FINDING INFORMATION FLOW BUGS
WITH SYMBOLIC EXECUTION

JOSE FRAGOSO SANTOS
ASSISTANT PROFESSOR, DEI

NOVEMBER 2019 @ SOFTWARE SECURITY (MEIC)

CONTENTS

1. Motivation: Information flow bugs on the Web

4 N
GOAL: UNDERSTAND HOW TO USE SELF-COMPOSITION TO FIND

INFORMATION FLOW BUGS
U >

4. Concolic Symbolic Execution

RESEARCH PROGRAM — VERIFICATION AND TESTING

Verification and Testing of JavaScript (Web) Programs

APLAS’16 CADE’17 PPDP’18

DOM SSL Logic: Axiomatic JS Specs: Separation Logic Cosette: Symbolic

Specification of DOM API Specifications for JS Debugging for JS

POPL'18 ! POPL'19

JaVerT: JavaScript | JaVerT 2.0: JavaScript
Verification Toolchain Verification and Testing

RESEARCH PROGRAM — VERIFICATION AND TESTING

Verification and Testing of JavaScript (Web) Programs

\‘9! E AC L U’l0'~ ig' ,1)

Continuous Reasoning
Research Award (50K USD) , J

)
- Winner of the Facebook ~ = ' J

N

yaverl 2.0: Compositional

facebook research [iEiEEiaE

RESEARCH PROGRAM — VERIFICATION AND TESTING

Verification and Testing of JavaScript (Web) Programs

DJOI Losette: Symek

- Collaboration with Amazon -
to verify critical components
of the AWS Encryption SDK

amazon =

RESEARCH PROGRAM — INFORMATION FLOW CONTROL

Information Flow Control for Web Programs

SEC’'14 TGC'14 TGC’15

Inlining-Compiler for JS Information Flow Hybrid Typing Secure

Information Flow Control Monitor for the DOM API Information Flow in JS

TGC’15 Journal of Computer Security, 16

Modular Monitor Mashic — Automatic Sandboxing of
Extensions for JS APIs third party untrusted code

|. INFORMATION FLOW CONTROL ON THE WEB

JS SECURITY VULNERABILITIES — BROWSER EXTENSIONS

Browser extensions are often implemented directly in JavaScript

* Browser extensions execute with elevated privileges

 Web apps can communicate with the extensions
executing in the browser via the Browser API

* Malicious Web Apps can exploit browser extension leaks

to obtain user-sensitive data

EmPoWeb* found often than 100 leaks in JS browser extensions

*EmPoWeb: Empowering Web Applications with Browser Extensions, Doliere Francis Somé, 2019

JS SECURITY VULNERABILITIES — BROWSER EXTENSIONS

EmPoWeb* found often than 100 leaks in JS browser extensions

L ..

SIMPLE SYNTACTIC ANALYSIS ARE NOT ENOUGH!

chrome. cookies.remove

But there are multiple other ways to access these
values that would not be caught by this analysis

OBFUSCATED JS LEAK

Leaking 1 bit

function getBit(x) {
Var a - [Ilall, Ilbll' "C"];
if ((x % 2) === 0) {
Object.defineProperty(a, "1", {value: "d", configurable: false})

s
a.length = 1;
return (a.length === 1) ? 1 : 0;

Implicit Information flow via a property descriptor

OBFUSCATED JS LEAK

Leaking 1 bit

function getBit(x) {
var op = {};
var f = function () {};
f.prototype = op;
var o = new f ();
if ((x % 2) === 0) A
Object.defineProperty(op, "foo", {value: @, configurable: false})
}
o.foo = 1;
return o.foo;

}
Implicit Information flow via prototype inheritance

OBFUSCATED JS LEAK

Bit by bit, we can leak all bits var x = chrome;
var yl = "cook";
function getBits(x) { var y2 = "ies";
var bits = []; var z1 = "rem";
while (x > 0) { var z2 = "ove";
bits.push(getBit(x)); var w = getBits(x[yl+y2][z1+z2])
X =X > 1;
¥
return (bits.length === @) ? 0 : bits.reverse();

