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Introduction

Infroduction

Today’s class will be a revision of digital logic elements:
® Boolean algebra.

® Gates:

® AND, OR, NOT, XOR, ...

® Combinatorial logic:

® Multiplexers, Decoders, Adders, ...
® Sequential logic:

® Flip-flops, registers, counters, ...
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Computer architecture builds on these concepts to develop new ones.

Lets see how to review an entire semestre of concepts in a single class =)




Boolean Algebra

Boolean Algebra

Boolean algebra makes use of logical variables and operations:

® A variable may take on the value 1 (TRUE) or O (FALSE).

Chapter 11 -Dighilogie 87122



Boolean Algebra

What are some of the logical operations that you know?
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Boolean Algebra

What are some of the logical operations that you know? '

® NOT
® AND
® OR

Lets see how well you remember these operations: volunteers?



Boolean Algebra

NOTP | PANDQ | PORQ | PNANDQ | PNORQ | PXORQ | PXNORQ
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Boolean Algebra

P| Q| NOTP | PANDQ | PORQ | PNANDQ | PNORQ | PXORQ | PXNORAQ
0] 0 1 0 0 1 1 0 1
0 1 1 0 1 1 0 1 0
1 0 0 0 1 1 0 1 0
1 1 0 1 1 0 0 0 1




Boolean Algebra

What if we have more than two variables? Any ideas?




Boolean Algebra

What if we have more than two variables? Any ideas?

Operation Expression OQutput =1if
AND A*B: ... All of the set {A, B, ..} are 1.
OR A+B-+ ... Any of the set [A,B,...| are 1.
NAND A-B- ... Any of the set [A,B,...] are 0.
NOR A+B- ... All of the set [A B, ...} are 0.
XOR A®B® ... The set {A, B, ...} contains an odd number of ones.

Figure: Boolean operators extended to more than two inputs (Source: (Stallings, 2015))



Boolean Algebra

Basic Postulates

A-B=B-A
A(B+C)=(A-B) ~ (A:C)
1:A=A

A+B=B+A
A+(B:O=(A-B)(A+C)
0+A=A

Commutative Laws
Distributive Laws
Identity Elements

AK=0 A+-A=1 Inverse Elements
Other Identities

0-A=0 1+A=1

AA=A A-A=A

A*(B*C) = (A*B):C A+(B+C=(A+B)+C Associative Laws

A'B=A+B A-B=A'B DeMorgan’s Theorem

Figure: Basic identities of boolean algebra (Source: (Stallings, 2015))
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Boolean Algebra

Exercises (1/6)

Use the previous table to simplify the following expressions:

1. X + XY
2. XY + XY

3. X+ XY
4.X(X+Y)

5 (X+Y)(X+Y)
6. X(X+Y)
7.XYZ + XYZ + XZ
8.XY +XZ+VZ
9.(A+B)(A+C)



Boolean Algebra

Exercises (2/6)

X+Xy=x(1+Y)=x

XY+ XY =X(Y+Y)=X

X+XY=(X+X)(X+Y)=X+Y



Boolean Algebra

Exercises (3/6)

XX4Y)=X+XY=X0+Y)=X

X+YV)X+Y)=XX+ XY+ XY +YY=XX+X(Y+V)=X(1+X) =X

X(X+Y)=XX+XY =XY



Boolean Algebra

Exercises (4/6)

XY +XZ + YZ = XY + XZ + YZ(X + X)
= XY + XZ + XYZ + XYZ
= XY + XYZ + XZ + XYZ
=XY(1+2)+XZ(1+Y)
= XY + XZ



Boolean Algebra

Exercises (6/6)

(A+B)(A+ C) = AA+ AC + AB+ BC
= AC + AB+ BC
= AC + AB+ BC(A+ A)
= AC + AB + ABC + ABC
= AC + ABC + AB + ABC
= AC(1+ B) + AB(1 + C)
= AC + AB



Boolean Algebra

Exercises (6/6)

Prove the following Boolean equations using algebraic manipulation:
O XY +XY+XY=X+Y
© AB+BC+ AB+BC =1
OY+XZ+XY=X+Y+Z
OXY+YZ+XZ+XY+YZ=XY+XZ+VYZ



Fundamental building block of all digital logic circuits is the gate.
® | ogical functions are implemented by the interconnection of gates.

