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Abstract. The Supply Chain Trading Agent Competition (TAC SCM)
was designed to explore approaches to dynamic supply chain trading.
During the course of each year’s competition historical data is logged
describing more than 800 games played by different agents from around
the world. In this paper, we present analysis that is focused on deter-
mining which features of agent behavior, such as the average lead time
requested for supplies or the average selling price offered on finished prod-
ucts, tend to differentiate agents that win from those that do not. We
present a visual inspection of data from 16 games played in one bracket
of the 2006 TAC SCM semi-final rounds. Plots of data from these games
help isolate behavioral features that distinguish top performing agents
in this bracket. We then introduce a metric based on information gain
to provide a more complete analysis of the 80 games played in the 2006
TAC SCM quarter-final, semi-final and final rounds. The metric captures
the amount of information that is gained about an agent’s performance
by knowing its value for each of 20 different behavioral features. Using
this metric we find that, in the final rounds of the 2006 competition,
winning agents distinguished themselves by their procurement decisions,
rather than their customer bidding decisions. We also discuss how we
used the analysis presented in this paper to improve our entry for the
2007 competition, which was one of the six finalists that year.

Keywords. Automated trading, electronic commerce, supply chain man-
agement, agent performance analysis, TAC SCM.

1 Introduction

As the Internet helps mediate an increasing number of supply chain transac-
tions, there is a growing interest in investigating the potential benefits of more
dynamic supply chain practices [1, 2]. Since its inception, the Supply Chain
Trading Agent Competition (TAC SCM) has served as a competitive test bed
for this purpose [1]. TAC SCM pits against one another trading agents developed
by teams from around the world, with each agent using its own unique strat-
egy. Agents are responsible for running the procurement, planning and bidding
operations of a PC assembly company, while competing with others for both
customer orders and supplies under varying market conditions.
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During the course of each year’s competition more than 800 games are played.
The logs of these games provide ample data for evaluating the strengths and
weaknesses of techniques implemented by different agents. The primary mea-
sure of an agent’s performance in TAC SCM is its average overall profit over
a game – with each game simulating one year of operation. This metric allows
us to determine which agents perform best across a wide variety of conditions.
However, examining only average profit does not tell us what differentiated win-
ning agents from the others. Answering this question is of practical interest to
agent designers, and may also help transfer insights from the competition to
real world supply chain problems. In this paper, we investigate which features
of agent behavior best distinguish top performing TAC SCM agents in the 2006
competition’s quarter-final, semi-final and final rounds.

We begin with a close look at statistical features of 6 different agents in one
bracket of the 2006 semi-final rounds (this bracket accounted for 16 games),
such as the average quantity they requested from component suppliers each day.
Plots from these games reveal unique patterns, or “fingerprints,” which allow us
to isolate behavioral features that distinguish top performing agents.

Using a quantitative analysis technique, we estimate the ability of 20 differ-
ent features to differentiate winners over a larger collection of 80 different games.
Our technique involves calculating the amount of information gained about an
agent’s performance by knowing its value for each feature (e.g., the average lead
time it requested from component suppliers). Results on data from the 2006 final
rounds include a ranking of features based on their information gain, providing
insight into the collection of features that made winning agents unique. In par-
ticular we find that, in the final rounds of the 2006 competition, winning agents
distinguished themselves by decisions related to the procurement of components,
rather than those related to bidding for customer orders.

Finally, we discuss how the insights gained from the analysis in this paper
helped us refine our entry for the 2007 competition [3]. In particular, we decided
to place a greater emphasis on long-term procurement (i.e., purchasing parts
long in advance). We found that our improvements helped our agent procure
components significantly cheaper and with greater reliability – and ultimately
reach the finals that year.

