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The dynamic nature of JavaScript and its complex semantics make it a difficult target for logic-based verification.

We introduce JaVerT, a semi-automatic JavaScript Verification Toolchain, based on separation logic and aimed

at the specialist developer wanting rich, mechanically verified specifications of critical JavaScript code.

To specify JavaScript programs, we design abstractions that capture its key heap structures (for example,

prototype chains and function closures), allowing the user to write clear and succinct specifications with

minimal knowledge of the JavaScript internals. To verify JavaScript programs, we develop JaVerT, a verification

pipeline consisting of: JS-2-JSIL, a well-tested compiler from JavaScript to JSIL, an intermediate goto language

capturing the fundamental dynamic features of JavaScript; JSIL Verify, a semi-automatic verification tool based

on a sound JSIL separation logic; and verified axiomatic specifications of the JavaScript internal functions.

Using JaVerT, we verify functional correctness properties of data-structure libraries (key-value map, priority

queue) written in object-oriented style; operations on data structures such as binary search trees (BSTs)

and lists; examples illustrating function closures; and test cases from the official ECMAScript test suite. The

verification times suggest that reasoning about larger, more complex code using JaVerT is feasible.
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JaVerT: JavaScript Verification Toolchain. Proc. ACM Program. Lang. 1, 1, Article 1 (January 2017), 33 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Separation logic was developed in order to reason about programs that manipulate data structures

in the heap. The reasoning has been shown to be tractable, with compositional techniques that

scale and properly engineered tools applied to real-world code. In particular, separation logic has

been used to reason about programs written in static languages: for example, the semi-automatic

verification tool Verifast [Jacobs et al. 2011] for reasoning about C and Java programs; the automatic

verification tool Infer [Calcagno et al. 2015], being developed at Facebook, for reasoning about C,

Java, C++ and Objective C programs; and the interactive Coq development for reasoning about

ML-like programs [Krebbers et al. 2017] using Iris [Jung et al. 2015]. In contrast, it has hardly been

used to reason about programs written in dynamic languages in general, and JavaScript in particular.
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In JavaScript, the entire program state resides in the object heap, imperfectly emulating the

standard variable store. Therefore, we believe that it reasonable to investigate the specification and

verification of JavaScript programs using separation logic. At the same time, we are exploring to

which extent static analysis techniques, proven to work for C, C++, and Java, transfer to JavaScript.

JavaScript is one of the most widespread dynamic languages: it is the de facto language for

client-side Web applications; it is used for server-side scripting via Node.js; and it is even run on

small embedded devices with limited memory. It is used by 94.8% of websites
1
and is the most active

language in both GitHub
2
and StackOverflow.

3
Standardised by the ECMAScript committee and

natively supported by all major browsers, JavaScript is a complex and evolving language. Logic-

based reasoning about JavaScript programs poses a number of significant challenges. To specify

JavaScript programs, the challenge is to design assertions that fully capture the common heap

structures of JavaScript, such as property descriptors, prototype chains for modelling inheritance,

the variable store emulated in the heap, and function closures. Importantly, these assertions

should abstract as much as possible from the details of the heap structures they describe. To verify

JavaScript programs, the challenge is to handle the sheer complexity of the JavaScript semantics, due

to: (V1) the behaviour of JavaScript statements, which exhibit complicated control flow with several

breaking mechanisms and ways of returning values; (V2) the fundamental dynamic behaviour

associatedwith extensible objects, dynamic property access, and dynamic function calls; and (V3) the

JavaScript internal functions, which underpin the JavaScript statements and whose definitions in

the ECMAScript standard are operational, intricate, and intertwined.

There has been little prior logic-based reasoning about JavaScript. Gardner et al. [2012] have

developed a separation logic for a tiny fragment of ECMAScript 3 (ES3), to demonstrate that

separation logic can, in fact, be used to reason about the variable store emulated in the heap. This

logic is not extensible to the full language. Using abstract interpretation and separation logic,

Cox et al. [2014] have shown how to specify property iteration, focussing on a simplified version

of the JavaScript for−in statement. ? have used the higher-order logic of F* to prove absence of

runtime errors for higher-order ES3 programs using the Dijkstra monad, but have stopped short of

proving functional correctness properties. Ştefănescu et al. [2016] have built a verification tool for

JavaScript based on their K framework and associated reachability logic. Their aim is to provide

general analysis for languages interpreted in K, not specific analysis of JavaScript. We discuss this

and other related work in more detail §2.

In this paper, we present JaVerT, a semi-automatic JavaScript Verification Toolchain for reasoning

about Javascript programs using separation logic, aimed at the specialist developer wanting rich,

mechanically verified specifications of critical JavaScript code. JaVerT verifies functional correctness

properties of JavaScript programs annotated with pre- and post-conditions, loop invariants, and in-

structions for folding and unfolding user-defined predicates. JaVerT specifications are written using

JS Logic, our assertion language for JavaScript. JS Logic features a number of built-in predicates (§3)

that allow the user to specify JavaScript programs with only a minimal knowledge of JavaScript

internals: for example, the DataProp and predicate abstract over data descriptors; the Pi predicate

precisely describes the prototype chains; the Scope predicate enables the user to reason about basic

variable scoping; and the Closure predicate precisely describes JavaScript function closures.

The structure of the JaVerT verification pipeline is illustrated in Figure 1 and is driven by the three

verification challenges (V1)–(V3). To solve (V1), in §4 we introduce JS-2-JSIL, a logic-preserving

compiler from JavaScript to our simple intermediate goto language JSIL. JS-2-JSIL is designed to

1
w3techs.com/technologies/details/cp-javascript/all/all

2
http://githut.info

3
https://exploratory.io/viz/Hidetaka-Ko/94368d12800a?cb=1469037012628.
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Fig. 1. JaVerT: JavaScript Verification Toolchain

be line-by-line close to the ECMAScript standard, without simplifying the behaviour in any way
4
.

Instead of reasoning directly about code built from complex JavaScript statements, we use JS-2-JSIL

to reason about compiled JSIL code built from simple JSIL statements. JSIL is designed so that its

heap model subsumes the heap model of JavaScript. Hence, JavaScript and JSIL assertions coincide,

making the JS-2-JSIL Logic Translator and its correctness proof straightforward.

JSIL retains the fundamental dynamic behaviour of JavaScript associated with extensible objects,

property access and function calls. To solve the verification challenge (V2), in §5 we introduce

JSIL Verify, our semi-automatic verification tool for JSIL. JSIL Verify is based on JSIL Logic, a

sound separation logic for JSIL. The development of JSIL Verify is challenging due to the dynamic

behaviour of JSIL. JSIL Verify comprises a symbolic execution engine and an entailment engine,

which uses the Z3 SMT solver [De Moura and Bjørner 2008] to discharge assertions in first-order

logic with equality and arithmetic, while we handle the separation-logic assertions. As with many

tools based on separation logic, a key task during symbolic execution is to solve the frame inference

problem. This is more challenging for JSIL Logic than in previous work, as properties of JSIL objects

are dynamic (given by expressions), rather than static (given by constant names).

We solve our final verification challenge (V3) in §5.3, by writing axiomatic specifications for

the JavaScript internal functions in JSIL Logic and providing reference implementations in JSIL.

The reference implementations are line-by-line close to the standard and proven correct with

respect to the axiomatic specifications using JSIL Verify. Our use of axiomatic specifications of

the internal functions enables us to: keep the compiled JSIL code visually closer to the standard;

expose explicitly the allowed behaviours of the internal functions in contrast with their intertwined

operational definitions given in the standard; and speed up verification, in that using the axiomatic

specifications is faster than symbolically executing their bodies every time.

For us, an important part of this project was to validate the components of JaVerT: the JS-2-JSIL

compiler and logic translator; JSIL Verify; and the JSIL axiomatic specifications of the JavaScript

internal functions. JS-2-JSIL has broad coverage and is systematically tested against the official

4
JS-2-JSIL targets the strict mode of the ECMAScript 5 English standard. We discuss this choice in §4.2.
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ECMAScript test suite, passing all 8797 tests applicable for its coverage. JSIL Logic is sound with

respect to its operational semantics. Since JSIL is designed so that the JSIL heap model subsumes

the JavaScript heap model, the correctness of the logic translator is straightforward. We show that

JS-2-JSIL is logic-preserving and that JSIL verification lifts to JavaScript verification. JSIL Verify

is validated by verifying that the reference implementations of the internal functions are correct

with respect to their axiomatic specifications, and by verifying compiled JavaScript programs. The

specifications of the internal functions are validated by verifying that they are satisfied by their

well-tested corresponding JSIL reference implementations. Further details can be found in §6.

We also validate JaVerT as a whole by reasoning about JavaScript code. As JaVerT is a semi-

automatic verification tool, we believe its target should be critical JavaScript code, such as Node.js

libraries describing frequently used data structures. We have used JaVerT to verify a simple key-

value map library (§3.4) and a priority queue library modelled after a real-world Node.js priority

queue library of Jones [2016]. Libraries such as these, written in an object-oriented style, are

typical for JavaScript. The code, however, no longer guarantees the expected good behavioural

properties of these libraries due of the dynamic nature of JavaScript; our specifications do. In §3.5,

we have verified an ID generator, an example illustrating JavaScript function closures and how

they can be used to emulate data encapsulation. Our specifications capture the achieved degree of

encapsulation. Further, we have verified operations on binary search trees, targeting set reasoning;

and an insertion sort algorithm, targeting list reasoning. Finally, we have verified several programs

from the ECMAScript Test262 test suite, which test complex language statements such as switch

and try−catch−finally. Due to our predicates, our specifications successfully abstract over the

JavaScript internals and are in the style of separation-logic specifications for C++ or Java. Our

verification times suggest that JaVerT can be used to reason about larger, more complex code. A

detailed discussion is given in §6.4, and all examples are available online at JaVerT Team [2017].

JaVerT has two limitations that need to be addressed. Currently, we cannot reason about the

for−in loop and higher-order functions. For the specification of for−in, we will leverage on the

work of Cox et al. [2014], who have shown how to reason about property iteration in a simple

extensible object calculus. Specifying the for−in of JavaScript is substantially more complicated

because it only targets enumerable properties and iterates over the entire prototype chain. The

verification of for−inwill also push the set reasoning capabilities of Z3 to their limit. It is likely that

we will need to implement complex set reasoning heuristics in JSIL Verify. Higher-order reasoning

is known to be difficult for separation logic, involving the topos of trees of Birkedal et al. [2012].

Our current plan is to encode JSIL Logic in Iris [Jung et al. 2015], obtaining soundness for free.

2 RELATEDWORK
This paper brings together a number of techniques associated with operational semantics, compilers

and separation logic. Many of these techniques have been introduced for static languages and their

application to dynamic JavaScript is not straightforward.

Logic-based Verification of JavaScript Programs. The existing literature covers a wide range

of analysis techniques for JavaScript programs, including: type systems [Anderson et al. 2005;

Bierman et al. 2014; Feldthaus and Møller 2014; Jensen et al. 2009; Microsoft 2014; Rastogi et al.

2015; Thiemann 2005], control flow analysis [Feldthaus et al. 2013], pointer analysis [Jang and

Choe 2009; Sridharan et al. 2012] and abstract interpretation [Andreasen and Møller 2014; Jensen

et al. 2009; Kashyap et al. 2014; Park and Ryu 2015], among others. In contrast, there has been

comparatively little work on logic-based verification of JavaScript programs.

Gardner et al. [2012] have developed a separation logic for a tiny fragment of ECMAScript 3,

to reason about the variable store emulated in the JavaScript heap. We draw partial inspiration

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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from this work: our property assertions are similar; our predicate for describing prototype chains is

different. An extension of their logic to the full language is intractable. For example, the behaviour

of the JavaScript assignment is described in the ECMAScript standard in terms of expression

evaluation and calls to the internal functions getValue and putValue. This effectively means that

the assignment is described by hundreds of possible pathways through the standard; each of these

pathways would have to be a proof rule of the logic, making automation essentially impossible.

The same issues would give rise to even greater complexity when applied to the complex control-

flow given by, for example, the switch and try−catch−finally statements. Direct verification of

JavaScript programs using separation logic is, therefore, not feasible. It was necessary to move to

an intermediate representation (IR) with simpler commands and simpler control flow.

? use F* to prove absence of runtime errors for higher-order JavaScript programs. This is achieved

by: annotating JavaScript programs with assertions and loop invariants in the logic of F*; compiling

an annotated JavaScript program (a subset of ES3) to F*; using a type inference algorithm to

generate verification conditions for the absence of runtime errors; automatically discharging these

verification conditions using Z3. The authors state, but do not demonstrate, that this methodology

is extensible to functional correctness. Their assertions, abstractions, and reasoning are all in the

higher-order logic of F*. As they aim at safety, there are no abstractions that capture, for example,

JavaScript prototype chains or function closures. Our goal is to provide systematic functional

correctness specifications that resonate with the knowledge of the developer. We provide assertions

and carefully designed abstractions in JS Logic, together with a translation to JSIL Logic, where the

reasoning occurs, and prove that this reasoning lifts back to JavaScript.

