



Overview Superscalar Processor

Superscalar Processor

Term superscalar refers to a processor that is designed to:

• Improve the performance of the execution of scalar instructions;

• Represents the next evolution step;

How do you think this next evolution step is obtained? Any ideas?

Luis Tarrataca Chapter 16 - Superscalar Processors 12 / 90



Overview Superscalar Processor

Superscalar Processor

The term superscalar refers to a processor that is designed to:

• Improve the performance of the execution of scalar instructions;

• Represents the next evolution step;

How do you think this next evolution step is obtained? Any ideas?

• Simple idea: increase number of pipelines ;)

Luis Tarrataca Chapter 16 - Superscalar Processors 13 / 90



Overview Superscalar Processor

Superscalar processor

• Ability to execute instructions in different pipelines:

• Independently and concurrently;

Figure: Superscalar Organization (Source: [Stallings, 2015])

Luis Tarrataca Chapter 16 - Superscalar Processors 14 / 90



Overview Superscalar Processor

However...

Pipeline concept already introduced some problems. Remember which?

Luis Tarrataca Chapter 16 - Superscalar Processors 15 / 90



Overview Superscalar Processor

However...

Pipeline concept already introduced some problems. Remember which?

• Resource Hazards;

• Data Hazards:

• RAW

• WAR

• WAW

• Control Hazards;

Luis Tarrataca Chapter 16 - Superscalar Processors 16 / 90



Overview Superscalar Processor

Accordingly, how do we avoid some of the known pipeline issues?

Luis Tarrataca Chapter 16 - Superscalar Processors 17 / 90



Overview Superscalar Processor

But how do we avoid some of the known pipeline issues?

• Responsibility of the hardware and the compiler to:

• Assure that parallel execution does not violate program intent;

• Tradeoff between performance and complexity;

Luis Tarrataca Chapter 16 - Superscalar Processors 18 / 90



Overview Superscalar vs. Superpipelined

Superscalar vs. Superpipelined

Superpipelining is an alternative performance method to superscalar:

• Many pipeline stages require less than half a clock cycle;

• A pipeline clock is used instead of the overall system clock:

• To advance between the different pipeline stages;

Luis Tarrataca Chapter 16 - Superscalar Processors 19 / 90



Overview Superscalar vs. Superpipelined

Consider the following execution scenario:

Figure: Comparison of superscalar and

superpipeline approaches (Source:

[Stallings, 2015])

How much time is required for the

normal pipeline approach? Why?

How much time is required for the

superpipeline approach? Why?

How much time is required for the

superscalar approach? Why?

Luis Tarrataca Chapter 16 - Superscalar Processors 20 / 90



Overview Superscalar vs. Superpipelined

From the previous figure, base pipeline:

• Issues one instruction per clock cycle;

• Can perform one pipeline stage per clock cycle;

• Although several instructions are executing concurrently:

• Only one instruction is in its execution stage at any one time.

• Total time to execute 6 instructions: 9 cycles.

Luis Tarrataca Chapter 16 - Superscalar Processors 21 / 90



Overview Superscalar vs. Superpipelined

From the previous figure, superpipelined implementation:

• Capable of performing two pipeline stages per clock cycle;

• Each stage can be split into two nonoverlapping parts:

• With each executing in half a clock cycle;

• Total time to execute 6 instructions: 6.5 cycles.

• Theoretical speedup: 1 − 6.5

9
≈ 28%

Luis Tarrataca Chapter 16 - Superscalar Processors 22 / 90



Overview Superscalar vs. Superpipelined

From the previous figure, superscalar implementation:

• Capable of executing two instances of each stage in parallel;

• Total time to execute 6 instructions: 6 cycles

• Theoretical speedup: 1 − 6

9
≈ 33%

Luis Tarrataca Chapter 16 - Superscalar Processors 23 / 90



Overview Superscalar vs. Superpipelined

From the previous figure:

• Both the superpipeline and the superscalar implementations:

• Have the same number of instructions executing at the same time;

• However, superpipelined processor falls behind the superscalar processor:

• Parallelism empowers greater performance;

Luis Tarrataca Chapter 16 - Superscalar Processors 24 / 90



Overview Constraints

Constraints

Superscalar approach depends on:

• Ability to execute multiple instructions in parallel;

• True instruction-level parallelism

However, parallelism creates additional issues:

• Fundamental limitations to parallelism

Luis Tarrataca Chapter 16 - Superscalar Processors 25 / 90



Overview Constraints

What are some of the limitations to parallelism? Any ideas?

