
Symbolic Execution for JavaScript
José Fragoso Santos

Imperial College London, UK

jose.fragoso.santos@imperial.ac.uk

Petar Maksimović

Imperial College London, UK

Mathematical Institute SASA, Serbia

p.maksimovic@imperial.ac.uk

Théotime Grohens

ENS Paris, France

theotime.grohens@ens.fr

Julian Dolby

IBM Research, New York, USA

dolby@us.ibm.com

Philippa Gardner

Imperial College London, UK

pg@imperial.ac.uk

ABSTRACT
We present a framework for trustworthy symbolic execution of

JavaScripts programs, whose aim is to assist developers in the test-

ing of their code: the developer writes symbolic tests for which

the framework provides concrete counter-models. We create the

framework following a new, general methodology for designing

compositional program analyses for dynamic languages. We prove

that the underlying symbolic execution is sound and does not gen-

erate false positives. We establish additional trust by using the

theory to precisely guide the implementation and by thorough test-

ing. We apply our framework to whole-program symbolic testing

of real-world JavaScript libraries and compositional debugging of

separation logic specifications of JavaScript programs.

CCS CONCEPTS
• Theory of computation→ Separation logic; Program anal-
ysis; Logic and verification; • Software and its engineering →

Automated static analysis;

KEYWORDS
Symbolic execution, Separation logic, Formal semantics, JavaScript

ACM Reference Format:
José Fragoso Santos, Petar Maksimović, Théotime Grohens, Julian Dolby,

and Philippa Gardner. 2018. Symbolic Execution for JavaScript. In Pro-

ceedings of The 20th International Symposium on Principles and Practice of

Declarative Programming (PPDP’18), Editor E. Editor (Ed.). ACM, New York,

NY, USA, Article -, 14 pages. https://doi.org/sampleDOI

1 INTRODUCTION
JavaScript (JS) is the most widespread dynamic language, used by

95.1% of websites [51]. Due to its dynamic, complex nature, it is a

difficult target for symbolic analysis. Recent symbolic execution

tools for JS [30, 42, 52] have made significant progress: they are fully

automatic, aim at code in the large, and primarily focus on scalabil-

ity and coverage issues. However, they do have some limitations.

They only target specific bug patterns rather than general-purpose

symbolic execution, and depend on whole-program analysis.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

PPDP’18, September 2018, Frankfurt, Germany

© 2018 Copyright held by the owner/author(s).

ACM ISBN sampleISBN.

https://doi.org/sampleDOI

Whole-program analysis is not sufficient for JavaScript appli-

cations, which are commonly run in highly dynamic execution

environments: for example, client-side programs dynamically load

and execute third-party code as a matter of course. One also needs

to be able to analyse incomplete code in a compositional manner.

Designing compositional analyses for dynamic languages such as

JavaScript, however, is non-trivial. This is because, unlike static lan-

guages such as C, C++ and Java, dynamic languages do not observe

the frame property [39], essential for compositionality. Intuitively,

the frame property means that the output of a program cannot

change if the state in which it is run is extended. In JavaScript,

it is possible to introduce bugs by extending the state in which a

program is run. To our knowledge, there has been no previous work

on compositional symbolic execution for JavaScript.

We introduce Cosette, a framework for trusted symbolic execu-

tion of JavaScript (ECMAScript 5 Strict [18]). Its aim is to provide

general-purpose symbolic analysis and assist developers in the test-

ing of their code. We present a new, general methodology for deve-

loping compositional analyses for languages that do not satisfy the

frame property, and apply it to the design of the symbolic execution

of Cosette. In contrast to existing tools, the symbolic analysis of

Cosette is fully formalised in a way that guides the implementation

and is also trusted, in that it follows the JavaScript semantics and

does not produce false positive bug reports. We apply Cosette to

whole-program symbolic testing of real-world JavaScript libraries

and compositional debugging of separation logic specifications of

JavaScript programs. We illustrate these use cases in §2.

We show the architec-

ture of Cosette on the right.

We extend JS with con-

structs for creating and

reasoning about symbolic

values. Using JS-2-JSIL [22],

a trusted compiler from JS

to the JSIL intermediate

language, we compile the extended JS program to an extended

JSIL program. The core of Cosette is a new symbolic interpreter for

JSIL, written in Rosette [48, 49], a framework for creating symbolic

interpreters. The JSIL symbolic interpreter either outputs a concrete

counter-model for the given assertions, or guarantees correctness

up to a given bound for unfolding loops and recursive predicates.

Our new, general methodology underpinning the compositional

JSIL symbolic interpreter consists of three stages: (1) we design a

JSIL instrumented semantics that exhibits the frame property by

explicitly keeping track of object properties that we know are not

https://doi.org/sampleDOI
https://doi.org/sampleDOI

PPDP’18, September 2018, Frankfurt, Germany J. Fragoso Santos, P. Maksimović, T. Grohens, J. Dolby, P. Gardner

present; (2) we define the JSIL symbolic semantics by lifting the JSIL

instrumented semantics; and (3)we link the JSIL symbolic semantics

to the JSIL concrete semantics by describing the frames that can

be safely added to the initial state. The key innovation is to have

the instrumented semantics as a proper interim stage in the design

of the symbolic execution, obtaining more modular reasoning and

substantially simpler proofs. We present this methodology in §3.

An essential goal for us was to establish trust in Cosette. In §3.5,

we give a bounded soundness result for the JSIL symbolic semantics

and prove that Cosette never produces false positive bug reports.

These results, combined with the correctness of JS-2-JSIL and the

fact that the memory models of JavaScript and JSIL are the same

by design, enable us to lift the results of analyses done on com-

piled JSIL code back to JS (cf. §3.7, §4.4). We implement the JSIL

instrumented interpreter following the instrumented semantics of

§3.3 to the letter. We test the combination of JS-2-JSIL and the JSIL

instrumented interpreter using Test262, the official ECMAScript

test suite [19]. Out of the 10469 tests for ES5 Strict, we identify

8330 tests appropriate for our coverage, of which we pass 100%.

Finally, we ensure that the JSIL symbolic interpreter obtained by

the Rosette lifting of the instrumented interpreter is consistent with

the symbolic semantics of §3.4 by constructing symbolic unit tests

for each JSIL command, assuming the premises and asserting the

conclusion of the appropriate rule of the symbolic semantics.

We apply Cosette to whole-program symbolic testing. A gen-

eral developer can use Cosette for symbolic testing of their code

by having symbolic inputs instead of concrete inputs and stating

the constraints that the output needs to satisfy as simple, intuitive

first-order assertions over these inputs. If a test fails, Cosette pro-

vides the concrete input that causes it to fail, exposing bugs in the

tested code. In §5, we evaluate Cosette on two real-world JavaScript

data structure libraries, where, using fewer tests, we achieve better

coverage (100%) than the concrete unit test suites shipped with the

libraries, and discover unexpected bugs in both libraries.

We also apply Cosette to specification-driven bug-finding. Func-

tional correctness specifications of JS programs are highly intricate,

with only a few tools (JaVerT [22] and KJS [16, 36]) supporting

such expressivity. When these tools cannot prove that a given func-

tion satisfies a specification, the developer has to understand a

complicated proof trace to discover the error (JaVerT), or act with

essentially no feedback (KJS). In §2.2, we show how Cosette can

be used for debugging separation logic (SL) specifications of JS

programs in JaVerT, made possible by its compositionality. Our

approach, described in §4, consists of translating the SL specifica-

tions into symbolic tests and running these tests using Cosette. If

one such symbolic test fails, we can be sure that the code does not

satisfy its specification. More importantly, Cosette then generates a

concrete witness that invalidates the specification. This information

greatly simplifies the debugging of both specifications and code.

2 USING COSETTE
We illustrate how Cosette can be used both for whole-program and

compositional symbolic testing of JavaScript programs. We demon-

strate how Cosette explicitly exposes the resilience of JavaScript

programs to the environment, not considered by standard symbolic

execution tools, but essential for compositional analysis.

Our running example is a key-value map implementation, given

in Figure 1a. It contains four functions: Map, for constructing an

empty map; get, for retrieving the value associated with a given

key; put, for inserting/updating key-value pairs; and validKey, for

deciding whether or not a key is valid. The library implements a

key-value map as an object with property _contents, denoting the

object storing the map contents. The named properties of _contents

and their value attributes correspond to the map keys and values.

The functions get, put, and validKey are shared between all map

objects, as they are defined in Map.prototype, the prototype
1
of

objects created using Map as a constructor. The get function returns

the value associated with a given key, or null if the key is not in

the map. To check that the given key is in the map, get uses the

built-in function hasOwnProperty, which lives in Object.prototype,

the default prototype of all objects. The put function updates the

map if the supplied key is valid, and otherwise throws an error.

In Figure 1b, we show a general heap of key-value maps created

by the library. The map object, whose prototype is Map.prototype,

has the property _contents, pointing to the contents object. The

contents object holds the key-value pairs, and its prototype is

Object.prototype. The Map.prototype object holds the get, put, and

validKey functions,2 and its prototype is also Object.prototype. Fi-

nally, the Object.prototype holds the hasOwnProperty function that

is called by Map.prototype.get.

2.1 Whole-program Symbolic Testing
Developers are used to writing unit tests—verifying that, given

some concrete inputs, their code produces the expected outputs.

Using Cosette, they can write unit tests with symbolic inputs and

outputs, testing a broad range of behaviours with a single symbolic

test. For example, one unit test for the put function consists of

inserting a valid key-value pair (k, v) into a map and then verifying

that it has been inserted correctly. In Cosette, this test can be written

as in Figure 1c. First, we declare k to be a symbolic string and v

to be an symbolic number, using Cosette’s constructs for creating

symbolic variables. Next, we assume that k is a valid key. Next, we

create a new map, put the (symbolic) key-value pair (k, v) into the

map and retrieve the value corresponding to k. Finally, we assert

that the retrieved value is equal to the one we had previously put.

When running Cosette on this test, if the validKey(k) function

was implemented incorrectly,
3
we will obtain the counter-model

k = "hasOwnProperty". To understand this error, recall the heap and

the implementation of get from Figure 1. We can see that, if we

were to put the key "hasOwnProperty" into the contents object

of a map, then the lookup of c.hasOwnProperty done by get will

not reach Object.prototype as intended, resolving instead to the

hasOwnProperty property of the contents object (Figure 1c, below).

This example highlights how Cosette does not require specialist

knowledge and can be used as a testing tool by a general JS deve-

loper. The annotations amount to the creation of symbolic variables

and the writing of minimal intuitive assumptions and assertions,

in contrast with the annotation burden of verification tools.

1
In JavaScript, inheritance is modelled through prototype chains. On property lookup,

o.p, we first check if the property p is present in the object o, in which case its value

is returned. Otherwise, we check if p is present in the prototype of o, and so forth.

2
In JavaScript, functions are also modelled as objects in the heap.

3
For instance, validKey(k) may only require that k is a string, which is a reasonable

implementation in the sense that it disallows JavaScript’s implicit coercions.

Symbolic Execution for JavaScript PPDP’18, September 2018, Frankfurt, Germany

1 function Map () { this._contents = {} }
2

3 Map.prototype.get = function (k) {
4 var c = this._contents;
5 if (this.validKey(k)) {
6 return (c.hasOwnProperty(k) ? c[k] : null)
7 } else throw new Error("Invalid Key");
8 }
9

10 Map.prototype.put = function (k, v) {
11 if (this.validKey(k)) {
12 this._contents[k] = v
13 } else throw new Error("Invalid Key");
14 }
15

16 Map.prototype.validKey = function (k) { ... }

(a) Library implementation (b) General library heap

1 var k = symb_string();
2 var v = symb_number();
3 assume(validKey(k));
4 var m = new Map(); m.put(k, v);
5 var result = m.get(k);
6 assert(result = v);

(c) Simple symbolic test (above);
the "hasOwnProperty" bug (below)

Figure 1: Running example: JavaScript key-value map library

2.2 Specification-driven Bug-finding
Cosette can also be used for compositional symbolic analysis of JS

functions in isolation, where the user specifies the functions using

pre- and post-conditions. These specifications may account for only

the parts of the heap required for running the function and can

involve recursive and non-recursive predicates. We always unfold

recursive predicates to a bound specified by the user.