® Basic gates used are AND, OR, NOT, NAND, NOR, and XOR.
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There are a lot of gates. Do we really need all of these gates? Any ideas?




There are a lot of gates. Do we really need all of these gates? Any ideas?

® Ever heard of universal gates?



Universal Gates

Universal Gates

The NAND and NOR gates are also known as universal gates:
® Any Boolean function can be implemented using only them;
® | etfs have alook at some exampiles:
® NOT gate;
® AND gate;
® OR gate;

® NOR gate;



Universal Gates

Universal Gates :: Obtaining the NOT Operator (1/2)

How can we use a NAND gate to obtain the NOT operator? Any ideas? '



Universal Gates

Universal Gates :: Obtaining the NOT Operator (1/2)

How can we use a NAND gate to obtain the NOT operator? Any ideas? '

® What happens when we duplicate the same input on a NAND gate?



Universal Gates

Universal Gates :: Obtaining the NOT Operator (1/2)

How can we use a NAND gate to obtain the NOT operator? Any ideas? '

® What happens when we duplicate the same input on a NAND gate?

P | @ | PNAND @
0|0 1
111 0




Universal Gates

Universal Gates :: Obtaining the NOT Operator (2/2)

A-——E}E

Figure: NOT operation achieved through a NAND gate (Source: (Stallings, 2015))




Universal Gates

Universal Gates :: Obtaining the AND Operator (1/2)

How can we use a NAND gate to obtain the AND operator? Any ideas? '



Universal Gates

Universal Gates :: Obtaining the AND Operator (1/2)

How can we use a NAND gate to obtain the AND operator? Any ideas? '

Remember the algebraic properties?

AB = AB



Universal Gates

Universal Gates :: Obtaining the AND Operator (2/2)

Remember the algebraic properties?

AB = AB

D=
A*B
B —

Figure: AND operation achieved through a NAND gate (Source: (Stallings, 2015))




Universal Gates

Universal Gates :: Obtaining the OR Operator (1/2)

How can we use a NAND gate to obtain the OR operator? Any ideas? '



Universal Gates

Universal Gates :: Obtaining the OR Operator (1/2)

How can we use a NAND gate to obtain the OR operator? Any ideas? '

Remember the algebraic properties?
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Universal Gates

Universal Gates :: Obtaining the OR Operator (2/2)

Remember the algebraic properties?
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Figure: OR operation achieved through a NAND gate (Source: (Stallings, 2015))
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Universal Gates

Universal Gates :: Obtaining the NOR Operator (1/2)

How can we use a NAND gate to obtain the NOR operator? Any ideas? '

® Recall that the NOR operator is also a universal gate;

® Therefore there is a mapping between NAND and NOR;



Universal Gates

Universal Gates :: Obtaining the NOR Operator (1/2)

How can we use a NAND gate to obtain the NOR operator? Any ideas? '

® Recall that the NOR operator is also a universal gate;

® Therefore there is a mapping between NAND and NOR;
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Figure: NOR operation achieved through a NAND gate (Source: wikipedia)




Nl vl ctes

Now that we have a basic understanding of the logical operations:

® | ets see how we can combine these elements to calculate functions;



Combinatorial Circuit

Combinatorial Circuit

A set of inferconnected gates
® Qutput at any time is a function only of the input at that time;
® Consists of n binary inputs and m binary outputs

® Can be defined in three ways:
® Truth table;
® Graphical symbols;

® Boolean equations



Combinatorial Circuit

Consider the following truth table for a boolean function:

»
]
o
"

L R - i — S - K]
(o S~ T — B - W
e == T S — R SO S S =
o = Do = = 00

Figure: A boolean function of three variables (Source: (Stallings, 2015))



Combinatorial Circuit of

F can be expressed by itemizing the combinations of either:

® Sum of minterms that have value 1;

> m(2,3,6)

® Product of maxterms that have value O;

Mm(o,1,4,5,7)



Combinatorial Circuit of

F can be expressed by itemizing the combinations of either:

® sum of minterms that have value 1;

> "m(2,3,6) = ABC + ABC + ABC

® product of maxterms that have value 0;

NM(0,1,4,5,7) = (A+B+C)(A+B+C)(A+B+C)(A+B+C)(A+B+C)



Combinatorial Circuit I of B F

Lets focus on the minterms:

F = ABC + ABC + ABC

How can we obtain the equivalent logical circuit? Any ideas? '




Combinatorial Circuit I of B F

How can we obtain the equivalent logical circuit? Any ideas?

