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Abstract

This article discusses the design of the 2007 “Supply
Chain Management - Procurement Challenge” (SCM-
PC), a competition designed by the first three authors to
evaluate the performance of mixed procurement strate-
gies. Specifically, the SCM-PC Challenge revolves
around a PC assembly scenario, where trading agents
developed by different teams compete for components
required to assemble different types of PCs. The Chal-
lenge requires the agents to manage supply chain risk
through combinations of long-term, quantity-flexible
procurement contracts and one-off procurement con-
tracts for different components. Collectively the au-
thors represent the top three entries in the 2007 Pro-
curement Challenge. They present the strategies their
teams developed for the competition, compare their per-
formances, and discuss lessons learned from the compe-
tition.

Introduction
Supply chain management involves planning, implement-
ing and controlling the buying and selling of raw materials,
work-in-process inventory and finished goods. Traditionally,
this process has been static, depending primarily on long-
term relationships between existing trading partners. The in-
creasing adoption of more flexible and dynamic relations has
the potential to make markets more efficient by establishing
better matches between suppliers and customers. However,
as relationships become more flexible the decisions involved
in supply chain management will become more complex due
to both the shear number of factors that have to be taken into
account while making these decisions, and the uncertainties
in the markets. The role of technology to aid in supply chain
management decision making has thus become inevitable.
In the short term, technology can be used passively to pro-
vide insights to supply chain managers. In the longer term,
technology can adopt a more active role by making decisions
in an autonomous manner.

The TAC SCM Competition
The TAC SCM competition was established to simulate
many of the challenges imposed by dynamic markets, while
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keeping the rules simple enough to entice researchers from
various fields to submit entries. The rules of the game mimic
many of the real world market forces, in order to be able to
transfer the results of the game into practical managerial in-
sights. In this competition, the participants make a software
agent that plays the role of a PC manufacturer that needs
to make decisions regarding procurement of raw materials,
production of computers, and sale of these finished goods to
consumers.

The Procurement Challenge
Over the years, the annual TAC SCM competition has be-
come more and more competitive with contributions from
top universities around the world. In order to push the sci-
ence to the extreme, it is necessary to continuously change
the rules of the game. While redesigning a game, one has
to strike a very delicate balance between making a game too
boring for incumbents, and too difficult for new entrants. In
TAC SCM, we achieve this balance by introducing new chal-
lenge games that mimic smaller but more complex goals.

We discuss one such challenge in this paper - the procure-
ment challenge where agents compete in securing profitable
contracts for procuring raw materials from the suppliers. By
limiting the agents’ control to just the procurement of raw
materials we are able to better analyze best practices in a
more controlled setting. In (Andrews et al. 2007), the au-
thors show that in the “baseline” TAC SCM game, the top
agents make purchases with longer lead times. This is sim-
ilar to the real world managerial insight that supply chain
risks can usually be mitigated by adopting long-term pro-
curement options versus one-off contract purchases. In or-
der to further understand the tradeoffs between the uncer-
tainty in demand in the long-term and uncertainty in supply
in the short term, we introduced the option of negotiating
long-term, quantity-flexible procurement contracts in addi-
tion to the one-off procurement contracts that are present in
the “baseline” TAC SCM game.

We present relevant background work in the next section,
and then present an extended description of the procurement
challenge in following section. We then describe the ap-
proaches of the top three agents in the 2007 competition,
and then present a detailed analysis of the results of the ac-
tual competition. We finally conclude by enlisting some in-
sights we have gathered from this work that may be useful



in real world supply chains.

Related Work
The work presented in this paper is closely related to three
lines of research: i.) the development of other trading agent
competitions, ii.) reports about supply chain trading agent
design and analysis, and iii.) work on optimizing procure-
ment decisions through analytical methods and simulations.