OBFUSCATED JS LEAK

And now we can learn:
chrome.cookies.remove

var X = chrome;
var yl = "cook";
var y2 = "ies";
var z1 = "rem";
var z2 = "ove';
var w = getBits(x[yl+y2] [z1+22])

OBFUSCATED JS LEAK

Take-home message

Malicious code can exploit corner case behaviors of the
JavaScript semantics to encode sophisticated information flow

a D
We need to do better than

a simple syntactic analysis!
0 /

I|. PROGRAM PROPERTIES

VERIFICATION VS BUG-FINDING

Program property = set of “behaviors”

Verification: verifying a given program P with respect to
a given property S means proving that all the behaviors
of P are contained in S

[P c S

VERIFICATION VS BUG-FINDING

Program property = set of “behaviors”

Bug Finding: debugging a program P with respect to a given
property S means finding a behavior of P thatisnotin §

[PINS # 0

VERIFICATION VS BUG-FINDING

Verification Bug-finding
[Pl S [PINS # 0
Hard: for/all Easy: exists

PROGRAM PROPERTIES

Question: How do we define the set of behaviors?

1P]?

Depending on how we define the set of allowed
behaviors, we get different classes of properties.

2 Leslie
' #8%% Lamport

TRACE PROPERTIES

Safety Properties: Nothing bad ever happens

Liveness Properties: Something good eventually happens

TRACE PROPERTIES

Safety Properties: Nothing bad ever happens
* Type Safety
 Memory Safety (no null pointer exceptions)

Liveness Properties: Something good eventually happens

TRACE PROPERTIES

Safety Properties: Nothing bad ever happens
 Type Safety
 Memory Safety (no null pointer exceptions)

Liveness Properties: Something good eventually happens
* Termination
 Absence of memory leaks

TRACE PROPERTIES - FORMALLY

o ’)

Trace property = set of program traces

OPERATIONAL SEMANTICS - WHILE LANGUAGE

- Small-Step
Syntax of While Operational

e1,e2€E=n|x|6Ge el & e Semantics

$1,82 € S = skip | x:=e| 51582

| if(e){ s1jelse {52 }
| while (e){sl}

Gordon
Plotkin

OPERATIONAL SEMANTICS - WHILE LANGUAGE

Syntax of While

Small-step Transition

e1,e2€E=n|x|6Ge el & e (ps)—>(p's')

$1,82 € S = skip | x:=e| 51582
| if(e){ sl}else{ 2 } State = Variable Store
| while (e){s1} p € Store : PVar = N

A SIMPLE WHILE LANGUAGE - SEMANTICS

ASSIGNMENT IF - TRUE
o' = p x> [e],] [e], # 0
(p,x = e) = (p’,skip) (p,if(e){ s1telse { sz }) — (p,s1)

Ir - FALSE SEQ - 1
[e], =0 (p,s1) = (p»s])

(p,if(e){ s1}else{ sz }) — (p,s2) (pss1:82) — (p,s7;52)

WHILE

?EQ -k? S s" = if (e){ s; while (e){s}}else { skip }
, SKIp;S2) — (P, S
P, SKIP3 527 = P> 52 {p, while (e){s}) — (p,s)

A SIMPLE WHILE LANGUAGE - SEMANTICS

Division by O generates é

ASSIGNMENT - ERROR IF - ERROR

[[e]]p = [[e]]P =7

(p,x:=e) = (f,skip) (p,if(e){ s1}else{ sz }) = (7, skip)

TRACE PROPERTIES - FORMALLY

Trace property = set of program traces

Program Trace = ?