? address safe library development: the developer writes library code in a subset of F* and

compiles it to JavaScript (ES3). The compilation preserves all source program properties. As F*

comes with an expressive type system, this approach can ensure code safety. Our agenda is different:

we aim to verify functional correctness for existing JavaScript code. Ideas from this paper might

help us generate defensive wrappers from our verified specifications.

Roşu and Şerbănuţă [2010] have developed K, a term-rewriting framework for formalising the

operational semantics of programming languages. In particular, they have developed KJS [Park et al.

2015] which provides a K-interpretation of the core language and part of the built-in libraries of

the ES5 standard. KJS has been tested against the official ECMAScript Test262 test suite and passed

all 2782 tests for the core language; the testing results for the built-in libraries are not reported.

The coverage of JS-2-JSIL is broader; we pass all 8797 tests applicable for our coverage (cf. §6.1).

Ştefănescu et al. [2016] introduce a language-independent verification infrastructure that can be

instantiated with a K-interpretation of a language to automatically generate a symbolic verification

tool for that language based on the K reachability logic. They apply this infrastructure to KJS to

generate a verification tool for JavaScript, which they use to verify functional correctness properties

of operations for manipulating data structures such as binary search trees, AVL trees, and lists. These

examples, however, do not address the majority of critical JavaScript-specific features, including

dynamic property access, prototype inheritance and function closures
5
. In addition, these examples

contain no JavaScript-specific abstractions. A user thus has to consider all of the internals of

JavaScript in order to specify JavaScript code, making the specification difficult and error-prone.

Our approach is entirely different. JaVerT is a specialised JavaScript verification toolchain, ad-

dressing the reasoning challenges posed by JavaScript. We create layers of abstractions, allowing the

user to write specifications with only a minimal knowledge of the JavaScript internals. Similarly to

5
The K framework currently does not support predicates whose footprint captures some, but not all, properties of an object.

This means that it cannot be used to reason generally about dynamic property access, prototype inheritance, or function

closures. We are in touch with the authors and understand that a new development of K is underway that will fix this.
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Ştefănescu et al. [2016], we use JaVerT to verify correctness of data structure operations. In addition,

we show how to reason about common JavaScript programming idioms, such as emulating OO-style

programming via prototype-based inheritance and data encapsulation via function closures.

VerificationTools based on Separation Logic. Separation logic enables compositional reasoning

about programs which manipulate complex heap structures. It has been successfully used in

verification tools for static languages: Smallfoot [Berdine et al. 2005a] for a simple imperative while

language; jStar [Distefano and Parkinson 2008] for Java; Verifast [Jacobs et al. 2011] for C and Java;

Space Invader [Yang et al. 2008] and Abductor [Calcagno et al. 2009] for C; and Infer [Calcagno

et al. 2015] for C, Java, Objective C, and C++.

All of these verification tools compile to simple goto IRs, designed especially for the language

under consideration. These IRs cannot be reused for JavaScript verification, as these tools target

static languages that do not support the fundamental dynamic aspects of JavaScript (V2). Therefore,

we would have to use custom-made abstractions to describe JavaScript object cells, losing native

support for reasoning about object properties and having to axiomatise property operations. We

attempted to do this using the CoreStar theorem prover, obtaining prohibitive performance even

for simple examples. Moreover, any program logic for JavaScript needs to take into account the

JavaScript operators, such as toInt32 [ECMAScript Committee 2011], and it is not clear that these

operators could be expressed using the assertion languages of existing tools.

Compilers and IRs for JavaScript. There is a rich landscape of IRs for JavaScript, broadly divided
into two categories: (1) those for syntax-directed analyses, following the abstract syntax tree of

the program, such as λ JS [Guha et al. 2010], S5 [Politz et al. 2012], and notJS [Kashyap et al. 2014];

and (2) those for analyses based on the control-flow graph of the program, such as JSIR [Livshits

2014], WALA [Sridharan et al. 2012] and the IR of TAJS [Andreasen and Møller 2014; Jensen et al.

2009]. SAFE [Lee et al. 2012], an analysis framework for JavaScript, provides IRs in both categories.

The IRs in (1) are normally well-suited for high-level analysis, such as type-checking/inference,

whereas those in (2) are generally the target of separation-logic tools and tools for tractable symbolic

evaluation [Cadar et al. 2008; Kroening and Tautschnig 2014]. We believe that an IR for logic-based

JavaScript verification should belong to the latter category.

Our goals for JSIL were to: (1) natively support the fundamental dynamic features of JavaScript,

namely extensible objects, dynamic property access, and dynamic function calls (V2); (2) have JSIL
heaps be identical to JavaScript heaps, to keep our correctness proofs simple; and (3) keep JSIL

minimal to simplify JSIL logic. For control flow, JSIL has only conditional and unconditional goto

statements. Having gotos in an IR for JavaScript verification is reasonable, for three reasons: first,

separation-logic-based verification tools commonly have goto IRs; second, JavaScript has complex

control flow statements with many corner cases (for example, switch or try/catch/finally), which

can be naturally decompiled to gotos; third, JavaScript supports a restricted form of goto statements,

via labelled statements, breaks, and continues. We have only gotos because we have so far not

encountered the need for more structured loops: our invariants are always JavaScript assertions;

and the JavaScript internal and built-in functions implemented in JSIL use only simple loops.

JSIL is similar to JSIR, and the IRs of WALA and TAJS. JSIR and the IR of WALA do not have

associated JavaScript compilers, and the design choices have not been stated so it is difficult to

compare with JSIL. JSIL is syntactically simpler. TAJS includes a well-tested compiler, targeted for

ES3 which is substantially different from ES5 but now extended with partial models of the ES5

standard library, the HTML DOM, and the browser API. Since TAJS was designed for type analysis

and abstract interpretation, the IR that it uses is slightly more high-level than those typically used

for logic-based symbolic verification. The IR of SAFE based on control flow is not documented.
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One of our main goals in the development of JS-2-JSIL was to be fully compliant with ES5 Strict.

Thus, a strong connection between the generated JSIL code and the standard was imperative.

Our design of JS-2-JSIL builds on the tradition of compilers that closely follow the operational

semantics of the source language, such as the ML Kit Compiler [Birkedal et al. 1993]. In that spirit,

JS-2-JSIL mimics ES5 Strict by inlining in the generated JSIL code the internal steps performed

by the ES5 Strict semantics, making them explicit. To achieve this, we based our compiler on the

JSCert mechanised specification of ES5 [Bodin et al. 2013]. Alternatively, we could have used KJS.

We have considered using S5 of Politz et al. [2012], which targets ES5, as an interim stage during

compilation. The compilation from ES5 to S5 is informally described in the paper, and is validated

through testing against the ECMAScript test suite, with 70% success on all ES5 tests and 98% on

tests for unique features of ES5 Strict. The figure critical for us, the success rate of S5 on full ES5

Strict tests (those testing its unique features and the features common with ES5), was not reported.

Therefore, we would have to redo S5 tests using our methodology and fix the unfamiliar code in

light of failing tests. Also, to prove correctness of our assertion translation and, ultimately, JaVerT,

we would have to relate JS Logic and JSIL Logic via S5. This would be a difficult task.

3 SPECIFYING JAVASCRIPT PROGRAMS
We address the JavaScript specification challenges highlighted in the introduction. To specify

JavaScript programs, we need to design assertions that fully capture the key heap structures of

JavaScript, such as property descriptors, prototype chains for modelling inheritance, the variable

store emulated in the heap using scope chains, and function closures. We start by introducing the

memory model of ES5 Strict and the JS Logic assertions in §3.1. We would like the user of JaVerT to

be able to specify JavaScript programs clearly and concisely, with only a minimal knowledge of

JavaScript internals. We must, therefore, build a number of predicates on top of JS Logic to describe

common JavaScript heap structures. In §3.2, we introduce our basic predicates for describing object

properties, function objects, string objects and the JavaScript initial heap. In §3.3, we introduce

the Pi predicate, which precisely captures the prototype chains of JavaScript. In §3.4, we provide

a general approach for specifying JavaScript libraries written in a typical object-oriented (OO)

style, using a simple key-value map as the example. For such libraries, we give specifications that

ensure prototype safety of library operations, in that they describe the conditions under which

these operations exhibit the desired behaviour. Finally, in §3.5, we show how to specify variable

scoping and function closures, using an ID generator example to show how our specifications can

be used to capture the degree of encapsulation obtained from using function closures.

3.1 JavaScript Specifications: Preliminaries
The basic memory model of JavaScript is straightforward. The difficulty lies in the way in which it

is used to emulate the variable store and to provide prototype inheritance using prototype chains.

JavaScript Memory Model

JS locations : l ∈ L JS variables : x ∈ XJS

J S values: v ∈ VJS ::= n | b | m | undefined | null | l

JS heap values : ω ∈ Vh
JS ::= v | vlst | fid

JS heaps : h ∈ HJS : L × XJS ⇀ V
h
JS

A JavaScript heap, h ∈ HJS, is a partial function mapping pairs of object locations and property

names to JS heap values. Object locations are taken from a set of locations L. Property names and

JS program variables are taken from a set of strings XJS. JS values contain: numbers, n; booleans, b;
strings,m; the special JavaScript values undefined and null; and object locations, l . JS heap values,

ω ∈ Vh
JS, contain: JS values, v ∈ VJS; lists of JS values, vlst; and function identifiers, fid ∈ Fid .

Function identifiers, fid, are associated with syntactic functions in the JavaScript code and are used
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to represent function bodies in the heap uniquely. This choice differs from the approach of Gardner

et al. [2012], where function bodies are also JS heap values. The ECMAScript standard does not

prescribe how function bodies should be represented and our choice closely connects JavaScript

and JSIL heap models. Given a heap h, we denote a heap cell by (l ,x ) 7→ v when h(l ,x ) = v , the
union of two disjoint heaps by h1 ⊎ h2, a heap lookup by h(l ,x ), and the empty heap by emp.
JS Logic Assertions

V ∈ VL
JS ::= ω | ωset | � E ∈ ELJS ::= V | x | x | ⊖ E | E ⊕ E | sc | this

τ ∈ Types ::= Num | Bool | Str | Undef | Null | Obj | List | Set | Type

P ,Q ∈ ASJS ::= true | false | E = E | E ≤ E | P ∧Q | ¬ P | P ∗Q | ∃x.P |
emp | (E,E) 7→ E | emptyFields(E | E) | types(Xi : τi |ni=1)

JS Logic assertions are mostly standard; the difference with respect to Gardner et al. [2012] is that

we do not use the sepish connective ⊔∗, introduced to describe overlapping prototype chains. We

discuss this difference in §3.4 and §5.3. JS logical values, V ∈ VL
JS, contain: JS heap values, ω; sets

of JavaScript heap values, ωset; and the special value �, read none, used to denote the absence

of a property in an object (see §3.4). JS logical expressions, E ∈ ELJS, contain: logical values, V ; JS
program variables, x ; JS logical variables, x; unary and binary operators, ⊖ and ⊕ respectively; and

the special expressions, sc and this, referring respectively to the current scope chain (see §3.5)

and the current this object (see §3.4). JS Logic assertions are constructed from: boolean operations;

first-order connectives; the separating conjunction; existential quantification; and assertions for

describing heaps and declaring typing information. The emp assertion describes an empty heap.

The cell assertion, (E1,E2) 7→ E3, describes an object at the location denoted by E1 with a property

denoted by E2 that has the value denoted by E3. The assertion emptyFields(E1 | E2) states that the
object at the location denoted by E1 has no properties other than possibly those included in the

set denoted by E2. The assertion types(Xi : τi |
n
i=1) states that variable Xi has type τi for 0 ≤ i ≤ n,

where Xi is either a program or a logical variable and τ ranges over JavaScript types, τ ∈ Types.
JaVerT specifications have the form {P } fid (x ) {Q }, where P andQ are the pre- and postconditions

of the function with identifier fid, and x its list of formal parameters. We think of global code as

a function with identifier main. Each specification is associated with a return mode fl ∈ {nm, er},
indicating if the function returns normally or with an error. If it returns normally, then its return

value can be accessed via a dedicated variable ret, and err otherwise. Intuitively, a specification
{P } fid (x ) {Q } for mode fl is valid for a given JavaScript program s , if s contains a function with

identifier fid and “whenever fid is executed in a state satisfying P , then, if it terminates, it does so

in a state satisfying Q , with return mode fl”. This definition is given formally in §4.3.

3.2 Basic JS Logic Predicates
We start by introducing the basic predicates for describing JavaScript object properties, function

objects, string objects and the JS initial heap. These predicates constitute the building blocks of our

specifications and are widely used throughout the paper.

Object Properties. JavaScript objects have two types of properties: internal and named. Internal
properties have no analogue with C++ or Java. They are hidden from the user, are associated

directly with JS values, and are critical for the mechanisms underlying JavaScript such as prototype

inheritance. Standard JavaScript objects always have the three internal properties, @proto, @class,

and @extensible, which respectively denote the prototype of the object, the class of the object, and

whether the object can be extended with new properties.

JaVerT has two built-in predicates for describing internal properties of JavaScript objects. The

JSObject(o, p) predicate states that object o has prototype p, and its internal properties @class and
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@extensible have their default values, "Object" and true. Its general version, the JSObjGen(o, p, c, e)

predicate, allows the user to specify the values of @class and @extensible as c and e.