Related Work on Trading Agent Competitions
The original Trading Agent Competition (TAC) was first
conceived in 1999 (Wellman and Wurman 1999) as a way
to encourage research on automated trading in a competi-
tive academic environment. The first tournament was held in
July 2000, and centered around a travel scenario (Wellman
et al. 2001). The travel game is now called TAC Classic
and involves agents bidding against one another on the var-
ious components of travel packages to satisfy the demands
of their simulated clients. The annual competitions led to
the growth of a community centered around the topic of
automated trading and significant developments in the un-
derstanding of the phenomena surrounding this topic (many
of these developments are summarized in (Wellman, Green-
wald, and Stone 2007)).

Building on the success of the original Trading Agent
Competition, a new game scenario was introduced in 2003
that focuses on the challenges of automating a supply chain
entity (Arunachalam and Sadeh 2005). The supply chain
game, called TAC Supply Chain Management (TAC SCM),
involves agents playing the role of PC manufacturers who
buy components and sell assembled PCs to simulated cus-
tomers. TAC SCM has cultivated a research community
from over 60 different institutions and 20 different coun-
tries, and continues to produce research that is relevant to
real-world supply chain entities (e.g. (Benisch, Andrews,
and Sadeh 2006; Kiekintveld et al. 2007)).

In 2007 the TAC community introduced three new com-
petitions. One was a completely new scenario called the
TAC Market Design game (Cliff et al. 2007). This game re-
quires entrants to develop automated market rules for match-
ing simulated buyers and sellers. The other new compe-
titions were challenges based on the same scenario as the
TAC Supply Chain Management game. The TAC SCM chal-
lenges isolate specific components of the problem faced by
agents competing in the full game. The TAC SCM Predic-
tion Challenge (Pardoe 2007) focuses on the task of predict-
ing and forecasting the stochastic supply and demand faced
by a supply chain trading agent. The TAC SCM Procure-
ment Challenge is the topic of this paper and was designed
to isolate the procurement decisions faced by agents in the
full TAC SCM game.

Related Work on Trading Agent Design and
Analysis
The agent descriptions in this paper follow a long line of
work describing successful agents for the TAC SCM sce-
nario. For example, Benisch et. al. 2006 (Benisch et al.

2006) provides an in depth description of the different mod-
ules composing the CMieux agent. In Kiekintveld et. al.
2004 (Kiekintveld et al. 2004) the DeepMaize team de-
scribes how their agent dynamically coordinates sales, pro-
curement and production strategies in an attempt to stay
profitable. In (He et al. 2006) the SouthamptonSCM team
presents their agent’s strategy based on fuzzy reasoning.
In (Pardoe and Stone 2004) the TacTex team describes ma-
chine learning techniques that were used to predict bid prices
of other agents and offers considerable insight into the over-
all strategy behind their first-place agent in (Pardoe and
Stone 2006) and (Pardoe and Stone 2007). Podobnik, Petric
and Jezic describe the CrocodileAgent agent in (Podobnik,
Petric, and Jezic 2006), (Petric, Podobnik, and Jezic 2007a)
and (Petric, Podobnik, and Jezic 2007b), and PhantAgent is
described by Stan et. al. in (Stan, Stan, and Florea 2006).
The Botticelli team (Benisch et al. 2004) shows how the
problems faced by TAC SCM agents can be modeled as
mathematical programming problems, and offers heuristic
algorithms for bidding on RFQs and scheduling orders. The
RedAgent team (Philipp W. Keller 2004) presents an inter-
nal market architecture with simple heuristic-based agents
that individually handle different aspects of the supply chain
process.