Just as symbolic tests generalise concrete tests, so specifications

generalise symbolic tests. Given a JavaScript function, its speci-

fication, and the unfold depth for predicates, Cosette generates

symbolic tests to verify that the function conforms to the specifi-

cation up to that given depth. If this is not the case, Cosette will

return a concrete counter-model that invalidates the specification.

Unlike whole-program analysis tools, Cosette also tests if the given

specification is compositional: that is, if it is resilient against all

possible contexts in which the function can be run. It reports back

to the user any found sources of non-compositionality.

Cosette supports the specification of symbolic states via simple

separation logic assertions in the style of JaVerT [22]. Developers

have at their disposal a number of built-in predicates that capture

the fundamental concepts of JavaScript (discussed throughout the

text), and can define their own predicates as well. For instance,

learning from the previous symbolic test, we could define the fol-

lowing predicate for describing valid keys:

ValidKey(k) := types(k : Str) * (k <> "hasOwnProperty"),

meaning that k is a valid key if it is a string that is not equal to

"hasOwnProperty". From there, if we wanted to do a full functional

correctness specification of the Map library, we could, guided by the

heap in Figure 1b, define the following two predicates:

Map (m, mp, kvs) := JSObjWithProto(m, mp) *
DProp(m, "_contents", c) * JSObject(c) * KVPairs(c, kvs) *
NoProp(m, "get") * NoProp(m, "put") * NoProp(m, "validKey")
* NoProps(c, FProj(kvs))

KVPairs (c, kvs) := (kvs = { }),
(kvs = {(k, v)} U kvs') * ValidKey(k) *

DProp(c, k, v) * KVPairs(c, kvs')

The Map predicate states that a map object is a standard JavaScript

object with a given prototype mp, and that it has the property

_contents, which points to a JavaScript object c. Using the KVPairs

predicate, it also states that c holds the key-value pairs kvs. The

KVPairs(c, kvs) predicate is recursive: kvs is either empty or con-

tains a key-value pair (k, v), such that the key k is valid, the object

c has property k with value v, and KVPairs(c, kvs') holds for the

remaining pairs in kvs'. The highlighted parts of Map describe the

compositionality requirements: in red, we state that map objects

must not have the properties "get", "put", and "validKey"; in blue,

we state that the object c has no other properties except for the

map keys.
4
We also require a MapProto(mp) predicate, describing that

mp is a valid map prototype: i.e., that it defines the put, get, and

validKey methods. To avoid clutter, we keep its definition opaque.

Map(m, mp, kvs) * MapProto(mp) *
ValidKey(k) * (k < FProj(kvs)) *
Writable(Object.prototype, k)

m.put(k, v)

Map(m, kvs -u- (k, v)) *
MapProto(mp) *

Writable(Object.prototype, k)

We show one speci-

fication of put(k, v). We

assume a map object m,

with key-value pairs

kvs and prototype Map.

Prototype. We also as-

sume that k is valid and

not in the map. For compositionality, highlighted in blue, we state

that k is not non-writable in Object.prototype.5 In the end, we have

that the key-value pair has been inserted into the map.

When symbolically testing the specifications of the Map library

functions, the "hasOwnProperty" bug will not be triggered again,

as ValidKey(k) has been corrected. However, if we were to forget

the highlighted parts in the Map definition and put specification,

we would encounter other issues, exposing the tension between

compositionality and dynamic languages.

First, if we omitted the part of the Map predicate highlighted in

red, Cosette would complain, when testing the put function, that it

has no information about the property "put" of the map object m

and cannot perform the lookup m.put (Fig. 2, above). This means that

the library code is not resilient to frames in which a map object m

has the property put. Analogous issues would arise for the "get"

and "validKey" properties.

4NoProp(o, p) states that the object o does not have property p; NoProps(o, props)
states that the object o has no properties outside of those from the set props; the
FProj operator extracts the set of keys from the set of key-value pairs.

5
In JavaScript, object properties can be non-writable, meaning that their value cannot

be changed. In this specification, we assume that the property exists and is writable.

There is an analogous specification for put, in which the property does not exist.

PPDP’18, September 2018, Frankfurt, Germany J. Fragoso Santos, P. Maksimović, T. Grohens, J. Dolby, P. Gardner

Figure 2. Compositionality

Second, if we omitted the

parts highlighted in blue, when

executing this._contents[k] = v

(Fig. 1a, line 12), Cosette would

complain that it has no infor-

mation about the property k

in the prototype chain of the

contents object (Fig. 2). This

is required as the semantics of

JavaScript has to look up the

value of the property k of the contents object before performing

the assignment, to check if it is allowed (i.e., that the property can

be written to). As k is symbolic, what this means is that the library

is not resilient to frames in which there are non-writable properties

in Object.prototype. A similar issue arises for the Map constructor

(Fig. 1a, line 1), which requires the property "_contents" not to be

non-writable in the prototype chains of map objects.

What this example illustrates is that, in order to be composi-

tional, specifications of programs written in dynamic languages

have to explicitly state which parts of the heap must not be present.

Cosette is able to detect and report compositionality-related issues,

such as those presented above, which are highly likely to remain

unnoticed in whole-program analysis, as there we always have

complete information about the entire contents of the heap.

3 SYMBOLIC EXECUTION FOR JSIL
We present a new methodology for designing compositional pro-

gram analyses for dynamic languages, illustrating our approach

by defining a new compositional symbolic execution for JSIL, an

intermediate representation for JS analysis [22]. We develop a new,

abstract semantics for JSIL, in the spirit of [50], which we instantiate

to obtain the concrete, instrumented, and symbolic semantics. This

abstract semantics is the bedrock for both the formal development

and the implementation of the analysis. This approach streamlines

the formalism, avoiding redundancy, makes the choices in the de-

sign of the instrumented and symbolic semantics explicit, and leads

to modular implementations, avoiding code duplication.

3.1 JSIL Syntax and Abstract Semantics
JSIL is a simple goto language with top-level procedures and com-

mands operating on object heaps. It natively supports the main

dynamic features of JavaScript: extensible objects; dynamic prop-

erty access; and dynamic procedure calls. Its syntax is shown below.

Syntax of the JSIL Language

v ∈ V ::= n |b | s |undefined |null | empty | l |τ | f | [vi |ni=0] | {vi |
n
i=0 }

e ∈ Exp ::= v | x | x̂ | ⊖ e | e ⊕ e

bc ∈ Bcmd ::= skip | x := e | x := new () | x := [e, e] | [e, e] := e
| delete (e, e) | x := hasProp (e, e) | x := getProps (e)

c ∈ Cmd ::= bc | goto i | goto [e] i, j | x := e (ei |ni=0)with j
| assume (e) | assert (e)

proc ∈ Proc ::= proc f (x) {c } i, j ∈ Ind ≜ N ∪ {inm, ier }

JSIL values, v ∈ V , include numbers, booleans, strings, the special

values undefined, null, and empty, object locations l , types τ , pro-
cedure identifiers f , and lists and sets of values. JSIL expressions,

e ∈ Exp, include JSIL values, JSIL program variables x , various
unary and binary operators, and symbolic variables x̂ , introduced
in this paper. Symbolic variables range over symbolic strings, num-

bers, booleans, and locations, denoted respectively by ŝ , n̂, ˆb, and ˆl .
JSIL basic commands enable the manipulation of extensible ob-

jects and do not affect control flow. They include skip , variable
assignment, object creation, property access, property assignment,

property deletion, membership check, and property collection. JSIL

commands include JSIL basic commands and control flow com-

mands: conditional and unconditional gotos, dynamic procedure

calls, and two new commands for symbolic reasoning, assume and

assert . The goto commands are intuitive: goto i jumps to the i-th
command of the active procedure, and goto [e] i, j jumps to the

i-th command if e evaluates to true, and to the j-th otherwise. The

dynamic procedure call x := e (e)with j evaluates e and e to obtain

the procedure identifier and arguments, executes the appropriate

procedure with these arguments, and, in the end, assigns its return

value to x . If the procedure raises an error, control is transferred to

the j-th command; otherwise, it follows to the next command.

A JSIL procedure is of the form proc f (x){c}, where f is its iden-

tifier, x are its formal parameters, and its body c is a sequence of
JSIL commands. Procedures return via two dedicated indexes, inm
and ier, using two dedicated variables, ret and err. If a procedure
reaches the inm index, it returns normally with the return value

denoted by ret; if it reaches ier, it returns an error, with the error

value denoted by err. A JSIL program p ∈ P is a set of top-level

procedures, and its entry point is the special procedure main.

Abstract semantics. We design the abstract semantics to make

the analysis, the proofs, and the implementations as modular as

possible. At its core are the GetCell and GetDomain functions,

which precisely pinpoint the way in which JSIL interacts with the

heap, factoring out the common behaviour of JSIL basic commands.

It also provides standard constructs for reasoning about symbolic

values, whose concrete and instrumented semantics are trivial.

The abstract semantics is parametric on abstract states Σ ∈ S
and abstract values v, p, l ∈ V. Abstract states are assumed to have

a store P : X ⇀ V, mapping program variables x ∈ X to abstract

values. Stores are accessible via a store selector, Σ.sto. We use the

special symbol � (read: none) to denote the absence of a property

in an object, write V� for the set V∪ {�} and range over it using v.
Abstract states expose the following functions and relations:

JSIL Expression Evaluation, Ev (P, e), which evaluates to the

value of the JSIL expression e under store P.
Store Update, SU (Σ,x , v), which denotes the state obtained

from Σ by updating the value of x to v in Σ.sto.
Heap Allocation, Alloc (Σ), which evaluates to a pair consist-

ing of a value denoting a fresh location and the new state that

keeps track of that allocation.

Heap Update, HU (Σ, l, p, v), which denotes the state obtained
from Σ by updating the value of property p of the object at loca-

tion l to v or creating that property, if it does not exist.

GetCell, GC (Σ, e1, e2) ; Σ′, (l, p, v), which retrieves the value
associated with a given property of a given object. Formally, if

GC (Σ, e1, e2) ; Σ′, (l, p, v) holds, then: l denotes the location
resulting from the evaluation of e1, p denotes the property name

Symbolic Execution for JavaScript PPDP’18, September 2018, Frankfurt, Germany

Skip

⟨Σ, skip ⟩; Σ

Property Collection

v = GD (Σ, e) Σ′ = SU (Σ, x, v)

⟨Σ, x := getProps (e)⟩; Σ′

Assignment

P = Σ.sto v = Ev (P, e)

⟨Σ, x := e⟩; SU (Σ, x, v)

Property Access

GC (Σ, e1, e2) ; Σ′, (−, −, v)

⟨Σ, x := [e1, e2]⟩; SU (Σ′, x, v)

Property Assignment

GC (Σ, e1, e2) ; Σ′, (l, p, −)
P = Σ.sto v = Ev (P, e3)

⟨Σ, [e1, e2] := e3⟩; HU (Σ′, l, p, v)

Object Creation

(l, Σ′) = Al loc (Σ)
GC (Σ′, l, @proto) ; Σ′′, −

Σ′′′ = HU (Σ′′, l, @proto, null)

⟨Σ, x := new ()⟩; SU (Σ′′′, x, l)

Property Deletion

GC (Σ, e1, e2) ; Σ′, (l, p, v)

⟨Σ, delete (e1, e2)⟩; HU (Σ′, l, p, �)

Member Check

GC (Σ, e1, e2) ; Σ′, (−, −, v)
Σ′′ = SU (Σ′, x, v , �)

⟨Σ, x := hasProp (e1, e2)⟩; Σ′′

Figure 3. Abs. sem. of basic commands: ⟨Σ,bc⟩; Σ′

resulting from the evaluation of e2, v denotes the value of the

property p of the object at location l, and Σ′ denotes a potential
re-arrangement of Σ after property inspection (discussed in §3.3).

GetDomain, GD (Σ, e), which denotes the set of property names

associated with the object at location resulting from the evalua-

tion of e in Σ. It is used in the Property Collection rule.