The remainder of this paper is organized as follows: We first provide a brief
overview of the TAC SCM game. The following section describes related efforts
in analyzing and presenting tools to analyze the TAC SCM games. Section 4
describes our visual inspection of feature plots from the 2006 semi-finals. In
Section 5 we present our information gain-based analysis and apply it to all of
the games from the 2006 quarter-finals, semi-finals and finals. Section 6 briefly
describes how we used the analysis in this paper to improve our agent for the 2007
competition. The final section discusses additional uses of our technique such as
how it could be extended by agent developers to identify potential weaknesses
in their entry.
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2 TAC SCM overview

The TAC SCM game is played over a simulated period of 220 game days, and on
each day agents are required to make several decisions. They are responsible for
sending requests to suppliers, offers to customers, and a production plan to their
factory. Each request to a supplier for a specific component includes a quantity,
lead time (the number of days before the order is delivered), and reserve price
(the maximum the agent is willing to pay for the parts). Suppliers then respond
with offers that specify actual quantities, prices, and lead times. When an agent
places an order, parts are scheduled for delivery into its inventory. Agents can
also respond to requests made by customers for finished PCs. These requests
specify a quantity, due date, reserve price, and PC type. Agents can compete for
each customer request by submitting offers with a specific price. The agent with
the lowest price for each request is awarded an order. Upon delivery of the order
the revenue for the transaction is placed in its bank account – minus possible
tardiness penalties. Orders that are overly late are canceled. For a more detailed
description of the game, readers are directed to [4].

3 Related work

Several researchers in the Trading Agent Competition community have presented
methods for analyzing competition data to gain insights about agent perfor-
mance.

In [5] and [6] the University of Michigan team applied game theoretic analysis
to abstracted versions of the TAC games. The abstracted games were estimated
empirically from the results of repeated simulations with different combinations
of strategies. Their analysis revealed interesting best response and equilibrium
relationships. The Michigan team also presented methods for estimating the
efficiency and power of different entities in the TAC SCM market [7].

In [8] we analyzed data from the seeding rounds of the 2005 competition to
determine that the strong performance of our agent, CMieux, was largely at-
tributable to significantly cheaper component purchase prices than other agents.

Tool kits such as our Analysis Instrumentation Toolkit [9] and the Swedish
Institute for Computer Science (SICS) Game Data Toolkit1 allow teams to an-
alyze historical log files from a single TAC SCM game. These tools provide an
in-depth view of the B2B and B2C interactions through graphical front-ends.

Several teams have also analyzed controlled experiments using different con-
figurations of their own agent and publicly available agent binaries.

In [10] the team from the University of Minnesota presented techniques to
manipulate the market environment of the simulator. By controlling various
market factors, such as aggregate demand and supply, they suggest that TacTex,
a top performing agent, loses its edge when market pressure is high. In [11] the
Southampton team presented experiments with variants of their own agent that

1 Available at http://www.sics.se/tac/.
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are more or less risk seeking in choosing selling prices, and in [12] they provide
similar analysis with respect to lead times on component orders. In [13] the
University of Texas team evaluated variants of their own agent against publicly
available binaries of other agents. They used the results of their experiments to
fine-tune various parameters in their final agent and guide future development.

The analysis methods presented in this paper differ from existing techniques
in the following two ways: i) we systematically investigate the question of which
behavioral features are associated with successful performance across all agents
in a large collection of games and ii) we perform all of our analysis on actual
competition data, as opposed to offline controlled experiments.

4 Feature plot analysis

Historical data from the TAC SCM competition provides a large data source for
studying the effectiveness of different supply chain trading techniques. However,
it is worth noting that by analyzing historical data from the competition we
must limit ourselves to analyzing only low-level actions taken by each agent,
rather than the underlying algorithms or techniques. In this section, we analyze
plots of statistical features of such actions for six different agents from the 2006
semi-finals games containing our agent, CMieux. The full data set consists of 16
games from the 2006 semi-finals group 1 (games 5097-5104 on tac3.sics.se and
5580-5587 on tac4.sics.se) with agents placing in the following order: Deep-
Maize [14], Maxon, Botticelli [15], CMieux [8], Mertacor [16], and Southampton-
SCM [12].

Out of all the feature plots we examined, the following best illustrate how
agents can be distinguished by features of their low-level behavior. Each of the
plots presented shows qualitative differences between the six agents. By analyz-
ing these plots we are able to identify unique characteristics of the agents, and
gain insights into why some performed better than others.

4.1 Lead time vs. game day

In TAC SCM, agents can decide how far in advance to order components. We
refer to the difference between the day an order is placed and the day that it
is to be delivered as the order’s lead time. Figure 1 shows plots of the average
component order lead time (Y axis) on each game day (X axis) of the different
agents2. These plots show that agents are easily distinguished by the extent to
which they used long lead times early in the game, the length of their maximum
lead time, and their most commonly used lead times.

