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Motivation

Motivation

How can a computer perform arithmetic operations? Any ideas?
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Motivation

How can a computer perform arithmetic operations? Any ideas?

• Well, it depends on the type of numbers: integer and floating point;

• Representation is a crucial design issue...

• Guess what we will be seeing next ;)
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Arithmetic and Logic Unit

What is the computer component responsible for calculations? Any

ideas?
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Arithmetic and Logic Unit

Arithmetic and Logic Unit

What is the computer component responsible for calculations? Any

ideas?

Arithmetic Logic Unit

• Component that performs arithmetic and logical operations;

• All other system components are there mainly to:

• Bring data into the ALU;

• Process data;

• Take results back out;
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Arithmetic and Logic Unit

What is the general organization of the ALU? Any ideas?
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Arithmetic and Logic Unit

What is the general organization of the ALU? Any ideas?

Very generally:

Figure: ALU Inputs and outputs (Source: [Stallings, 2015])
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Arithmetic and Logic Unit

Textual description of the previous image (1/2):

• Operands for arithmetic/logic operations are provided in registers;

• Results of an operation are also stored in registers;

• ALU may also set flags as the result of an operation, e.g.:

• Overflow flag is set to 1:

• If a result exceeds the length of the register into which it is to be stored.

• Zero flag is set to 1:

• If a result produces value zero (JMP.Z, JMP.NZ, etc...)

Luis Tarrataca Chapter 10 - Computer Arithmetic 10 / 147



Arithmetic and Logic Unit

Textual description of the previous image (2/2):

• Flags are also stored in registers within the processor.

• Processor provides signals that control:

• ALU operation;

• Data movement into and out of the ALU.
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Arithmetic and Logic Unit

Figure: Expanded Structure of a computer (Source: [Stallings, 2015])
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Arithmetic and Logic Unit

From the previous picture (1/2):

• Accumulator (AC) and Multiplier quotient (MQ):

• Employed to hold temporarily operands and results of ALU operations

• Memory buffer register(MBR):

• Contains a word to be stored in memory or sent to the I/O unit, or is used to

receive a word from memory or from the I/O unit.

• Memory address register (MAR):

• Specifies the address in memory of the word to be written from or read into

the MBR.

Luis Tarrataca Chapter 10 - Computer Arithmetic 13 / 147



Arithmetic and Logic Unit

From the previous picture (2/2):

• Instruction register (IR):

• Contains the instruction being executed.

• Instruction buffer register (IBR):

• Employed to hold the right-hand instruction from a word in memory.

• Program counter (PC)

• Contains the address of the next instruction pair to be fetched from memory.
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Integer representation

Integer representation

An n-bit sequence an−1an−2 · · · a0 is an unsigned integer A:

A =

n−1∑

i=0

2
i
ai

But what if we have to express negative numbers. Any ideas?

Luis Tarrataca Chapter 10 - Computer Arithmetic 15 / 147



Integer representation Sign-Magnitude Representation

Sign-Magnitude Representation

The sign of a number can be represented using the leftmost bit:

• If bit is 0, the number is positive;

• If bit is 1, the number is negative;
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Integer representation Sign-Magnitude Representation

The number sign can be represented using the leftmost bit:

• If bit is 0: number is positive;

• If bit is 1: number is negative;

Can you see any problems with this method?
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Integer representation Sign-Magnitude Representation

There are several problems in fact:

• Addition and subtraction operations require:

• Considering both signs and the magnitudes of each number;

• There are two representations of 0:

• We need to test for two cases representing zero;

• This operation is frequently used in computers...

• Because of these drawbacks sign-magnitude representation is rarely use...
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Integer representation Sign-Magnitude Representation

So what can we use to represent integers? Any ideas?

Luis Tarrataca Chapter 10 - Computer Arithmetic 19 / 147



Integer representation Sign-Magnitude Representation

So what can we use to represent integers? Any ideas?