JSObjectGen(o, p, c, e) := (o, "@proto) -> p * (o, "@class") -> c * (o, "@extensible") -> e
JSObject(o, p) := JSObjectGen(o, p, "Object", true)

Named properties are similar to object properties in C++ or Java, except that they are not associated

with values but with property descriptors, which are lists of attributes that describe the ways in which
a property can be accessed and/or modified. Depending on the attributes they contain, descriptors

can be data descriptors or accessor descriptors. For lack of space, we focus on data descriptors.

Data descriptors contain the value, writable, enumerable, and configurable attributes, denoted by

[V], [W], [E], and [C], respectively. The [V] holds the actual property value. The [W] describes whether

property value [V] may be modified. The [E] indicates whether the property is included in for-in

enumerations. The [C] denotes whether [W], [E] or the property type (data or accessor property) may

be modified. Note that the modifiability of [V] is determined by [W] and is thus not controlled by [C].

We represent descriptors as five-element lists; the first element states the descriptor type and the

remaining four represent values of appropriate attributes; for example, ["d", "foo", true, false, true]

is a writable, non-enumerable, and configurable data descriptor with value "foo".

Depending on their associated descriptor, JavaScript named properties can be data properties
or accessor properties. Again, we focus only on data properties. JaVerT has two built-in predicates

for describing data properties. The DataProp(o, p, v) predicate states that the property p of object o

holds a data descriptor with value v and all other attributes set to true. The more general predicate,

DataPropGen(o, p, v, w, e, c), allows the user to specify the values of the remaining attributes. We also

define a pure predicate DescVal(desc, v), stating that the data descriptor desc has value attribute v.

Function Objects. In JavaScript, functions are also stored as objects in the heap. In addition to

the @proto, @class, and @extensible internal properties common to all objects, function objects

also have the @code property, storing the function identifier of the original function, and the @scope

property, storing the scope chain associated with the function object (discussed in detail in §3.5).

JaVerT offers the FunctionObject(o, fid, sc) predicate, which describes the function object o,

whose internal properties @code and @scope have values given by the function identifier, fid, and

the location of the scope chain, sc, respectively.

String Objects. String objects are native wrappers for primitive strings. Every string object has

an internal property @pv holding its corresponding primitive string value. String objects differ

from standard JavaScript objects in that they expose indexing properties (the i-th character of a

string) that do not exist in the heap. For instance, given the statement var s = new String("foo"); s[0]

evaluates to the string "f", even though the object bound to s does not have a property named

"0". To reason about properties of string objects, we define the SCell(o, p, d) predicate, stating that

property p of string object o is associated with either a property descriptor or the value None.

SCell (o, p, d) :=
(o, "@pv") -> pv * ! IsStringIndex(pv, str2num(p)) * (o, p) -> d,
(o, "@pv") -> pv * IsStringIndex(pv, str2num(p)) * (o, p) -> None *

c = s-nth(pv, str2num(p)) * d = [ "d", c, false, false, false ]

We use the operators s−nth and str2num to retrieve the nth element of a string and convert a string

to a number, respectively. We also use the predicate IsStringIndex(s, i), which holds if and only if

i is a non-negative integer smaller than the length of string s. Also, in the specifications, we denote

negation by !, as this is how it is denoted in JaVerT, and we do not distinguish between program

variables (parameters of predicates and functions, for example, o, p, and d) and logical variables (for

example, pv and c), which are implicitly existentially quantified.
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SCell has two cases (disjuncts), separated with a comma. In the first case, p is not a string index

of the primitive string; whereas in the second one it is in which case the associated descriptor is

["d", c, false, false, false], as string indexes are not enumerable, writable, or configurable.

JS Initial Heap. Prior to execution of a JavaScript program, an initial heap is established, containing
the global object, the objects associated with built-in libraries (for example, Object, Function and

String) and their prototypes. The prototype of the global object is Object.prototype. We provide

predicates that describe the built-in library objects. These predicates come in two flavours: frozen,

where changes to the target object are not allowed; and open, where changes are allowed. For

instance, ObjProtoF() and ObjProto() describe the frozen and open Object.prototype, respectively.

3.3 Specifying Prototype Inheritance
JavaScript models inheritance through prototype chains. In order to retrieve the value of an object

property, first the object itself is inspected. If the property is not present, then the prototype chain

is traversed (following the @proto internal properties), checking for the property at each object. In

general, prototype chains can be of arbitrary length (typically finishing at Object.prototype) but

cannot be circular. Prototype chain traversal is additionally complicated in the presence of String

objects, which have indexing properties that do not exist in the heap.

While in some cases it is reasonable to expect the precise structure of a prototype chain to be

known a priori, there are cases in which this is not possible. For instance, consider the following

function for obtaining the value associated with property p in the prototype chain of object o, which

only returns the value of p if it is public.

1 function getPublicProp (o, p) { if (isPublic(p)) { return o[p] } else { return null } }

We should, ideally, be able to specify this function without knowing anything about the concrete

shape of the prototype chain of o, other than that it maps p to a given value v.

Assume that we have a predicate Pi(o, p, d, ...), describing the resource of the prototype chain

of o in which property p is mapped onto value d, and may require additional parameters. Also

assume that Public(p) is a predicate that holds if and only if the JavaScript function isPublic(p)

returns true. Then, we can specify getPublicProp (o, p) as follows:
{

Pi(o, p, d, ...) * DescVal(d, v) * Public(p) * ...
}

getPublicProp(o, p){
Pi(o, p, d, ...) * Public(p) * ret = v * ...

}

This specification states that, when getPublicProp gets as input a public property p in object o, it

returns the value associated with that property in the prototype chain of o. It is general, as it makes

no assumptions on the structure of the prototype chain. Note that the DescVal predicate is omitted

in the postcondition, since it is pure.

For our Pi predicate, we take inspiration from the prototype-chain predicate of Gardner et al.

[2012]. Their predicate describes prototype chains of standard objects with simple values, whereas

ours describes prototype chains for property descriptors and accounts for the subtle combination

of standard objects and string objects, capturing the full prototype inheritance of JavaScript.

We define the Pi predicate, Pi (o, p, d, lo, lc), stating that property p has value d in the prototype

chain of o. The value d can either be a property descriptor or the value undefined. The two additional

parameters, lo and lc, denote lists that respectively capture the locations and classes of the objects

in the prototype chain up to and including the object in which p is found, or of all objects if

the property is not found. These two parameters arise because of the complexity of the internal

functions and are justified in §5.3. The JavaScript programmer does not need to consider these

parameters and can always pass in logical variables in their place. Below is the full definition of the
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Pi predicate, with four base cases and two recursive cases:

Pi (o, p, d, lo, lc) :=
lo = [o] * lc = [c] * (o, "@class") -> c * !(c = "String") * (o, p) -> d * !(d = None),
lo = [o] * lc = [c] * (o, "@class") -> c * (c = "String") * SCell(o, p, d) * !(d = None),
lo = [o] * lc = [c] * (o, "@class") -> c * !(c = "String") *

(o, @proto) -> null * (o, p) -> None * d = undefined,
lo = [o] * lc = [c] * (o, "@class") -> c * (c = "String") *

(o, @proto) -> null * SCell(o, p, None) * d = undefined,
lo = o :: lop * lc = c :: lcp * (o, "@class") -> c * !(c = "String") * (o, p) -> None *

lop = op :: lop' * (o, "@proto") -> op * Pi(op, p, d, lop, lcp),
lo = o :: lop * lc = c :: lcp * (o, "@class") -> c * (c = "String") * SCell(o, p, None) *

lop = op :: lop' * (o, "@proto") -> op * Pi(op, p, d, lop, lcp)

3.4 Specifying OO-style Libraries: Prototype Safety
JavaScript programmers rely on prototype-based inheritance to emulate the standard class-based

inheritance mechanism of static OO languages when implementing JavaScript libraries. However,

as JavaScript objects are extensible, it is possible to break the functionality of such libraries by

adding properties either to the constructed objects or to their prototype chains. This makes the

specifications of these libraries challenging as they not only need to capture the resources that

must be present in the heap, but also the resources that must not be present in the heap if the

library code is to run as intended. We highlight a general methodology for specifying such libraries,

introducing the notion of prototype safety to specify when libraries behave as intended.

1 function Map () { this._contents = {} }
2

3 Map.prototype.get = function (k) {
4 if (this._contents.hasOwnProperty(k)) {
5 return this._contents[k]
6 } else { return null }
7 }
8

9 Map.prototype.put = function (k, v) {
10 var contents = this._contents;
11 if (this.validKey(k)) {
12 contents[k] = v;
13 } else { throw new Error("Invalid␣Key") }
14 }
15

16 Map.prototype.validKey = function (k) { ... }

client 1:

1 var m = new Map();
2 m.get = "foo"

client 2:

1 var mp = Map.prototype;
2 var desc = { value: 0, writable: false };
3 Object.defineProperty(mp, "_contents", desc)

client 3:

1 var m = new Map ();
2 m.put("hasOwnProperty", "bar")

Fig. 2. JavaScript OO-style Map implementation (left); three library-breaking clients (right).

Example: Key-Value Map. We illustrate how JaVerT is used to specify JavaScript OO-style

libraries, using the JavaScript implementation of a key-value map given in Figure 2 (left). It contains

four functions: Map, for constructing an empty map; get, for retrieving the value associated with

the key given as input; put, for inserting a new key-value pair into the map and updating existing

keys; and validKey, for deciding whether a key is valid. This library implements a key-value map
as an object with property _contents, denoting the object used to store the map contents. The

named properties of _contents and their value attributes correspond to the map keys and values,

respectively. As the functions get, put, and validKey are to be shared between all map objects, they

are defined as properties of Map.prototype, which is the prototype of the objects that are created

using Map as a constructor (for example, using new Map() in the client examples of Figure 2 (right)).

Language: Breaking the Library. In order to guarantee that this library works as intended, we

must make sure that: (1) every time one calls get, put or validKey on a map object, one reaches the

appropriate functions defined within its prototype; (2) one can always successfully construct an
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object map using the Map constructor; and (3) one can always retrieve the value of a key previously

inserted into a map as well as insert a new valid key-value pair into a map. In Figure 2 (right), we

show how a user can misuse the library, effectively breaking (1)-(3). To break (1), one simply has to

override get or put on the constructed map object (Client 1). To break (2), it suffices to assign an

arbitrary non-writable value to _contents in Map.prototype (Client 2). To break (3), one can insert

a key-value pair with "hasOwnProperty" as a key into the map. By doing this, "hasOwnProperty" in

the prototype chain of _contents is overridden and subsequent calls to get will fail (Client 3).

JaVerT: Capturing Prototype Safety. In general, the specification of a given library must ensure

that all prototype chains are consistent with correct library behaviour by stating which resources

must not be present for its code to run correctly. In particular, constructed objects cannot redefine

properties that are to be found in their prototypes; and prototypes cannot define as non-writable
those properties that are to be present in their instances. We refer to these two criteria as prototype
safety, and illustrate how it can be achieved through the specification of the key-value map.

We define amap object predicate below, Map, using the auxiliary predicate KVPairs, which captures
the resource of the key-value pairs in the map, and the validKey(k) predicate, which holds if and only

if the JavaScript function ValidKey(k) returns true6. Intuitively, the Map(m, mp, kvs, keys) predicate

captures the resource of a map object mwith prototype mp, keys keys (a set of strings), and key-value

pairs kvs (a set of string pairs
7
). The definition of Map achieves the first requirement for prototype

safety by stating that a map object m cannot have the properties "get", "put", and "validKey", and

that the object bound to _contents cannot have the property "hasOwnProperty". The emptyFields

predicate, together with the prototype safety requirement (c, "hasOwnProperty") −> None, ensures

that there are no other properties in the contents of the map except the keys. We write −u− for set

union and omit the brackets around singleton sets when the meaning is clear from the context.

Map (m, mp, kvs, keys) := JSObject(m, mp) *
DataProp(m, "_contents", c) * JSObject(c, Object.prototype) *
(m, "get") -> None * (m, "put") -> None * (m, "validKey") -> None *
(c, "hasOwnProperty") -> None * KVPairs(c, kvs, keys) * emptyFields(c, keys -u- "hasOwnProperty")

KVPairs (o, kvs, keys) :=
(kvs = { }) * (keys = { }),
(kvs = (key, value) -u- kvs') * (keys = key -u- keys') *
ValidKey(key) * DataProp(o, key, value) * KVPairs(o, kvs', keys')

Observe that the definition of Map does not include the resource of a map prototype. Since

Map.prototype is shared between all map objects, we cannot include the resource of a map prototype

in the definition of Map. Were we to do that, we could no longer write a satisfiable assertion describing

two distinct map objects using the standard separating conjunction. Below, we show the definition

of MapProto, stating that a valid map prototype has the properties "get", "put", and "validKey",

respectively assigned to the appropriate functions (see §3.2). The definition of MapProto achieves the

second requirement for prototype safety by stating that a map prototype cannot have the property

"_contents". We could have weakened this definition, stating that a map prototype can have the

property "_contents", as long as it is writable. In Figure 3, we give a graphical representation of

the assertion Map (m, mp, kvs, keys) ∗ MapProto (mp).