The two best performing-agents from this round, DeepMaize and Maxon,
feature substantially longer early-game lead times. Both of these agents placed

2 Plots presented in this section examine behavior with respect to one specific com-
ponent. Aggregating data across multiple components washed out potentially inter-
esting details, and plots for other components were not noticeably different.
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orders at the beginning of the game that had due dates towards the end of the
game, while the other agents did not. DeepMaize and Maxon also both reduce
their lead times well before Mertacor, CMieux, and Botticelli. The latter three
appear to maintain long lead times until they approach the end of the game.
SouthamptonSCM takes a hybrid of these two approaches, reducing lead times
before necessary but still much later in the game.

Maxon and Mertacor take very different approaches to the mid-game, with
Mertacor almost exclusively using longer lead times, and Maxon primarily re-
lying on short ones. Maxon also seems to exhibit a single mid-game ’spike’ in
lead times, placing orders with uncharacteristically long lead times near day 120.
This is either a fixed restock point or an attempt to disrupt the procurement of
other agents. Mertacor’s, and, to a lesser extent, SouthamptonSCM’s plots show
’bands,’ which most likely correspond to specific long-term order lead times that
are chosen to simplify their decision processes.
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Fig. 1. A plot showing the average lead time and game day of component orders placed
by six different agents during the 2006 semi-finals for the Pintel 2Ghz component (other
components yield similar plots).

4.2 Lead time vs. order quantity

Figure 2 shows plots of the average lead time of component orders (Y axis)
against their average quantity (X axis). These plots illustrate that agents differ
in the extent to which they place large orders with long lead times.

Placing component orders with long lead times and large quantities corre-
sponds to increased risk. Thus, the extent to which an agent is willing to increase
both can be seen as a reflection of its attitude towards risk. The lead time vs.
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order quantity plots showcase the different approaches of the agents: Maxon,
Mertacor, CMieux and DeepMaize each appear reluctant to place orders with
long lead times and large quantities. The trade-off is less pronounced for Botti-
celli and SouthamptonSCM. Maxon, Mertacor and DeepMaize each show unique
’bands,’ with DeepMaize considering only a handful of fixed order quantities,
Mertacor considering only fixed lead times, and Maxon fixing a combination of
the two attributes.

Order Quantity
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Fig. 2. A plot showing the average lead time and average order quantity per day of
component orders placed by six different agents during the 2006 semi-finals for the
Pintel 2Ghz component.

4.3 Reserve price vs. order price

When TAC SCM agents send component requests to suppliers, they have the
option of specifying a reserve price – or the maximum per-unit price they are
willing to pay for the requested components. The difference between an agent’s
reserve price and its order price indicates to what extent the agent’s reserve
price impacted its procurement cost. Figure 8 in the Appendix shows a plot
of each agent’s average component order price (Y axis) against that agent’s
average offered reserve price (X axis). This plot illustrates that agents employed
variations of three different strategies for choosing their reserve prices: fixed
reserve prices, dynamic reserve prices, and reserve prices equal to purchase prices.

Maxon and Mertacor appear to choose from a few fixed reserve prices.
SouthamptonSCM and Botticelli appear to use their reserve prices to more ag-
gressively limit their order prices, since they are consistently close to their pur-
chase prices. CMieux and DeepMaize have more dynamic strategies for choosing
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reserve prices, although a few ‘bands’ of fixed reserve price do appear in the
DeepMaize plot.

4.4 Order quantity vs. game day

Figure 9 in the Appendix shows a plot of each agent’s average order quantity
(Y axis) on each game day (X axis). Agents demonstrate unique choices for
maximum order quantity, minimum order quantity, and the specific quantities
they ordered repeatedly.

Mertacor, DeepMaize, and, to a lesser extent, Maxon each appear to favor
orders greater than roughly 100 components at the beginning of the game. Maxon
chose a maximum order quantity of about 200 units after the beginning of the
game, while SouthamptonSCM and CMieux appear to consider at most about
400. Botticelli, Mertacor, and DeepMaize are all willing to go above 800 units
on occasion. Bands on the graphs of DeepMaize and SouthamptonSCM suggest
these agents were frequently choosing the same quantity on their orders.