F = ABC + ABC + ABC

—] >

i

Figure: Circuit implementation (Source: (Stallings, 2015))



Combinatorial Circuit I of B F

Can we do better than the previous logical circuit? Any ideas?




Combinatorial Circuit I of B F

Can we do better than the previous logical circuit? Any ideas?

® Convenient fo obtain the simplified form...



Combinatorial Circuit I of B F

Can we do better than the previous logical circuit? Any ideas? '

® Convenient to obtain the simplified form...

How can we obtain the simplified form? Any ideas? '




Combinatorial Circuit I of B F

How can we obtain the simplified form? Any ideas? '

F = ABC + ABC + ABC



Combinatorial Circuit Algebraic simplification

How can we obtain the simplified form? Any ideas? '

F = ABC + ABC + ABC
= AB(C + C) + ABC
= AB.1 + ABC
= B(A+ AC)
=B((A+A)(A+QC))
=B(1(A+ C))
= AB+ BC
=B(A+ C)




Combinatorial Circuit Algebraic simplification

Once we have obtained the simplified form it is easy to obtain the

equivalent circuit... Any ideas?

F=B(A+C)



Combinatorial Circuit Algebraic simplification

Once we have obtained the simplified form it is easy to obtain the

equivalent circuit... Any ideas?

=D

D

Figure: Simplified Circuit implementation (Source: (Stallings, 2015))




Combinatorial Circuit Karnaugh Maps

Karnaugh Maps

Algebraic simplification procedure is awkward:
® Lacks specific rules to predict each succeeding step:
® Difficult to determine if the simplest expression has been obtained;
Karnaugh map provides a way for simplifying boolean expressions:
® Up to four variables;
® More than this becomes difficult fo use.
® Takes advantage of humans’ pattern-recognition capability.

This section is based on (Mano and Kime, 2002).



Combinatorial Circuit Karnaugh Maps

The map is a diagram made up of squares:
® Each square represents one minterm of the function;

® Visual diagram of all possible ways a function may be expressed;



Combinatorial Circuit Kamaugh Maps

Lets take a look at a three-variable map.

® Only one bit changes in value from one column to the other;

® Any two adjacent squares differ in only a single variable;

YZ Y
N 00 01, 3 i

Xy

x|
<l
NI
x|
<
N
x
ES
N

0

XYZ|IXYZ

x

=
NI
x
=
N

x|

Figure: Three Variable Map (Source: (Mano and Kime, 2002))

® Any two minterms in adjacent squares produce a product of two variables.

® Why?



Combinatorial Circuit Kamaugh Maps

® |etfs see why...

YZ
X 00 01 11 10

x|
<l
NI
X|
<
N
x|
<
N
X
<
N

0

x
<
NI
x
<
N
X
<
N
X
<
N

X

Figure: Three Variable Map (Source: (Mano and Kime, 2002))

® Eg.ms+m; =XYZ+ XYZ
* leems+m =XYZ+XYZ=XZ(Y+Y)=XZ

® The two squares differ in variable Y, which can be removed.



Combinatorial Circuit Kamaugh Maps

Karnaugh Map Example 1

Figure: >~ m(2,3,4,5) = XY + XY (Source: (Mano and Kime, 2002))



Combinatorial Circuit Karnaugh Maps

Karnaugh Map Example 2

Two squares can also be adjacent without touching each other:

Figure: >~ m(0, 2,4, 6) = XZ + XZ (Source: (Mano and Kime, 2002))

® The minterms continue to differ by one variable;



Combinatorial Circuit Karnaugh Maps

Karnaugh Map Example 3

It is also possible to combine 4 squares:

YZ Y:
XN\ 00 01 11 10

o| 1 1 ,/z
x[1 1 1

i z

Figure: >~ m(0,2,4,6) = XZ + XZ = (X + X)Z = Z (Source: (Mano and Kime, 2002))



Combinatorial Circuit Karnaugh Maps

Karnaugh Map Example 4

It is also possible to have several combinations:

YZ B Y
x\ 00\01 11 10
ofl+ |1 |[T [ 1 |

Xl1 1 1

F Y

Figure: > m(0,1,2,3,6,7) = X + Y (Source: (Mano and Kime, 2002))



Combinatorial Circuit Karnaugh Maps

The more squares are combined the fewer literals are used:
® One square represents three literals;
® Two squares represents a product term of two literals;
® Four squares represents a product term of one literal;

® Eight squares (entire map) is equal to value 1.