Luis Tarrataca Chapter 16 - Superscalar Processors 26 / 90



Overview Constraints

What are some of the limitations to parallelism? Any ideas?

• Data dependency;

• Procedural dependency;

• Resource conflicts;

Lets have a look at these.

Luis Tarrataca Chapter 16 - Superscalar Processors 27 / 90



Overview Constraints

Data dependency

Consider the following sequence:

Figure: True Data Dependency (Source: [Stallings, 2015])

Can you see any problems with the code above?

Luis Tarrataca Chapter 16 - Superscalar Processors 28 / 90



Overview Constraints

Consider the following sequence:

Figure: True Data Dependency (Source: [Stallings, 2015])

Can you see any problems with the code above?

• Second instruction can be fetched and decoded but cannot executed:

• Until the first instruction executes;

• Second instruction needs data produced by the first instruction;

• A.k.a. read after write RAW dependency;

Luis Tarrataca Chapter 16 - Superscalar Processors 29 / 90



Overview Constraints

Example

Figure: Effect of dependencies on a superscalar machine of degree 2 (Source: [Stallings, 2015])
Luis Tarrataca Chapter 16 - Superscalar Processors 30 / 90



Overview Constraints

From the previous figure:

• With no dependency:

• two instructions can be fetched and executed in parallel;

• Data dependency between the 1st and 2nd instructions:

• 2nd instruction is delayed as many clock cycles as required to remove the

dependency

In general:

Instructions must be delayed until its input values have been produced.

Luis Tarrataca Chapter 16 - Superscalar Processors 31 / 90



Overview Constraints

Procedural Dependencies

Presence of branches complicates pipeline operation:

• Instructions following a branch:

• Depend on whether the branch was taken or not taken;

• This cannot be determined until the branch is executed;

• This type of procedural dependency also affects a scalar pipeline:

• More severe because a greater magnitude of opportunity is lost;

Luis Tarrataca Chapter 16 - Superscalar Processors 32 / 90



Overview Constraints

Figure: Effect of dependencies (Source: [Stallings, 2015])

Luis Tarrataca Chapter 16 - Superscalar Processors 33 / 90



Overview Constraints

Resource Conflict

Instruction competition for the same resource at the same time:

• Resource examples:

• Bus;

• Memory;

• Registers;

• ALU;

• Resource conflict exhibits similar behavior to a data dependency:

• Resource conflicts can be overcome by duplication of resources:

• whereas a true data dependency cannot be eliminated

Luis Tarrataca Chapter 16 - Superscalar Processors 34 / 90



Overview Constraints

Figure: Effect of dependencies (Source: [Stallings, 2015])

Luis Tarrataca Chapter 16 - Superscalar Processors 35 / 90



Design Issues

Design Issues

Next, lets have a look at the different design issues to consider:

• Instruction-Level Parallelism and Machine Parallelism;

• Instruction Issue Policy;

• Register Renaming;

• Branch Prediction

• Superscalar Execution

• Superscalar Implementation

Luis Tarrataca Chapter 16 - Superscalar Processors 36 / 90



Design Issues

Important distinction:

What do you think is the difference between:

• Instruction-level parallelism?

• Machine-level parallelism?

Luis Tarrataca Chapter 16 - Superscalar Processors 37 / 90



Design Issues

Instruction-level parallelism

Instruction-level parallelism exists when instructions in a sequence:

• are independent and thus can be executed in parallel;

As an example consider the following two code fragments:

Figure: Instruction level parallelism (Source: [Stallings, 2015])

Instructions on the:

• Left are independent: can be executed in parallel;

• Right are dependent: cannot be executed in parallel;

Luis Tarrataca Chapter 16 - Superscalar Processors 38 / 90



Design Issues

Degree of instruction-level parallelism is determined by the

• Frequency of true data dependencies;

• Procedural dependencies (JMPs) in the code;

These depend on the instruction set and the application.

Luis Tarrataca Chapter 16 - Superscalar Processors 39 / 90



Design Issues Machine Parallelism

Machine Parallelism

Machine parallelism is a measure of the ability of the processor to:

• Take advantage of instruction-level parallelism:

• Number of parallel pipelines;

• Determined by:

• Number of instructions that can be fetched at the same time;

• Number of instructions that can be executed at the same time;

• Ability to find independent instructions.