Related Work on Supply Chain Optimization
The third line of related work involves optimizing supply
chain decisions in a non-competitive setting by analyzing
abstracted models of purchasing decisions or running sim-
ulations. Analytical techniques have come largely from the
management science and operations research communities.
A good overview of the work in this space is given by Lariv-
iere (Lariviere 1999). This work typically attempts to char-
acterize optimal replenishment policies (e.g. (Anupindi and
Bassok 1999)) under various stochastic assumptions about
supply and demand. The most closely related paper to our
work is by Martinez-de-Albeniz and Simchi-Levi (de Alb-
eniz and Simchi-Levi 2005). They address the problem of
optimizing order quantities from a portfolio of flexible long-
term contracts and spot market procurement opportunities
when supply conditions are deterministic (e.g. suppliers do
not refuse business and never default).

There have been a number of other simulation tools de-
veloped to analyze different aspects of supply chain per-
formance. These simulations include software to evaluate
different ways of re-engineering the supply chain (Swami-
nathan, Smith, and Sadeh 1998), determine the impact of
different information exchange protocols on supply chain
performance (Swaminathan, Sadeh, and Smith 1995), and
understand the “bullwhip effect,” (Lee, Padmanabhan, and
Whang 1997) (i.e. the amplification of demand fluctuations
as they travel through a supply chain).

TAC SCM Procurement Challenge
The TAC-SCM Procurement Challenge was introduced in
2007 to provide a competition platform designed to iso-
late the procurement decisions faced by manufacturer agents
in the baseline TAC-SCM game (Arunachalam and Sadeh



2005; Collins et al. 2006). This challenge game also extends
the space of procurement options available to the manufac-
turer agents by allowing them to enter long-term contracts
with suppliers agents.

The TAC SCM Procurement Challenge (or “SCM-PC”)
was designed to promote the development of supply chain
trading agents that are capable of effectively coordinating
their procurement decisions. The game revolves around a
personal computer (PC) assembly supply chain consisting
of competing PC manufacturer agents, their component sup-
plier agents and their customer agents. This challenge re-
quires agents to manage supply chain risk by negotiating
long-term, quantity-flexible procurement contracts and sup-
plementing these contracts with one-off procurement con-
tracts.

The SCM-PC game features three agents competing for
supply contracts from ten different suppliers. Each game has
one hundred simulated days, and each day lasts ten seconds
of real time. A server simulates the customers and suppliers,
and provides banking, production, and warehousing services
to the individual agents. The agents receive messages from
the server on a daily basis informing the state of the game,
such as the current inventory of components, and must send
responses to the same server until the end of the day indicat-
ing their actions, such as component orders to the suppliers.
At the end of the game, the agent with the highest sum of
money is declared the winner.

The long-term contracts are negotiated when the game
starts, and each contract stipulates a minimum and max-
imum weekly quantity the agent commits to purchasing.
Each day, the agents may also decide to procure additional
components by negotiating one-off contracts. Each agent
has an identical factory, where it can produce any type of
computer. The factory is simulated by the game server, and
also includes a warehouse for storing components and fin-
ished computers. A daily production and delivery schedule
are also generated for the agent, and orders are only pro-
duced and delivered if the required components are avail-
able.

Customer Demand, Production and Delivery
On each day, the agents receive the exact same set of orders
from customers representing one third of the total demand.
Each order consists of a product type, a quantity, a due date
and a price per unit. The customer demand is generated
according to the same Poisson distribution as the baseline
TAC-SCM game, with an average that is updated on a daily
basis by a random walk. The server attempts to produce and
deliver orders in a greedy fashion by giving priority to or-
ders with higher revenue. When an order reaches the top
of the queue the server checks whether or not each agent has
enough components to produce it. Those agents with enough
components exchange them for the revenue associated with
the order.

Long-term Contracts
The long-term contracts are used to distribute risk between
suppliers and agents. Each contract consists of a minimum
(Qltsmin) and maximum (Qltsmax) weekly quantity the agent

commits to purchasing, an execution price (pexec) that the
agent has to pay for each unit it actually purchases from the
supplier, and a unit reservation price (pres) that the agent
has to pay independently of how much it actually orders.
To ensure that each game presents a mix of long-term and
one-off contract options, we assume that each component is
available from a supplier that only offers long-term contracts
and another one that only offers one-off contracts.