4.5 Order price advantage vs. lead time

Figure 10 in the Appendix shows a plot of each agent’s average order lead time (Y
axis) against the average component order price “advantage,” or the difference
between the their price and the best price (X axis). In these plots, agents can
be distinguished by the extent to which they require better price advantages to
consider long lead times.

Maxon and DeepMaize, for example, have a clear ’triangle’ structure to their
graphs, implying that they were only willing to accept orders with long lead times
when they could get them at relatively good prices. Mertacor, SouthamptonSCM
and Botticelli’s plots have almost rectangular shapes, implying a more general
acceptance of long lead times. CMieux appears to have a hybrid approach, with
the triangle structure only being apparent for lead times above about 25 days.

5 Information gain analysis

Visual inspection provides a useful starting point for our analysis, however in
general it is time consuming for large data sets, subjective and error prone. In
this section we introduce a more systematic technique to automate the type of
informal analysis discussed in Section 4. Our technique considers the correspon-
dence of particular features with top performance, or their information gain, and
provides insight into the collection of features that made winning agents unique.
By using a metric for comparing several different features at once, we are able
to rank more than 20 different features across all 80 games from the 2006 final
rounds.



8 James Andrews, Michael Benisch, Alberto Sardinha, and Norman Sadeh

5.1 Measuring information gain

In this analysis we calculate the amount of information gained about an agent’s
performance by knowing its value for different features. Information gain is a
popular measure of association in data mining applications. The information
gained about an outcome O from an attribute A is defined as the expected
decrease in entropy of O conditioned on A. The following equations can be used
to calculate the information gained about a discrete outcome O from a discrete
attribute A, which we denote as IG(O, A). We use H(O) to denote the entropy
of O, H(O | A) to denote the entropy of O given A, and P (a) to denote the
probability that attribute A takes on value a in the data.

IG(O, A) = H(O) − H(O | A) (1)

H(O) = −
∑

o∈O

P (o) log2(P (o))

H(O | A) =
∑

a∈A

P (a)H(O | A = a)

H(O | A = a) = −
∑

o∈O

P (o | a) log2(P (o | a))

Intuitively, IG(O, A) is how much better the value of O can be predicted by
knowing the value of A. For a more detailed explanation of information gain as
used in this paper see, for example, [17].

In our analysis we use the information gain metric to determine how much
better we can predict an agent’s success by knowing features of its behavior. For
our data set, we construct a collection of performance observations, with one
observation for each agent in each game. Performance observations include an
outcome value, indicating whether or not the agent placed first3 and 20 different
real-valued attributes of its behavior.

Before we can calculate the information gain of the attributes, we must dis-
cretize them. This is accomplished by splitting the space between the minimum
and maximum values of each attribute evenly into 2k partitions, for a positive
integer k. In our results we present the information gain of all different features
with k varied between 1 and 6. For a particular attribute, using larger values of
k will tend to increase (and cannot decrease) its information gain4. Therefore,
using values of k that are too large can lead to a form of “over-fitting,” where
every attribute can uniquely distinguish every outcome. However, smaller values
of k may overlook the ability of an attribute to distinguish winning agents from
losing ones. Nonetheless, we observe that for all k ≥ 4 (yielding 16 or more
partitions) we can extract a consistent ranking.

3 We later extend this technique to consider other outcomes: specifically, whether or
not an agent finished in the top 3 positions.

4 This is because performances in separate partitions remain separated as k increases.
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5.2 Information gain example

To illustrate our use of information gain we will walk through the following
short example. As in our primary analysis, we will consider the outcome value
of a performance to be whether or not an agent placed first. In our example
we will evaluate the information gained by knowing the maximum lead time an
agent requested on any component order in the game. We will only consider
the feature using 2 partitions: one for less than 50 and the other for greater
than or equal to 50. From 6 games we will create 36 performance observations
(assuming 6 agents in each game). Note that 6

36 are first place performances,
giving the outcome variable over our data set an entropy of:

H(O) = −

[

6

36
log

(

6

36

)

+
30

36
log

(

30

36

)]

≈ 0.65 (2)

Now assume that 8 of the 36 performances had lead times greater than 50,
including 5 of the 6 winning performances. In other words, the probability of
observing a long lead time is 8

36 , the probability of an agent winning given
that it had a long lead time is 5

8 , and the probability of observing a winning
performance without a long lead time is 6−5

36−8 = 1
28 .