MapProto (mp) := JSObject(mp, Object.prototype) * (mp, "_contents") -> None) *
DataProp(mp, "get", gf) * FunctionObject(gf, "get", g_sc) *
DataProp(mp, "put", pf) * FunctionObject(pf, "put", p_sc) *
DataProp(mp, "validKey", vkf) * FunctionObject(vkf, "validKey", vk_sc)

6
We treat the ValidKey predicate as a black box, other than requiring that hasOwnProperty is not a valid key.

7
We model pairs as lists with two elements and, for clarity, use the pair notation.
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Fig. 3. Graphical representation of Map (m, mp, kvs, keys) ∗ MapProto (mp)

We are now in the position to specify the functions of the map library. In particular, below we

show how to use the map object predicate and the map prototype predicate to specify put(k, v). The

first specification captures the case in which the key of key-value pair to be inserted already exists

in the map, while the second one captures the case in which it does not. The third specification

captures the error case, when the given key is not valid. Since put calls the function validKey, all

of its specifications must include the MapProto(mp) predicate, that captures the location of validKey.{
Map(this, mp, kvs -u- (k, v’), ks) *

MapProto(mp) * ObjProtoF()

}
put(k, v){

Map(this, mp, kvs -u- (k, v), ks) *
MapProto(mp) * ObjProtoF()

}
{

Map(this, mp, kvs, ks) * MapProto(mp) *
!(k -in- ks) * ValidKey(k) * ObjProtoF()

}
put(k, v){

Map(this, mp, kvs -u- (k, v), ks -u- k) *
MapProto(mp) * ObjProtoF()

}
{

Map(this, mp, kvs, ks) * MapProto(mp) * !ValidKey(k) * ObjProtoF()
}

put(k, v){
Map(this, mp, kvs, ks) * MapProto(mp) * ErrorObject(err) * ObjProtoF()

}

Recall that the prototype safety requirements of the library extend to Object.prototype as well.

This resource is captured by the built-in ObjProtoF() predicate, describing the frozen Object.prototype

object (see §3.2). Here, the user can instead choose to use the open version of the predicate,

ObjProto(), allowing for a more flexible initial heap. In that case, they would have to manually

specify the prototype safety requirements, as we have done for maps and the map prototype.

3.5 Specifying Scoping and Function Closures

Example: Identifier Generator. We illustrate variable scoping and function closures using a

JavaScript identifier (ID) generator, shown in Figure 4. The function makeIdGen takes a string prefix,

and returns a new ID generator, which is an object with two properties: getId, storing a function

for creating fresh IDs; and reset, storing a function for resetting the ID generator. getId ensures

that the returned ID is fresh by using a counter, stored in variable count, which is appended to the

generated ID string of the form prefix + '_id_' and is incremented afterwards.

The variable count is not intended to be directly accessible by programs using makeIdGen, but

rather only through the getId and reset functions. In Java, count can be declared private. In

JavaScript, however, there is no native mechanism for encapsulation and the standard approach of

establishing some form of encapsulation is to use function closures. In our example, once an ID

generator is created, the variables count and prefix remain accessible only from within the code of

getId and reset, making it impossible for client code (such as lines 12-14 of the example) to access

or modify them directly. In the general case, however, full encapsulation cannot be guaranteed.

Language: Scope resolution in ES5 Strict. In JavaScript, scope is modelled in the heap using

environment records (ERs). An ER is an internal object, created upon the invocation of a function,
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1 var makeIdGen = function (prefix) {
2 var count = 0;
3

4 var getId = function () {
5 return prefix + '_id_' + (count++)
6 };
7

8 var reset = function () { count = 0 };
9

10 return { getId: getId, reset: reset }
11 }
12 var ig1 = makeIdGen("foo");
13 var ig2 = makeIdGen("bar");
14 var id1 = ig1.getId();

Fig. 4. Identifier Generator (left); Partial post-execution heap (right)

mapping variables declared in the body of that function and its parameters to their respective

values. For example, each time makeIdGen is called, two new function objects representing getId

and reset are created in the heap, as well as a new ER for that particular execution of makeIdGen.

In particular, after executing makeIdGen("foo"), we get the objects getId1 and reset1, as well as the

ERmIG1 environment record (Figure 4 (right)); the execution of makeIdGen("bar") is similar.

Variables are resolved with respect to a list of ER locations, called a scope chain. When executing

a function fid, its scope chain consists of the list found in the @scope field of the function object

corresponding to fid, extended with the ER of fid created for that execution. For instance, during

the execution of ig1.getId(), the scope chain will be [lд , ERmIG1, ERgetId1]. We can also observe that,

for example, getId1 and reset1 share the [lд , ERmIG1] part of their scope chains.
When trying to determine the value of a given variable x during the execution of function fid,

the semantics inspects the scope chain of fid and, if no binding for x is found, the prototype chain

of the global object. However, as ES5 Strict is lexically scoped, we can statically determine if x is

defined in the scope chain of fid and, if so, in which ER it is defined. Therefore, we do not model the

scope inspection procedure as a list traversal, but use instead a special scope clarification function,
ψ : Str ×Str ⇀ N for determining which ER in the scope chain of a given function defines a given

variable. For instance,ψ (getId, makeIdGen) = 0, as the variable makeIdGen is defined in the first ER

(lд) in the scope chain of getId, while ψ (getId, count) = 1 as the variable count is defined in the

second ER of that scope chain. We also use the overlapping scope function, ψ o
: Str × Str ⇀ N,

which takes two function identifiers and returns the length of the overlap of their scope chains. For

instance,ψ o (getId, reset) = 2, as getId and reset share the global object and the ER of makeIdGen.

JaVerT: Specifying Scoping. To capture variable scoping, we introduce the Scope predicate.

The Scope(x : v, sch, fid) predicate states that the variable x has value v in the scope chain de-

noted by sch of the function literal with identifier fid. In the general case, this predicate cor-

responds to the JS Logic assertion (nth (sch,n), x) 7→ v , where nth is the binary list indexing

operator and n = ψ (fid, x). For instance, the predicate Scope(count : c, gi_sc, getId) unfolds to

(nth (gi_sc, 1), "count") 7→ c as ψ (getId, count) = 1. We can also use Scope(x : v) as syntactic

sugar for Scope(x : v, sc, fid), where sc is the special logical expression denoting the current scope

chain and fid is the identifier of the current function.

Scope(x : v, sch, fid) := (nth(sch, n), x) 7→ v, when n = ψ ( f id,x ) , 0;

Scope(x : v, _, fid) := (lg, x) 7→ [”d”, v, _, _, _], whenψ ( f id,x ) = 0.

To illustrate Scope, we specify getId in Figure 5. getId uses the prefix and count variables, defined

in the ER of makeIdGen.We capture this in the precondition using Scope: Scope(prefix: p) ∗ Scope(count: c).

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: January 2017.



JaVerT: JavaScript Verification Toolchain 1:15

We also state that the value of prefix (p) is a string and the value of count (c) is a number. After ex-

ecution, prefix remains the same, while count is incremented: Scope(prefix: p) ∗ Scope(count: c+1).

The return value is described using string concatenation (++) and number-to-string conversion

(numToString). This specification again highlights the importance of our abstractions: to spec-

ify getId, the user does not need to know anything about the internal representation of scope chains.

We will revisit this specification shortly in the context of encapsulation.{
Scope(prefix: p) * Scope(count: c) *

types(p: Str, c: Num)

}
getId(){

Scope(prefix: p) * Scope(count: c+1) *
(ret = p ++ "_id_" ++ numToString(c))

}
Fig. 5. Specification of getId

JaVerT: Specifying Function Closures. The major

challenge associated with specifying function closures

in JavaScript comes from the fact that, in contrast to

static languages such as Java and ML, the JavaScript

variable store is emulated in the heap and constitutes

spatial resource. Since scope chains often overlap, one

can easily specify duplicated resources and end up with unsatisfiable assertions. We illustrate this

challenge by specifying the makeIdGen function (Figure 6).

In the precondition, the only information we require is that prefix is a string. In the postcondition,

we would like to have an IdGenerator(ig, p, c) predicate, which captures that the object ig is an ID

generator with prefix p and count c. Let us first look at only the first three lines, which are standard.

IdGenerator(ig, p, c) := types(p: Str, c: Num) * JSObject(o, Object.prototype) *
DataProp(ig, "getId", gif) * FunctionObject(gif, getId, gi_sc) *
DataProp(ig, "reset", rf) * FunctionObject(rf, reset, r_sc) *
Scope(count: c, gi_sc, getId) * Scope(prefix: p, gi_sc, getId) * OChains(getId: gi_sc, reset: r_sc)

{
types(prefix: Str)

}

makeIdGen(prefix){
IdGenerator(ret, prefix, 0)

}

Fig. 6. Specification of getId

We have that the object ig is a standard JS object. It has

two properties, getId and reset, associated with two function

objects, respectively corresponding to functions with identi-

fiers getId and reset, and whose scope chains are respectively

denoted by gi_sc and r_sc. Now, what remains to be specified

is that both getId and reset have access to the same variables

prefix and count in the environment record of makeIdGen. We could naively try to capture this

with the assertion Scope(count: c, gi_sc, getId) ∗ Scope(count: c, r_sc, reset), but this is duplicated

resource. We need a predicate that captures the scope chain overlap between two functions.

The OChains(f: f_sc, g: g_sc) predicate states that the scope chains f_sc (associated with func-

tion f) and g_sc (associated with function g) were created during the same execution of their

innermost enclosing function. That is, their scope chains maximally overlap. In the general case,

this predicate corresponds to the (pure) JS Logic assertion �0≤i<nnth (f_sc, i ) = nth (g_sc, i ),
where n = ψ o (f, g). In particular, OChains(getId: gi_sc, reset: r_sc) unfolds to nth (gi_sc, 0) =
nth (r_sc, 0) ∗ nth (gi_sc, 1) = nth (r_sc, 1), as ψ o (getId, reset) = 2. That is, the gi_sc and r_sc

coincide on their first two ERs, namely the global object and the ER of mainIdGen.

OChains(f : f_sc, g : g_sc) := �0≤i<n (nth(f_sc, i) = nth(g_sc, i)), where n = ψo ( f ,д)

JaVerT: Specifying Function Closures. The OChains predicate is used together with Scope to

capture function closures. First, we specify variables required by multiple closures in a single scope

chain using Scope and then state the overlap between these scope chains using OChains, as shown

in the fourth line of IdGenerator.

When function closures get more involved, it can be tedious to write all necessary OChains

predicates. We offer a more compact predicate, Closure, expressible in terms of Scope and OChains.

The Closure(x1 : v1, ... xn : vn; f1 : f1_sc, ..., fm : fm_sc) predicate states that the variables x1, . . ., xn
with values v1, . . ., vn are all shared between functions f1, . . ., fm, whose scope chains are given by
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{
types(prefix: Str)

}

makeIdGen(prefix){
IdGenerator(ig, prefix, 0, sc)

}

{
(this = ig) * OChains(getId: sc, makeIdGen: ig_sc) *

IdGenerator(ig, prefix, c, ig_sc))

}
getId(){

IdGenerator(ig, prefix, c + 1, ig_sc) *
(ret = prefix ++ "_id_" ++ numToString(c))

}
Fig. 7. Revisited specifications of getId (left) and makeIdGen (right).

f1_sc, . . ., fm_sc, and that these scope chains all maximally overlap pairwise. Using Closure, we

can rewrite the last line of IdGenerator as Closure(count: c, prefix: p; getId: gi_sc, reset: r_sc).

We also give a partial specification of the client program in lines 12-14 of Figure 4 (left), highlight-

ing only the relevant details. More specifically, we have that the variables ig1 and ig2 respectively

hold ID generators with prefixes foo and bar, whose respective count values are 1 and 0. Finally,

we have that the variable id1 holds the generated identifier "foo_id_0".

{
emp

}

var ig1 = makeIdGen("foo"), ig2 = makeIdGen("bar"), id1 = ig1.getId();{
... * Scope(ig1: IDG1) * Scope(ig2: IDG2) * Scope(id1: id) *

IdGenerator(IDG1, "foo", 1) * IdGenerator(IDG2, "bar", 0) * id = "foo_id_0" * ...

}

JaVerT: Encapsulation. The specification of get shown in Figure 5, albeit correct, does not reflect

themain idea of the counter implementation, which is encapsulation. That is, since the variable count

is not accessible by the clients using the get function, it should not be exposed in the specification

of get either. We revisit this specification to demonstrate how to capture encapsulation.

First, we extend the IdGenerator predicate to maintain information about the scope chain in

which the ID generator was created:

IdGenerator(ig, p, c, ig_sc) := types(p: Str, c: Num) * JSObject(ig, Object.prototype) *
DataProp(ig, "getId", gif) * FunctionObject(gif, getId, gi_sc) *
DataProp(ig, "reset", rf) * FunctionObject(rf, reset, r_sc) *
Closure(count: c, prefix: p; getId: gi_sc, reset: r_sc, makeIdGen: ig_sc).