Combinatorial Circuit Karnaugh Maps

Now that we have a basic understanding of boolean algebra:

® Lets have a look at other types of gates...



Combinatorial Circuit Multiplexers

Multiplexers

The multiplexer connects mulfiple inputs fo a single output.

® Af any time, one of the inputs is selected to be passed to the output.

Du —
D1 410-1 g 82 S1 F
D2 MUX 0 0 Do
0 1 D1
D3 1 0 D2
1 1 D3
‘ ‘ Figure: A 4-to-1 Multiplexer truth table (Source:
82 s1 (Stallings, 2015))

Figure: A 4-to-1 Multiplexer representation
(Source: (Stallings, 2015))

®  Four input lines (DO, D1, D2, and D3);

®  Two selection lines (SO and S1);



Combinatorial Circuit Multiplexers

How can we implement a multiplexer using the logical gates we know?

Any ideas?




Combinatorial Circuit Multiplexers

D1

D2

D3 1/

Figure: Multiplexer Implementation (Source: (Stallings, 2015))

Multiplexeres are useful for:
® To control signal and data routing;

® E.g.loading PC from different sources;



Combinatorial Circuit

Decoders

Combinational circuit with a number of output lines:
® Only one of which is asserted at any time, dependent on input;

® ninputs, 2" output lines;



Combinatorial Circuit Decoders

A Dc- ]| 000 D,
B o
] 001 D,
c {>o—3p
==
1 D,
] o

f 110

111
! D,

Figure: Decoder with 3 inputs and 2% = 8 outputs (Source: (Stallings, 2015))



Combinatorial Circuit

Binary addition differs from Boolean algebra in that the result includes a carry
term.

+
=l
+
=2
+
= =
+
B
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i
5




Combinatorial Circuit Adders

(a) Single-Bit Addition (b) Addition with Carry Input

A B Sum Carry G, A B Sum Cou

1] 0 0 0 0 0 1] 0 0

0 1 1 0 0 0 1 1 0

1 0 1 0 0 1 (4] 1 0

1 1 (4] 1 0 1 1 0 i
3 0 1] 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure: Binary addition truth tables (Source: (Stallings, 2015))

The two outputs can be expressed:
® Sum = C,,AB+ C,,AB+ C,AB + C;,AB
* Cout = ChAB + CpAB + CnAB + Ci,AB




Combinatorial Circuit Adders

Ax  Bs Ay By A B J?; Bo

vt ¢ b

Gl <G Gae—{C GG Cufe—C Cafe—0

Figure: 4 bit adder (Source: (Stallings, 2015))



Combinatorial Circuit Adders

[oR--[F=

$

awE aowrE awe

Figure: Implementation of an adder using AND, OR and NOT gates (Source: (Stallings, 2015))



Sequential Circuits

Seqguential Circuits

Combinational circuits implement the essential functions of a computer.
® However, they provide no memory or state information,

In sequential circuits the output depends:
® Not only on the current input...

® But also of the current circuit state;



Sequential Circuits

Useful examples of sequential circuits:
® Flip-flops;
® Registers;

® Counters.



Sequential Circuits

Useful examples of sequential circuits:
® Flip-flops;
® Registers;

® Counters.

Guess what we will be seeing today! Any ideas?




Sequential Circuits Flip-flops

Flip-flops

® Simplest form of the sequential circuit;
® A variety of flip-flops exist, all of which share two properties:
® Can maintain a binary state indefinitely*:
® Until directed by an input signal to switch states;
® The flip-flop can function as a 1-bit memory;
® *Aslong as powered is deliver to the circuit.

® Has two outputs, these are generally labeled & and Q.



Sequential Circuits Flip-flops

Before we go any further into our presentation:

Does anyone have any idea how flip-flops are implemented?