• Twos Complement Representation
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Integer representation Twos Complement Representation

Twos Complement Representation

Like the sign magnitude system:

• uses the most significant bit as a sign bit;

• Easy to test whether an integer is positive or negative

However, it differs from the use of the sign-magnitude representation:

• in the way that the other bits are interpreted.
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Integer representation Twos Complement Representation

Key characteristics of twos complement representation and arithmetic:

Figure: Characteristics of twos complement representation and arithmetic (Source: [Stallings, 2015])
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Integer representation Twos Complement Representation

Consider an n-bit integer, A, in twos complement (1/3):

• If A is positive, then the sign bit, an−1, is zero;

• Remaining bits represent number magnitude:

A =
n−2∑

i=0

2i
ai , for A ≥ 0
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Integer representation Twos Complement Representation

Consider an n-bit integer, A, in twos complement:

What is the maximum positive integer? An ideas?
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Integer representation Twos Complement Representation

Consider an n-bit integer, A, in twos complement (2/3):

What is the maximum positive integer? An ideas?

• Zero is identified as positive (zero sign bit) and a magnitude of all 0s;

• Range of positive integers that may be represented is:

• from 0 (all of the magnitude bits are 0)...

• through 2n−1 − 1 (all of the magnitude bits are 1).
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Integer representation Twos Complement Representation

Consider an n-bit integer, A, in twos complement:

What is the minimum positive integer? An ideas?
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Integer representation Twos Complement Representation

Consider an n-bit integer, A, in twos complement (3/3):

What is the minimum positive integer? An ideas?

• A negative number A has the sign bit, an−1, set to one:

• Remaining n − 1 bits can take on any one of 2n−1 values

• Therefore, range is from −1 to −2n−1;
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Integer representation Twos Complement Representation

Ideally: negative numbers should facilitate arithmetic operations:

• Similar to unsigned integer arithmetic;

• In unsigned integer representation:

• Weight of the most significant bit is +2n−1;

• It turns out that with a sign bit desired arithmetic properties are achieved if:

• Weight of the most significant bit is −2n−1;
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Integer representation Twos Complement Representation

This is the convention used in twos complement representation:

A = −2n−1
an−1 +

n−1∑

i=0

2i
ai for A < 0

• For an−1 = 0, then −2n−1an−1 = 0, i.e.:

• Equation defines nonnegative integer;

• For an−1 = 1, then the term −2n−1 is subtracted from the summation, i.e.:

• yielding a negative integer
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Integer representation Twos Complement Representation

Figure: Alternative representations for 4 bit integers (Source: [Stallings, 2015])
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Integer representation Twos Complement Representation

Twos complement is a weird representation from the human perspective:

• However:

• Facilitates addition and subtraction operations;

• For this reason:

• It is almost universally used as the processor representation for integers;

• It is also the representation used by the P3 processor employed in the lab;
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Integer representation Twos Complement Representation

Example

A useful illustration of twos complement:

Figure: An eight-position twos complement value box (Source: [Stallings, 2015])
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Integer representation Twos Complement Representation

Example

A useful illustration of twos complement:

Figure: Convert binary 10000011 to decimal (Source: [Stallings, 2015])
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Integer representation Twos Complement Representation

Example

A useful illustration of twos complement:

Figure: Convert decimal -120 to binary (Source: [Stallings, 2015])
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Integer representation Range Extension

Range Extension

Sometimes it is desirable to take an n-bit integer and store it in m-bits:

• where m > n

• Easy in sign-magnitude notation:

• move the sign bit to the new leftmost position and fill in with zeros.
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Integer representation Range Extension

But how will range extension work from two’s complement perspective?

Any ideas?
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Integer representation Range Extension

But how will range extension work from two’s complement perspective?

Any ideas?

Can you see any potental problems? Any ideas?
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Integer representation Range Extension

Range Extension

Sometimes it is desirable to take an n-bit integer and store it in m-bits:

• where m > n

• Same procedure will not work for twos complement:

What can we do to solve this problem? Any ideas?
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Integer representation Range Extension

Rule for twos complement integers is:

• Move sign bit to leftmost position and fill in with copies of the sign bit, i.e.:

• For positive numbers:

• Fill in with zeros

• For negative numbers:

• Fill in with ones

• Example:
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Integer Arithmetic Negation

Negation

How can we negate a number in twos complement? Any ideas?
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Integer Arithmetic Negation

How can we negate a number in twos complement? Any ideas?

To negate an integer in twos complement notation:

1 Complement each bit (including sign bit);

2 Add 1;

3 Example:
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Integer Arithmetic Negation

What is the negation of zero in twos complement? Any ideas?
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Integer Arithmetic Negation

What is the negation of zero in twos complement? Any ideas?