With this definition in place, the postcondition of makeIdGen (Figure 7, left) can be restated

as IdGenerator(ig, prefix, 0, sc), where, as mentioned earlier, sc denotes the current scope chain.

More importantly, we can now state the specification of get in terms of the IdGenerator predicate

(Figure 7, right). Note that, in the precondition, we now need to make sure that the instance of the

get function that we are executing is, in fact, the one captured by the IdGenerator.

This specification of get no longer exposes the internal state of the ID generator and hints at

encapsulation. In general, using function closures in JavaScript does not guarantee encapsulation,

and client programs can still access and modify parts of the internal state that are intended to be

private [?]. To achieve full encapsulation, we can choose to disallow the unfolding of predicates by

client programs, in the style of ??.

4 JS-2-JSIL: LOGIC-PRESERVING COMPILER
We describe how we use our verification pipeline to move the reasoning from JavaScript to JSIL,

solving the verification challenge (V1) of coping with the complexity of JavaScript commands. We

introduce JSIL, our intermediate language for JavaScript verification in §4.1. Using an example

assignment, we demonstrate how JS-2-JSIL compiles JavaScript to JSIL in §4.2. In §4.3, we introduce

JSIL Logic assertions, show how annotations are translated from JS Logic to JSIL Logic by the

JS-2-JSIL Logic Translator, and prove correct the translation of assertions and specifications.

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: January 2017.



JaVerT: JavaScript Verification Toolchain 1:17

4.1 The JSIL Language
JSIL is a simple goto language with top-level procedures and commands operating on object heaps.

It natively supports the dynamic features of JavaScript, namely extensible objects, dynamic property

access, and dynamic procedure calls.

Syntax of the JSIL Language

Numbers: n ∈ Num Booleans: b ∈ Bool Strings:m ∈ Str Locations: l ∈ L Variables: x ∈ XJSIL

Types: τ ∈ Types Literals: λ ∈ Lit ::= n | b | m | undefined | null | l | τ | fid | empty | λlst | λset
Expressions: e ∈ EJSIL ::= λ | x | ⊖ e | e ⊕ e

Basic Commands: bc ∈ BCmd ::= skip | x := e | x := new () | x := [e, e] | [e, e] := e |

delete (e, e) | x := hasField (e, e) | x := getFields (e)

Commands: c ∈ Cmd ::= bc | goto i | goto [e] i, j | x := e(e)with j | x := ϕ (x)

Procedures : proc ∈ Proc ::= proc fid (x){c}

Notation : x, λlst, e, and c, respectively, denote lists of variables, literals, expressions, and commands.

λset denotes a set of literals.

JSIL literals, λ ∈ Lit , include JavaScript literals, as well as procedure identifiers fid, types τ , the
special value empty, and lists and sets of literals. JSIL expressions, e ∈ EJSIL, include JSIL literals,

JSIL program variables x, and a variety of unary and binary operators.

The JSIL basic commands provide the machinery for the management of extensible objects and

do not affect control flow. They include skip , variable assignment, object creation, property access,

property assignment, property deletion, membership check, and property collection.

The JSIL commands include JSIL basic commands and commands related to control flow: condi-

tional and unconditional gotos; dynamic procedure calls; and ϕ-node commands. The two goto

commands are standard: goto i jumps to the i-th command of the active procedure, and goto [e] i, j
jumps to the i-th command if e evaluates to true, and to the j-th otherwise. The dynamic procedure

call x := e(e)with j first obtains the procedure name and arguments by evaluating e and e, respec-
tively, then executes the appropriate procedure with these arguments, and finally assigns its return

value to x. Control is transferred to the next command if the procedure does not raise an error, or

to the j-th command otherwise. Finally, the ϕ-node command x := ϕ (x1, . . . , xn ) is interpreted as

follows: there exist n paths via which this command can be reached during the execution of the

program; the value assigned to x is xi if and only if the i-th path was taken. We include ϕ-nodes in
JSIL to directly support Static-Single-Assignment (SSA), well-known to simplify analysis [Cytron

et al. 1989]. The JS-2-JSIL compiler generates JSIL code directly in SSA.

A JSIL program p ∈ P is a set of top-level procedures proc fid (x){c}, where fid is the name of

the procedure, x its sequence of formal parameters, and its body c is a command list consisting of a
numbered sequence of JSIL commands. We use pfid and pfid (i ) to refer, respectively, to procedure

fid of program p and to the i-th command of that procedure. Every JSIL program contains a special

proceduremain , corresponding to the entry point of the program. JSIL procedures do not explicitly

return. Instead, each procedure has two special command indexes, inm and ier, that, when jumped to,

respectively cause it to return normally or return an error. Also, each procedure has two dedicated

variables, ret and err. When a procedure jumps to inm, it returns normally with the return value

ret; when it jumps to ier, it returns an error, with the error value err.

JSIL Operational Semantics. We introduce the JSIL semantic judgement for program behaviour;

the full JSIL semantics is omitted due to lack of space. A JSIL variable store, ρ ∈ Sto, is a mapping

from JSIL variables to JSIL values, and a JSIL heap, h ∈ HJSIL, is a mapping from pairs of locations

and property names (strings) to JSIL values, v ∈ VJSIL, which coincide with the JSIL literals. The
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Fig. 8. Compiling contents[k] = v to JSIL by closely following the ES5 Standard.

JSIL semantic judgement has the form p ⊢ ⟨h, ρ, j, i⟩ ⇓fid ⟨h
′, ρ ′,o⟩, meaning that the evaluation

of procedure fid of program p, starting from its i-th command, to which we arrived from its j-th
command, in the heap h and store ρ, generates the heap h′, the store ρ ′, and returns the outcome o.
JSIL outcomes are of the form fl⟨v⟩, where fl ∈ {nm, er} denotes the return mode of the function.

4.2 JS-2-JSIL: Compilation by Example
The JS-2-JSIL compiler targets the strict mode of the ES5 English standard (ES5 Strict). ES5 Strict is a

variant of ES5 that intentionally has slightly different semantics, exhibiting better behavioural prop-

erties, such as being lexically scoped. It is developed by the ECMAScript committee, is recommended

for use by the committee and professional developers [Flanagan 2011], and is widely used by major

industrial players: for example, Google’s V8 engine [Google 2017] and Facebook’s React library

[Facebook 2017]. We believe that ES5 Strict is the correct starting point for JavaScript verification.

We illustrate how JS-2-JSIL compiles JavaScript code to JSIL code using an assignment from

our key-value map example (§3.4): the assignment contents[k] = v from the function put. This

seemingly innocuous statement has non-trivial behaviour and triggers a number of JavaScript

internal functions. Before we show this, however, we need to introduce JavaScript references.

References. References are JS internals that appear, for example, as a result of evaluating a left-

hand side of an assignment, and represent resolved property bindings. They consist of a base

(normally an object location) and a property name (a string), telling us where in the heap we can

find the property we are looking for. The base can hold the location either of a standard object (object
reference) or of an ER (variable reference). To obtain the associated value, the reference needs to be

dereferenced, which is performed by the GetValue internal function. In JSIL, we encode references

as three-element lists, containing the reference type ("o" or "v"), the base, and the property name.

Compiling the Assignment. We are now ready to go line-by-line through the compilation of the

assignment contents[k] = v, which is given in Figure 8.

(1) We first evaluate the the property accessor contents[k] and obtain the corresponding reference.

Evaluation of property accessors is described in §11.2.1 of the ES5 standard, and is line-by-line

reflected in lines 1-9 of the JSIL code. The resulting reference, ["o", x_2_v, x_4_s ], points to the

property denoted by k of the object denoted by contents.

(2) Next, we evaluate the variable v. Here, we need to understandwithinwhich ER v is defined; as it is

a parameter of the put function, it will be in the ER corresponding to put, i.e. the second element

of the scope chain (line 10). The appropriate reference, ["v", x_7, "v"], is then constructed in

line 11. This code is automatically generated using the scope clarification function.

(3) Next, the obtained right-hand-side reference is dereferenced using the GetValue internal function

(ES5 standard, §8.7.1). Any call to an internal function gets translated to JSIL as a procedure call

to our corresponding reference implementation, in this case i__getValue (line 12).
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(4) In ES5 Strict, the identifiers eval and arguments may not appear as the left-hand side of an

assignment (for example, eval = 42), and this step enforces this restriction. We do not inline

the conditions every time, but instead call a JSIL procedure i__checkAssignmentErrors (line 13),

which takes as a parameter a reference and throws a syntax error if the conditions are met.

(5) The actual assignment is performed by calling the PutValue internal function (ES5 standard,

§8.7.2), translated to JSIL as a procedure call to our reference implementation (line 14).

(6) In JavaScript, every statement returns a value. JS-2-JSIL, when given a statement, returns the list

of corresponding JSIL commands and the variable that stores the return value of that statement.

In this example, JS-2-JSIL returns the presented code and the variable x_8_v.

This example illustrates the following important points about JS-2-JSIL:

• Our compilation from JavaScript to JSIL closely follows the ES5 standard. Out of the 14 lines of
compiled JSIL code, 8 have a direct counterpart in the standard. The remaining six deal with

scoping, where a difference is expected due to our use of the closure clarification function.

• JS-2-JSIL moves a substantial part of the complexity of JavaScript from the reasoning to the compiled
code. As discussed in §2, program-logic-based verification is not feasible for JavaScript due to the

complexity of its constructs. JS-2-JSIL moves this complexity to the compiled JSIL code. There are

more lines of JSIL to be analysed when compared to the original JS code (for example, the key-

value map example compiles to 354 lines of JSIL code), but JSIL logic is very simple, making this

analysis tractable. However, the fundamental dynamic features of JavaScript cannot be compiled

away; they remain in JSIL and JSIL Logic and are resolved by JSIL Verify, as described in §5.

• JS-2-JSIL maintains the level of abstraction of the ES5 standard. By this, we refer to the fact that the
compilation never inlines function bodies. A function call in the ES5 standard is always compiled

to a procedure call in JSIL. For example, a call to an internal function in the standard (lines 3

and 5 of Figure 8, left) is translated to a call to a JSIL reference implementation of that internal

function (lines 12 and 14 of Figure 8, right)). One tangible benefit of this approach is that it makes

the resulting compiled JSIL code much more readable and visually closer to the ES5 standard.

Compiling Function Literals. Each ES5 Strict function literal function fid(x1, ..., xn) { ... } is com-

piled to a JSIL procedure procedure fid(xsc, xthis, x1, ..., xn) { ... }, whose name is the identifier of

the original function and whose first two arguments are bound, respectively, to the scope chain

and the this object active during the evaluation of the function body. The remaining arguments

correspond to the original arguments of the function.

4.3 JS-2-JSIL Logic Translator
JaVerT verifies programs annotated with pre- and postconditions, loop invariants, and instructions

for folding and unfolding of user-defined predicates. The JSIL Logic Translator translates these

annotations to equivalent annotations in JSIL Logic, and then integrates them into the compiled

JSIL code. It also automatically inserts additional fold/unfold annotations for the Pi predicate, as

they are required by some of the internal functions (see §5.3 for more details).

JSIL Logic Assertions

V ∈ VL
JSIL ::= v | � E ∈ ELJSIL ::= V | x | x | ⊖ E | E ⊕ E

τ ∈ Types ::= Num | Bool | Str | Undef | Null | Obj | List | Set | Type

P ,Q ∈ ASJSIL ::= true | false | E = E | E ≤ E | P ∧Q | ¬ P | P ∗Q | ∃x.P |
emp | (E,E) 7→ E | emptyFields(E | E) | types(Xi : τi |ni=1)

JSIL Logic Assertions. There is a strong correspondence between JavaScript and JSIL at the level

of the logics. JSIL logical values, V ∈ VL
JSIL, consist of JSIL values extended with �, subsuming JS
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logical values. JSIL logical expressions, E ∈ ELJSIL, coincide with JS logical expressions, except that

they do not contain sc and this. JSIL types coincide with JavaScript types. Finally, as ES5 Strict

heaps are by design a proper subset of JSIL heaps, we have that JSIL Logic assertions, P ,Q ∈ ASJSIL,

coincide with JS Logic assertions.

JS-2-JSIL: Logic Translation. Translating JS Logic assertions to JSIL Logic assertions amounts to

replacing the occurrences of the sc and this special logical values of JS Logic with the variables

xsc and xthis of JSIL logic, which hold their associated values at the JSIL level. The translation of

a JS Logic assertion P to JSIL Logic is denoted by T (P ).

Translation Correctness: Assertions. We define satisfiability for JSIL Logic assertions with

respect to abstract heaps, which differs from concrete heaps in that they may map object properties

to the special value �. The satisfiability relation for JSIL Logic assertions has the form: H , ρ, ϵ |= P ,
where: (1) H is an abstract heap; (2) ρ is a JSIL variable store; (3) and ϵ is a JSIL logical environment,

mapping JSIL logical variables to JSIL values. The satisfiability relation for JSIL Logic assertions

builds on the semantics of JSIL logical expressions. A JSIL logical expression E is interpreted with

respect to ρ and ϵ , written JEKϵρ . Both the satisfiability relation and the expression interpretation

are mostly standard; we show the non-standard cases below. We also use a function TypeOf, which
given a JSIL value, outputs its type.