Sequential Circuits Flip-flops

Before we go any further into our presentation:

Does anyone have any idea how flip-flops are implemented?

Several possibilities:
® Science / Engineering;

® Magic ;)



Sequential Circuits Flip-flops

SR flip-flops

SR circuit has:
® Two inputs S (Set) and R (Reset);
® Two oufpufs Q and Q;
® Two NOR gates connected in a feedback arrangement;

R

s Q
Figure: The S-R Latch implemented with NOR Gates (Source: (Stallings, 2015))



Sequential Circuits Flip-flops

Circuit functions as a 1-bit memory:
® |nputs Set and Reset serve to write the values 1 and 0 to Q;
® Considerthestate @ =0,@ =1,S=0,R=0

R

s Q

Figure: $-R Latch implemented with NOR Gates (Source: (Stallings, 2015))



Sequential Circuits Flip-flops

Suppose that S changes to the value 1.

S Q ¢

Figure: S-R Latch implemented with NOR Gates  Figure: NOR S-R Latch timing Diagram (Source:
(Source: (Stallings, 2015)) (Stallings, 2015))

© Now the inputs to the lower NOR gate are S=1,Q =0.

@ After some time delay At, the output of the lower NOR gate will be Q=0



Sequential Circuits Flip-flops

s Q

Figure: S-R Latch implemented with NOR Gates
(Source: (Stallings, 2015))

Figure: NOR S-R Latch timing Diagram (Source:
(Stallings, 2015))

© The inputs to the upper NOR gate become R = 0, Q = 0.

@ After another gate delay of At, the output Q becomes 1.



Sequential Circuits Flip-flops

1 1
o _ — A — 280
Q ' i
s Q Jo |

Figure: S-R Latch implemented with NOR Gates  Figure: NOR S-R Latch timing Diagram (Source:
(Source: (Stallings, 2015)) (Stallings, 2015))

© This is a stable state. The inputs fo the lower gate arenow S=1,Q =1,
which maintain the output @ = 0.

® Aslong as S = 1 and R = 0, the outputs will remain Q = 1,Q = 0.

® Furthermore, if S returns to 0, the outputs will remain unchanged.



Sequential Circuits Flip-flops

1
o _ — A — 241
Q ' i
s Q Jo |

Figure: S-R Latch implemented with NOR Gates  Figure: NOR S-R Latch timing Diagram (Source:
(Source: (Stallings, 2015)) (Stallings, 2015))

O The R output performs the opposite function.
® When R goesto 1, it forces @ =0,Q = 1
® Regardless of the previous state of Q and Q.

® Again, a time delay of 2At occurs before the final state is established



1
R Q s
o

— T — At —»: 280
s Q o :
Figure: S-R Latch implemented with NOR Gates  Figure: NOR S-R Latch timing Diagram (Source:
(Source: (Stallings, 2015)) (Stallings, 2015))
In essence:

® S=1makes Q =0

® If S = 1then R = 0 which makes Q =1
® R=1mokes Q@ =0

® If R = 1then S = 0 which makes @ = 1



Sequential Circuits Flip-flops

This behaviour can be described by a characteristic table:

(a) Characteristic Table
Current Current Next
Inputs State State
SR O Q,-1
00 0 0
00 1 li
01 0 0
01 1 0
10 0 1
10 1 1
11 0 -
1 1 -

Figure: (Source: (Stallings, 2015))



Sequential Circuits Flip-flops

This behaviour can be described by a characteristic table:

(a) Characteristic Table
Current Current Next
Inputs State State
SR O Q,-1
00 0 0
00 1 i
01 0 0
01 1 0
10 0 1
10 1 1
11 0 -
11 1 -

Figure: (Source: (Stallings, 2015))

But what happens when the inputs are set to S = 1, R = 1? Any ideas?