Assumption, Asm (Σ, e), which denotes the state obtained from
Σ by stating that e is assumed to evaluate to true.
SAT Check, Sat (Σ, e), which evaluates to true if the JSIL ex-

pression e is satisfiable in the state Σ, and to false otherwise.

Transitions for basic commands have the form ⟨Σ, bc⟩; Σ′, mean-

ing that the execution of the basic command bc in the state Σ results

in the state Σ′ (Fig. 3). To describe transitions of commands, we

introduce execution modes, µ, and call stacks, cs. JSIL has two execu-
tion modes:⊤, meaning the execution can proceed; and⊥, meaning

that the execution must stop due to an assert failure. Call stacks are

lists of tuples of the form (f ,P,x , i, j), where: f is the identifier of

the executing procedure; P is the store of the procedure that called f ;
x is the variable that will hold the return value of f ; and i (j) is the
index to which the control jumps when f returns normally (with an

error). The initial call stack, csmain, is defined as [(main , ∅, out, 0, 0)],
where out holds the output of the entire program. Transitions for

commands have the form p : ⟨Σ, cs, i⟩µ ; ⟨Σ′, cs′, j⟩µ
′
, meaning

that, given a program p, state Σ and execution mode µ, the evalu-
ation of the i-th command of the first procedure of cs generates

the state Σ′, call stack cs′, and the next command to be evaluated

is the j-th command of the first procedure of cs′, in execution

mode µ ′ (Fig. 4). For clarity, we keep the program implicit and write

cmd(cs, i) to denote the i-th command of the first procedure of cs.

Notation. In the following, we denote a function with an empty

domain by ∅, and for a function f : A⇀ B, we denote its domain

extension/update by f [a 7→ b] and the union of two functions with

disjoint compatible domains by f1 ⊎ f2.

3.2 JSIL Concrete Semantics
A JSIL concrete state σ is a pair (h, ρ), consisting of a heap and a

store. A heap, h ∈ H , is a partial function mapping pairs of object

Basic Command

cmd(cs, i) = bc ⟨Σ, bc⟩; Σ′

⟨Σ, cs, i⟩⊤ ; ⟨Σ′, cs, i+1⟩⊤

Goto

cmd(cs, i) = goto j

⟨Σ, cs, i⟩⊤ ; ⟨Σ, cs, j⟩⊤

Cond. Goto - True

cmd(cs, i) = goto [e] j, k
Σ′ = Asm (Σ, e)

⟨Σ, cs, i⟩⊤ ; ⟨Σ′, cs, j⟩⊤

Cond. Goto - False

cmd(cs, i) = goto [e] j, k
Σ′ = Asm (Σ, ¬e)

⟨Σ, cs, i⟩⊤ ; ⟨Σ′, cs, k⟩⊤

Normal Return

cs = (−, P′, x, i, −) :: cs′

v = (Σ.sto) (ret)
Σ′ = SU (Σ[sto 7→ P′], x, v)

⟨Σ, cs, inm⟩⊤ ; ⟨Σ′, cs′, i⟩⊤

Error Return

cs = (−, P′, x, −, j) :: cs′

v = (Σ.sto) (err)
Σ′ = SU (Σ[sto 7→ P′], x, v)

⟨Σ, cs, ier⟩⊤ ; ⟨Σ′, cs′, j⟩⊤

Procedure Call

cmd(cs, i) = x := e (ei |ni=0)with j P = Σ.sto Ev (P, e) = f
′

args(f ′) = [x1, ..., xm] vi = Ev (P, ei) |ni=0
vi = undefined |mi=n+1 P′ = [xi 7→ vi |

m
i=0]

⟨Σ, cs, i⟩⊤ ; ⟨Σ[sto 7→ P′], (f ′, P, x, i+1, j) :: cs, 0⟩⊤

Assume

cmd(i) = assume (e)
Σ′ = Asm (Σ, e)

⟨Σ, cs, i⟩⊤ ; ⟨Σ′, cs, i+1⟩⊤

Assert

cmd(cs, i) = assert (e)
µ = if Sat (Σ, ¬e)
then ⊥ else ⊤

⟨Σ, cs, i⟩⊤ ; ⟨Σ, cs, i+1⟩⊤

Figure 4. Abs. sem. of commands: ⟨Σ, cs, i⟩µ ; ⟨Σ′, cs′, j⟩µ
′

locations and property names (strings, S) to JSIL values. A store,

ρ ∈ Sto, maps program variables to JSIL values. In the following,

we denote a heap cell by (l , s) 7→ v , meaning that h(l , s) = v .
We instantiate the abstract semantics for the concrete case by

providing appropriate definitions for the required abstractions. We

write ⟨σ ,bc⟩;c σ
′
for the concrete semantic judgement for JSIL

basic commands and ⟨σ , cs, i⟩µ ;c ⟨σ
′, cs ′, j⟩µ

′

for JSIL commands.

The instantiation of the JSIL abstract semantics to the concrete

case is straightforward: if an object l has property p, GetCell returns

the associated value, and � otherwise; GetDomain returns the set

of properties of a given object; heap allocation returns a fresh

object location without changing the state; the rule for positive

heap update is standard; and the negative heap update removes

the given property of a given object from the heap. Note that the

positive and negative heap update rules are not applicable at the

same time, as v cannot be equal to �.

Selected Concrete Semantics Rules

GetCell - Found

l = Evc (ρ, e1) p = Evc (ρ, e2)
h = − ⊎ (l, p) 7→ v r = (l, p, v)

GC ((h, ρ), e1, e2) ;c (h, ρ), r

GetCell - Not Found

l = Evc (ρ, e1) p = Evc (ρ, e2)
(l, p) < dom(h) r = (l, p, �)

GC ((h, ρ), e1, e2) ;c (h, ρ), r

GetDomain

l = Evc (ρ, e) (l, −) < dom(h′)
h = h′ ⊎

(
(l, pi) 7→ vi

)
|mi=0

GDc ((h, ρ), e) ≜ { p1, ..., pm }

Heap Alloc.

σ = (h, −)
(l, −) < dom(h)

Al locc (σ) ≜ (l, σ)

Positive Heap Update

h′ = h[(l, p) 7→ v]

HU c ((h, ρ), l, p, v) ≜ (h′, ρ)

Negative Heap Update

h = h′ ⊎ (l, p) 7→ −

HU c ((h, ρ), l, p, �) ≜ (h′, ρ)

PPDP’18, September 2018, Frankfurt, Germany J. Fragoso Santos, P. Maksimović, T. Grohens, J. Dolby, P. Gardner

Concrete Execution: (a) successful (left); (b) failing (right) (c) Instrumented Execution

@proto:	lp

@proto:	null get:	fget

lo

lp
𝒉

5 𝝆i x:	lp w:	true y:	fget

1,	2 𝝆i x:	lo w:	false

- 𝝆i x:	lo

3,	4 𝝆i x:	lp w:	false

1,	2 𝝆i x:	lp w:	true

@proto:	lp get:	42

@proto:	null get:	fget

lo

lp
𝒉

5 𝝆i x:	lo w:	true y:	42

1,	2 𝝆i x:	lo w:	true

- 𝝆i x:	lo

@proto:	lp get: ∅

@proto:	null get:	fget

lo

lp
𝒉

5 𝝆i x:	lp w:	true y:	fget

1,	2 𝝆i x:	lo w:	false

- 𝝆i x:	lo

3,	4 𝝆i x:	lp w:	false

1,	2 𝝆i x:	lp w:	true

{	@proto,	get	}

{	@proto,	get	}

lo

lp
𝒅

Table 1: Concrete vs. instrumented execution

1 w := hasProp (x, “get”)
2 goto [w] 5, 3
3 x := [x, “@proto”]

4 goto [x = null] ier, 1
5 y := [x, “get”]
6 z := y()with ier

Example: Frame. The JSIL concrete se-

mantics does not satisfy the frame prop-

erty. We illustrate this with the program

on the right, which looks for the prop-

erty “get” in the prototype chain of the

object bound to x, reads the value of that
property, and calls the procedure whose identifier is bound to that

value. The program terminates successfully when run from the state

described in Table 1 (a). However, if we extend the initial state with

the frame (lo , “get”) 7→ 42, as shown in Table 1 (b), the procedure

call fails, as 42 is not a procedure identifier. Note that, in Table 1,

we factor the heap out as it is not modified by the code.

3.3 JSIL Instrumented Semantics
Compositional analyses must reason about programs given partial

state information. This is particularly challenging for languages that

do not observe the frame property. We approach this problem by

first designing an instrumented version of the language semantics

that does observe the frame property. To achieve this, the JSIL

instrumented semantics keeps track of both the present and the

absent properties of a given object, using ideas from [22, 23].

An instrumented state σ is a triple (h,d, ρ) consisting of an

instrumented heap, a domain table, and a store. An instrumented

heap, h ∈ H∅ : L ⇀ S ⇀ V�, can map object properties to

�, explicitly declaring their absence. We refer to those cells as �-

cells (read: none-cells). A domain table, d : L ⇀ V , maps object

locations to sets of properties that the corresponding objects may

have, whereas all other properties are known to be absent. If d (l)
is defined and if p < d (l), then the object at l does not have the
property p, and that that property cannot be framed on. In contrast,

any properties in d (l) that are not in the heap can be safely framed

on. Also, if we have that (l ,p) ∈ dom(h), then it holds that p ∈ d (l).
On the other hand, if d (l) is not defined, then all properties of the

object at l that are not in the heap can be safely framed on.

We instantiate the abstract semantics to the instrumented case.

We write ⟨σ ,bc⟩;i σ
′
for the instrumented semantic judgement

for basic commands, and ⟨σ , cs, i⟩µ ;i ⟨σ
′, cs ′, j⟩µ

′

for commands.

The omitted rules coincide with the concrete case.

Selected Instrumented Semantics Rules

Heap Update

σ = (h, d, ρ)
h′ = h[(l, p) 7→ v]

HU i (σ , (l, p), v) ≜ (h′, d, ρ)

GetCell - Found

σ = (h, −, ρ) l = Evc (ρ, e1)
p = Evc (ρ, e2) h = − ⊎ (l, p) 7→ v

GC (σ , e1, e2) ;i σ , (l, p, v)

GetCell - Not Found

l = Evc (ρ, e1) p = Evc (ρ, e2) p < d (l)
h′ = h ⊎ (l, p) 7→ � d ′ = d[l 7→ d (l) ∪ { p }]

GC ((h, d, ρ), e1, e2) ;i (h′, d ′, ρ), (l, p, �)

GetDomain

l = Evc (ρ, e) h = h′ ⊎
(
(l, pi) 7→ vi

)
|mi=0 (l, −) < dom(h′)

{ p1, ..., pm } = d (l) ∀0≤i≤n vi , � ∀n<i≤m vi = �

GDi ((h, d, ρ), e) ≜ { p1, ..., pn }

As v ranges over V�, the Heap Update rule may update the

value of an object property to �. In the concrete case, the corre-

sponding rule would simply remove that property from the heap.

As an instrumented heap can contain �-cells, the GetDomain rule

has to filter out properties mapped to �. Furthermore, in order to

apply this rule, one has to have full information about the object:

all properties from d (l) must be present in the heap. Another differ-

ence between the two semantics is apparent in the rule GetCell

- Not Found: while GC (σ , e1, e2) ;i −, (−,−,�) means that one

is certain that the object denoted by e1 does not have the property
denoted by e2, GC (σ , e1, e2) ;c −, (−,−,�) only means that this

property does not exist in the current heap.

Example: Frame revisited. In the rightmost column of Table 1,

we give the instrumented execution of the frame example when the

object at location lo is guaranteed not to have the property “get”.