Interpretation of JSIL Logic Expressions and Satisfiability Relation for Assertions (fragment)

Semantics of Logical Expressions: JV Kϵρ ≜ V JxKϵρ ≜ ρ (x ) JxKϵρ ≜ ϵ (x)

Satisfiability Relation:

H , ρ, ϵ |= emptyFields(E1 | E2) ⇔ H =
⊎
m<{JE2Kϵρ } ((JE1K

ϵ
ρ ,m) 7→ �)

H , ρ, ϵ |= types(Xi : τi |ni=1) ⇔ H = emp and for all i ∈ {1, ...,n}, TypeOf (JEKϵρ ) = τi

Satisfiability of JS Logic assertions, H , ρ,L, lt , ϵ |= P , is defined analogously, except that JS logical
expressions are interpreted not only with respect to the JS store ρ and JS logical environment ϵ , but
also the current scope chain L and the binding of the this object lt . Given how close the semantics

of JS and JSIL assertions are, it immediately follows that:

H , ρ,L, lt , ϵ |= P ⇐⇒ H , ρ[xsc 7→ L, xthis 7→ lt ], ϵ |= T (P )

Translation Correctness: Specifications. First, we define what it means for a JSIL Logic spec-

ification to be valid. This definition is expressed in terms of the JSIL semantic judgement, p ⊢
⟨h, ρ, j, i⟩ ⇓fid ⟨h

′, ρ ′,o⟩, given in §4.1. Also, it makes use of a deabstraction function ⌊.⌋ : H ∅JSIL →
HJSIL, transforming abstract JSIL heaps to concrete JSIL heaps. Intuitively, ⌊H⌋ denotes the concrete
JSIL heap obtained by removing the cells of H that are mapped to �.

Definition 4.1 (Validity of JSIL Logic Specifications). A JSIL Logic specification {P } fid (x ) {Q } for
return mode fl is valid with respect to a program p, written p,fl ⊨ {P } fid (x ) {Q }, if and only if, for

all logical contexts (H , ρ, ϵ ), heaps hf , stores ρf , flags fl′, and JSIL values v, it holds that:

H , ρ, ϵ |= P ∧ p ⊢ ⟨⌊H⌋, ρ,−, 0⟩ ⇓fid ⟨hf , ρf ,fl′⟨v⟩⟩ =⇒
fl′ = fl ∧ ∃Hf .Hf , ρf , ϵ |= Q ∧ ⌊Hf ⌋ = hf

The validity of JS Logic specifications is defined in a similar way, with respect to an ES5 Strict

semantic relation of the form s,L, lt ⊢ ⟨h, ρ⟩ ⇓fid ⟨hf ,o⟩, meaning that, given a JavaScript program s ,
scope chain list L and the this object lt , when executing the function of s with identifier fid and

parameter values given by ρ in the heap h, one obtains the final heap hf and outcome o. We write

s,fl ⊨ {P } fid (x ) {Q } to denote that a JS Logic specification {P } fid (x ) {Q } for return mode fl is valid

with respect to a JavaScript program s .
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To be able to state the next theorem, we lift the translation of assertions to specifications:

T ({P } fid (x ) {Q }) = {T (P )} fid (xsc, xthis,x ) {T (Q )}. Also, we say that a JS-2-JSIL compiler C is

correct if compiled programs preserve the behaviour of their original versions. Put formally:

s,L, lt ⊢ ⟨h, ρ⟩ ⇓fid ⟨hf ,fl⟨v⟩⟩ ⇐⇒ ∃ρf . C (s ) ⊢ ⟨h, ρ[xsc7→L,xthis7→lt ],−, 0⟩ ⇓fid ⟨hf , ρf ,fl⟨v⟩⟩

Due to our extensive validation, which we discuss in detail in §6.1, we strongly believe that the

JS-2-JSIL compiler is correct. Finally, Theorem 4.2 states that under the assumption of a correct

compiler, a JavaScript specification is valid if and only if its translated JSIL specification is valid.

Theorem 4.2 (JS-2-JSIL Logic correspondence). Given a correct JS-2-JSIL compiler, C, for any
JavaScript program s , return mode fl, and JS specification {P } fid (x ) {Q }, it holds that:

s,fl ⊨ {P } fid (x ) {Q } ⇐⇒ C (s ),fl ⊨ T ({P } fid (x ) {Q })

5 JSIL VERIFY
We present JSIL Verify, a semi-automatic verification tool for JSIL, and discuss how it tackles the

verification challenge of reasoning about the dynamic features of JavaScript (V2). Given a JSIL

program annotated with the specifications of its procedures, JSIL Verify checks whether the program

procedures satisfy their specifications. JSIL Verify consists of: (1) a symbolic execution engine based

on JSIL Logic, a sound separation logic for JSIL, presented in §5.1 and (2) an entailment engine for

resolving frame inference and entailment questions, presented in §5.2. Finally, in §5.3, we explain

how we used JSIL Verify to specify and verify the JSIL implementations of the JavaScript internal

functions and how these specifications are used in the verification of compiled JavaScript code (V3).

5.1 JSIL Verify: Symbolic Execution

Axiomatic Semantics of Basic Commands. The Hoare triples for the JSIL basic commands are

of the form {P }bc{Q }, and are interpreted as: “if bc is executed in a state satisfying P , then, if it
terminates, it will do so in a state satisfying Q”. We assume that JSIL programs are in SSA form,

taking away the need for standard substitutions in many of the axioms. Below, we give selected

axioms for the JSIL Logic basic commands. We write E1 � E2 to denote E1 = E2 ∧ emp.

Axiomatic Semantics of Basic Commands (selected axioms): {P }bc{Q }

Property Access

P = (e1, e2) 7→ X ∗ X ̸� �

{P } x := [e1, e2] {P ∗ x � X}

Get Fields

P = ((e,Xi ) 7→ Yi |
n
i=1) ∗ emptyFields(e | {Xi |ni=1 }) ∗ (Yi ̸� �|ni=1)

{P } x := getFields (e) {P ∗ (x � [X1, ...,Xn]) ∗ (ord (x) � true)}

Property Assignment

{(e1, e2) 7→ _}

[e1, e2] := e3
{(e1, e2) 7→ e3}

Property Deletion

P = (e1, e2) 7→ X∗

X ̸� � ∗ e2 , @proto
{P } delete (e1, e2) {(e1, e2) 7→ �}

Object Creation

Q = (x,@proto) 7→ null ∗
emptyFields(x | {@proto })
{emp} x := new () {Q }

The Get Fields axiom states that if the object bound to e only contains the properties denoted by

X1, ..., Xn , then, after execution of x := getFields (e), x will be bound to a list containing precisely

X1, ..., Xn in an order described by the ord predicate. The Property Deletion axiom forbids the

deletion of@proto properties. The Object Creation axiom states that the new object at x only
contains the @proto property with value null. The remaining axioms are straightforward.

Symbolic Execution. Our goal is to use symbolic execution to prove the specifications of JSIL

procedures. As procedures may call other procedures, we group specifications in specification
environments, SE : Fid ⇀ F laд ⇀ Spec , mapping procedure identifiers and return modes to

specifications. To avoid clutter, we assume in the formalisation that each procedure has a single
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specification per return mode. Hence, SE(fid,fl) = spec means that spec is the specification of the

procedure with identifier fid for the return mode fl. In the following, we use the terms symbolic

state and assertion interchangeably. Below, we give all of the operational rules of the symbolic

execution. Rules have the form p,fid, SE,fl ⊢ ⟨P ,k, i⟩; ⟨Q, j ⟩, meaning that: (1) we are currently
symbolically executing the code of the procedure with identifier fid in the JSIL program p assuming

the specification environment SE; (2) the symbolic execution of the entire procedure must terminate

with return mode fl; and (3) the symbolic execution of the i-th command on P results in Q when j
is the index of the next command to be executed, whilst k is the index of the command executed

before i . As p, fid, SE, and fl do not change during symbolic execution, we leave them implicit.

Furthermore, we use: (i) i 7→fid j to denote that i is an immediate predecessor of j; (ii) i k7→fid j to state

that i is the k-th element of the list containing all the predecessors of j in chronological order; and

(iii) post(spec ) to denote the postcondition of spec .

Operational Rules for JSIL Logic Symbolic Execution: p,fid, SE, f l ⊢ ⟨P ,k, i⟩; ⟨Q, j ⟩

Basic Command

pfid (i ) = bc {P } bc {Q }

⟨ P ,−, i ⟩; ⟨Q, i + 1 ⟩

Frame Rule

⟨ P , i, j ⟩; ⟨Q,k ⟩ i < {inm, ier}

⟨ P ∗ R, i, j ⟩; ⟨Q ∗ R,k ⟩

Phi-Assignment

pfid (i ) = x := ϕ (x1, ..., xn ) j
k
7→fid i

⟨ P , j, i ⟩; ⟨ P ∗ (x � xk ), i + 1 ⟩

Goto

pfid (i ) = goto k

⟨ P ,−, i ⟩; ⟨ P ,k ⟩

Cond. Goto - True

pfid (i ) = goto [e] k1, k2

⟨ P ,−, i ⟩; ⟨ P ∗ e � true,k1 ⟩

Cond. Goto - False

pfid (i ) = goto [e] k1, k2

⟨ P ,−, i ⟩; ⟨ P ∗ e � false,k2 ⟩

Conseqence

⟨ P , i, j ⟩; ⟨Q,k ⟩ P ′ ⇒ P Q ⇒ Q ′

⟨ P ′, i, j ⟩; ⟨Q ′,k ⟩

Existential Elimination

⟨ P , i, j ⟩; ⟨Q,k ⟩ i < {inm, ier}

⟨ (∃X. P ), i, j ⟩; ⟨ (∃X.Q ),k ⟩

Procedure Call - Normal

pfid (i ) = x := e0 (ei |
n1

i=1)with j SE(fid ′, nm) = {P } fid ′(x1, ..., xn2
) {Q ∗ ret � e} ei = undefined |n2i=n1+1

⟨ (P[ei/xi |
n2

i=1] ∗ e0 � fid ′), i ⟩; ⟨ (Q[ei/xi |
n2

i=1] ∗ e0 � fid ′ ∗ x � e[ei/xi |
n2

i=1]), i + 1 ⟩

Procedure Call - Error

pfid (i ) = x := e0 (ei |
n1

i=1)with j SE(fid ′, er) = {P } fid ′(x1, ..., xn2
) {Q ∗ err � e} ei = undefined |n2i=n1+1

⟨ (P[ei/xi |
n2

i=1] ∗ e0 � fid ′), i ⟩; ⟨ (Q[ei/xi |
n2

i=1] ∗ e0 � fid ′ ∗ x � e[ei/xi |
n2

i=1]), j ⟩

Normal Return

fl = nm Q ⊢ post(SE(fid, nm))

⟨Q,−, inm ⟩; ⟨Q, inm ⟩

Error Return

fl = er Q ⊢ post(SE(fid, er))
⟨Q,−, ier ⟩; ⟨Q, ier ⟩

We discuss the non-standard rules. The Normal Return rule first checks if the symbolic execution

is associated with a nm-mode specification, in which case it further checks if the current symbolic

state entails the postcondition of that specification. Note that the Normal Return rule cannot

be used during the symbolic execution of an er-mode specification, because the first check would

fail. The Error Return rule is analogous. The Procedure Call - Normal rule checks if the

current symbolic state entails the precondition of the nm-specification of the procedure being

called (assuming that the parameters which are not provided in the call are bound to undefined),
in which case the rule updates the symbolic state with the postcondition of that procedure. The

Procedure Call - Error rule is analogous.

The reader may notice that the symbolic execution rules presented above are not syntax-directed.

Therefore, we needed to develop a strategy for applying the Frame and Consequence rules. In prac-

tice, we apply both rules before the symbolic execution of every basic command and procedure call.
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Soundness of Symbolic Execution. Since JSIL programs contain goto operations, we cannot rely

on the standard sequential composition rule of Hoare logic to derive specifications for sequences of

JSIL commands; instead, we introduce proof candidates. A proof candidate, pd∈D :Fid × F laд ×
N ⇀ ℘(ASJSIL × N), maps each command in a procedure to a set of possible preconditions,

associating each such precondition with the index of the command that led to it. To illustrate, if

(P , j ) ∈ pd(fid,fl, i ), then P is the precondition of the i-th command of procedure fid that resulted

from the symbolic execution of its j-th command during the symbolic execution associated with

the fl-mode specification of fid. A proof candidate is a valid proof derivation iff it is well-formed
(Definition 5.1 below), meaning that (1) the set of preconditions of the first command of every

procedure contains the precondition of the procedure itself and (2) one can symbolically execute

every command on all of its possible preconditions.