Sequential Circuits Flip-flops

This behaviour can be described by a characteristic table:

(a) Characteristic Table
Current Current Next
Inputs State State
SR Q, Q,-1
00 0 0
00 1 1
01 0 0
01 1 0
10 0 1
10 1 1
11 0 -
1 1 -

Figure: (Source: (Stallings, 2015))

Inputs S = 1, R = 1 are not allowed:

® Would produce the inconsistent output Q = @ = 0

Luis Tarrataca Chapter 11 - Digital Logic
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Sequential Circuits Flip-flops

It is also possible to derive a simplified version:

(b) Simplified Characteristic Table
S R Qn +1
0 0 Q,
0 1 0
1 0 1
1 1 —

Figure: (Source: (Stallings, 2015))



Sequential Circuits Flip-flops

Lets look at a particular example:

Response to Series of Inputs
t 01 2 3 4 5 6 7 8
S 1 0 0 OO0 0O 0 0 1
R 0 0 O1 00 1T 0O
Qn—i— 1

O O 9o




Sequential Circuits Flip-flops

Lets look at a particular example:

Response to Series of Inputs

t 0 1 2 3 45 6 7 8 9
$ 1 0000O0O0O0T10
R 0001001000

Q4 1 1 100000 1 1




Sequential Circuits Flip-flops

Typically events in the digital computer are synchronized to a clock pulse,
® Changes occur only when a clock pulse occurs;
® R and S inputs are passed to the NOR gates only during the clock pulse.

R

D e

Clock

) @

Figure: Clocked SR flip-flops (Source: (Stallings, 2015))



Sequential Circuits Flip-flops

D flip-flops

Problem with S-R flip-flop, the condition R = 1, S = 1 must be avoided.

How can we be sure that these inputs are not allowed? Any ideas? '




Sequential Circuits Flip-flops

D flip-flops

Problem with S-R flip-flop, the condition R = 1, S = 1 must be avoided.

® One way to do this is to allow just a single input.

A Clock —

D L/

Figure: (D flip-flops (Stallings, 2015))

Ql

® By using a NOT gate:

® Nonclock inputs are the opposite of each other.



Sequential Circuits Flip-flops

¢ Clock D Qpig
A\ clock 0 0 Qn
_ 0 1 Q,
o ) 1 0 o0
Figure: D flip-flops (Stallings, 2015) 1 1 1

® Flip-flop captures the value of the D-input during the clock cycle;
® Captured value becomes the Q output.

® Other times, the output Q does not change.



Sequential Circuits Flip-flops

J-K flip-flops (1/3)

Has two inputs, with all possible combinations of inputs values being valid:

K I—!_\ Q
J K @
Clock 0 O Qn
0 1 0
’ ) Q 1 0 1
1 1 Q,

Figure: JK flip-flops (Stallings, 2015)

® Note that the first three combinations are the same as for the SR flip-flop;

® With no input asserted (J=K=0): output is stable;



Sequential Circuits Flip-flops

J-K flip-flops (2/3)

o~ o
J K e,
Clock 0 0 @,
0 1 0
; q 1 0 1
119,

Figure: JK flip-flops (Stallings, 2015)

® |f only the J input is asserted, the output is set to 1;

® if only the Kin put is asserted, the output is reset to O.



Sequential Circuits Flip-flops

J-K flip-flops (3/3)

K Qn—|—l

Clock

—_ = 0O O] &
— O — O
P~

] Q

Figure: JK flip-flops (Stallings, 2015)

® When both J and K are 1: output is reversed;
® If Qn = 0 then Qn+] =1

® If Qn = 1then Qn+] =0



Sequential its Flip-flops
In summary:
Name Graphical Symbol Truth Table
— s Q— S R | Qu
0o 0 Q,
SR — > 0 1 0
1 0 1
—=R o— 1 1 -
e Q— 7 K Q.1
0o 0 Q.
K —px 01 0
1 0 a
— Ik g—— 1 1 Q,
— b qQ— D | Qu
0| o
D —pCk 1 1
6 —

Figure: Basic flip-flops summary (Stallings, 2015)



Sequential Circuits Registers

Registers

Lets look at another type of sequential circuits: registers:

First, how many of you have heard of registers? Any ideas? '
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Sequential Circuits Registers

Registers

Lets look at another type of sequential circuits: registers:
® Circuit used within the CPU to store one or more bits of data

® Two basic types of registers are commonly used:
® Pardllel registers;

® Shift registers.

Lets have a quick look at each one of these...