Luis Tarrataca Chapter 16 - Superscalar Processors 40 / 90



Design Issues Instruction Issue Policy

Instruction Issue Policy

Processor must also be able to identify instruction-level parallelism:

• This is required in order to orchestrate:

• Fetching, decoding, and execution of instructions in parallel;

In essence:

• Processor needs to locate instructions that can be pipelined and executed

• Goal: optimize pipeline usage;

Luis Tarrataca Chapter 16 - Superscalar Processors 41 / 90



Design Issues Instruction Issue Policy

In essence:

• Processor needs to locate instructions that can be pipelined and executed

• Goal: optimize pipeline usage;

What factors influence this ability to locate these instructions? Any ideas?

Luis Tarrataca Chapter 16 - Superscalar Processors 42 / 90



Design Issues Instruction Issue Policy

In essence:

• Processor needs to locate instructions that can be pipelined and executed

• Goal: optimize pipeline usage;

What factors influence this ability to locate these instructions? Any ideas?

Hint: Do we always need to execute instructions in the original sequential

order?

Luis Tarrataca Chapter 16 - Superscalar Processors 43 / 90



Design Issues Instruction Issue Policy

In essence:

• Processor needs to locate instructions that can be pipelined and executed

• Goal: optimize pipeline usage;

What factors influence this ability to locate these instructions? Any ideas?

Hint: Do we always need to execute instructions in the original sequential

order?

• No! As long the final result is correct!

Luis Tarrataca Chapter 16 - Superscalar Processors 44 / 90



Design Issues Instruction Issue Policy

Three types of orderings are important in this regard:

• Order in which instructions are fetched;

• Order in which instructions are executed;

• Order in which instructions update register/memory contents;

Luis Tarrataca Chapter 16 - Superscalar Processors 45 / 90



Design Issues Instruction Issue Policy

To optimize utilization of the various pipeline elements:

• Processor may need to alter one or more of these orderings:

• Regarding the original sequential execution.

• This can be done: as long as the final result is correct;

• Therefore: we need to look at how instructions are issued:

• This is known as: instruction issue policies;

Luis Tarrataca Chapter 16 - Superscalar Processors 46 / 90



Design Issues Instruction Issue Policy

Instruction issue policies fall into the following categories:

• In-order issue with in-order completion;

• In-order issue with out-of-order completion;

• Out-of-order issue with out-of-order completion

Without getting into much details for now:

What do you think each one of these policies does? Any ideas?

Lets have a look at these

Luis Tarrataca Chapter 16 - Superscalar Processors 47 / 90



Design Issues Instruction Issue Policy

In-order issue with in-order completion

Simplest instruction issue policy:

• Issue instructions respecting original sequential execution:

• A.k.a. in-order issue

• And write the results in the same order:

• A.k.a. in-order completion

This instruction policy can be used as a baseline:

• for comparing more sophisticated approaches.

Luis Tarrataca Chapter 16 - Superscalar Processors 48 / 90



Design Issues Instruction Issue Policy

Consider the following example:

Figure: In-order issue with in-order completion (Source: [Stallings, 2015])

Assume a superscalar pipeline capable of:

• Fetching and decoding two instructions at a time;

• Having three separate functional units:

• E.g.: two integer arithmetic and one floating-point arithmetic;

• Having two instances of the write-back pipeline stage;

Luis Tarrataca Chapter 16 - Superscalar Processors 49 / 90



Design Issues Instruction Issue Policy

Example assumes the following constraints on a six-instruction code:

• I1 requires two cycles to execute.

• I3 and I4 conflict for a functional unit.

• I5 depends on the value produced by I4.

• I5 and I6 conflict for a functional unit.

Luis Tarrataca Chapter 16 - Superscalar Processors 50 / 90



Design Issues Instruction Issue Policy

From the previous example:

• Instructions are fetched two at a time and passed to the decode unit;

• Because instructions are fetched in pairs:

• Next two instructions waits until the pair of decode stages has cleared.

• To guarantee in-order completion:

• when there is a conflict for a functional unit:

• issuing of instructions temporarily stalls.

• Total time required is eight cycles.

Luis Tarrataca Chapter 16 - Superscalar Processors 51 / 90



Design Issues Instruction Issue Policy

In-order issue with out-of-order completion

Figure: In-order issue with out-of-order completion (Source: [Stallings, 2015])

• Instruction I2 is allowed to run to completion prior to I1;

• Allows I3 to be completed earlier, saving one cycle.