• Consider A = 0. In that case, for an 8-bit representation:

• Carry bit out of the most significant bit is ignored;

• The result is that the negation of 0 is 0;
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Integer Arithmetic Negation

What is the negation of 1 followed by n− 1 zeros? Any ideas?

Luis Tarrataca Chapter 10 - Computer Arithmetic 44 / 147



Integer Arithmetic Negation

What is the negation of 1 followed by n− 1 zeros? Any ideas?

• Negation of the bit pattern of 1 followed by n− 1 zeros:

• Produces the same number

Why does this happen? Any ideas?
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Integer Arithmetic Negation

What is the negation of 1 followed by n− 1 zeros? Any ideas?

• Negation of the bit pattern of 1 followed by n− 1 zeros:

• Produces the same number

Why does this happen? Any ideas?

• Twos complement range: [−2n−1, 2n−1 − 1];

• Negating −128 falls out of this range;
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Integer Arithmetic Addition

Addition

How can we add a number in twos complement? Any ideas?
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Integer Arithmetic Addition

Addition

Addition proceeds as if the two numbers were unsigned integers:
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Integer Arithmetic Addition

Addition

Addition proceeds as if the two numbers were unsigned integers:

• Carry bit beyond (indicated by shading) is ignored;
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Integer Arithmetic Addition

Addition

Addition proceeds as if the two numbers were unsigned integers:
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Integer Arithmetic Addition

Addition

Addition proceeds as if the two numbers were unsigned integers:

• Carry bit beyond (indicated by shading) is ignored;
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Integer Arithmetic Addition

Addition

But what happens with this case? Any ideas?
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Integer Arithmetic Addition

Addition

But what happens with this case? Any ideas?

• Two numbers of the same sign produce a different sign...
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Integer Arithmetic Addition

Addition

But what happens with this case? Any ideas?
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Integer Arithmetic Addition

Addition

But what happens with this case? Any ideas?

• Two numbers of the same sign produce a different sign...
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Integer Arithmetic Addition

Addition

Why do you think this happens? Any ideas?
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Integer Arithmetic Addition

Addition

Why do you think this happens? Any ideas?

• Overflow:

• Result is larger that what can be stored with the word;

• Solution: Increase word size;

• When overflow occurs:

• ALU must signal this fact so that no attempt is made to use the result.
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Integer Arithmetic Subtraction

Subtraction

How can we subtract a number in twos complement? Any ideas?
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Integer Arithmetic Subtraction

Subtraction

To subtract the subtrahend from the minuend:

• Take the twos complement of the subtrahend (S) and add it to the

minuend (M).

• M + (−S)

• I.e.: subtraction is achieved using addition;
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Integer Arithmetic Subtraction

Subtraction is achieved using addition: M + (−S)

• Carry bit beyond (indicated by shading) is ignored;
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Integer Arithmetic Subtraction

Subtraction is achieved using addition: M + (−S)

• Carry bit beyond (indicated by shading) is ignored;

Luis Tarrataca Chapter 10 - Computer Arithmetic 61 / 147



Integer Arithmetic Subtraction

Subtraction is achieved using addition: M + (−S)
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Integer Arithmetic Subtraction

Subtraction is achieved using addition: M + (−S)

• Overflow: two numbers of the same sign produce a different sign;
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Integer Arithmetic Subtraction

Subtraction is achieved using addition: M + (−S)

• Carry bit beyond (indicated by shading) is ignored;

• Overflow: two numbers of the same sign produce a different sign;
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Integer Arithmetic Hardware Block Diagram for Adder

Hardware Block Diagram for Adder

So, the question now is:

How can we map these concepts into hardware? Any ideas?
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Integer Arithmetic Hardware Block Diagram for Adder

Hardware Block Diagram for Adder

Figure: Block diagram of hardware for addition and subtraction (Source: [Stallings, 2015])
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Integer Arithmetic Hardware Block Diagram for Adder

From the previous figure:

• Central element is a binary adder:

• Presented with two inputs;

• Produces a sum and an overflow indication;

• Adder treats the two numbers as unsigned integers

• For the addition operation:

• The two numbers are presented in two registers;