We can now calculate the conditional entropy of the outcome variable in
the case where the maximum lead time attribute is greater than or equal to 50
(“long”) and when it is less than 50 (“short”),

H(O | “long”) = −

[

5

8
log

(

5

8

)

+
3

8
log

(

3

8

)]

≈ 0.95 (3)

H(O | “short”) = −

[

1

28
log

(

1

28

)

+
27

28
log

(

27

28

)]

≈ 0.22 (4)

Using the conditional entropy we can calculate the average entropy of the out-
come variable conditioned on the lead time attribute, A,

H(O | A) = P (“long”)H(O | “long”) + P (“short”)H(O | “short”) ≈ 0.38 (5)

Finally, the information gain of the outcome, O, from the attribute A, is the
difference between the entropy of O independent of A, and its average entropy
conditioned on A,

IG(O, A) = H(O) − H(O | A) ≈ 0.27 (6)

Note that, because the initial entropy of the “first place” feature is about 0.65,
the maximum possible information gain for any feature is also 0.65.
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5.3 Information gain results

We now present the information gain of 20 different features across 6 values of k

(representing 2, 4, 8, 16, 32, and 64 partitions). Our data set included all of the
80 games from the 2006 final rounds. Figure 3 shows the information gain of 6
different features at each level of discretization. It illustrates that upon reaching
16 or more partitions, features that provide more information tend to do so
at finer discretization levels as well. Therefore, despite the potential drawbacks
associated with the discretization process, we are still able to extract a fairly
consistent ranking of features based on their ability to differentiate winning
agents.
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Fig. 3. A plot showing the information gain for 6 different features at varying levels of
discretization (k ∈ {1, . . . , 6}). The maximum possible information gain of any feature
is ≈ 0.65.

Table 1 shows the information gain for all 20 different features at three dif-
ferent partition levels: 16, 32 and 64 (a table including information gain levels
for less than 16 partitions is available in an earlier version of this paper [18]).
The features are ranked into 8 categories that are consistent from 16 partitions
on. The ranking illustrates that the two features providing the most informa-
tion about an agent’s performance were both related to its decisions about lead
times on component orders. Additionally, 8 of the top 10 features in the ranking
were related to decisions about component orders, such as their average quantity
and reserve prices. Notably absent from the top distinguishing features were all
demand-oriented features: the highest of these, total sell quantity (in revenue),
tied with four other features for rank 7. This suggests that top agents were able
to distinguish themselves primarily based on the collection of features that char-
acterized their procurement strategy (which is consistent with previous findings
in [8] regarding the 2005 seeding rounds).
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Rank Feature 16 part. 32 part. 64 part.

1 Maximum lead time (supply) 0.347 0.385 0.418
2 Average lead time (supply) 0.339 0.368 0.404
3 Average early component order quantity (sent before day 25) 0.324 0.354 0.391
4 Average reserve price (supply) 0.304 0.314 0.345

Small component order percentage (quantity ≤ 100) 0.286 0.316 0.341
Average reserve price slack(supply) 0.294 0.312 0.334

7 Last-minute component order percentage (lead time ≤ 3) 0.262 0.285 0.324
Short lead time component order percentage (lead time ≤ 10) 0.277 0.289 0.309

Total revenue (demand) 0.274 0.287 0.304
Total quantity sold (demand) 0.262 0.275 0.302

11 Average quantity ordered per day (supply) 0.259 0.271 0.300
12 Average RFQ due date (demand) 0.243 0.265 0.291
13 Average factory utilization 0.222 0.230 0.274

Average selling price (demand) 0.225 0.233 0.246
Average purchase price (supply) 0.217 0.240 0.244
Minimum bank account value 0.220 0.222 0.241

Purchase price standard deviation (supply) 0.206 0.215 0.239
Average stock value 0.223 0.229 0.238

Average order price advantage (supply) 0.226 0.234 0.236
Unsold stock at end of game 0.216 0.217 0.227

Table 1. The information gain of the 20 different features we tested at each level of
discretization between 16 and 64. The features are sorted by information gain at 64
partitions and ranked into groups that are distinguishable at each discretization level
from 16 to 64 partitions.