Symbolic Execution for JavaScript PPDP’18, September 2018, Frankfurt, Germany

𝝆

3

𝝆

i @proto:	42lo𝒉

o:	lo
x:	{	“@proto” }

{	@proto }lo𝒅

�̂� = “@proto”

𝝅

𝒔9 = “@𝐩𝐫𝐨𝐭𝐨” 𝒔9 ≠ “@𝐩𝐫𝐨𝐭𝐨”

2

𝝆

i @proto:	42lo𝒉

o:	lo {	@proto }lo𝒅

𝝅 �̂� = “@proto”

1i @proto:	nulllo𝒉 𝝅

true
𝝆 o:	lo lo𝒅

3

𝝆

i @proto:	null 𝒔9:	42lo𝒉

o:	lo
x:	{	“@proto”,	�̂�	}

{	@proto,	𝒔9 }lo𝒅

�̂� ≠ “@proto”

𝝅

2

𝝆

i lo𝒉

o:	lo {	@proto,	𝒔9 }lo𝒅

𝝅 �̂� ≠ “@proto”

{	@proto }

@proto:	null 𝒔9:	42

Figure 5: Execution traces: Instrumented GetCell (left); Symbolic branching (right)

Then, the instrumented heap cannot be extended with the frame

(lo , “get”) 7→ 5 as it overlaps with (lo , “get”) 7→ �, meaning that

the illustrated frame bug cannot be replicated in the instrumented

setting. Also, if we remove (lo , “get”) 7→ � from the initial heap,

the instrumented execution will get stuck in the execution of line 0.

1 o := new ()

2 [o, “foo”] := 42

3 delete (o, “foo”)
4 [o, “foo”] := 37

Example: Instrumented GetCell. To bet-

ter understand the interaction between Get-

Cell, the heap, and the domain table, consider

the program on the right and its execution

trace in Figure 5 (left). When executing the first property assign-

ment, following the abstract Property Assignment rule, we must

call GC (o, “foo”) to obtain the current value of the property. As the

property is not in the heap, we are in theNot Found case of GetCell.

The domain is extended with “foo”, and the heap is extended with

the none-cell (lo, “foo”) 7→ �, whose value is then updated to 42

by the heap update. After the deletion, its value is reset to �. The

following property assignment will again call GC (o, “foo”), but this
time, we will be in the Found case of GetCell, as the property is in

the heap. In a nutshell, GetCell ensures that all inspected properties,

both present and absent, are represented in the heap.

FormalGuarantees. Theorem 3.1 states that the JSIL instrumented

semantics observes the frame property. Lemma 3.2 relates the in-

strumented semantics with the concrete semantics via an erasure

function Ii→c
. Informally, Ii→c (σ) denotes the concrete state

obtained by erasing negative information in σ (i.e., �-cells and

domain information). Lemma 3.2 states that if a given execution

goes through in the instrumented semantics, then its concretisa-

tion (given by Ii→c
) goes through in the concrete semantics. For

σ = (h,d, ρ), we write σ ⊎ h′ to denote (h ⊎ h′,d, ρ) defined only

in the case when when h′ does not redefine the properties stated
not to exist by the domain table d .

Theorem 3.1 (Frame Property - Instrumented Semantics).

⟨σ , cs, i⟩µ ;∗i ⟨σ
′, cs ′, j⟩µ

′

⇒ ⟨σ ⊎hf , cs, i⟩
µ ;∗i ⟨σ

′ ⊎hf , cs
′, j⟩µ

′

Lemma 3.2 (Transparency for Instrumentation).

⟨σ , cs, i⟩µ ;∗i ⟨σ
′, cs ′, j⟩µ

′

=⇒

⟨Ii→c (σ), cs, i⟩µ ;∗c ⟨I
i→c (σ ′), cs ′, j⟩µ

′

3.4 JSIL Symbolic Semantics
We obtain the JSIL symbolic semantics by lifting the JSIL instru-

mented semantics to the symbolic level, following standard ap-

proaches [49]. This lifting, however, is easier for us to achieve

because we only need to instantiate the abstract semantics, rather

than re-examine every command of the language.

We instantiate the abstract values to symbolic expressions, ê ∈ Ê,
defined as follows: ê ≜ v | x̂ | ⊖ ê | ê ⊕ ê . For clarity, we use p̂ for

symbolic expressions denoting property names, and v̂ for symbolic

expressions denoting arbitrary values.

A symbolic state, σ̂ = (ˆh, ˆd, ρ̂,π), consists of a symbolic heap
ˆh, a

symbolic domain
ˆd , a symbolic store ρ̂, and a path condition π . The

symbolic heap, symbolic domain, and symbolic store are obtained

from their instrumented counterparts of §3.3, by replacing concrete

values with symbolic expressions: for example, a symbolic heap,
ˆh ∈

ˆH :
ˆL ⇀ Ê ⇀ Ê�, maps pairs of object locations (both symbolic

and concrete) and symbolic expressions to symbolic expressions

extended with �. A path condition [5] is a first-order quantifier-free

formula which accumulates constraints on the symbolic variables

that direct the execution to the current symbolic state. For clarity

of presentation, we conflate JSIL logical values and logical values,

as well as the JSIL logical operators and boolean logical operators.

Selected Symbolic Semantics Rules

GetCell - Found

Ev (ρ̂, e1) = ˆl Ev (ρ̂, e2) = p̂
ˆh = − ⊎ (ˆl, p̂′) 7→ v̂ σ̂ ′ = (ˆh, ˆd, ρ̂, π ∧ (p̂ = p̂′))

GC ((ˆh, ˆd, ρ̂, π), e1, e2) ;s σ̂ ′, (ˆl, p̂, v̂)

GetCell - Not Found

Evs (ρ̂, e1) = ˆl Evs (ρ̂, e2) = p̂
ˆh′ = ˆh ⊎ ((ˆl, p̂) 7→ �) ˆd ′ = ˆd[ˆl 7→ ˆd (ˆl) ∪ { p̂ }]

GC ((ˆh, ˆd, ρ̂, π), e1, e2) ;s (ˆh′, ˆd ′, ρ̂, π ∧ p̂ < ˆd (ˆl)), (ˆl, p̂, �)

Assume

ˆb = Evs (σ̂ .sto, e)

Asms (σ̂ , e) ≜ σ̂ ∧ ˆb

Check Sat - True

ˆb = Evs (σ̂ .sto, e)
(σ̂ .pc ∧ ˆb) SAT

Sats (σ̂ , e) ≜ true

Check Sat - False

ˆb = Evs (σ̂ .sto, e)
(σ̂ .pc ∧ ˆb) UNSAT

Sats (σ̂ , e) ≜ false

PPDP’18, September 2018, Frankfurt, Germany J. Fragoso Santos, P. Maksimović, T. Grohens, J. Dolby, P. Gardner

We instantiate the abstract semantics for the symbolic case. We

write ⟨σ̂ ,bc⟩;s σ̂ ′ for the symbolic semantic judgement for basic

commands and ⟨σ̂ , ĉs, i⟩µ ;s ⟨σ̂
′, ĉs ′, j⟩µ

′

for commands. Sym-

bolic call stacks, ĉs , differ from concrete stacks in that they contain

symbolic stores. For σ̂ = (ˆh, ˆd, ρ̂,π), we write σ̂ ∧ ˆb to denote

(ˆh, ˆd, ρ̂,π ∧ ˆb), σ̂ .hp to denote
ˆh, and σ̂ .pc to denote π .

Symbolic variables evaluate to themselves: Evs (x̂) = x̂ . As they
have meaning only in the symbolic semantics, they cannot be

evaluated in the concrete/instrumented semantics. The GetCell

of the symbolic semantics non-deterministically branches on the in-

spected property p̂ being equal to any of the properties of the object

at location
ˆl [GetCell - Found], and also on it being different from

all of its properties [GetCell - Not Found]. In all cases, the relevant

information (highlighted in blue) is recorded in the path condition.

This non-determinism contrasts with the concrete/instrumented

semantics, where it occurs only in object allocation. The Assume

rule strengthens the path condition with the symbolic expression

assumed to hold. The two Check SAT rules check satisfiability of a

given expression under the current path condition.

1 o := new ()
2 o[ŝ] := 42
3 x := getProps (o)
4 assert (card x = 2)

Example: Symbolic Branching. To bet-
ter understand the symbolic execution,

consider the code on the right and its sym-

bolic execution in Fig. 5 (right). This code:

(1) creates a new object o; (2) assigns 42 to the symbolic property ŝ
of o; (3) collects the properties of o; and (4) asserts that o has two
properties in the end. The last assertion will cause the symbolic

execution to fail. The key insight is that the symbolic execution

branches when executing the property assignment (line 2). There, it

can either use the rule [GetCell - Found], where the inspected prop-

erty coincides with one of the existing properties (ŝ = “@proto”), or

the rule [GetCell - Not Found], where the property is different from

all of the existing properties (ŝ , “@proto”). In the left branch, o has

only a single property “@proto” (that gets updated to 42), whereas

in the right branch, it has two properties, “@proto” and ŝ . There-
fore, the assert command fails in the left branch and the symbolic

execution produces the concrete counter-model ŝ = “@proto”.

Formal Guarantees. We relate the symbolic to the instrumented

semantics using symbolic environments, ε :
ˆX ⇀ V , mapping

symbolic variables to concrete values. We assume that symbolic

environments preserve types (e.g,. symbolic strings are mapped to

strings). Given a symbolic environment ε , we use Iε (ê) to denote
the interpretation of ê under ε , with the key case being that of

symbolic variables: Iε (x̂) = ε (x̂). In the standard way, we extend

Iε to symbolic heaps/domains/stores/call stacks, as well as pro-

grams. We use Is→i
ε (σ̂) to denote the instrumented state obtained

by interpreting σ̂ under ε :Is→i
ε ((ˆh, ˆd, ρ̂,π)) = (Iε (ˆh),Iε (ˆd),Iε (ρ̂))

if Iε (π) = true; and is undefined otherwise. In all theorems, all

non-quantified variables are implicitly universally quantified.

Theorem 3.3 states that, given a symbolic trace,p : ⟨σ̂ , ĉs, i⟩µ ;∗s
⟨σ̂ ′, ĉs ′, j⟩µ

′

, and an instrumented state in the interpretation of σ̂
filtered by the final path condition, there is an instrumented trace

that will produce a final instrumented state in the interpretation

of the final symbolic state. We use the final path condition σ̂ ′.pc
when picking the initial instrumented state because we only care

about the initial instrumented states for which the instrumented

execution follows the same path as the symbolic execution.

Theorem 3.3 (Bounded Soundness).

p : ⟨σ̂ , ĉs, i⟩µ ;∗s ⟨σ̂
′, ĉs ′, j⟩µ

′

∧ σ = Is→i
ε (σ̂ ∧ σ̂ ′.pc)

∧ cs = Iε (ĉs) ⇒ ∃σ
′, cs ′ .Iε (p) : ⟨σ , cs, i⟩

µ ;∗i ⟨σ
′, cs ′, j⟩µ

′

∧ σ ′ = Is→i
ε (σ̂ ′) ∧ cs ′ = Iε (ĉs

′)

3.5 Linking the Semantics
The last step of our methodology consists of linking the symbolic

semantics to the concrete semantics in a way that describes the

frames that can be safely added to the initial state. In other words,

the interpretation of symbolic states needs to describe both the con-

cretisation of that state and the safe frames for that concretisation.

Below, we give the formal interpretation of symbolic states,

Is→c
ε (σ̂), which denotes a set of pairs of the form (σ ,hf), where σ
is the concrete state obtained from σ̂ using ε , and hf is a con-

crete heap frame that does not overlap with the resource of σ . The

positive resource is collected by the first component of Is→c
ε (ˆh),

whereas the negative resource is collected by its second component

and by Is→c
ε (ˆd). Here, we represent the negative resource as a set δ

of pairs of the form (l ,p) capturing the object properties that must

not exist in the heap.