• Result may be stored in one of these registers or in a third;

• For the subtraction operation:

• Subtrahend (B register) is passed through a twos complementer;

• Overflow indication is stored in a 1-bit overflow flag.
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Integer Arithmetic Multiplication

Multiplication

Multiplication is a complex operation:

• Compared with addition and subtraction;

• Again lets consider multiplying for the following cases:

• Two unsigned numbers;

• Two signed (twos complement) numbers;
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Integer Arithmetic Multiplication

Unsigned Integers

How can we perform multiplication? Any ideas?
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Integer Arithmetic Multiplication

How can we perform multiplication? Any ideas?
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Integer Arithmetic Multiplication

Several important observations:

1 Multiplication involves the generation of partial products:

• One for each digit in the multiplier;

• These partial products are then summed to produce the final product.

2 The partial products are easily defined.

• When the multiplier bit is 0,the partial product is 0;

• When the multiplier is 1, the partial product is the multiplicand;

3 Total product is produced by summing the partial products:

• each successive partial product is shifted one position to the left relative

4 Multiplication of two n-bit binary integers produces up to 2n bits;
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Integer Arithmetic Multiplication

How can we translate these concepts into hardware? Any ideas?
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Integer Arithmetic Multiplication

How can we translate these concepts into hardware? Any ideas?

• We can perform a running addition on the partial products:

• Rather than waiting until the end;

• Eliminates the need for storage of all the partial products;

• Fewer registers are needed

• We can save some time on the generation of partial products:

• For each 1 on the multiplier, an add and a shift operation are required

• For each 0, only a shift is required.
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Integer Arithmetic Multiplication

Possible implementation employing these measures:

Luis Tarrataca Chapter 10 - Computer Arithmetic 74 / 147



Integer Arithmetic Multiplication

1 Multiplier and multiplicand are loaded into two registers (Q and M);

2 A third register, the A register, is also needed and is initially set to 0;

3 There is also a 1-bit C register, initialized to 0:

• which holds a potential carry bit resulting from addition.
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Integer Arithmetic Multiplication

4 Control logic then reads the bits of the multiplier one at a time:

• If Q0 is 1, then:

• the multiplicand is added to the A register...

• and the result is stored in the A register...

• with the C bit used for overflow.

• Then all of the bits of the C, A, and Q registers are shifted to the right one bit:

• So that the C bit goes into An−1, A0 goes into Qn−1 and Q0 is lost.

• If Q0 is 0, then:

• Then no addition is performed, just the shift;

• Process is repeated for each bit of the original multiplier;

• Resulting 2n-bit product is contained in the A and Q registers
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Integer Arithmetic Multiplication

Example

C A Q M
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Integer Arithmetic Multiplication

Example

C A Q M

0 0000 1101 1011 Initial Values
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Integer Arithmetic Multiplication

Example

C A Q M

0 0000 1101 1011 Initial Values

0 1011 1101 1011 Add
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Integer Arithmetic Multiplication

Example

C A Q M

0 0000 1101 1011 Initial Values

0 1011 1101 1011 Add

0 0101 1110 1011 Shift Right
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Integer Arithmetic Multiplication

Example

C A Q M

0 0000 1101 1011 Initial Values

0 1011 1101 1011 Add

0 0101 1110 1011 Shift Right

0 0010 1111 1011 Shift
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Integer Arithmetic Multiplication

Example

C A Q M

0 0000 1101 1011 Initial Values

0 1011 1101 1011 Add

0 0101 1110 1011 Shift Right

0 0010 1111 1011 Shift

0 1101 1111 1011 Add
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Integer Arithmetic Multiplication

Example

C A Q M

0 0000 1101 1011 Initial Values

0 1011 1101 1011 Add

0 0101 1110 1011 Shift Right

0 0010 1111 1011 Shift

0 1101 1111 1011 Add

0 0110 1111 1011 Shift
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Integer Arithmetic Multiplication

Example

C A Q M

0 0000 1101 1011 Initial Values

0 1011 1101 1011 Add

0 0101 1110 1011 Shift Right

0 0010 1111 1011 Shift

0 1101 1111 1011 Add

0 0110 1111 1011 Shift

1 0001 1111 1011 Add
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Integer Arithmetic Multiplication