Definition 5.1 (Well-formed proof candidate). Given a program p ∈ P and a specification envi-

ronment SE ∈ Str ⇀ F laд ⇀ Spec , we say that a proof candidate pd ∈ D is well-formed with

respect to p and SE, written p, SE ⊢ pd, if and only if for all procedures fid in p, and index i the
following statements hold:

(1) ∀fl, P ,Q . SE(fid,fl) = {P }fid (x){Q } ⇐⇒ pd(fid,fl, 0) = {(P , 0)}
(2) ∀fl, P ,k . (P ,k ) ∈ pd(fid,fl, i ) ∧ (P ⊬ false) =⇒(

∀j . i 7→fid j =⇒ ∃Q . (Q, i ) ∈ pd(fid,fl, j ) ∧ p,fid, SE,fl ⊢ ⟨ P ,k, i ⟩; ⟨Q, j ⟩
)

∨
(
i ∈ {inm, ier} =⇒ p,fid, SE,fl ⊢ ⟨ P ,k, i ⟩; ⟨ P , i ⟩

)
The operational rules for JSIL symbolic execution are sound with respect to the JSIL operational

semantics. Hence, if we have that there is a well-formed proof candidate derivation with respect to

a program p and specification environment SE, then we have that all of the the specifications in the

co-domain of SE are valid.

Theorem 5.2 (Soundness of Symbolic Execution for JSIL). For all JSIL programs p and
specification environments SE, if there exists a proof candidate pd ∈ D such that p, SE ⊢ pd, then:

∀fid,fl, P ,Q, x . SE(fid,fl) = {P }fid (x){Q } =⇒ p,fl ⊨ {P }fid (x){Q }

5.2 JSIL Verify: Entailment Engine

Frame Inference. As JSIL features dynamic property access, the field of a cell assertion is an

arbitrary logical expression and not a concrete string. This makes symbolic evaluation of object

management commands non-trivial. Consider, for instance, the property assignment [e1, e2] := e3.
To symbolically execute this command in a symbolic state P , JSIL Verify must solve the following

instance of the frame inference problem (FIP) P ⊢ (o,p) 7→ − ∗ ?F , where ?F denotes the resources to

be framed off. In this case, solving the FIP involves: (1) traversing all the cell assertions (E1,E2) 7→ −
in P , checking for each one whether P ⊢ ei = Ei |i=1,2; and (2) traversing all the emptyFields
assertions emptyFields(E1 | E2) in P , checking for each one whether P ⊢ e1 = E1 and P ⊢ e2 < E2
(for the case in which the required resource is captured by the emptyFields assertion).

Similarly to Berdine et al. [2005b], given the FIP P ⊢ Q ∗ [?F ], what we do first is decompose P
andQ into pairs of the form (Σ,Π), where Σ and Π denote, respectively, their spatial and pure parts.

Hence, what we are left with is (Σp ,Πp ) ⊢ (Σq ,Πq ) ∗ [?F ], which can then be further decomposed

into: (i) (Σp ,Πp ) ⊢ (Σq , True) ∗ [?F ] and the pure entailment (ii) Πp ⊢ Πq . Below, we present a proof

system for solving (i), which we rewrite, for readability, as Σp | Πp ⊢ Σq ∗ [?F ]. We note that this

proof system makes use of a pure entailment oracle in order to check entailments between pure

assertions of the form Π1 ⊢ Π2.
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Proof System for Frame Inference - Σ1 | Π ⊢ Σ2 ∗ [?F ]

Cell-Cell

Π ⊢ Ei = E ′i |i=1,2,3 Σ1 | Π ⊢ Σ2 ∗ [?F ]

Σ1 ∗ (E1,E2) 7→ E3 | Π ⊢ Σ2 ∗ (E ′
1
,E ′

2
) 7→ E ′

3
∗ [?F ]

Frame

Σ1 | Π ⊢ Σ2 ∗ [?F ]

Σ1 ∗ Σ | Π ⊢ Σ2 ∗ [?F ∗ Σ]

Emp

emp | Π ⊢ emp ∗ [emp]

EmptyFields-None-Cell

Π ⊢ E1 = E ′
1

Π ⊢ E ′
2
< E2 Σ1 ∗ emptyFields(E1 | E2 ∪ { E ′

2
}) | Π ⊢ Σ2 ∗ [?F ]

Σ1 ∗ emptyFields(E1 | E2) | Π ⊢ Σ2 ∗ (E ′
1
,E ′

2
) 7→ � ∗ [?F ]

EmptyFields-EmptyFields-Extra-Resource-Left

Π ⊢ E0 = E ′
0

Π ⊢ E ∪ {Ei |
k
i=1} = E ′ Σ1 ∗ �

1≤i≤k (E0,Ei ) 7→ � | Π ⊢ Σ2 ∗ [?F ]

Σ1 ∗ emptyFields(E0 | E) | Π ⊢ Σ2 ∗ emptyFields(E ′
0
| E ′) ∗ [?F ]

EmptyFields-EmptyFields-Extra-Resource-Right

Π ⊢ E0 = E ′
0

Π ⊢ E\{Ei |
k
i=1} = E ′ Σ1 | Π ⊢ Σ2 ∗ [?F ]

Σ1 ∗ �
1≤i≤k (E0,Ei ) 7→ � ∗ emptyFields(E0 | E) | Π ⊢ Σ2 ∗ emptyFields(E ′

0
| E ′) ∗ [?F ]

Let us briefly explain the rules of the proof system. The Cell-Cell, Frame, and Emp rules are

standard, whereas the remaining three deal with having negative resource and are tightly connected

to the dynamic nature of JSIL and, by extension, JavaScript. They are all based on the following key

insight: emptyFields(E1 | E2) ∗ E1 = E ′
1
∗ E ′

2
< E2 ⇔ emptyFields(E1 | E2 ∪ {E ′2}) ∗ (E ′

1
,E ′

2
) 7→ �,

which illustrates how a single none-cell can be taken out of or put into an emptyFields assertion,

highlighting how the footprint of emptyFields is contravariant on the cardinality of the set E2.
The EmptyFields-None-Cell rule places the left-to-right direction of this equivalence into the

context of the FIP. The remaining two rules, EmptyFields-EmptyFields-Extra-Resource-Left

and EmptyFields-EmptyFields-Extra-Resource-Right, illustrate the two scenarios in which an

emptyFields assertion for the same object exists on both sides of the FIP. In the former scenario, the

footprint of emptyFields on the left-hand-side is greater than that of the emptyFields on the right, in

which case, we have to carry that extra resource, �1≤i≤k (E0,Ei ) 7→ �, into the left-hand-side of the

remaining derivation. In the latter, opposite case, the extra resource has to be present immediately

on the left-hand-side of the FIP, and no emptyFields are carried over into the remaining derivation.

To illustrate the use of the proof system, consider the symbolic execution of the compilation of

put(k, v) from §3.4 on a symbolic state P , such that the key to be inserted, k, is valid and not contained
in the given map (second specification of put). In this case, to symbolically execute the compilation

of contents[k] = v, one needs to prove that k is not defined in contents, which implies solving the

following FIP: P ⊢ (contents, k) 7→ �∗ [?F ], with P = emptyFields(contents | keys∪{ hOP }) ∗Σ∗Π
and Π = (validKey (k) ∧ k < keys ∧ ...), where Σ denotes the remaining spatial resource and

hOP denotes the “hasOwnProperty” string. Figure 9 shows how to use the proof system to solve

this problem, concluding that: ?F = emptyFields(contents | keys ∪ { hOP, k }) ∗ Σ. Intuitively, the
computed frame ?F coincides with the spatial part of the original symbolic state P except that the

property k is removed from the infinite footprint of the emptyFields assertion.

Π ⊢ k < keys ∪ { hOP }

emp | Π ⊢ emp ∗ [emp] Emp

ΣF | Π ⊢ emp ∗ [ΣF ]
Frame

emptyFields(contents | keys ∪ { hOP }) | Π ⊢ (contents, k) 7→ � ∗ [ΣF ]
EF - None

emptyFields(contents | keys ∪ { hOP }) ∗ Σ | Π ⊢ (contents, k) 7→ � ∗ [ΣF ∗ Σ]
Frame

Π = validKey (k) ∗ k < keys ΣF = emptyFields(contents | keys ∪ { hOP, k })

Fig. 9. Example - proof system for frame inference - derivation
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Pure Entailment. JSIL Verify discharges the pure entailments of the form Π1 ⊢ Π2 to the Z3

SMT solver [De Moura and Bjørner 2008]. To this end, it encodes JSIL Logic pure assertions as Z3

formulae. Z3 gives native support for arithmetic, bit-vectors, arrays, and uninterpreted functions.

It additionally supports the definition of new algebraic data-types. We encoded JSIL Logic values

as a Z3 algebraic data type taking advantage of Z3 native types when possible, and specified the

operations for the JSIL value types not natively supported using uninterpreted functions.

5.3 JSIL Logic Specifications of JavaScript Internal Functions

Fig. 10. Call graphs for GetValue and PutValue

JavaScript internal functions describe the build-

ing blocks of the language, including prototype

chain traversal, object management, and type

conversions. They are called extensively by all

JavaScript commands. Therefore, in order to

reason about JavaScript code, we have to first

be able to reason efficiently about the internal

functions. However, their definitions in the ES5 standard are operational, complex, and intertwined,

making the allowed behaviours difficult to discern. To illustrate, in Figure 10 we show the call

graphs of GetValue and PutValue, the two main internal functions operating on references.

Symbolic execution of internal functions. In §4.2, we showed how JS-2-JSIL compiles calls to

internal functions in the standard to procedure calls to their reference implementations in JSIL. As

such, in order to symbolically execute these calls, we need the specifications of internal functions.

We provide functionally correct JSIL Logic axiomatic specifications that explicitly expose the

allowed behaviours for all cases of the internal functions that do not use higher-order reasoning,

accounting for approximately 90% of all possible cases. In creating these specifications, we leverage

on the built-in predicates of §3 and, in particular, on the Pi predicate, without which the specifi-

cation of internal functions would be impossible. Using JSIL Verify, we verify that our axiomatic

specifications are satisfied by their corresponding, well-tested JSIL reference implementations.

Fig. 11. Automatic fold/unfold annotations

Several GetValue and PutValue specifications re-

quire the Pi predicate to be folded. To account for

this, JS-2-JSIL automatically inserts annotations

for folding the appropriate Pi prior to such calls

and for unfolding it afterwards. This is illustrated in Figure 11 for the last command of the compiled

JSIL code of the assignment contents[k] = v in Figure 8. This way, we ensure that prototype chains

are always unfolded and, therefore, we do not require the sepish connective of Gardner et al. [2012].

Finally, observe that in the case where we insert a new key into the map, in order for the Pi

predicate to be automatically folded for the precondition of PutValue shown in Figure 11, JSIL Verify

must prove that the supplied key does not exist in the prototype chain, which includes solving the

frame inference problem described in §5.2.

Specification by Example: PutValue. PutValue(v, w) is the JavaScript internal function that takes

a reference v and a value w, and assigns w to the property pointed to by reference v. Let us consider

the case in which v is an object reference of the form v = [ "o"/"v", o, p ]. In this case, PutValue

assigns the descriptor ["d", w, T, T, T] to to the property p of o. Below, we present two specifications

of PutValue(v, w), where v is an object reference ["o", o, p], o is an extensible object that is not a

string or an array object, and the property p is not defined in the prototype chain of o.

This example illustrates why we need lists of object locations and classes exposed in the Pi

predicate. Depending on the length of the prototype chain of o, the post-conditions vary slightly. In

both cases, the property p is defined in the object with the appropriate descriptor, the link from o to
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its prototype is exposed, o remains extensible, and the return value is empty. However, when o is not

at the end of the prototype chain (right), we also have to specify (using another Pi predicate) the

tail of the prototype chain of o, in which p is still undefined. Since we need to be able to distinguish

these two cases given only the parameters of the Pi, we have to expose the location list.




v = ["o", o, p] *
Pi (o, p, undefined, {o}, {c}) *

!(c = "String") * !(c = "Array") *
(o, "@extensible") -> true




PutValue(v, w)




Pi (o, p, ["d", w, true, true, true], [o], [c]) *
(o, "@proto") -> null * (o, "@extensible") -> true *

ret = empty







v = ["o", o, p] *
Pi (o, p, undefined, o :: op :: lop, c :: lc) *

!(c = "String") * !(c = "Array") *
(o, "@extensible") -> true




PutValue(v, w)




Pi (o, p, ["d", w, true, true, true], [o], [c]) *
(o, "@proto") -> op * (o, "@extensible") -> true *

Pi (op, p, undefined, op :: lop, lc) *
ret = empty




Similarly, the classes of objects have to be exposed as parameters of the Pi because certain

internal functions behave differently depending on the object class. Specifically, GetOwnProperty

behaves differently for strings, and DefineOwnProperty behaves differently for arrays. This is more

pronounced in ES6, with the introduction of proxies, which override all internal functions.

6 VALIDATION AND EVALUATION
We focus on the validation and evaluation of the JS-2-JSIL compiler (§6.1), the JSIL Verify tool (§6.2),

our axiomatic specifications of the internal functions (§6.3), and JaVerT as a whole (§6.4).