• Total time required: 7 cycles:

• Speedup: 1 − 7

8
≈ 12, 5%

Luis Tarrataca Chapter 16 - Superscalar Processors 52 / 90



Design Issues Instruction Issue Policy

With out-of-order completion:

• Any number of instructions may be in the execution stage at any one time:

• Up to the maximum degree of machine parallelism across all functional units.

• Instruction issuing is stalled by:

• Resource conflict;

• Data dependency;

• Procedural dependency.

Luis Tarrataca Chapter 16 - Superscalar Processors 53 / 90



Design Issues Instruction Issue Policy

Out-of-Order issue with Out-Of-Order Completion

With in-order issue:

• Processor will only decode instructions up to a dependency or conflict;

• No additional instructions are decoded until the conflict is resolved;

• As a result:

• Processor cannot look ahead of the point of conflict;

• Subsequent independent instructions that:

• Could be useful will not be introduced into the pipeline.

Luis Tarrataca Chapter 16 - Superscalar Processors 54 / 90



Design Issues Instruction Issue Policy

To allow out-of-order issue:

• Necessary to decouple the decode and execute stages of the pipeline;

• This is done with a buffer referred to as an instruction window;

Luis Tarrataca Chapter 16 - Superscalar Processors 55 / 90



Design Issues Instruction Issue Policy

With this organization (1/2):

• Processor places instruction in window after decoding it;

• As long as the window is not full:

• Processor will continue to fetch and decode new instructions;

Luis Tarrataca Chapter 16 - Superscalar Processors 56 / 90



Design Issues Instruction Issue Policy

With this organization (2/2):

• When a functional unit becomes available in the execute stage:

• Instruction from the window may be issued to the execute stage;

• Any instruction may be issued, provided that:

• It needs the particular functional unit that is available;

• No conflicts or dependencies block this instruction;

Luis Tarrataca Chapter 16 - Superscalar Processors 57 / 90



Design Issues Instruction Issue Policy

The result of this organization is that:

• Processor has a lookahead capability:

What do you think the term lookahead means? Any ideas?

Luis Tarrataca Chapter 16 - Superscalar Processors 58 / 90



Design Issues Instruction Issue Policy

The result of this organization is that:

• Processor has a lookahead capability:

What do you think the term lookahead means? Any ideas?

• Independent instructions that can be brought into the execute stage.

• Instructions are issued from the window with little regard for original order:

• No conflicts or dependencies must exist!

• Then the program execution will behave correctly;

Luis Tarrataca Chapter 16 - Superscalar Processors 59 / 90



Design Issues Instruction Issue Policy

Lets consider the following example:

Figure: Out-of-Order issue with Out-Of-Order Completion (Source: [Stallings, 2015])

Luis Tarrataca Chapter 16 - Superscalar Processors 60 / 90



Design Issues Instruction Issue Policy

From the previous figure:

• During each of the first three cycles:

• Two instructions are fetched into the decode stage;

• Subject to the constraint of the buffer size:

• Two instructions move from the decode stage to the instruction window.

• Note that in this example:

• Possible to issue instruction I6 ahead of I5:

• Recall that I5 depends on I4, but I6 does not;

• Total execution time: 6 cycles

• Speedup: 1 −
6

8
= 25%

Luis Tarrataca Chapter 16 - Superscalar Processors 61 / 90



Design Issues Instruction Issue Policy

Out-of-order issue out-of-order completion conclusions

In conclusion:

What do you think are the main differences between?

• In-order issue out-of-order completion

• Out-of-order issue out-of-order completion

Luis Tarrataca Chapter 16 - Superscalar Processors 62 / 90



Design Issues Instruction Issue Policy

Out-of-order issue out-of-order completion conclusions

In conclusion (1/2):

What do you think are the main differences between?

• In-order issue out-of-order completion

• Out-of-order issue out-of-order completion

Out-of-order issue out-of-order completion still needs to respect

constrains:

• Instruction cannot be issued if it violates a dependency or conflict;

• Just like the In-order issue out-of-order completion policy;

So what is the difference then? Any ideas?

Luis Tarrataca Chapter 16 - Superscalar Processors 63 / 90



Design Issues Instruction Issue Policy

Out-of-order issue out-of-order completion conclusions

In conclusion (2/2):

So what is the difference then? Any ideas?

Difference is that more instructions are available for issuing:

• With In-order issue out-of-order completion the pipeline:

• Stops issuing any more instructions as soon as a conflict is found!