Example

C A Q M

0 0000 1101 1011 Initial Values

0 1011 1101 1011 Add

0 0101 1110 1011 Shift Right

0 0010 1111 1011 Shift

0 1101 1111 1011 Add

0 0110 1111 1011 Shift

1 0001 1111 1011 Add

0 1000 1111 1011 Shift
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Integer Arithmetic Multiplication

Or in flowchart form:

Figure: Flowchart for unsigned binary multiplication (Source: [Stallings, 2015])
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Integer Arithmetic Multiplication

Twos complement multiplication

How can we perform multiplication using twos complement? Any ideas?
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Integer Arithmetic Multiplication

Product of two N-bit numbers requires maximum of 2N:

• Double operands precision using two’s complement;

• For example, take 6×−5 = −30

• 6(10) = 0110(2) = 00000110(2)

• −5(10) = 1011(2) = 11111011(2)

Figure: (Source: wikipedia)

• Discarding the bits beyond the eighth bit will produce the correct result;
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Integer Arithmetic Multiplication

Can you see any problems with this approach? Any ideas?
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Integer Arithmetic Multiplication

Very inefficient:

• Precision is doubled ahead of time;

• This means that all additions must be double-precision;

• Therefore twice as many partial products are needed...
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Integer Arithmetic Multiplication

Can we do better than this?
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Integer Arithmetic Multiplication

Can we do better than this?

• Yes we can through Booth’s algorithm =)
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Integer Arithmetic Multiplication

Booth’s Algorithm

Example of BoothÕs Algorithm for: 7× 3

A Q Q−1 M
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Integer Arithmetic Multiplication

Booth’s Algorithm

Example of BoothÕs Algorithm for: 7× 3

A Q Q−1 M

0000 0011 0 0111 Initial Values
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Integer Arithmetic Multiplication

Booth’s Algorithm

Example of BoothÕs Algorithm for: 7× 3

A Q Q−1 M

0000 0011 0 0111 Initial Values

1001 0011 0 0111 A← A−M

Luis Tarrataca Chapter 10 - Computer Arithmetic 95 / 147



Integer Arithmetic Multiplication

Booth’s Algorithm

Example of BoothÕs Algorithm for: 7× 3

A Q Q−1 M

0000 0011 0 0111 Initial Values

1001 0011 0 0111 A← A−M

1100 1001 1 0111 Arithmetic Shift Right
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Integer Arithmetic Multiplication

Booth’s Algorithm

Example of BoothÕs Algorithm for: 7× 3

A Q Q−1 M

0000 0011 0 0111 Initial Values

1001 0011 0 0111 A← A−M

1100 1001 1 0111 Arithmetic Shift Right

1110 0100 1 0111 Arithmetic Shift Right
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Integer Arithmetic Multiplication

Booth’s Algorithm

Example of BoothÕs Algorithm for: 7× 3

A Q Q−1 M

0000 0011 0 0111 Initial Values

1001 0011 0 0111 A← A−M

1100 1001 1 0111 Arithmetic Shift Right

1110 0100 1 0111 Arithmetic Shift Right

0101 0100 1 0111 A← A + M
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Integer Arithmetic Multiplication

Booth’s Algorithm

Example of BoothÕs Algorithm for: 7× 3

A Q Q−1 M

0000 0011 0 0111 Initial Values

1001 0011 0 0111 A← A−M

1100 1001 1 0111 Arithmetic Shift Right

1110 0100 1 0111 Arithmetic Shift Right

0101 0100 1 0111 A← A + M

0010 1010 0 0111 Arithmetic Shift Right
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Integer Arithmetic Multiplication

Booth’s Algorithm

Example of BoothÕs Algorithm for: 7× 3

A Q Q−1 M

0000 0011 0 0111 Initial Values

1001 0011 0 0111 A← A−M

1100 1001 1 0111 Arithmetic Shift Right

1110 0100 1 0111 Arithmetic Shift Right

0101 0100 1 0111 A← A + M

0010 1010 0 0111 Arithmetic Shift Right

0001 0101 0 0111 Arithmetic Shift Right
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Integer Arithmetic Multiplication