6.1 JS-2-JSIL: A Trusted Logic-Preserving Compiler
JS-2-JSIL covers a substantial, fully representative part of ES5 Strict. It does not simplify the

memory model or the semantics of JavaScript in any way. As illustrated in §4.2, there is a direct

correspondence between the lines of the ES5 standard and the compiled JSIL code. Furthermore,

we maintain, as much as possible, a step-by-step connection between lines of the JS-2-JSIL code

itself and lines of the standard. We extensively test JS-2-JSIL against the official ECMAScript test

suite, Test 262, passing all 8797 applicable tests. In her PhD thesis, ?, also gives a formal definition

and correctness result for part of the compiler, adapting techniques from compiler design literature

[Barthe et al. 2005; Fournet et al. 2009] to the dynamic setting of JavaScript.

Compiler Coverage. We implement the entire kernel of ES5 Strict, except indirect eval, which

exits strict mode. We implement the entire Object, Function
8
, Array, Boolean, Math, and Error

built-in libraries. Additionally, we implement: the core of the Global library, associated with the

global object; the constructors and basic functionalities for the String, Number, and Date libraries,

together with the functions from those libraries used for testing features of the kernel. We do

not implement the orthogonal RegExp and JSON libraries. The implementation of the remaining

functionalities amounts to a (lengthy) technical exercise.

TestingMethodology andResults. We test JS-2-JSIL against ECMAScript Test262, the official test

suite for JavaScript implementations. Currently, Test262 has two available versions: an unmaintained

version for ES5 and an actively maintained version for the ES6 standard. ES5 Test262 has poor

support for ECMAScript implementations that enforce strict mode, which JSIL does, rendering any

kind of systematic effort to target ES5 Strict tests borderline infeasible. This issue has been fully

resolved in the ES6 version of the test suite.

On the other hand, there do exist certain disadvantages in using a more recent version of the

test suite than the implementation was designed for; some test cases are no longer applicable

and need to be excluded. Also, the specification was comprehensively redrafted and a number of

new features were introduced for ES6. Luckily, the committee took great care in minimising the

8
The Function constructor, just as indirect eval, may exit strict mode; we always execute the provided code in strict mode.

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: January 2017.



JaVerT: JavaScript Verification Toolchain 1:27

number of backwards incompatible changes and, as a result, only a small proportion of test cases

needed to be altered by the test suite maintainers between the two versions. These test cases can

be identified and excluded from the results. Tests for new features are easily identifiable due to the

folder structure of the test suite. On the whole, the strong negatives of a poorly maintained ES5

version of the test suite overshadowed the minor difficulties of having to track the incompatible

changes and new features between versions of the specification. We have thus opted to test JS-2-JSIL

using the latest version of ES6 Test262.

ECMAScript ES6 Test Suite 21301
ES6 constructs/libraries 8489

Annexes/Internationalisation 888

Parsing 565

Non-strict tests 890

ES5 Strict Tests 10469
Tests for non-impl. features 1297

Compiler Coverage 9172
ES5/6 differences in semantics 345

Tests using non-impl. features 30

Applicable Tests 8797
Tests passed 8797
Tests failed 0

Fig. 12. Detailed testing results

We have created a continuous-integration testing infras-

tructure that, on each commit to the JaVerT repository,

runs Test262 automatically and logs the results. We have

also developed an accompanying GUI, which allows us

to easily group tests, efficiently understand the progress

between test runs and pinpoint any potential regressions.

To run the tests, we set up the compiler runtime, contain-
ing the JS initial heap and our JSIL implementations of JS

internal and built-in functions. We setup the initial heap

in full (∼750 loc). We implement all internal functions (∼1

Kloc) and a large part of the built-in libraries (∼3.5 Kloc),

following line-by-line the English standard.

We perform the testing as follows. First, we compile to

JSIL the official harness of ES6 Test262. Then, for each test,

we compile its code to JSIL. We then execute, in our JSIL

interpreter, the JSIL program obtained by concatenating

the compiled harness, the compiled test, and the compiler runtime. If the execution terminates

normally, we declare that the test has passed.

The breakdown of the testing results is presented in Figure 12. The version of the ES6 Test262

test suite used in this study contains 21301 test cases. We first filter down to the 10469 tests

targeting ES5 Strict, removing the cases aimed at ES6 language constructs and libraries, parsing,

specification annexes, internationalisation, and ES5 non-strict features. Next, we remove 1297

tests for unimplemented built-in library functions (for example, the RegExp and JSON libraries),

leaving us with 9172 tests targeting JS-2-JSIL. Not all of these tests, however, are applicable. ES6

has introduced minor changes to the semantics of a few features with respect to ES5, and there are

345 tests targeting such features. Also, 30 tests were testing features covered by the compiler by

using non-implemented features, and were thus excluded. In the end, we have the final 8797 tests

relevant to our JS-2-JSIL compiler, of which we pass 100%. This gives us a strong guarantee of the

correctness of JS-2-JSIL.

6.2 JSIL Verify: Scalable JSIL Verification
As discussed in §5, JSIL Verify natively supports the fundamental dynamic features of JavaScript:

extensible objects, dynamic property access and dynamic procedure calls. These dynamic features

introduce an additional level of complexity compared with the static features in the IRs underlying

the familiar separation-logic tools. Therefore, the main aspect that the evaluation of JSIL Verify

needs to address is its scalability.

We evaluate JSIL Verify by verifying that our JSIL implementations of JavaScript internal functions

satisfy their axiomatic specifications. We have 186 specifications targeting 1K lines of JSIL code.

These specifications are non-trivial and the underlying code makes extensive use of the dynamic

features of JSIL, as the internal functions are written in a general way in the standard. We conclude

that JSIL Verify is able to handle tractably the dynamic features, as it quickly verifies all 186
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specifications of the JavaScript internal functions in 3.62 seconds.
9
We have identified that a

sizeable amount of that time is spent during the folding of predicates, the unification of pre-

conditions for procedure calls, and, more generally, the calls to Z3, which we minimise using a

number of heuristics and simplifications. We have found no reason to believe that JSIL verification

with JSIL Verify would not scale to much larger code. We revisit this discussion in §6.4.

6.3 JS Internal Functions: Verified Axiomatic Specifications
Using JSIL Verify, we verify that our axiomatic specifications of the internal functions are satisfied by

the corresponding JSIL reference implementations. These implementations follow the ES5 standard

line-by-line and are (indirectly) substantially tested via our testing of the JS-2-JSIL compiler against

Test262. These results can be interpreted in two ways: they provide validation of the JSIL axiomatic

specifications, as the implementations closely follow the standard and are well tested; and, at the

same time, they provide further validation of the implementations of the internal functions.

Our axiomatic specifications of the internal functions directly increase the scalability of JaVerT,

as they allow it to step over the underlying implementations rather than executing them every time.

We envisage that these specifications will be useful beyond JaVerT. For example, starting from our

axiomatic specifications, we could create executable specifications of the internal functions, that

could then be used for different types of symbolic analysis for JavaScript. They would also provide

a mechanism for restricting the semantics of JavaScript in a principled way. If, for instance, we

would like to perform an analysis that wishes to abstract a semantic feature of JavaScript, say type

coercion, we would generate executable specifications of the internal functions without taking into

account the axiomatic specifications that describe type coercion. This would be much more robust

than altering the code of the internal functions manually.

6.4 JaVerT: Verifying JavaScript Programs
We have verified several examples in addition to the Map and Id Generator examples shown in §3,

including: a priority queue library, modelled after a real-world Node.js priority queue library [Jones

2016]; operations on binary search trees (BSTs), which targets set reasoning in Z3; and an insertion

sort algorithm, which targets list reasoning in Z3. We have also verified several Test262 programs,

testing complex language statements such as the switch and try−catch−finally. The statistics for

these examples are shown in Figure 13. The columns of the table denote: the name of the example;

the number of lines of JS code; the number of lines of compiled JSIL code; the number of verified

specifications; and the obtained verification time.

Example #JS #JSIL #specs t(s)
Key-value map 23 523 9 3.37

ID Generator 16 330 4 0.73

Priority queue 46 1003 10 7.14

BST 70 1032 5 7.38

Insertion sort 24 415 2 1.78

Test262 examples 113 1367 16 3.46

Fig. 13. JaVerT Verification Statistics

Understanding the scalability of JaVerT

amounts to understanding how the size of the

compiled JSIL code corresponds to the size of

the original JavaScript code and the scalability

of JSIL Verify in the presence of the reasoning

patterns of JavaScript. As Figure 13 shows, the

compiled JSIL code has approximately ten to

twenty-five times more lines of code than its

JavaScript counterpart. Also, it takes about one

half of a second to verify one hundred lines of compiled JSIL code. With JaVerT being a semi-

automatic tool that requires annotations in the form of pre- and postconditions, loop invariants and

folding/unfolding of user-defined predicates, we estimate that users will only be able to annotate

eventually up to thousands of lines of JavaScript code, not tens of thousands. For us, the results

9
For verification, we use a machine with an Intel Core i7-4980HQ CPU 2.80 GHz and DDR3 RAM 16GB.
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presented in Figure 13 indicate that JaVerT can meet this scalability goal. Importantly, we note

that, although the specification of data structure libraries requires a potentially large annotational

bootstrap, in terms of defining all of the abstractions capturing the data structures, the ratio of

annotations to code decreases rapidly as the library code and verified client code grow.

When it comes to verification, we can compare the performance of JaVerT and KJS on the BST and

insertion sort examples, which we have in common. On a machine with an Intel Core i7-4960X CPU

3.60GHz and DDR3 RAM 64GB, the KJS tool takes 35.7 seconds to verify the correctness of the BST

operations, and 44.8 seconds to verify the correctness of the insertion sort algorithm. On a machine

with an Intel Core i7-4980HQ CPU 2.80 GHz and DDR3 RAM 16GB, which is approximately 30% less

powerful than the one used for KJS, JaVerT verifies the same BST operations in 7.38 seconds, and the

insertion sort algorithm in 1.78 seconds. The remaining examples of KJS amount to using predicates

describing more complex data structures, such as AVL trees and red-black trees. We do not envisage

major issues with verifying them using JaVerT, as they do not exercise any JavaScript-specific

features and amount to designing the abstractions correctly, which are standard in separation logic.

On the other hand, we were unable to verify our one-line example that illustrates dynamic property

access (§3.3) using the KJS tool because, at the time, KJS did not have support for predicates whose

footprint captures some, but not all properties of an object: for example, the Pi predicate.

7 CONCLUSIONS AND FUTUREWORK
We believe JaVerT constitutes an important step towards verification of real-world JavaScript

programs. It is built on top of a trusted, thoroughly validated infrastructure and it successfully tackles

a number of challenges that are critical for tractable reasoning about JavaScript. We contain the

complexity of reasoning about complex JavaScript statements by compiling JavaScript to JSIL (V1).

We reason efficiently about the fundamental dynamic features of JavaScript using JSIL Verify (V2),

the first verification tool based on separation logic to natively supports such features. We provide

verified axiomatic specifications of the internal functions (V3).

We provide key abstractions that allow the user to capture fundamental JavaScript concepts:

scope to reason about basic variable scoping; Pi to capture the prototype inheritance of JavaScript;

and closure to capture the shared variables in JavaScript function closures. Pi and closure are

carefully designed to resolve the tension between the overlapping of prototype and scope chains

and the heap separation inherent to separation logic. We have demonstrated that a user can write

JavaScript specifications with a minimal knowledge of JavaScript internals. We specify a key-value

map and priority queue, written in a typical OO-style. Our specifications ensure prototype safety
for library operations. We specify a simple ID generator to show how our specifications can be

used to capture the degree of encapsulation obtained from using function closures.

Our immediate next step is to prove properties of programs using the for−in statement, leveraging

on the work of Cox et al. [2014]. We will also extend JSIL Logic with higher-order reasoning by

encoding JSIL Logic in Iris [Jung et al. 2015], to reason about JavaScript getters/setters and arbitrary

functions passed as parameters. We will also investigate how to reason about the DOM using

JaVerT, and have already developed a prototype JaVerT encoding for DOM Core Level 1 based on

?. We expect to move JS-2-JSIL to ES6 Strict at some point, essentially extending ES5 Strict with

new ES6 language constructs; the existing specifications of the internal functions would remain

the same and our predicate abstractions would be directly relevant. We may also move to ES6. This

would require us to model scope lookup using an inductive predicate for capturing the footprint of

a dynamic scope chain traversal, similarly to Gardner et al. [2012].

To improve the usability of JaVerT, we will explore the possibility of providing templates for

specifications. For instance, the assertions capturing prototype safety all follow a certain pattern,

parts of which can be inferred automatically. Also, at this point, JaVerT only provides support for
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verified client code. We will investigate how to automatically synthesise defensive wrappers for

verified library code, so that verified libraries can be safely integrated with non-verified client code.

We are developing an automated tool based on bi-abduction [Calcagno et al. 2009] for verifying

large JavaScript codebases. We believe the semi-automatic JaVerT tool will always have a role to play

in the development of functionally correct specifications of critical libraries. We are also looking

for ways to reuse the infrastructure behind JaVerT for other styles of JavaScript analysis. We have

built a prototype JSIL front-end to CBMC [CBMC Team 2016], with the aim of finding cross-site

scripting vulnerabilities. We are building a JSIL front-end to Rosette [Torlak and Bodík 2013, 2014],

where we aim to use the symbolic execution of Rosette to obtain a bug-finding tool for JavaScript.

Our goal is to establish our JSIL infrastructure as a common platform for JavaScript verification.
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