When the game starts, the agents have the option of ne-
gotiating the long-term contracts for each component, and
these contracts are awarded based on second price auctions.
The server first announces a reserve price (ρ) for each auc-
tion, and then waits ten seconds for the agents to submit
their bids. Each bid consist of a requested maximum weekly
quantity and an execution price that the agent is willing to
pay for each component. The minimum weekly quantity and
the reservation price are not specified by the agents in the
bids, but are calculated by the suppliers as follows:

• Qltsmin = Qltsmax/(1+α), where α changes from one game
to another and is announced at the start of each game.

• pres/(pres + pexec) = β, where β also changes from
one game to another and is announced at the start of each
game.

The long-term contract supplier allocates 100% of its
weekly nominal capacity (Cnomweek) to the bidding agents.
Quantities are allocated based on the requested maximum
weekly quantities, starting with the bid that has the highest
execution price. Each agent’s long-term contract has an exe-
cution price that is computed as the next highest price below
its own bid (”second highest price” rule). The allocation pro-
ceeds until there are no bids left or until the long-term sup-
plier has run out of capacity (based on its weekly nominal
capacity). In the latter situation, the last manufacturer agent
to receive a contract may end up with a maximum weekly
quantity that is less than what it had requested.

At the beginning of any given week, each agent decides
how much to actually order under its long-term contracts. If
the total quantity requested by the agents exceeds the sup-
plier’s capacity, the supplier computes the ratio of demand
it can satisfy based on its actual capacity. Each agent then
receives a quantity that is proportional to this ratio, so that
all agents with long-term contracts are treated equally and
receive the same fraction of their actual demand that week.

One-off Contracts
Every day, manufacturer agents can send requests for quotes
(RFQs) to suppliers with a given reserve price, quantity, type
and delivery date. A supplier receives all RFQs on a given
day, and processes them together at the end of the day to
find a combination of offers that approximately maximizes
its revenue. On the following day, the suppliers send back
to each agent an offer for each RFQ with a price, a possibly
adjusted quantity, and a due date. A detailed description of
the one-off contract negotiation is presented in (Collins et al.
2006).

The suppliers have a limited capacity for producing a
component, and this limit varies throughout the game ac-
cording to a mean reverting random walk. Moreover, sup-



pliers also limit their long-term commitments by reserving
some capacity for future business. The pricing of compo-
nents is based on the ratio of demand to supply, and higher
ratios result in higher prices. Each day the suppliers estimate
their free capacity by scheduling production of components
ordered in the past and components requested that day as
late as possible. The price offered in response to an RFQ is
equal to the requested components base price discounted by
a function proportionate to the supplier’s free capacity be-
fore the RFQ due date. The manufacturer agents normally
face an important trade-off in the procurement process: pre-
order components for the future where customer demand is
difficult to predict, or wait to purchase components and risk
being unsuccessful due to high prices or availability.

TAC SCM-PC Agents
This section describes the approaches of the top three
SCM-PC agents: PhantAgent (University “Politehnica”
of Bucharest), CMieux (Carnegie Mellon University) and
CrocodileAgent (University of Zagreb). Each of these
agents use a different combination of long-term and one-
off contract strategies. One of the primary differences be-
tween the agents is the way that future demand is predicted
and how this prediction is used to create long-term procure-
ment strategies. Another primary difference is how one-off
contracts are handled, with PhantAgent and CrocodileAgent
using repeated queries with fixed lead times and CMieux
varying its lead times between queries.

PhantAgent

PhantAgent divides its decision making process into three
different sub-problems: calculating needed components,
handling long-term contract procurement, and generating
one-off contract orders. Each of these problems is solved us-
ing relatively simple heuristics which we will now describe
in detail. Many of the heuristics used in PhantAgent rely on
external parameters which can be optimized by analyzing
historical performance. However, due to limited availabil-
ity of historical data prior to the 2007 SCM-PC competition
these parameters were set largely by hand.