Symbolic State Interpretation

Empty Heap

Is→c
ε (∅) ≜ ∅, ∅

Non-none Cell

h = (Iε (ˆl), Iε (p̂)) 7→ Iε (v̂)

Is→c
ε ((ˆl, p̂) 7→ v̂) ≜ (h, ∅)

None Cell

ˆh = (ˆl, p̂) 7→ �
δ = { (Iε (ˆl), Iε (p̂)) }

Is→c
ε (ˆh) ≜ (∅, δ)

Heap Composition

Is→c
ε (ˆhi) = hi , δi |i=1,2

h = h1 ⊎ h2 δ = δ1 ⊎ δ2

Is→c (ˆh1 ⊎ ˆh2) ≜ h, δ

Symbolic Domains

δ = {(l, p) | ˆl ∈ dom(ˆd) ∧
l = Iε (ˆl) ∧ p < Iε (ˆd (ˆl)) }

Is→c
ε (ˆd) ≜ δ

Symbolic States

σ̂ = (ˆh, ˆd, ρ̂, π) Is→c
ε (ˆh) = h, δ1

Is→c
ε (ˆd) = δ2 Iε (ρ̂) = ρ Iε (π) = true

Is→c
ε (σ̂) ≜ {((h, ρ), hf) | dom(hf) ∩ (dom(h) ∪ δ1 ∪ δ2) = ∅}

Theorem 3.4 states the bounded soundness of the JSIL symbolic

execution with respect to the concrete semantics. Moreover, this

theorem quantifies over all possible frames, which is not the case

for standard results in symbolic execution [30, 42, 44, 52], which

do not establish frame resilience.

Theorem 3.4 (Bounded Soundness + Frame Resilience).

p : ⟨σ̂ , ĉs, i⟩µ ;∗s ⟨σ̂
′, ĉs ′, j⟩µ

′

∧ (σ ,hf) ∈ I
s→c
ε (σ̂ ∧ σ̂ ′.pc) ∧ cs = Iε (ĉs)

=⇒ ∃σ ′, cs ′ .Iε (p) : ⟨σ ⊎ hf , cs, i⟩
µ ;∗c ⟨σ

′ ⊎ hf , cs
′, j⟩µ

′

∧ (σ ′,hf) ∈ I
s→c
ε (σ̂ ′) ∧ cs ′ = Iε (ĉs

′)

The bug-finding corollary (Corollary 3.5) states that if we find a

symbolic trace that results in a failed assertion, then there also exists

a concrete execution for which that assertion fails. The analysis

is designed in such a way that there are no false positives: if we

find a failing symbolic trace, we can always instantiate its symbolic

values to obtain a concrete counter-model for the failing assertion.

Corollary 3.5 (Bug-finding).

p : ⟨σ̂ , ĉs, i⟩µ ;∗s ⟨−,−, j⟩
⊥

=⇒ ∃ε . (σ ,−) ∈ Is→c
ε ∧ Iε (p) : ⟨σ ,Iε (ĉs), i⟩

µ ;∗c ⟨−,−, j⟩
⊥

Symbolic Execution for JavaScript PPDP’18, September 2018, Frankfurt, Germany

3.6 Implementation
Our three semantics for JSIL (§3.2–§3.4) are specifically designed

with implementation in mind: one only needs to follow the rules,

which are written operationally, modularly, and are syntax-directed.

However, implementing the entailment engine required by the

symbolic semantics and practically handling the state explosion

problem [15] is a challenging task. For this reason, we develop the

first, proof-of-concept version of Cosette leveraging on Rosette [48,

49], a symbolic virtual machine that enables the development of

solver-aided languages. Rosette extends Racket [37] with symbolic

values and first-order assertions over these values, and languages

implemented in Rosette can make use of its solver-aided facilities.

We implement the instrumented JSIL interpreter of §3.3 in Rosette,

obtaining a JSIL symbolic interpreter for free. We show that this

symbolic interpreter is consistent with the symbolic semantics

given in §3.4, as described in §1. As Rosette does not finitise the

symbolic execution of loops branching on symbolic values [1], the

usermust specify themaximum allowed number of such branchings.

Once that bound is reached, the symbolic execution stops.

3.7 Lifting the results to JavaScript
All the results presented in this section lift to JavaScript in a straight-

forward way. One simply has to: (1) extend JavaScript with con-

structs for creating symbolic values and asserting and assuming

first-order formulae; and (2) compile JavaScript to JSIL using a cor-

rect compiler. Here, we make use of JS-2-JSIL [22], a thoroughly

tested and formally validated compiler from JavaScript to JSIL.

To illustrate the lifting, we restate Corollary 3.5 for JavaScript.

Given a JavaScript symbolic state, σ̂JS, and program s , we translate
both the state and program to JSIL, obtaining a JSIL symbolic state

and context, (σ̂ , ĉs), and a JSIL program p. We then run the obtained

JSIL program in the symbolic semantics. If there is an assertion

failure at the JSIL level, then, by the correctness of JS-2-JSIL, that

failure is guaranteed to exist at the JavaScript level as well. Formally:

C (σ̂JS) = (σ̂ , ĉs) ∧ C (s) = p ∧ p : ⟨σ̂ , ĉs, i⟩µ ;∗s ⟨−,−, j⟩
⊥

=⇒ ∃σJS . ⟨σJS, s⟩;∗JS ⊥

4 SPECIFICATION-DRIVEN BUG-FINDING
We show how to use Cosette for debugging JSIL code annotated

with separation logic (SL) specifications. To achieve this, we extend

the JSIL symbolic interpreter with a mechanism for asserting SL-

assertions (§4.1) and show how to implement this mechanism by

giving a sound decision procedure for solving the frame inference

problem (FIP) [7] in the context of symbolic execution (§4.2). In

§4.3, we present an algorithm for generating symbolic tests from

SL-specifications, which guarantees that when a symbolic test fails,

Cosette produces a concrete counter-model that invalidates the

corresponding specification. We conclude with a discussion on how

to lift the presented results to JavaScript (§4.4).

4.1 Symbolic Execution with SL-Assertions
JSIL Logic assertions [22] provide a way of describing partial sym-

bolic states. They include boolean and comparison operations on

JSIL expressions; the separating conjunction; and assertions for de-

scribing heaps. The emp assertion describes an empty heap. The cell

assertion, (e1, e2) 7→ e3, states that the object at the location denoted

by e1 has the property denoted by e2 with value denoted by e3. The
object domain assertion noProps(e1, e2) states that the object at the
location denoted by e1 has at most the properties included in the

set denoted by e2. For instance, the assertion noProps(ˆl , {p1,p2 })

states that the object at location
ˆl has at most the properties p1 and

p2; it might only have one of them, or none at all, but it cannot have

others. We refer to assertions that are distinct from emp and − ∗ −

as simple assertions, and use p, q to range over them.

JSIL Logic Assertions

R, S ≜ true | false | ¬R | R ∧ S | R ∨ S | e = e | e ≤ e Pure Asrts.

P, Q ≜ R | emp | (e, e) 7→ e | P ∗Q | noProps(e, e) Asrts.

Without loss of generality, we implicitly assume that different sym-

bolic locations denote different concrete locations. Furthermore,

given a cell assertion (e,−) 7→ −, we always assume e to be either

a concrete location l or a symbolic location
ˆl . Note that a symbolic

state σ̂ = (ˆh, ˆd, ρ̂,π) corresponds to the assertion:(
�

(ˆl,p̂)∈dom(ˆh) (
ˆl , p̂) 7→ ˆh(ˆl , p̂)

)
∗
(
�

ˆl ∈dom(ˆd) noProps(
ˆl ,d (ˆl))

)
∗
(∧

x ∈dom(ρ̂) x = ρ̂ (x)
)
∗ π

where � denotes the iterated separating conjunction [39].

Analogously, an assertion can be normalised into a symbolic

state, by: mapping program variables in P to freshly generated logi-

cal variables of the appropriate type, obtaining a symbolic store ρ̂;
replacing all program variables in P with their bindings given by ρ̂,
obtaining an assertion P ′ with no program variables; and collect-

ing all cell assertions in P ′ to form the symbolic heap, all object

domain assertions to form the domain table, and all pure assertions

to form the path condition. We refer to the normalised symbolic

state corresponding to P by N (P). We also use I (σ̂) for denoting
the set {(σ ,hf) | ∃ε . (σ ,hf) ∈ I

s→c
ε (σ̂)} and I (P) for I (N (P)).

Inductive Predicates. Cosette does not support symbolic execu-

tion over inductive predicates, which are commonplace in SL-style

specifications [6, 7]. As in [10], we deal with user-defined inductive

predicates by unfolding those predicates up to a fixed, user-defined

bound. We omit this unfolding mechanism as it is routine.

Asserting SL-Assertions. We extend JSIL commands with a spe-

cial construct, assert∗ (P), for stating that the SL-assertion P must

hold whenever that command is evaluated. The corresponding

symbolic semantics rules are given below.

SL-Assert - True

cmd(ĉs, i) = assert∗ (P)
Unify(σ̂ , P) = Succ (σ̂f)

⟨σ̂ , ĉs, i⟩⊤ ;s ⟨σ̂ , ĉs, i+1⟩⊤

SL-Assert - False

cmd(ĉs, i) = assert∗ (P)
Unify(σ̂ , P) = Fail (πf)

(σ̂ .pc ∧ πf) SAT

⟨σ̂ , ĉs, i⟩⊤ ;s ⟨σ̂ , ĉs, i⟩⊥

The rules use a partial decision procedure (PDP), Unify(σ̂ , P), for
determining if a given symbolic state σ̂ satisfies an assertion P .
There are two important criteria that Unify(σ̂ , P) must satisfy:

(1) Soundness: If Unify(σ̂ , P) = Succ (σ̂f), then it must hold that

I (σ̂) ⊆ I (σ̂f ◦ N (P));6

(2) Bug-Finding: IfUnify(σ̂ , P) = Fail (πf), then it must hold that

I (σ̂ ∧ πf) ∩ I (P) = ∅. Observe that every concrete state and

heap frame in I (σ̂ ∧ πf) are counter-models for P . Also note

6
We use ◦ for the composition of two symbolic states, defined component-wise as

disjoint union for the heaps/domains/stores, and conjunction for the path conditions.

PPDP’18, September 2018, Frankfurt, Germany J. Fragoso Santos, P. Maksimović, T. Grohens, J. Dolby, P. Gardner

that, in the SL-Assert - False rule, the semantics only triggers

an assertion failure when it finds a concrete witness for the

failure, as it explicitly requires that (σ̂ .pc ∧ πf) be satisfiable.

4.2 The Frame Inference Problem
We describe theUnify(σ̂ , P) PDP that we use as part of the JSIL sym-

bolic interpreter, for proving entailments between symbolic states

and finding counter models in case of failure. As is customary [9, 22,

24], this PDP first uses pattern-matching on the spatial part of the

symbolic state, and then discharges the pure part of the entailment

to an external constraint solver (in our case, Rosette).

When solving Unify(σ̂ , P), the symbolic variables of P not in σ̂
are assumed to be existentially quantified. As in [33], we topologi-

cally sort the simple assertions in P to find the appropriate bindings

for such variables. For lack of space, we describe the frame inference

algorithm for the setting without existentially quantified variables.

Given a symbolic state σ̂ and an assertion P ,Unify(σ̂ , P) replaces
the program variables in P with their bindings from σ̂ .sto and then
calls the Frame Inference Algorithm (Algorithm 1) on the list of all

simple assertions in P . This algorithm uses two functions:

FIP GetCell. In case of success, GCFIP (σ̂ , ˆl , p̂) returns the sym-

bolic expression v̂ associated with (ˆl , p̂) in the heap component

of σ̂ and the state obtained by removing that cell from σ̂ .hp .

FIP GetDomain. In case of success, GDFIP (σ̂ , ˆl) returns the
symbolic expression v̂d , denoting the domain of the object at lo-

cation
ˆl in σ̂ , and the state obtained by removing all the negative

resource associated with
ˆl from σ̂ .

We give selected rules for these functions, analogous to those in §3.4,

except that: (1) both functions return a new symbolic state from

which the matched resource is removed and (2) their corresponding
constraints are lifted to the premise (highlighted in blue). In case

of failure, both functions return a constraint πf , under which the

inspected resource is guaranteed not to exist (highlighted in red).