[s] = {[{p0>50)s ---s {Pn>Sn)1 | S0 = s Asp = skip AVo<i<n{pi,si) = (Pi+1,Si+1)}

TRACE PROPERTIES - FORMALLY

Trace property = No division by O

NoDivZero = {[{p0,50)s ---s {Pn>Sn)] | sSn = skip A pn # 4
A Yo<i<n{pi>si) = {pi+1,Si+1)}

TRACE PROPERTIES - FORMALLY

Trace property = Termination

Termination = {[{po,$0), ---» {Pn>Sn)| | sn = skip
AVo<i<n{PisSi) = (Pi+1>Si+1)}

TRACE PROPERTIES - FORMALLY

TX0 = Programs that terminate with x setto 0

TO = Programs that terminate with a all variables set to 0

TRACE PROPERTIES - SUMMARY

Trace Properties

Safety Properties Liveness Properties

State Properties

WHAT ABOUT NON-INTERFERENCE? ’

J. Meseguer

Security Labeling Security Labeling

[':PVar — L L={L H},C)

J. Goguen

NIT) 2 {s|Vp1.pz.p1 =] p2 A {(p1.s) =% (p],skip)
A{pa.sy = (py.skip) = pl =] pj}

NON-INTERFERENCE: 2-TRACE PROPERTY

Non-Interference is a 2-trace property

NIT) = {s|V¥p1,pz2.p1=; p2 A {p1,s) = (p],)
A{pa.s) =" (p}.skip) = p| =] pj)

NI(F) —~ {([<p0a 30>9 e <Pn, 3n>], [(p(,)’ S(,)>’ “ees <p;n’ S:n)])
| Yo<i<n{pi,si) = {pi+1,Si+1)
A VOSi<m<p;9s£> — <p;+1’sl{+1>
Aso =3y A (po =] py = Pn =] Pm)}

INFORMATION FLOW BUG

NI(T) 2 {s|Vp1,p2.p1=; p2 A {p1,s) =" (p},skip)
A{pa,s) =" (p}.skip) = pi =] ps}

A pair of stores (p1, p2) that prove that:
s¢ NI(T')

(p1,s) =~ <p{,skirp> A <pz,s>r—>* (p5, skip)
A p1=; p2 N py# P,

HYPER-PROPERTIES

2-Trace Properties: Properties of 2 traces F- Schneider
* Non-Interference

 Dependency

N-Trace Properties: Meta-dependencies

PROGRAM PROPERTIES - SUMMARY

Hyper Properties

Trace Properties

Safety Properties Liveness Properties

State Properties

37

Il. SELF-COMPOSITION + SYMBOLIC EXECUTION

SELF-COMPOSITION — THE MAIN IDEA

G. Barthes

Idea: Reduce non-interference to a safety property by
transpiling the given program ‘

S € NI(F) — ﬂC(s)ﬂ C ‘]"(1") P. D’Argenio

I '

C -atranspiler that computes the self-composition of S 1 rex

7 (T') - a safety property that only depends on I

SELF-COMPOSITION — WHY?

SCALABLE PROGRAM ANALYSES ARE HARD TO

trar
DESIGN AND IMPLEMENT, ESPECIALLY WHEN

_ TARGETING REAL-WORLD LANGUAGES

Wh A
safj WE ARE GOING TO USE SYMBOLIC EXECUTION
SCr

SELF-COMPOSITION — EXAMPLE 1

P assime(l11 = 12)
1 WE DON’T HAVE TO KNOW! WE CAN USE
L SYMBOLIC EXECUTION...

assert(Ll = LZ)

Does the assertion hold?

SELF-COMPOSITION — EXAMPLE 1

L := h

‘ We are going to execute the
generated program symbolically
assume(ll = 12);
%;‘ = E%’ Instead of using concrete values,
T) we use symbolic variables
assert(ll = 12) y

SELF-COMPOSITION — EXAMPLE 1

L := h

True, [11-#11, hl-s#hl, 12-#12, hZ2-#h2]

N J
Y

Symbolic Store

&

assume(ll = 12); !