When calculating information gain for a feature, we determine the percentage
of 1st place performances which occupy each partition for each feature, and
likewise for the percentage of 2nd-6th place performances. Once we’ve identified
an interesting feature, we can examine this information more directly with a
histogram, showing us where exactly the distinctions between agents could be
made. Figure 4, for example, shows a histogram comparing the percentage of 1st
place performances in each of 16 partitions with the percentage of 2nd-6th place
performances in those partitions for maximum component order lead times.

We can see from this plot that a significant percentage of the winning per-
formances used very long maximum lead times – from 190 to 204 days – while
the second most prominent winning performance tended to keep maximum lead
times at only 27 to 40 days. This clues us in to two strong strategies from the
2006 final rounds: winning agents tended to either order components almost to
the end of the game at the very beginning, or they were more conservative and
did not risk long lead times. Agents who restricted themselves to even shorter
time ranges, or who took the large middle ground between 40 and 190 days, did
not tend to be as successful.

Figure 5 shows a similar histogram examining the second most distinguishing
feature: mean component order lead time. In this plot we see that, although a
large maximum lead time was beneficial, agents who used long lead times exces-
sively did not tend to perform well. Very few wins are observed for mean lead
times greater than 40, while the plurality of lead times for winning performances
sits at the relatively low range of 13 to 18. Finally we can see that for both wins
and losses, the lower average lead times were a more popular choice.
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Fig. 4. A histogram comparing the percentage of 1st place performances in each of
16 partitions with the percentage of 2nd-6th place performances in those partitions
for maximum component order lead times. Our performance observations include all
games from the 2006 final rounds.

Fig. 5. A histogram comparing the percentage of 1st place performances in each of
16 partitions with the percentage of 2nd-6th place performances in those partitions for
average component order lead times. Our performance observations include all games
from the 2006 final rounds.

Note that this analysis, by examining what distinguishes first place agents,
focuses on a relatively small set of the agents, since many of the agents never, or
rarely, placed first. For example, the very long maximum lead times which were
strongly associated with first place performances were only used by 2 different
agents. So while the results so far provide interesting clues about what may have
set the few exceptionally successful agents apart from the rest, we also want to
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Fig. 6. A plot showing the information gained about whether or not an agent placed
3rd or better for 6 different features at varying levels of discretization (k ∈ {1, . . . , 6}).

examine what more widely used behaviors were associated with success. To do
so, we re-define our measure of success from “the agent placed first” to “the
agent placed at least third.”

Rank Feature 16 part. 32 part. 64 part.

1 Average lead time (supply) 0.368 0.406 0.458
Average reserve price (supply) 0.333 0.408 0.441

3 Maximum lead time (supply) 0.325 0.392 0.431
4 Small component order percentage (quantity ≤ 100) 0.293 0.329 0.400

Short lead time component order percentage (lead time ≤ 10) 0.266 0.370 0.396
Average reserve price slack (supply) 0.251 0.336 0.394

Last-minute component order percentage (lead time ≤ 3) 0.234 0.337 0.387
Total revenue (demand) 0.246 0.358 0.379

Average early component order quantity (sent before day 25) 0.283 0.339 0.377
Total quantity sold (demand) 0.239 0.343 0.363

Average quantity ordered per day (supply) 0.239 0.334 0.355
Average order price advantage (supply) 0.225 0.334 0.340

13 Average order price (supply) 0.290 0.316 0.330
14 Average RFQ due date (demand) 0.243 0.268 0.299

Average stock value 0.206 0.271 0.285
16 Average factory utilization 0.207 0.236 0.284

Minimum bank account value 0.204 0.248 0.270
Average selling price (demand) 0.220 0.249 0.260
Unsold stock at end of game 0.211 0.252 0.260

Purchase price standard deviation (supply) 0.225 0.240 0.254

Table 2. The information gain of the 20 different features we tested at each level
of discretization between 16 and 64 partitions, with respect to 3rd-place or better
performances. The features are sorted by information gain at 64 partitions and ranked
into groups that are distinguishable with 32 and 64 partitions. The maximum possible
information gain of any feature is 1.
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The results of this extension are shown graphically in Figure 6 and in a
table format in Table 2 for partition sizes of 16, 32 and 64 (results for smaller
partition sizes are available in an earlier version of this paper [18]. These figures
illustrate that the relative ordering of features is less consistent than before.
Nonetheless, we are still able to extract 6 distinct levels of information across 32
and 64 partitions. Many of our observations about first place agents hold true in
this new ranking: decisions about component ordering continue to dominate the
ranking, taking 9 of the 12 top spots. If we rank on the information gained at
64 partitions, all features in the top 10 previously remain in the top 10. There
are certainly differences in the ranking – maximum lead time, for example, has
fallen from being the most important feature to being third most important – but
features which differentiated first place agents appear to continue to differentiate
successful agents more generally.