Selected FIP Rules

GetDomain

ˆh = ˆh′ ⊎
(
(ˆl, p̂i) 7→ v̂i

)
|mi=0 (ˆl, −) < dom(ˆh′)

∀0≤i≤n v̂i , � ∀n<i≤m v̂i = � v̂ = {p̂i |mi=n+1 }
ˆh′′ = (ˆl, p̂i) 7→ v̂i |ni=0 ˆd = ˆd ′ ⊎ (ˆl 7→ v̂ ′)

GDFIP ((ˆh, ˆd, ρ̂, π), ˆl) ≜ Succ ((v̂ ′\v̂), (ˆh′ ⊎ ˆh′′, ˆd ′, ρ̂, π))

GetCell - Found

(ˆh, ˆd, ρ̂, π) = σ̂
ˆh = ˆh′ ⊎ (ˆl, p̂′) 7→ v̂

π ⊢ (p̂ = p̂′) σ̂ ′ = (ˆh′, ˆd, ρ̂, π)

GCFIP (σ̂ , ˆl, p̂) ≜ Succ (v̂, σ̂ ′)

GetCell - Not Found

(ˆh, ˆd, ρ̂, π) = σ̂ π ⊢ p̂ < ˆd (ˆl)
σ̂ ′ = (ˆh, ˆd[ˆl 7→ ˆd (ˆl) ∪ { p̂ }], ρ̂, π)

GCFIP (σ̂ , ˆl, p̂) ≜ Succ (�, σ̂ ′)

GetCell - Fail with Domain Info

ˆh = ˆh′′ ⊎
(
(ˆl, p̂i) 7→ v̂i

)
|mi=0

(ˆl, −) < dom(ˆh′′) π ⊬ p̂ < ˆd (ˆl) π ⊬ p̂ = p̂i |mi=0
GCFIP ((ˆh, ˆd, ρ̂, π), ˆl, p̂) ≜ Fail ((p̂ ∈ ˆd (ˆl)) ∧ (∧mi=0 (p̂i , p̂)))

GetCell - Fail without Domain Info

ˆh = ˆh′′ ⊎
(
(ˆl, p̂i) 7→ v̂i

)
|mi=0

(ˆl, −) < dom(ˆh′′) ˆl < dom(ˆd) π ⊬ p̂ = p̂i |mi=0
GCFIP ((ˆh, ˆd, ρ̂, π), ˆl, p̂) ≜ Fail (∧mi=0 (p̂i , p̂))

Algorithm 1 Frame Inference for Symbolic States

1: function Unification(σ̂ , p)
2: match p with
3: | [] : return Succ (σ̂)
4: | (ˆl, p̂) 7→ v̂ :: q :

5: match GCFIP (σ̂ , ˆl, p̂) with
6: | Succ (v̂ ′, σ̂ ′) : if (σ̂ .pc ⊢ v̂ = v̂ ′)
7: then return Unification(σ̂ ′, q)
8: else return Fail (v̂ , v̂ ′)
9: | Fail (πf) : return Fail (πf)
10: | noProps(ˆl, v̂) :: q :

11: match GDFIP (σ̂ , ˆl) with
12: | Succ (v̂ ′, σ̂ ′) : if (σ̂ .pc ⊢ v̂\v̂ ′ = {p̂1, ..., p̂n })
13: then return Unification(σ̂ ′ ⊎ (ˆl, p̂i) 7→ � |ni=1, q)
14: else return Fail (v̂ ′ ⊈ v̂)
15: | Fail (πf) : return Fail (πf)
16: | S :: q : if (σ̂ .pc ⊢ S)
17: then return Unification(σ̂ , q)
18: else return Fail (¬S)
19: end function

The Frame Inference Algorithm has four possible cases:

• p = [] : There is nothing left to unify; we return the current

symbolic state, which constitutes the frame.

• p = (ˆl , p̂) 7→ v̂ :: − : Using GCFIP , we obtain the symbolic

expression v̂ ′ associated with (ˆl , p̂) in the current symbolic state

and check that v̂ ′ = v̂ under the current path condition. If the

entailment holds, we proceed. Otherwise, we generate the failing

constraint v̂ ′ , v̂ .

• p = noProps(ˆl , v̂) :: − : Using GDFIP , we obtain the domain v̂ ′

of
ˆl in the current symbolic state and check that v̂ ′ ⊆ v̂ under

the current path condition. If the entailment holds, we extend

the current symbolic state with the negative resource associated

with
ˆl not captured by noProps(ˆl , v̂) and proceed. Otherwise, we

generate the failing constraint v̂ ′ ⊈ v̂ .

• p = S :: − : If S is entailed by the current path condition, we

proceed. Otherwise, we generate the failing constraint ¬S .

Example: Unification Algorithm. Let σ̂ = (∅, ˆh, ˆd, true), where
ˆh = [(ˆl , p̂1) 7→ v̂] and ˆd = [

ˆl 7→ {p̂1}]. If the next assertion to be

unified is noProps(l , {p̂1}), the unification will succeed due to the

[GetDomain] rule. The heap of the resulting symbolic state will

be equal to
ˆh and the domain table will be empty. On the other

hand, if the next assertion is noProps(l , {p̂2}), the unification will

fail. The [GetDomain] rule will return v̂ ′ = {p̂1}, but since we have
no information on p̂2, we will not be able to determine the set

difference v̂ ′\v̂ and will fail with the failing constraint {p̂2} ⊊ {p̂1}.

FormalGuarantees. Unify(σ̂ , P)meets the criteria outlined in §4.1.

Theorem 4.1 (Soundness of FIP). The following hold:

(1) Unify(σ̂ , P) = Succ (σ̂f) =⇒ I (σ̂) ⊆ I (σ̂f ◦ N (P))

(2) Unify(σ̂ , P) = Fail (πf) =⇒ I (σ̂ ∧ πf) ∩ I (P) = ∅

4.3 From Specifications to Symbolic Tests
JSIL Logic specifications have the form fl : {P } f (x) {Q }, where P
and Q are the pre- and postconditions of the procedure with identi-

fier f and formal parameters x . Each specification is associated with

Symbolic Execution for JavaScript PPDP’18, September 2018, Frankfurt, Germany

T(fl : {P } f (x0, ..., xn) {Q }) ≜ Tnm (f , x̂i |ni=0, Q) ≜ procmain () {
let ρ̂ = [xi 7→ x̂i |ni=0] in 0 : x := f (x̂0, ..., x̂n)with ier
let σ̂ , Q ′ = N (ρ̂ (P)), ρ̂ (Q) in inm : assert∗ (Q[x/ret])
let proc = T

fl
(f , x̂i |ni=0, Q

′) in ier : assert (false)
(proc, σ̂) }

Figure 6: Symbolic Test Generation Algorithm

a return mode fl ∈ {nm, er}, indicating if the function returns nor-

mally or with an error. Intuitively, a specification fl : {P } f (x) {Q }
is valid for a given JSIL program p, if p contains a procedure with

identifier f and “whenever f is executed in a state satisfying P ,
then, if it terminates, it does so in a state satisfying Q , with return

mode fl”. The formal definition is given below.

Definition 4.2 (Validity of JSIL Logic Specifications). A JSIL logic

specification fl : {P } f (x) {Q } is valid with respect to a program p,
written p |= fl : {P } f (x) {Q }, if and only if it holds that:

(σ ,hf) ∈ I (P) ∧ ⟨σ ⊎ hf , cs, 0⟩
⊤ ;∗c ⟨σ

′, cs, i
fl
′⟩⊤

=⇒ fl
′ = fl ∧ ∃σ ′′ . σ ′ = σ ′′ ⊎ hf ∧ (σ ′′,hf) ∈ I (Q)

for any call stack cs of the form (f ,−,−,−,−) :: −.

Given a JSIL program p containing a procedure f with specifi-

cation fl : {P } f (x) {Q }, our goal is to construct a symbolic test for

checking if f behaves as its specification mandates. A symbolic test

is a pair (proc, ˆh) consisting of a JSIL procedure with the code of

the test and the initial symbolic heap on which to execute the test.

Figure 6 presents the test generation procedure. The test genera-

tion function T is defined in terms of two auxiliary functions, Tnm
and Ter, for generating tests for nm-mode and er-mode specifica-

tions, respectively. For space reasons, we only present Tnm (Ter is

equivalent). The test program p′, denoted by p[main 7→ proc], is
obtained from the original program p and the test procedure proc
by replacing the main of p with the new test procedure, proc .

Formal Guarantees. If the symbolic execution of a test generated

for fl : {P } f (x) {Q } finds a bug, the specification is not valid.

Theorem 4.3 (Bug-finding for JSIL SL Specifications).

T(fl : {P } f (x) {Q }) = (proc, σ̂) ∧
p[main 7→ proc] : ⟨σ̂ , csmain, 0⟩

⊤ ;∗s ⟨−,−,−⟩
⊥

=⇒ p ̸ |= fl : {P } f (x) {Q }

4.4 Lifting the results to JavaScript
JaVerT specifications of JS functions are analogous to JSIL specifica-

tions of JSIL procedures. A JaVerT specification fl : {PJS} f (x) {QJS}

is valid for a JS program s , written s |= fl : {PJS} f (x) {QJS} if and

only if s contains a function literal with identifier f and “whenever

f is executed in a state satisfying PJS, then, if it terminates, it does

so in a state satisfyingQJS, with return mode fl”. JS-2-JSIL is proven

to correctly compile JaVerT specifications to JSIL specifications [22].

Testing JaVerT Specifications. We generate symbolic tests from

a JS program and its JaVerT specifications by: converting them to a

JSIL program with JSIL specifications, using JS-2-JSIL; generating

a set of symbolic tests from the obtained JSIL program and JSIL

specifications, as described in §4.3; and running the generated JSIL

symbolic tests using the JSIL symbolic semantics described in §3.4.

If Cosette finds a bug while running the tests, we will obtain a

concrete counter-example triggering a specification violation.

Formal Guarantees. The correctness of JS-2-JSIL ensures that

a JaVerT specification fl : {PJS} f (x) {QJS} is valid for a given JS

program s iff the translated specification C (fl : {PJS} f (x) {QJS})
is valid for the compilation of s . Hence, we can lift Theorem 4.3 to

the JavaScript level in a straightforward way, as shown below.

Corollary 4.4 (Bug-finding for JaVerT Specifications).

T(C (fl : {PJS} f (x) {QJS})) = (proc, σ̂) ∧
C (s)[main 7→ proc] : ⟨σ̂ , csmain, 0⟩

⊤ ;∗s ⟨−,−,−⟩
⊥

=⇒ s ̸ |= fl : {PJS} f (x) {QJS}.

5 EVALUATION
We discuss the coverage of Cosette and demonstrate that our pro-

totype implementation is already useful for the debugging of real-

world JavaScript code.

Cosette Coverage. The coverage of Cosette is dependent on the

coverage of JS-2-JSIL. Currently, JS-2-JSIL covers the entire core of

ES5 Strict and the majority of the built-in libraries. Several libraries

orthogonal to the core, such as the Date, RegExp, and JSON libraries,

are not supported. Extending JS-2-JSIL to the non-strict mode of

the language and implementing the remaining built-in libraries is

a technical exercise. A more substantial engineering effort would

be required for moving to the later extensions and revisions of the

standard, such as ES6, but this effort would ultimately amount to

extending JSIL and JS-2-JSIL rather than re-designing them, as these

versions all have ES5 as a common core.

Apart from the coverage of JS-2-JSIL, there are not many limita-

tions to the reasoning capabilities of Cosette. Due to the limitations

of Rosette, Cosette does not support the eval statement. Also, it

supports the for−in statement with a fixed property enumeration.

This is sound, because if a bug is found for a particular enumeration

order, it still exists for an arbitrary enumeration order.

Whole-program Symbolic Testing. We first created a number

of simple symbolic tests to demonstrate that Cosette can reason

about essential JavaScript features, such as prototype inheritance,

function closures, arrays, strings, as well as the substantially more

challenging for-in statement and dynamic dispatch.

We have also analysed two real-world data structure libraries:

Buckets.js [41], and queue-pri [27]. We chose these two libraries

because they exercise many essential JavaScript features, because

they come equipped with unit test suites, and because they do not

have external dependencies. In addition, Buckets.js is widely used

by developers, having over 65k downloads on npm [34].