11 := hi; Path Condition: conjunction of all the
12 := h? ; expressions on which the execution has
assert(ll = 12) branched before reaching the current

execution point

SELF-COMPOSITION — EXAMPLE 1

1L :=h True, [11-#11, hls#hl, 12-#12, h2-#h2]
Xassume(11 = 12)

#11=#£12, [11-#11, hl-s#hl, 12-#12, hZ2-#h2]

&

assume(ll = 12); 111 := hl
11 := hil; #11=#12, [1lo#hl, hls#hl, 12+#12, h2+#h2]
12 := hZ; 112 := h2

assert(ll = 12) #11=#12, [11-#h1l, hl-#hl, 12-#h2, h2-#h2]

SELF-COMPOSITION — EXAMPLE 1

L := h 112 .= h2
‘ #11=#12, [11s#hl, hls#hl, 12-#h2, h2-#h2]
lassert(ll = 12)
assume(ll = 12); %
11 := hil;
12 := h2; (#11 = #12) = (#h1 = #h2) Valid?
assert(ll = 12) (#11 = #12) A (#h1 = #h2) SAT?

SELF-COMPOSITION — EXAMPLE 1

L := h 112 .= h2
‘ #11=#12, [11s#hl, hls#hl, 12-#h2, h2-#h2]
lassert(ll = 12)
assume(ll = 12); %
11 := hil;
12 = hZ, (#11 = #12) A (#hl = #h2) SAT?
assert(ll = 12) YES! [#1150, #h1-0, #1250, #h2-1]

SELF-COMPOSITION — EXAMPLE 2

f(h assume(ll = 12);
i (A 1) if (h1) {11 :='1} else { skip };
} 3156 { if (h) {12 :=1} else { skip 13
skip assert(ll = 12)
5

SELF-COMPOSITION — EXAMPLE 2

assume(ll = 12);
1f (hl) {

11 :=1
} else { skip };
1f (h2) {

12 :=1
} else { skip };
assert(ll = 12)

True, [11-#11, hl-s#hl1l, 12-#12, hZ2-#hZ2]

lassume(ll = 12)
#11=#£12, [11-#11, hl-#hl, 12-#12, hZ2-#h2]

i1f (hl)
#hl = 0 #hl = 0

Next Slide

SELF-COMPOSITION — EXAMPLE 2

assume(ll = 12); #l =0 1f (hD)
if (hD) { ‘
11 . 1 | #hl = @
} else { skip }; #Iﬁiﬂl\ ﬁg-{#ﬁlg,lb#lz h2s#h?
if (h2) { : ’ ’ ’ :
12 :=1 ‘11 =1
} else { skip };
#11=#12 A #hl = O,
assert(ll = 12) [11sl, his#hl, 12s#12, h2s#h2]

SELF-COMPOSITION — EXAMPLE 2

11 :=1

assume(ll = 12);
1t (hl) { #11=#12 A #hl = 0,

11 := 1 [11-1, hl-s#hl, 12-#12, h2-#h2]
} else { skip }; #h2 = © if (h2)
1f (h2 e

'I_g .Z]{_ L#l"lZ = 0
} else { skip }; #11=#12 A #hl = O A #h2 = O,
assert(ll — 12) [11-1, hls#hl, 12-#12, h2-#h2]

SELF-COMPOSITION — EXAMPLE 2

assume(ll = 12); #he = 0 if (h2)
-Lf Chl) { #h2 = 0

11 :=1 !
} else { skip }; #11=#12 A #hl = O A #h2 = O,
if (h2) { P55 [1151, hls#hl, 12-#12, h2-#h2]
1 lg = 1] [12 =1

} else { skip }; #11=#12 A #hl = O A #h2 = O,
assert(ll = 12) [11-1, hls#hl, 121, h2-#h2]

SELF-COMPOSITION — EXAMPLE 2

assume(ll = 12);
if (p1) S
11
1 el LET’S TRY ANOTHER PATH
-I'-F (\ﬁ‘—l L v ~
12 :=1 #L1=#12 A #h1 = @ A #h2 = 0 A 1 = 1 SAT?
} else { skip };
assert(ll = 12) NO! No bug found