Booth’s Algorithm

Example of BoothÕs Algorithm for: 7× 3

A Q Q−1 M

0000 0011 0 0111 Initial Values

1001 0011 0 0111 A← A−M

1100 1001 1 0111 Arithmetic Shift Right

1110 0100 1 0111 Arithmetic Shift Right

0101 0100 1 0111 A← A + M

0010 1010 0 0111 Arithmetic Shift Right

0001 0101 0 0111 Arithmetic Shift Right

Final result appears in the A and Q registers:

• A = 0001

• Q = 0101

• AQ = 000101012 = 2110
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Integer Arithmetic Multiplication

1 Multiplier and multiplicand are placed in the Q and M registers;

2 Q−1 is a 1-bit register placed logically to the right of Q0;

3 Results of the multiplication will appear in the A and Q registers;

4 A and Q−1 are initialized to 0.
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Integer Arithmetic Multiplication

5 Control logic scans the bits of the multiplier one at a time:

• as each bit is examined, the bit to its right is also examined;

• If the two bits are the same (1-1 or 0-0):

• all of the bits of the A, Q, and Q
−1 registers are shifted to the right 1 bit.

• If the two bits differ:

• then the multiplicand is added/subtracted from the A register

• depending on whether the two bits are 0-1 or 1-0.

• Following the addition or subtraction, the right shift occurs.

• All shifts performed preserve the sign:

• Arithmetic Right Shift
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Integer Arithmetic Multiplication

In flowchart form:

Figure: (Source: [Stallings, 2015])
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Integer Arithmetic Multiplication

Exercise

Use Booth’s algorithm to multiply 23 (M) by 29 (Q):

A Q Q−1 M

Rules:

0→ 1 = A = A + M, Arithmetic Right Shift

1→ 0 = A = A + (-M), Arithmetic Right Shift

0→ 0 = Arithmetic Right Shift

1→ 1 = Arithmetic Right Shift
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Integer Arithmetic Multiplication

Exercise

Use Booth’s algorithm to multiply 22 (M) by 28 (Q):

A Q Q−1 M

Rules:

0→ 1 = A = A + M, Arithmetic Right Shift

1→ 0 = A = A + (-M), Arithmetic Right Shift

0→ 0 = Arithmetic Right Shift

1→ 1 = Arithmetic Right Shift
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Integer Arithmetic Multiplication

Seems complicated?

• That is because it is;

• Focus on performance not on human easiness to understand...

• Can be proved mathematically that works:

• Beyond the scope of this class...

• Same concepts could be used to divise a division method:

• Beyond the scope of this class...
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Integer Arithmetic Multiplication

Now that we have a basic understanding about:

• integer representation;

• integer arithmetic operations;

How can we represent floating-point numbers?
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Floating-point representation

Important notice:

• Throughout computation history, several standards have been created:

• IEEE 754-1985

• IEEE 854-1987

• IEEE 754-2008

• This means that it is difficult to present this material concisely;

Therefore: I only want you to have a basic notion of floating-point

operations ;)

Luis Tarrataca Chapter 10 - Computer Arithmetic 109 / 147



Floating-point representation

Floating-point representation

We can represent decimal numbers in several ways, e.g.:

• 976, 000, 000, 000, 000 = 9.76× 1014

• 0.0000000000000976 = 9.76× 10−14

I.e. the decimal point floats to a convenient location:

• We use the exponent of 10 to keep track of the decimal point;

• This way we can represent large and small numbers with only a few digits;
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Floating-point representation

Same approach can be taken with binary numbers, i.e.:

±S × B
±E

This number can be stored in a binary word with three fields:

• Sign: plus or minus

• Significand: S

• Exponent: E

• Base: B (binary)
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Floating-point representation

In general:

Figure: Typical 32-Bit floating-point format (Source: [Stallings, 2015])

• Leftmost bit stores the sign of the number (0 = positive, 1 = negative)

• Exponent value is stored in the next k = 8 bits:

• Fixed value is subtracted from the field to get the true value.

• Value equals 2k−1 − 1

• Range of possible values [−(2k−1 − 1), 2k−1]

• Significand: right portion of the word;
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Floating-point representation

Example

Figure: Typical 32-Bit floating-point format (Source: [Stallings, 2015])

• Example:

1.1010001× 210100 = 0 10010011 10100010000000000000000

Biased exponent:
20(10) := 0 0 0 1 0 1 0 0

+ 127(10) := 0 1 1 1 1 1 1 1

1 0 0 1 0 0 1 1
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Floating-point representation

What is the decimal form of this number:

0 1001 0011 10100010000000000000000? Any ideas?
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Floating-point representation

What is the decimal form of this number:

0 1001 0011 10100010000000000000000? Any ideas?