• With Out-of-order issue out-of-order completion the pipeline:

• Is still able to issue other instructions that don’t have dependencies;

• Reducing the probability that a pipeline stage will have to idle;

Luis Tarrataca Chapter 16 - Superscalar Processors 64 / 90



Design Issues Instruction Issue Policy

What are the main conclusions you can draw from instruction issue

policies? Any ideas?

Luis Tarrataca Chapter 16 - Superscalar Processors 65 / 90



Design Issues Instruction Issue Policy

What are the main conclusions you can draw from instruction issue

policies? Any ideas?

When instructions are issued in sequence and complete in sequence:

• Contents of each register are known at each point in the execution;

When out-of-order techniques are used:

• Values in registers cannot be fully known at each point in time;

• This causes WAR, RAW, WAW problems...

• Big confusion =’(

Luis Tarrataca Chapter 16 - Superscalar Processors 66 / 90



Design Issues Instruction Issue Policy

Problem: Values in registers cannot be fully known at each point in time;

What do you think is the cause of this problem? Any ideas?

Luis Tarrataca Chapter 16 - Superscalar Processors 67 / 90



Design Issues Instruction Issue Policy

Problem: Values in registers cannot be fully known at each point in time;

What do you think is the cause of this problem? Any ideas?

Cause: Multiple instructions competing for the use of the same registers:

• Generating pipeline constraints that slow performance.

Luis Tarrataca Chapter 16 - Superscalar Processors 68 / 90



Design Issues Instruction Issue Policy

Problem: Multiple instructions competing for the use of the same registers:

• Generating pipeline constraints that slow performance.

What would be a method for dealing with this problem?

Luis Tarrataca Chapter 16 - Superscalar Processors 69 / 90



Design Issues Instruction Issue Policy

Problem: Multiple instructions competing for the use of the same registers:

• Generating pipeline constraints that slow performance.

What would be a method for dealing with this problem?

• We could try to rename the registers ;)

• Essentially we are trying to resolve the issue by duplicating the resource;

Luis Tarrataca Chapter 16 - Superscalar Processors 70 / 90



Design Issues Register Renaming

Register Renaming

Processor registers need to be:

• Allocated dynamically by the processor hardware;

• Associated with the values needed by instructions at points in time;

When an instruction executes that has a register as a destination:

• New register is allocated for that value;

• Subsequent instructions that access the value in the register:

• Need to refer to the allocated register;

Luis Tarrataca Chapter 16 - Superscalar Processors 71 / 90



Design Issues Register Renaming

Example

Consider the following code:

Figure: Register Renaming (Source: [Stallings, 2015])

How could the problems present be solved? Any ideas?

Luis Tarrataca Chapter 16 - Superscalar Processors 72 / 90



Design Issues Register Renaming

Example

Figure: Register Renaming (Source: [Stallings, 2015])

• Register reference without the subscript refers to the original register;

• Register reference with the subscript refers to an allocated register;

• Subsequent instructions reference the most recently allocated register;

• Important: your book chooses some weird subscripts...

Luis Tarrataca Chapter 16 - Superscalar Processors 73 / 90



Design Issues Register Renaming

Example

Figure: Register Renaming (Source: [Stallings, 2015])

• Creation of register R3c in instruction I3 avoids:

• WAR dependency on I2;

• WAW dependency on I1;

• Interfering the correct value being accessed by I4;

• As a result I3 can be issued immediately;

• Without renaming I3 cannot be issued until I1 is complete and I2 is issued.

Luis Tarrataca Chapter 16 - Superscalar Processors 74 / 90



Design Issues Register Renaming

But how can we gain a sense of how much performance is gained with

such strategies?

Luis Tarrataca Chapter 16 - Superscalar Processors 75 / 90



Design Issues Register Renaming

But how can we gain a sense of how much performance is gained with

such strategies?

• Use one scalar processor devoid of these strategies as a base system;

• Start adding various superscalar features;

• Comparison need to be performed against different programs.

Luis Tarrataca Chapter 16 - Superscalar Processors 76 / 90



Design Issues Register Renaming

Figure: Speedups of various machine organizations without procedural dependencies (Source: [Stallings, 2015])

Luis Tarrataca Chapter 16 - Superscalar Processors 77 / 90



Design Issues Register Renaming

From the previous Figure:

• Y -axis is the mean speedup of the superscalar over the scalar machine;

• X -axis shows the results for four alternative processor organizations:

• 1st : no duplication of functional units, can issue instructions out of order;

• 2nd : duplicates the load/store functional unit that accesses a data cache;

• 3rd : duplicates the ALU;

• 4th : duplicates both load/store and ALU

• Window sizes of 8, 16, 32 instructions are shown.