2)

SELF-COMPOSITION — EXAMPLE 2

assume(ll = 12); #he = 0: if (h2)
lf Chl) { #h2 = 0
11 :=1 !
1 else { skip }: #11=#12 A #h1l = @ A #h2 = 0,
1 F (hZ) { P ’ [11-1, hl-s#hl, 12-#12, hZ2-#h2]
-L .
12 :=1 [Sklp

} else { skip }; #11=#12 A #hl = O A #h2 = O,
assert(ll = 12) [11s1, hls#hl, 12-#12, h2+#h2]

SELF-COMPOSITION — EXAMPLE 2

skip

assume(ll = 12); ‘
1f (hl) { #11=#12 A #hl = O A #h2 = 0O,

11 = 1 [11-1, hl-s#hl, 12-#12, hZ-#h2]
} else { Sk'l.p }, [assert(ll = 12)
1f (h2) {

12 :=1 #l1=#12 A #hl = 0 A #h2 = 0 A 1 = #12 SAT?
; else { skip }; YES! [#11+0, #h1s1, #1250, #h2+0]

assert(ll = 12)

SELF-COMPOSITION — EXAMPLE 2

True, [11-#11, hls#hl, 12-#12, hZ2-#hZ]

#hl = 0 #hl = 0

#hl = ®, #hl #= @,
[11-1, hl-#h1, [11-#11, hls#hl,
12-#12, h2-#h2] 12-#12, h2-#h2]

#h?2 =N #Mhz = 0
#hl = @ A #h2 = 0, #hl = @ A #h2 = 0, #hl = @ A #h2 = 0, #hl = @ A #h2 = 0,
[11-#11, hls#hl, [11-#11, hl-#hl, [111, hls#hl, [1151, hl-»#hil,

12-#12, h2-#hZ] 1251, h2+#h2] 12-#12, h2-#h2] 1251, h2-#h2]

v X X v

SELF-COMPOSITION — EXAMPLE 2

If we find a bug, we know that
/ \ the program is not secure
/\ /\ But what if we do not find a bug?

#hl = 0 #hl =@ #hl = 0 #hl = 0 Is the program secure?
N N N\ N
#h2 = 0 #h2 = @ #h2 = 0 #h2 = 0

SELF-COMPOSITION — EXAMPLE 2

But what if we do not find a bug?

/ \ The program is secure if we
covered all the possible
execution paths

#hl = 0 #hl = 0 #hl = 0 #hl = @ How can we know that?

A A A A
#h2 = 0 #h2 = 0 #h2 = 0 #h2 = 0

SELF-COMPOSITION — EXAMPLE 2

How do we know if we covered

/ \ all possible execution paths?
The disjunction of all final path
conditions must be True

#hl = 0 #hl = 0 #hl = 0 #hl = 0
AV AV A V A = True
#h2 = 0 #h2 = 0 #h2 = 0 #h? = 0

SELF-COMPOSITION — EXAMPLE 3

assume(l1=12 and z1=z2 and yl=y2)

Z o ___ 10 Zl = 1;
-) ifCth)){ x1 := 11}
— else { skip };
'L'FCh){ X 1 } if('hl) { x1 := z1}
else { sk 1p }; - | else {skip 1
= x1 + yl;
if('h) { x 1=z} 21
if(th2){ x2 := 11}
else { Sk-l- } else { skip };
- 1f('h2) { x2 := z2 }
1 =Xty else { skip };
12 := x2 + yZ;

assert(l1=12 and z1=z2 and yl=y2)

SELF-COMPOSITION — EXAMPLE 3

/ \ The final symbolic store is always
/ / the same!