• 1.6328125× 220

• 2−1 + 2−3 + 2−7 = 1.6328125

Luis Tarrataca Chapter 10 - Computer Arithmetic 115 / 147



Floating-point representation

Example

Figure: Typical 32-Bit floating-point format (Source: [Stallings, 2015])

• Example:

−1.1010001× 210100 = 1 10010011 10100010000000000000000

Biased exponent:
20(10) := 0 0 0 1 0 1 0 0

+ 127(10) := 0 1 1 1 1 1 1 1

1 0 0 1 0 0 1 1
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Floating-point representation

What is the decimal form of this number:

1 1001 0011 10100010000000000000000? Any ideas?
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Floating-point representation

What is the decimal form of this number:

1 1001 0011 10100010000000000000000? Any ideas?

• −1.6328125× 220

• 2−1 + 2−3 + 2−7 = 1.6328125
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Floating-point representation

Example

Figure: Typical 32-Bit floating-point format (Source: [Stallings, 2015])

• Example:

1.1010001× 2−10100 = 0 01101011 10100010000000000000000

Biased exponent:
−20(10) := 1 1 1 0 1 1 0 0

+ 127(10) := 0 1 1 1 1 1 1 1

0 1 1 0 1 0 1 1
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Floating-point representation

What is the decimal form of this number:

0 0110 1011 10100010000000000000000? Any ideas?

Luis Tarrataca Chapter 10 - Computer Arithmetic 120 / 147



Floating-point representation

What is the decimal form of this number:

0 0110 1011 10100010000000000000000? Any ideas?

• 1.6328125× 2−20

• 2−1 + 2−3 + 2−7 = 1.6328125
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Floating-point representation

Example

Figure: Typical 32-Bit floating-point format (Source: [Stallings, 2015])

• Example:

−1.1010001× 2−10100 = 1 11101101 10100010000000000000000

Biased exponent:
−20(10) := 1 1 1 0 1 1 0 0

+ 127(10) := 0 1 1 1 1 1 1 1

0 1 1 0 1 0 1 1
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Floating-point representation

What is the decimal form of this number:

1 11101101 10100010000000000000000? Any ideas?
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Floating-point representation

What is the decimal form of this number:

1 11101101 10100010000000000000000? Any ideas?

• −1.6328125× 2−20

• 2−1 + 2−3 + 2−7 = 1.6328125
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Floating-point representation

Figure: Typical 32-Bit floating-point format (Source: [Stallings, 2015])

• Examples conclusion:

1.1010001× 2
10100 = 0 10010011 10100010000000000000000

−1.1010001× 2
10100 = 1 10010011 10100010000000000000000

1.1010001× 2−10100 = 0 01101011 10100010000000000000000

−1.1010001× 2−10100 = 1 01101011 10100010000000000000000
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Floating-point Arithmetic

Floating-point Arithmetic

Now that we know how to represent floating-point numbers:

How can we perform floating-point arithmetic? Any ideas?
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Floating-point Arithmetic

Some observations:

• Addition and subtraction operations:

• Necessary to ensure that both operands have the same exponent value;

• May require shifting the radix point to achieve alignment;

• Multiplication and division are more straightforward.
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Floating-point Arithmetic

Figure: Floating point numbers and arithmetic operations (Source: [Stallings, 2015])
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Floating-point Arithmetic

Example

X = 0.3× 102 = 30

Y = 0.2× 103 = 200

X + Y = (0.3× 10
2−3 + 0.2)× 10

3 = 0.23× 10
3 = 230

X − Y = (0.3× 10
2−3
− 0.2)× 10

3 = 0.17× 10
3 = −170

X × Y = (0.3× 0.2)× 10
2+3 = 0.06× 10

5 = 6000

X ÷ Y = (0.3÷ 0.2)× 102−3 = 1.5× 10−1 = 0.15
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Floating-point Arithmetic

Can you see any type of problems that the operations might produce?