Sequential Circuits Registers

Parallel Registers

Consists of a set of 1-bit memories that can be read or written
Data lines

simultaneously.
D18 D17 D16 D15 D14 3 D12 D1l
D Q D Q
{> 1> > > £>Clk > 1> Clk {>
Clock
e e R R A R
Do8 Do7 D6 DoOs D D02 Do1

DI1.
|
04

D03

Output lines

Figure: 8 Bit Parallel Register (Source: (Stallings, 2015))

® Makes use of D flip-flops

® Load control signal controls writing into the register from signal lines, D11 through D18.
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Sequential Circuits Registers

Shift Registers (1/2)

A shift register accepts and/or fransfers information serially:

Serial Out

Figure: 5 Bit Shift Register (Source: (Stallings, 2015))

® A 5-bit shift register constructed from clocked D flip-flops;
® Data are input only to the leftmost flip-flop;
® With each clock pulse, data are shifted fo the right one position;

® and the rightmost bit is transferred out.
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Sequential Circuits Registers

Shift Registers (2/2)

A shift register accepts and/or transfers information serially:

Figure: 5 Bit Shift Register (Source: (Stallings, 2015))

® Shift registers can be used to interface to serial I/O devices.

® In addition, they can be used within the ALU to perform logical shift and rotate functions.
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Sequential Circuits

Counters

Lets look at another type of sequential circuits: counters:

First, how many of you have heard of counters? Any ideas? '
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Sequential Circuits

Counters

Register whose value is incremented by 1;
® Register made up of n flip-flops can count up to 2" — 1.
® Affer value 2" — 1 the next increment sets the counter value to 0.

® An example of a counter in the CPU is the program counter;
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Sequential Circuits Counters

Counters can be designated as asynchronous or synchronous:

® Asynchronous counter:

® Slow since output of one flip-flop triggers a change in next flip-flop.

® Synchronous counter:
® All of the flip-flops change state at the same time.

® The kind used in CPUs.

Lets have a look at each one of these...



Sequential Circuits Counters

Asynchronous counters (1/3)

High

Clock

JQ—|—J Q—|'—JQ—"—JQ
Ck Ck Ck Ck

Q Q Q Q
(a) Sequential circuit

Figure: 4-Bit Counter (Source: (Stallings, 2015))

Output of the leftmost flip-flop (&) is the least significant bit;
All output Q; bits are initialized to zero;

Extensible to an arbitrary number of bits by cascading more flip-flops;

® Counter is incremented with each clock pulse;
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Sequential Circuits Counters

Asynchronous counters (2/3)

High

— 1 Q—I — 1 Q—I — 1 Q—‘
Ck Ck Ck

Clock Ck

Q Q Q Q

(a) Sequential circuit

Figure: 4-Bit Counter (Source: (Stallings, 2015))

® J and K inputs o each flip-flop are held at a constant 1 (High).
® |e. when there is a clock pulse, the output at Q will be inverted;
® Change in state occurs with the falling edge of the clock pulse

® Ak.a. edge-triggered flip-flop

® Timing is very important for the correct functioning of the counter.



Sequential Circuits Counters

Asynchronous counters (3/3)

@ — I L L

© | L
(b) Timing diagram

Figure: 4-Bit Counter (Source: (Stallings, 2015))

® State of each individual bit is initially set to zero

® |f one looks at patterns of output for this counter, it can be seen that it
cycles through 0000, 0001, ..., 1110, 1111, 0000

® Note the transitional delay from each flip-flops



Sequential Circuits Counters

Synchronous counters (1/11)

Asynchronous counters have a disadvantageous built-in delay:
® Proportional to the length of the counter.

CPUs make use of synchronous counters:
® All of the flip-flops of the counter change at the same time.

Lets take a look at how to build a 3-bit synchronous counter.
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Synchronous counters (2/11)

For a 3-bit counter, three flip-flops will be needed:

® |ets us use J-K flip-flops.

® Label the uncomplemented output of the three flip-flops A, B, C
respectively, with C representing the least significant bit.

® |t is helpful o recast the characteristic table for the J-K flip-flop:

J K| Qu
o ol o Q J K Q.
0o 1 0 0 0
1 0 i 0 1
1 1 Q, 1 0
1 1
Figure: Original



Sequential Circuits Counters

Synchronous counters (3/11)

For a 3-bit counter, three flip-flops will be needed:
® |ets us use J-K flip-flops.

® Label the uncomplemented output of the three flip-flops A, B, C
respectively, with C representing the least significant bit.