#hl = 0 #hl = 0 #hl = 0 #hl = 0 What is the SAT query?
A A A A

#h2 = 0 #h2 = 0 #h2 = 0 #he = 0

[11-1+#yl, 12-1+#y2, hl-#hl, h2-#h2,
yl-s#yl, y2-#y2, zl-#zl1, z2-#z2]

SELF-COMPOSITION — FORMALLY

Idea: Reduce non-interference to a safety property by
transpiling the given program

se NI(T) & [C(s)] < 7(T)

7 (I') - a safety property that only depends on T

C -atranspiler that computes the self-composition of s

SELF-COMPOSITION — FORMALLY

dom(61) = dom(62) = vars(s) rng(61) N rng(62) = 0
C(s) = 01(s); 02(s)

T(F) = {[<p07 50)7 ey <pna 5n>]
| sp =skip A Vo<i<n(pi,Si) = (Pit+1, Si+1)
A(A{(po(01(2)) = po(b2(x))) | T'(z) = L}
= N{(pn(01(x)) = pn(b2(x))) | T'(x) = L})}

SELF-COMPOSITION — FORMALLY

dom(601) = dom(6;) = vars(s) rng(61) N rng(62) = 0
Sassume = assume (/\ {(61(x) = 6,(x)) | T(x) = L}
Sassert = assert (/\{(el(x) = 02(x)) | T(x) = L})

C(S) = Sassume; 01 (5)§ 92(3)§ Sassert

IV. CONCOLIC SYMBOLIC EXECUTION

CONCOLIC SYMBOLIC EXECUTION — THE MAIN IDEA

Idea: Execute the program concretely and symbolically
at the same time

P. Godefroid

Why?
* Symbolic execution is often too expensive...

* Back-end constraint solvers sometimes (often!) cannot
find the answer: UNKNOWN

CONCOLIC SYMBOLIC EXECUTION — THE MAIN IDEA

Concolic Testing: Input, = Pick random vector
Main Algorithm Coverage = False
=0

While (Input; # NULL) {
(RES;, PC,)= Run Program with Input,
Coverage = Coverage V PC.
Input,,, € Models(— Coverage)
| =i+1

}

CONCOLIC SYMBOLIC EXECUTION — THE MAIN IDEA

z = 2%y;
1f (z = x) { Step 1:
1f (X > y+10) { Inputs, = [x»22,y~»7]
assert(false) EREsla PC) (= COKZ,* C)X z 2*y))
else ski ; overage = (X # 27y
1 ilse g ék'l.p ?) Inputs; = [x»2,y-1]

CONCOLIC SYMBOLIC EXECUTION — THE MAIN IDEA

Z .= 2%y,
if (z = x) { Step 2:
1f (X > y+10) { Inputs; = [x»2,y-»1]
assert(false) (RES;, PC) = (OK,(x =2*y)A(x<= y+10))
1 else { skip }; Coverage = (x # 2*y) V

: ((x =2*y)A(x<= y+10))
} else { Sklp } IﬂpUtSZ = [X"3®:y_)15]

CONCOLIC SYMBOLIC EXECUTION — THE MAIN IDEA

z = 2%y;
if (z = x) { Step 3:
1f (x > y+10) { 1Inputs, = [x»30,y-15]
assert(false) EREsa, PC3) C= (F'L\ZI*L’)OQ = 2*y)A(Xx>y+10))
else ski ; overage = (X # Yy
1 glse { ikip ? ; ((x =2*y)A(x<=y+10))V

((x = 2*y)H)A(x>y+10))
Inputs, = NULL

A LOT MORE TO COVER...

1. Symbolic execution with data structures
* Lazy-Initialization
* Data-structure unfolding

2. Declassification
3. Other Security Properties: Confinement

4. Invariants and verification

MASTER PROJECTS

Bounded model checking
for TypeScript via symbolic
execution and compilation

Code-stepping regular
expressions in the browser

Building a symbolic execution
engine for your favorite
programming language

MASTER PROJECTS

Bounded model checking
for JavaScript regular
expressions

Symbolically debugging secure
information flow in the browser

And more... Check my website:

http://web.ist.utl.pt/jose.fragoso

MASTER PROJECTS

Potential collaboratons with:

Imperial College Sy
London h%‘

Symbolic
Execution