6 Incorporating these insights into our agent

One of the main take away messages from the analysis in this paper is that in
the 2006 TAC SCM competition, the top agents made purchases with longer
lead times, especially at the beginning of the game. The preference for long-
term procurement contracts is consistent with real world managerial insight
that such contracts have better guarantees of availability, and lower prices. We
incorporated this intuition into our 2007 TAC SCM entry, CMieux, by placing a
greater emphasis on long-term procurement, and in that year’s competition our
agent was one of the six agents to reach the finals.

Placing supply orders with long lead times requires overcoming two major
challenges. The first is estimating a safe level of demand for the long term future,
so that the agent is not stuck with excess supply. We approached this by con-
servatively estimating that demand would be one full standard deviation below
the mean given in the TAC SCM specification [4].

The second challenge was an increase in the number of possible lead times
to consider. To address this issue we split the long-term period into large non-
overlapping buckets, and focused procurement efforts on buckets with greater
projected unmet demand and lower prices. As more agents adopt a long term
procurement strategy, such as the one described above, it is possible that the
benefits will become less pronounced. However, in the 2007 competition we found
that our long term procurement strategy helped our agent procure components
significantly cheaper and with greater reliability [3].

Figure 7 illustrates the change in the lead time “fingerprint” of our agent
from 2006 to 2007, which clearly shoes a greater emphasis on orders with long
lead times.
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Fig. 7. A plot showing the average lead time and game day of component orders placed
by CMieux during the 2006 semi-finals (left) and the 2007 finals (right) for the Pintel
2Ghz component. Based on the analysis in this paper, CMieux was adapted in 2007 to
place a greater emphasis on orders with long lead times.

7 Discussion

This paper presented an investigation into which collection of behavioral features
differentiated winning TAC SCM agents during the 2006 final rounds. We began
with a visual inspection of games from one bracket of the 2006 semi-finals. Plots
from these games revealed unique patterns, or “fingerprints,” which allowed us
to isolate behavioral features that distinguished top performing agents in this
bracket.

Because this type of visual analysis is time consuming, subjective and error
prone, we proceed to develop a systematic methodology to automatically analyze
larger data sets. We applied a quantitative technique to all of the 80 games
in the 2006 final rounds. This technique involved calculating the amount of
information gained about an agent’s performance by knowing its value for each
of 20 different features. The most informative features turned out to be related to
direct decisions regarding component orders, such as the lead times and reserve
prices used. These features differentiated winning agents in the 2006 final rounds
significantly more than those related to costs and revenues.

Our information gain-based analysis technique was limited to examining the
informativeness of individual features. Extending our technique to consider the
effects of combinations of features may provide additional insight. For example,
knowing an agent’s average selling price and average buying price together would
probably be very informative. However, this raises additional concerns about
over-fitting: using several features at once may uniquely identify each agent,
instead of their shared characteristics.

As previously mentioned, our information gain-based technique can also be
extended to consider other outcomes. For example, it may be interesting to in-
vestigate which features distinguish the worst agents. This can be accomplished
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by simply changing the outcome variable associated with each performance ob-
servation.

Finally, an agent designer may wish to answer the question, “what features
differentiate games her agent wins from games it doesn’t?” This can be accom-
plished by modifying the information gain technique in the following ways. First,
only consider performance observations of the agent in question. Second, use fea-
tures related to the game overall, such as its average customer demand, rather
than features of a specific agent’s behavior.
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9 Appendix

This appendix includes three plots that were omitted from the main text.
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Fig. 8. A plot showing the reserve price and order price of component orders placed
by six different agents during the 2006 semi-finals.
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Fig. 9. A plot showing the order quantity (clamped to 1000 to show detail) and game
day of component orders placed by six different agents during the 2006 semi-finals.
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Fig. 10. A plot showing the order price advantage and lead time of component orders
placed by six different agents during the 2006 semi-finals.