® |t is helpful o recast the characteristic table for the J-K flip-flop:

I K| Qo
Pa— o Q J K| Qu
0o 1 o 0 0 d| o
10| 1 0 1 d| 1
1 1 Q. 1 d 1 0

1 d 0 1

Figure: Original



Sequential Circuits

Synchronous counters (4/11)

® |t is helpful to recast the characteristic table for the J-K flip-flop:

! K‘Q"“ Q 3 K Q.
0 0 Q, 0 0 d 0
0 1 0 0 1 d 1
1 0 1 1 d 1 0
1 1| Q 1 d 0 1

Figure: Recast
Figure: Original

® If , = 0 and we want to fransition to Q,+1 = 0
® ThenJ=0and K = {0, 1}

® If @, = 0 and we want to transition to Q1 =1

® ThenJ=1and K = {0, 1}



Sequential Circuits

Synchronous counters (5/11)

® |t is helpful to recast the characteristic table for the J-K flip-flop:

! K‘Q"“ Q 3 K Q.
0 0 Q, 0 0 d 0
0 1 0 0 1 d 1
1 0 1 1 d 1 0
1 1| Q 1 d 0 1

Figure: Recast
Figure: Original

® If @, = 1 and we want to fransition to Q,+1 = 0
® ThenK =1andJ ={0,1}

® If @, = 1 and we want to transition to Q1 = 1

® ThenK =0and J = {0, 1}



Sequential Circuits

Synchronous counters (6/11)

Q, J K Qy1
0 0 d 0
0 1 d 1
1 d 1 0
1 d 0 1

Figure: Synchronous Counter Truth Table (Source: (Stallings, 2015))

® Consider transition from **000°" fo **001"*

® Value of A needs to remain O;
Value of B needs to remain O;
Value of C needs to go from 0 to 1;

® Excitation table shows that to:
® Maintain an output of 0: inputs must be {J = 0,K = d};

® To effect a transition from O to 1: inputs must be {J = 1, K = d};



Sequential Circuits Counters

Synchronous counters (7/11)

® With this in mind we can construct a truth table that relates the J-K inputs
and outputs

(9]
w
>

Jc Kc Jb I(b Ja Ka

Qn—H

o —-0Q QR

Q Q — O|«

—_ - O O
—_ 0 —

—| == =|O|lO|Oo| O
—|—=|lO|lo|—=|—=|0|Oo
—|O|—=|O|—|0O|—| O




Sequential Circuits Counters

Synchronous counters (8/11)

® With this in mind we can construct a truth table that relates the J-K inputs
and outputs

C B Ak K I K Jo Kg
0 0 0]0 d 0 d 1 d

0 0 1]0 d 1 d d 1]|S J K|@u
0O 1 0/l]0 d d 0 1 d 0 0 d| o
0 1 111 d d 1 d 1 0 1 d| 1

1 0 0|ld 0 0 d 1 d 1 d 1 0

1 0 1}|d 0 1 d d 1 1 d 0 1

1 1 0|ld 0 d 0 1 d

T 1 1]d 1 d 1 d 1




Sequential Circuits

Synchronous counters (2/11)

We can develop Boolean expressions for these six functions:

BA BA
(b) Karnaugh maps 00 01 1 10 00 01 11 10

1
o 1A o[+ oAl
Jc=BA C

Kc=BA C
1| d dwd 1 \1}

10 00 10

B.
01 01
0 3 d
Ibh=A C Kbh=A C
a a

e [=)

BA BA
00 01 11 10 00 01 11 10
e o|1 d| d 1\ Old 1|1 d‘
o= c Ka=1 C
1|1 d| d IJ 1|a 1|1 dJ

Figure: Synchronous Counter Karnaugh Maps (Source: (Stallings, 2015))
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Synchronous counters (10/11)

For example, the Karnaugh map for the variable Jc:
® The J input to the flip-flop that produces the C output;
® vyields the expression Jc = BA.

When alll six expressions are derived,

® straightforward to design the circuit.
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Synchronous counters (11/11)

Circuit example:

(c) Logic diagram
1 1 Ja A +— Ib B
Dk D>Ck
Ka A Kb B
Clock

Figure: Synchronous Counter Design (Source: (Stallings, 2015))
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