Any ideas?
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Floating-point Arithmetic

Can you see any type of problems that the operations might produce?

Any ideas?

Floating-point operation may produce (1/2):

• Exponent overflow: Positive exponent exceeds maximum value;

• Exponent underflow: Negative exponent exceeds minimum value;

• E.g.: -200 is less than -127.

• Number is too small to be represented (reported as 0).
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Floating-point Arithmetic

Can you see any type of problems that the operations might produce?

Any ideas?

Floating-point operation may produce (2/2):

• Significand underflow: In the process of aligning significands, digits may

flow off the right end of the significand.

• Significand overflow: The addition of two significands of the same sign

may result in a carry out of the most significant bit
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Floating-point Arithmetic Addition and Subtraction

So now the question is

How can we perform addition/subtraction using floats? Any ideas?
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Floating-point Arithmetic Addition and Subtraction

Addition and Subtraction

In floating-point arithmetic:

• Addition/subtraction more complex than multiplication/division;

• This is because of the need for alignment;

• There are four basic phases of the algorithm for addition and subtraction:

1 Check for zeros.

2 Align the significands.

3 Add or subtract the significands.

4 Normalize the result.

Lets have a look at each one of these...
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Floating-point Arithmetic Addition and Subtraction

Phase 1: Zero check:

• Addition and subtraction are identical except for a sign change:

• Begin by changing the sign of the subtrahend if it is a subtract operation.

• If either operand is 0, the other is reported as the result.
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Floating-point Arithmetic Addition and Subtraction

Phase 2: Significand alignment (1/2):

• Manipulate numbers so that the two exponents are equal, e.g.:

• (123× 100) + (456 × 10−2)

• Digits must first be set into equivalent positions, i.e.:

• 4 of the second number must be aligned with the 3 of the first;

• The two exponents need to be equal

• Thus:

• (123 × 100) + (456 × 10−2) = (123 × 100) + (4.56 × 100) = 127.56 × 100
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Floating-point Arithmetic Addition and Subtraction

Phase 2: Significand alignment (2/2):

• Alignment may be achieved by:

• Shifting either the smaller number to the right (increasing its exponent)

• Shifting the larger number to the left

• Either operation may result in the loss of digits

• Smaller number is usually shifted:

• Since any digits lost are of small significance.

• In general terms:

• Repeatedly shift the significand right 1 digit

• and increment the exponent until the two exponents are equal.

Luis Tarrataca Chapter 10 - Computer Arithmetic 137 / 147



Floating-point Arithmetic Addition and Subtraction

Phase 3: Addition

• Significands are added together;

• Because the signs may differ: result may be 0;

• There is also the possibility of significand overflow, if so:

• Significand of the result is shifted right and the exponent is incremented;

• Exponent overflow could occur as a result;

• Operation is halted.
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Floating-point Arithmetic Addition and Subtraction

Phase 4: Normalization

• Shift significand digits left until most significant digit is nonzero;

• Each shift causes:

• a decrement of the exponent and...

• ...thus could cause an exponent underflow.
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Floating-point Arithmetic Addition and Subtraction

In flowchart form:

Figure: Floating Point Addition And Subtraction (Source: [Stallings, 2015])
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Floating-point Arithmetic Floating-Point Multiplication

So now the question is

How can we perform multiplication using floats? Any ideas?
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Floating-point Arithmetic Floating-Point Multiplication

Floating-Point Multiplication

1 If either operand is 0: 0 is reported as the result;

2 Add the exponents;

3 Multiply the significands:

• Similarly to twos complement multiplication.

4 Result is normalized.
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Floating-point Arithmetic Floating-Point Multiplication

In flowchart form:

Figure: Floating Point Multiplication (Source: [Stallings, 2015])
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Floating-point Arithmetic Floating-Point Multiplication

So now the question is

How can we perform division using floats? Any ideas?
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Floating-point Arithmetic Floating-Point Multiplication

Floating-Point Division

1 Test for 0:

• If the divisor is 0: report error;

• Dividend is 0: results in 0.

2 Divisor exponent is subtracted from the dividend exponent;

3 Divide the significands;

4 Result is normalized;
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Floating-point Arithmetic Floating-Point Multiplication

In flowchart form:

Figure: Floating Point Division (Source: [Stallings, 2015])
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