For both libraries, we wrote comprehensive symbolic unit tests

for all functions and compared them with the concrete unit tests

that ship with the libraries. The results are presented in Table 2. For

each file in the libraries, we report the number of JS executable lines

in the code itself and including dependencies (slash-separated), the

corresponding numbers of JSIL lines, the number of symbolic unit

tests created by us and the number of concrete unit tests created

by the library developers, the number of JS lines in the symbolic

and concrete tests, their coverage measured as percentage of lines,

and the average Cosette run time for the symbolic tests.

The results we obtained clearly demonstrate the benefits of sym-

bolic testing using Cosette. In both cases, we were able to obtain

100% line coverage, improving the coverage of the Buckets.js library

PPDP’18, September 2018, Frankfurt, Germany J. Fragoso Santos, P. Maksimović, T. Grohens, J. Dolby, P. Gardner

Name JS lines JSIL lines # Tests Test lines

Line

Cov. (%)

Avg.

time

arrays 44/71 1251/1942 9/24 166/329 100/100 20s

bag 69/237 2041/7194 7/18 78/265 100/76.8 74s

bstree 143/326 3819/8052 11/31 216/759 100/98.6 5m27s

dict 57/84 1683/2374 7/14 116/170 100/80.7 15s

heap 57/128 2059/4001 4/15 92/626 100/96.5 5m29s

llist 126/153 2447/3138 9/21 149/370 100/94.4 24s

multidict 56/184 1871/5496 6/16 118/189 100/74.1 1m15s

pqueue 26/154 1066/5067 5/12 70/283 100/96.2 5m49s

queue 30/183 1095/4233 6/9 111/146 100/96.7 20s

set 40/124 1528/3902 6/12 86/271 100/70.0 1m01s

stack 23/176 941/4079 4/7 91/104 100/87.0 26s

queue-pri 19/164 872/5086 2/9 26/80 100/100 1m18s

Table 2: Tests for the Buckets.js and queue-pri libraries

by 12%. We achieved this using a total of 60% fewer tests, and each

test had on average 10% fewer lines of code. We also discovered one

bug in the Buckets.js library, as well as one in the queue-pri library.

For the testing, we used a machine with an Intel Core i7-4980HQ

CPU 2.80 GHz and DDR3 RAM 16GB. We measured the execution

time of each symbolic test and averaged the times across tests for

each library file. The times we obtain reflect the fact that Rosette

code is interpreted, rather than run natively. We aim at implement-

ing our own symbolic execution tool from scratch in the future,

which, given our experience with JaVerT, should reduce execution

times by at least an order of magnitude.

Bug: Multi-dictionary in Buckets.js. We discovered a bug in the

implementation of the Buckets.js multi-dictionary library. A multi-

dictionary is a key-value map in which a single key holds an ar-

ray of distinct values. Our symbolic tests for the remove(key, value)

function, which removes a given key-value pair from the multi-

dictionary, have revealed that the library wrongly treats the case in

which we try to remove a key-value pair for a key with no associ-

ated values. In practice, a runtime error is thrown instead of remove

returning false. This bug was not detected by the concrete unit

tests associated with the library due to their incomplete coverage;

we have fixed it and submitted an appropriate pull request.

A simplified version of the failing code is shown below. The

parent variable is an internal variable of the multidict object that

holds a Buckets.js dictionary from keys to arrays of values. The

arrays.remove function is part of the Buckets.js array manipulation

library, and removes a given value from a JavaScript array.

1 multidict.remove = function (key, value) {
2 if (value === undefined) { ... }
3 var array = parent.get(key);
4 if (arrays.remove(array, value)) { ... }
5 return false;
6 }

We were able to expose the bug with the following symbolic test:

1 var dict = new buckets.multidict();
2 var s = symb_string(), x = symb_number(), y = symb_number();
3

4 dict.set(s, x); dict.set(s, y);
5 var xRemoved = dict.remove(s, x);
6 var yRemoved = dict.remove(s, y);
7 assert (((not (x = y)) and yRemoved) or
8 ((x = y) and (not yRemoved)));

In the test, we create a new multi-dictionary dict, and insert two

symbolic numbers x and y at key s, then remove them in order. If

x = y, the value will be stored in the array only once. This means

that the key in the second call to remove on line 6 is not present in

the multi-dictionary any more, triggering the bug. When running

Cosette on this test, we obtain the counter-model x = y = 0 (any

value of s works), and running the concrete instantiation of the

test in Node.js raises an error. We fixed the bug by adding a check

for undefined after line 3 in the code of remove, after which Cosette

successfully discharged the assertion.

Bug: queue-pri. This library implements a priority queue that stores

data with an optional priority value, which is either a number (the

lower the value, the higher the priority) or null if no priority is

provided, in which case the associated element is put at the end

of the queue. Our symbolic tests of the enqueue(data, pri) method

of the library show that elements enqueued with priority 0 were

being wrongly enqueued at the end of the queue. We traced the

bug to the way in which priority was calculated inside enqueue:

priority = pri || null, which evaluates to null if the priority is not

supplied, but also, due to JS semantics, if it is equal to 0. This bugwas

not caught by the library unit tests, even though their line coverage

was 100%, because the developer had not considered inserting nodes

with priority 0. This shows that Cosette is a useful tool for symbolic

testing, because it fully follows the semantics of JavaScript and will

expose corner cases that a developer may not be aware of.

Specification-driven Bug-finding. For this part of the evalua-

tion, we revisited the JaVerT full functional correctness specifica-

tions of simple data structure libraries: key-value maps (cf. §2.2);

priority queues; binary search trees (BSTs), and sorted lists [22].

These libraries are substantially smaller than real-world JS libraries.

For these libraries, we first investigated the relationship between

the unfolding depth for recursive predicates and the code coverage

of the resulting symbolic tests. We have observed that very few

unfoldings are sufficient for achieving full coverage. In particular,

the tests generated for the key-value map, priority queue, and the

sorted list have full coverage already for unfold depth set to 1, while

those for the BST reach full coverage for unfold depth set to 2.

To test the compositionality of Cosette, we crippled the spec-

ifications of the key-value map and the priority queue, exposing

frame-related bugs, such as the ones shown in §2.2. Cosette was

already able to detect all bugs with the unfold depth set to 1, which

shows that it can successfully reason given partial state information,

in contrast to standard symbolic execution tools for JavaScript.

6 RELATEDWORK
The existing literature covers a wide range of JavaScript analysis

techniques, including: type systems [2, 8, 20, 26, 31, 38, 47], control

flow analysis [21], pointer analysis [25, 45] and abstract interpreta-

tion [4, 26, 28, 35], among others. We focus on the existing work on

symbolic execution and logic-based verification for JavaScript, and

discuss general techniques for specification-driven test generation.

Symbolic Execution for JS. The majority of the existing bug-

finding symbolic execution tools for JavaScript target specific bug

patterns, such as security vulnerabilities related to the misuse of

strings [42] (for example, absence of sanitisation before security

critical operations), malformed Web API requests [52], and DOM

Symbolic Execution for JavaScript PPDP’18, September 2018, Frankfurt, Germany

API specific bugs [30]. These tools are fully automatic and aim at

code in the large, primarily focusing on scalability and coverage

issues. Cosette has a different purpose: it is not designed to be

fully automatic, but to assist developers in testing their code. The

work closest to ours is Jalangi [44], a general-purpose symbolic

execution tool for JavaScript that implements a sophisticated state

merging algorithm to deal with the problem of symbolic state explo-

sion. However, Jalangi, as all existing symbolic execution tools for

JavaScript, does not follow the semantics of the language precisely.

In contrast, Cosette is trustworthy: it does follow the semantics

of JavaScript and its theoretical underpinnings are formalised and

proven sound. Therefore, it can be used both as a basis for building

other more specific analyses (e.g., combining symbolic execution

with a type-based analysis to increase the precision of the latter) and

as a testing oracle for other symbolic execution tools for JavaScript

that purposely ignore some corner cases of the JavaScript seman-

tics. Furthermore, Cosette is the first symbolic execution tool for

JavaScript that provides frame resilience guarantees, which are

essential for any specification-related reasoning.

Specification-driven Testing. There is a long line of work on

specification-driven test synthesis, dating back to Quickcheck [14].

Quickcheck and its followers [13, 40] translate Haskell type decla-

rations into comprehensive test-suites. Recently, Seidel et al. [43]

proposed Target, a test generation tool that advances the agenda

of Quickcheck by supporting precise refinement types. The key

insight of Target is to use an SMT solver for finding models for the

supported type refinements. Specification-driven test generation

has also been successfully applied to Java. Korat [11, 32] generates

test cases for Java classes annotated with JML specifications [29],

but it requires the class code to include a special Java method for

checking if the class invariants hold. More recently, Dolby et al. [17]

proposed a SAT-based approach for testing Java code annotated

with relational logic specifications. To the best of our knowledge,

there are no tools for specification-driven testing of JavaScript, and

no tools for test generation based on separation logic specifications.

Logic-based Verification for JavaScript. Our work has been

strongly influenced by JaVerT [22], a verification toolchain for

JavaScript based on separation logic. JaVerT comes with a trusted

compiler, JS-2-JSIL, from JavaScript to JSIL. We use JS-2-JSIL in

Cosette, extending it with constructs for creating and reasoning

about symbolic values. Like Cosette, JaVerT also performs its analy-

sis on compiled JSIL code. However, the separation logic proof rules

of JaVerT are not syntax-directed and offer little implementation

insight. In contrast, our novel symbolic semantics for JSIL is syntax-

directed and specifically designed to guide implementations. The

purpose of JaVerT is to verify functional correctness specifications

of, for example, data structure libraries. We reuse the specifications

of these libraries to evaluate our specification-driven bug finding.

Alternatively, we might have used the matching logic specifica-

tions of KJS [16], a verification tool for core ES5 obtained by in-

stantiating the general K framework with the semantics of JS [36].

Similarly to JaVerT, KJS has been used to verify functional cor-

rectness properties of small data structure libraries. However, KJS

specifications are difficult to write and error-prone, as the developer

has to explicitly address all language internals. They are also not

compositional, as they do not allow partial descriptions of JS objects.

There is also the work of Swamy et al. [46], who prove absence

of runtime errors for higher-order JavaScript (ES3) programs by:

compiling JS programs to the logic of F*; generating verification

conditions for the absence of runtime errors; and automatically

discharging these conditions using Z3. However, as this analysis

does not consider specifications, it was not possible for us to reuse

its results for Cosette.

All of the above-mentioned verification tools provide strong cor-

rectness guarantees, but have severe scalability limitations, as they

require loop invariants and abstractions for the recursive structures

that the programs use. For instance, the Buckets.js library would

be out of their reach, as they do not come with abstractions to

accurately describe, for example, JavaScript arrays, for-in loop in-

variants, and higher-order functions. As a bug-finding tool, Cosette

does not require any such abstractions, and can therefore be used

for analysing substantially larger, more complex codebases.

7 CONCLUSIONS
We have presented Cosette, a trustworthy, compositional symbolic

execution framework for JavaScript, combining the JS-2-JSIL com-

piler and our JSIL symbolic interpreter written in Rosette. We have

applied Cosette to whole-program symbolic testing of real-world

JavaScript libraries and compositional debugging of separation logic

specifications of JavaScript programs.

We have developed a methodology for designing compositional

program analyses for dynamic languages in general, and symbolic

execution for JSIL in particular. We achieved this by introducing a

new, abstract semantics for JSIL, which we instantiated to obtain

the concrete, instrumented, and symbolic semantics. This abstract

semantics is the bedrock for both the theoretical results and the

implementation of the analysis. We prove that the JSIL symbolic

execution of Cosette is sound, frame-resilient and does not generate

false positives. We establish additional trust by using the theory to

precisely guide the implementation and by thorough testing.

Cosette brings ideas from current separation logic research to

the well-established setting of classical symbolic execution [3].