• 1st graph, no register naming is allowed, whilst in the 2nd graph it is;

Luis Tarrataca Chapter 16 - Superscalar Processors 78 / 90



Design Issues Register Renaming

What conclusions can you derive from the previous picture?

Luis Tarrataca Chapter 16 - Superscalar Processors 79 / 90



Design Issues Register Renaming

Some conclusions (1/2):

• Probably not worthwhile to add functional units without register renaming.

• Performance improvement at the cost of hardware complexity.

• Register renaming gains are achieved by adding more functional units.

Luis Tarrataca Chapter 16 - Superscalar Processors 80 / 90



Design Issues Register Renaming

Some conclusions (2/2):

• Significant difference in performance gain regarding instruction window:

• Small window prevents effective utilization of extra functional units;

• Processor needs to look far ahead to:

• Find independent instructions capable of using the hardware more fully.

Luis Tarrataca Chapter 16 - Superscalar Processors 81 / 90



Superscalar Execution Overview

Superscalar Execution Overview (1/8)

Lets review how all these concepts work together:

Figure: Conceptual depiction of superscalar processing (Source: [Stallings, 2015])

Luis Tarrataca Chapter 16 - Superscalar Processors 82 / 90



Superscalar Execution Overview

Superscalar Execution Overview (2/8)

Figure: Conceptual depiction of superscalar processing (Source: [Stallings, 2015])

1 Program to be executed consists of a linear sequence of instructions;

2 This is the original sequential program generated by the compiler;

Luis Tarrataca Chapter 16 - Superscalar Processors 83 / 90



Superscalar Execution Overview

Superscalar Execution Overview (3/8)

Figure: Conceptual depiction of superscalar processing (Source: [Stallings, 2015])

3 Instruction fetch stage generates a dynamic stream of instructions;

4 Processor attempts to remove dependencies from stream, e.g.:

• Register renaming;

Luis Tarrataca Chapter 16 - Superscalar Processors 84 / 90



Superscalar Execution Overview

Superscalar Execution Overview (4/8)

Figure: Conceptual depiction of superscalar processing (Source: [Stallings, 2015])

5 Processor dispatches instructions into an execution window;

6 In this window:

• Instructions no longer form a sequential stream;

• Instead instructions are structured according to data dependencies;

Luis Tarrataca Chapter 16 - Superscalar Processors 85 / 90



Superscalar Execution Overview

Superscalar Execution Overview (5/8)

Figure: Conceptual depiction of superscalar processing (Source: [Stallings, 2015])

7 Processor executes each instruction in an order determined by:

• Data dependencies;

• Hardware resource availability;

Luis Tarrataca Chapter 16 - Superscalar Processors 86 / 90



Superscalar Execution Overview

Superscalar Execution Overview (6/8)

Figure: Conceptual depiction of superscalar processing (Source: [Stallings, 2015])

8 Instructions are put back into sequential order and their results recorded.

Luis Tarrataca Chapter 16 - Superscalar Processors 87 / 90



Superscalar Execution Overview

Superscalar Execution Overview (7/8)

With superscalar architecture (1/2):

• Instructions may complete in 6= order from the one specified in program.

• Branch prediction and speculative execution means that:

• Some instructions may complete execution and then must be abandoned;

Luis Tarrataca Chapter 16 - Superscalar Processors 88 / 90



Superscalar Execution Overview

Superscalar Execution Overview (8/8)

With superscalar architecture (2/2):

• Therefore memory and registers:

• Cannot be updated immediately when instructions complete execution;

• Results must be held in temporary storage that is made permanent when:

• it is determined that the instruction executed in the sequential model;

Luis Tarrataca Chapter 16 - Superscalar Processors 89 / 90



References

References I

Stallings, W. (2015).

Computer Organization and Architecture: Designing for Performance.

Pearson Education, 10th edition edition.

Luis Tarrataca Chapter 16 - Superscalar Processors 90 / 90


	Overview
	Scalar Processor
	Superscalar Processor
	Superscalar vs. Superpipelined
	Constraints

	Design Issues
	Machine Parallelism
	Instruction Issue Policy
	Register Renaming

	Superscalar Execution Overview
	References