We believe that it is a stepping stone towards a fully automatic

compositional symbolic execution tool for JavaScript in the style of

Infer [12]. In future, our goal is to implement such a tool, drawing

inspiration the JSIL abstract semantics presented here.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers, whose com-

ments have improved the overall quality of the paper. Fragoso

Santos, Gardner, and Maksimović were supported by the EPSRC

Programme Grant ‘REMS: Rigorous Engineering for Mainstream

Systems’ (EP/K008528/1), and the Department of Computing at

Imperial College London. Maksimović was partially supported by

the Serbian Ministry of Education and Science through the Math-

ematical Institute of the Serbian Academy of Sciences and Arts,

projects ON174026 and III44006.

PPDP’18, September 2018, Frankfurt, Germany J. Fragoso Santos, P. Maksimović, T. Grohens, J. Dolby, P. Gardner

REFERENCES
[1] S. Anand, C. S. Păsăreanu, and W. Visser. 2009. Symbolic execution with abstrac-

tion. International Journal on Software Tools for Technology Transfer 11, 1 (01 Feb

2009), 53–67.

[2] C. Anderson, P. Giannini, and S. Drossopoulou. 2005. Towards Type Inference

for JavaScript. In Proceedings of the 19th European Conference on Object-Oriented

Programming (ECOOP’05) (Lecture Notes in Computer Science). Springer, 428–452.

[3] E. Andreasen, L. Gong, A. Møller, M. Pradel, M. Selakovic, K. Sen, and C.-A. Staicu.

2017. A Survey of Dynamic Analysis and Test Generation for JavaScript. Comput.

Surveys 50, 5 (2017).

[4] E. Andreasen and A. Møller. 2014. Determinacy in Static Analysis for jQuery. In

Proceedings of the 29th International Conference on Object Oriented Programming

Systems Languages & Applications (OOPSLA’14). 17–31.

[5] R. Baldoni, E. Coppa, D. Cono D’Elia, C. Demetrescu, and I. Finocchi. 2016. A

Survey of Symbolic Execution Techniques. CoRR abs/1610.00502 (2016). http:

//arxiv.org/abs/1610.00502

[6] J. Berdine, C. Calcagno, and P. O’Hearn. 2005. Smallfoot: Modular Automatic

Assertion Checking with Separation Logic. In FMCO.

[7] J. Berdine, C. Calcagno, and P. O’Hearn. 2005. Symbolic Executionwith Separation

Logic. In APLAS.

[8] T. M. Bierman, M. Abadi, and M. Torgersen. 2014. Understanding TypeScript.

In Proceedings of the 28th European Conference on Object-Oriented Programming

(ECOOP’14) (Lecture Notes in Computer Science). Springer, 257–281.

[9] M. Botinčan, M. Parkinson, and W. Schulte. 2009. Separation Logic Verification

of C Programs with an SMT Solver. Electron. Notes Theor. Comput. Sci. 254 (Oct.

2009), 5–23.

[10] C. Boyapati, S. Khurshid, and D. Marinov. 2002. Korat: Automated Testing Based

on Java Predicates. SIGSOFT Softw. Eng. Notes 27, 4 (July 2002).

[11] C. Boyapati, S. Khurshid, and D. Marinov. 2002. Korat: automated testing based

on Java predicates. In Proceedings of the International Symposium on Software

Testing and Analysis, ISSTA 2002, Roma, Italy, July 22-24, 2002. 123–133.

[12] C. Calcagno and D. Distefano. 2011. Infer: An Automatic Program Verifier for

Memory Safety of C Programs. In NASA Formal Methods - Third International

Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings. 459–465.

[13] K. Claessen, J. Duregård, and M. H. Palka. 2015. Generating constrained random

data with uniform distribution. J. Funct. Program. 25 (2015).

[14] K. Claessen and J. Hughes. 2000. QuickCheck: a lightweight tool for random test-

ing of Haskell programs. In Proceedings of the Fifth ACM SIGPLAN International

Conference on Functional Programming (ICFP ’00), Montreal, Canada, September

18-21, 2000. 268–279.

[15] E. M. Clarke. 2008. Model Checking – My 27-Year Quest to Overcome the State

Explosion Problem. In Logic for Programming, Artificial Intelligence, and Reasoning,

I. Cervesato, H. Veith, and A. Voronkov (Eds.).

[16] A. Ştefănescu, D. Park, S. Yuwen, Y. Li, and G. Roşu. 2016. Semantics-Based

Program Verifiers for All Languages. In Proceedings of the 31th Conference on

Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’16).

ACM, 74–91. https://doi.org/10.1145/2983990.2984027

[17] J. Dolby, M. Vaziri, and F. Tip. 2007. Finding bugs efficiently with a SAT solver.

In Proceedings of the 6th joint meeting of the European Software Engineering

Conference and the ACM SIGSOFT International Symposium on Foundations of

Software Engineering, 2007, Dubrovnik, Croatia, September 3-7, 2007. 195–204.

[18] ECMA TC39. 2011. The 5th edition of the ECMAScript Language Specification.

Technical Report. ECMA.

[19] ECMA TC39. 2017. Test262 test suite. https://github.com/tc39/test262.

[20] A. Feldthaus and A. Møller. 2014. Checking Correctness of TypeScript Interfaces

for JavaScript Libraries. In Proceedings of the 29th Annual ACM SIGPLAN Con-

ference on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA.

[21] A. Feldthaus, M. Schäfer, M. Sridharan, J. Dolby, and F. Tip. 2013. Efficient

construction of approximate call graphs for JavaScript IDE services. In 2013 35th

International Conference on Software Engineering (ICSE). IEEE, 752–761.

[22] J. Fragoso Santos, P. Maksimović, D. Naudžiūnienė, T. Wood, and P. Gardner. 2018.

JaVerT: JavaScript Verification Toolchain. PACMPL 2, POPL (2018), 50:1–50:33.

https://doi.org/10.1145/3158138

[23] P. Gardner, S. Maffeis, and G. Smith. 2012. Towards a program logic for JavaScript.

In Proceedings of the 40th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL’13). ACM Press, 31–44.

[24] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens. 2011.

VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In NASA

Formal Methods. Springer, 41–55.

[25] D. Jang and K.-M. Choe. 2009. Points-to analysis for JavaScript. In Proceedings of

the 2009 ACM symposium on Applied Computing. ACM, 1930–1937.

[26] S. Holm Jensen, A. Møller, and P. Thiemann. 2009. Type Analysis for JavaScript.

In Proceedings of the 16th International Static Analysis Symposium (SAS) (Lecture

Notes in Computer Science), Vol. 5673. Springer, 238–255.

[27] J. Jones. 2016. Priority Queue Data Structure.

https://github.com/jasonsjones/queue-pri.

[28] V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons, J. Sarracino, B. Wie-

dermann, and B. Hardekopf. 2014. JSAI: a static analysis platform for JavaScript.

In FSE. 121–132.

[29] G. T. Leavens, A. L. Baker, and C. Ruby. 2006. Preliminary Design of JML: A

Behavioural Interface Specification Language for Java. SIGSOFT Softw. Eng. Notes

31, 3 (2006).

[30] G. Li, E. Andreasen, and I. Ghosh. 2014. SymJS: automatic symbolic testing of

JavaScript web applications. In Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering, (FSE-22), Hong Kong, China,

November 16 - 22, 2014. 449–459.

[31] Microsoft. 2014. TypeScript language specification. Technical Report. Microsoft.

[32] A. Milicevic, S. Misailovic, D. Marinov, and S. Khurshid. 2007. Korat: A Tool for

Generating Structurally Complex Test Inputs. In 29th International Conference

on Software Engineering (ICSE 2007), Minneapolis, MN, USA, May 20-26, 2007.

771–774.

[33] H. H. Nguyen, V. Kuncak, andW.-N. Chin. 2008. Runtime Checking for Separation

Logic. In Proceedings of the 9th International Conference on Verification, Model

Checking, and Abstract Interpretation (VMCAI’08).

[34] npm. 2018. npm, a package manager for javascript. https://www.npmjs.com.

[35] Changhee Park and Sukyoung Ryu. 2015. Scalable and Precise Static Analysis of

JavaScript Applications via Loop-Sensitivity. In ECOOP. 735–756.

[36] D. Park, A. Stefănescu, and G. Roşu. 2015. KJS: A Complete Formal Semantics of

JavaScript. In Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI 2015). ACM, New York, NY, USA,

346–356. https://doi.org/10.1145/2737924.2737991

[37] Racket. 2017. The Racket Programming Language. racket-lang.org.

[38] A. Rastogi, N. Swamy, C. Fournet, G. Bierman, and P. Vekris. 2015. Safe & Efficient

Gradual Typing for TypeScript. In Proceedings of the 42nd ACM Symposium on

Principles of Programming Languages. ACM Press.

[39] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data

Structures. In LICS.

[40] C. Runciman, M. Naylor, and F. Lindblad. 2008. Smallcheck and lazy smallcheck:

automatic exhaustive testing for small values. In Proceedings of the 1st ACM

SIGPLAN Symposium on Haskell, Haskell 2008, Victoria, BC, Canada, 25 September

2008. 37–48.

[41] M. Santos. 2016. Buckets-JS: A JavaScript Data Structure Library.

https://github.com/mauriciosantos/Buckets-JS.

[42] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. 2010. A

Symbolic Execution Framework for JavaScript. In 31st IEEE Symposium on Security

and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA. 513–

528.

[43] E. L. Seidel, N. Vazou, and R. Jhala. 2015. Type Targeted Testing. In Programming

Languages and Systems - 24th European Symposium on Programming, ESOP 2015,

Held as Part of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. 812–836.

[44] K. Sen, G. C. Necula, L. Gong, and W. Choi. 2015. MultiSE: multi-path symbolic

execution using value summaries. In Proceedings of the 2015 10th Joint Meeting

on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30

- September 4, 2015. 842–853.

[45] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip. 2012. Correlation

Tracking for Points-To Analysis of JavaScript. In ECOOP. 435–458.

[46] N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits. 2013. Verifying

Higher-order Programs with the Dijkstra Monad. In Proceedings of the 34th ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI

’13). ACM, New York, NY, USA, 387–398. https://doi.org/10.1145/2491956.2491978

[47] P. Thiemann. 2005. Towards a Type System for Analysing JavaScript Programs.

In Proceedings of the 14th European Symposium on Programming Languages and

Systems (Lecture Notes in Computer Science). Springer, 408–422.

[48] E. Torlak and R. Bodík. 2013. Growing solver-aided languages with rosette.

In ACM Symposium on New Ideas in Programming and Reflections on Software,

Onward! 2013, part of SPLASH ’13, Indianapolis, IN, USA, October 26-31, 2013.

135–152.

[49] E. Torlak and R. Bodík. 2014. A lightweight symbolic virtual machine for solver-

aided host languages. In ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11,

2014. 54.

[50] D. van Horn and M. Might. 2010. Abstracting abstract machines. In Proceeding of

the 15th ACM SIGPLAN international conference on Functional programming, ICFP

2010, Baltimore, Maryland, USA, September 27-29, 2010. 51–62.

[51] W3Techs: Web Technology Surveys. 2017. Usage of JavaScript for websites.

https://w3techs.com/technologies/details/cp-javascript/all/all.

[52] E. Wittern, A. T. T. Ying, Y. Zheng, J. Dolby, and J. Alain Laredo. 2017. Statically

checking web API requests in JavaScript. In Proceedings of the 39th International

Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28,

2017. 244–254.

http://arxiv.org/abs/1610.00502
http://arxiv.org/abs/1610.00502
https://doi.org/10.1145/2983990.2984027
https://doi.org/10.1145/3158138
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/2491956.2491978

	Abstract
	1 Introduction
	2 Using Cosette
	2.1 Whole-program Symbolic Testing
	2.2 Specification-driven Bug-finding

	3 Symbolic Execution for JSIL
	3.1 JSIL Syntax and Abstract Semantics
	3.2 JSIL Concrete Semantics
	3.3 JSIL Instrumented Semantics
	3.4 JSIL Symbolic Semantics
	3.5 Linking the Semantics
	3.6 Implementation
	3.7 Lifting the results to JavaScript

	4 Specification-Driven Bug-Finding
	4.1 Symbolic Execution with SL-Assertions
	4.2 The Frame Inference Problem
	4.3 From Specifications to Symbolic Tests
	4.4 Lifting the results to JavaScript

	5 Evaluation
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