Calculating Needed Components At the beginning of
each day, PhantAgent estimates the number of components
it will need from the current day to the end of the simula-
tion. In order to determine this number, PhantAgent first
estimates the number of components it expects to have in
inventory on each of the remaining days. The expected in-
ventory levels are estimated by iterating through each day,
adding component arrivals that are due and subtracting the
estimated component usage. The main difficulty in this pro-
cess involves determining a good estimate of each day’s
component usage. We will refer to the usage of component
j on the current day d as Q(d,j). To estimate Q(d,j) PhantA-
gent combines two heuristic values:

• The first heuristic value, E[Qj ], assumes a fixed usage
each day based on the expected demand as described in
the simulation parameters.

• The second, Q̄(d,j), is a moving average of component
usage from the past 10 days.

Both of these heuristic values have certain weaknesses.
The problem with using E[Qj ] is that it is not flexible to
demand variations and fails to account for fluctuations in
demand throughout the game. By ignoring such fluctuations
the agent will often either run out of components or be left
with excess inventory when the simulation nears its end. The
problem with using Q̄ is that demand at the beginning of the
simulation can be significantly different than the demand at
the end. Thus, the long lead time orders placed at the begin-
ning of the game based on the demand at that time may not
match the demand when the components arrive. To avoid
these problems PhantAgent uses a weighted average of both
heuristic values, whereE[Qj ] is weighted more heavily dur-
ing the beginning of the game. The formula is given in Equa-
tion 1.

Q̂(d,j) =
D − d
D

E[Qj ] +
d

D
Q̄(d,j) (1)

where:
D - the total number of days in the simulation.

The result is then slightly scaled down to avoid excess
inventory towards the end of the game due to changes in
demand when the long lead time requests were made.

Handling Long-term Contract Procurement PhantA-
gent prioritizes availability over price in the long-term con-
tracts. In order to capitalize on high selling prices during
time of low availability, it was empirically determined that
bidding the average one-off contract prices from the past
several games enabled the agent to reliably procure the quan-
tity it desired.

Throughout the game PhantAgent exercises the option to
increase weekly order quantities if there is a need for com-
ponents and the one-off contract suppliers are charging more
than the long-term contract prices.

Generating One-off Contract Orders For one-off con-
tract requests, PhantAgent uses all 5 RFQs each day to re-
quest components with fixed lead times (for SCM-PC in
2007, values used were {2, 3, 10, 25, 45} days). The agent
adjusts its requested quantities according to current market
conditions, so on some occasion it might not use some of the
RFQs. This fixed lead time strategy usually allows the agent
to procure components consistently throughout the simula-
tion while paying a price that is close to the average paid by
any agent.

Requests with very short lead times (such as lead times
of 2 and 3 days) are treated independently of the other
RFQs and are used primarily to maintain a steady stock
of components. These requests have been observed to
vary significantly in price from one day to another (during
low and high demand periods, the prices of RFQs with
very short lead times are usually very low and very high
respectively). Handling these daily variations is the main
concern here and for this the reserve price mechanism is
used to only accept offers with good prices.



Generating Long Lead Time Requests with One-off Con-
tracts Since PhantAgent uses fixed lead times for all one-
off contract requests, the main decision regarding long lead
time requests is choosing appropriate order quantities. The
general principle governing this decision is to make long
lead time orders only if they are expected to be better or
equal to orders with short lead times. In most cases the or-
der with longer lead times have the lowest prices. However,
orders with shorter lead times towards the end of the game
are important due to the scaling down applied to the esti-
mated component usage. Order quantities are chosen simply
based on the difference between the expected usage and the
components already expected from prior procurement.

CMieux

The strategy used by CMieux for the long-term contract
negotiation and procurement is described in the next sub-
section. The following sub-section then presents CMieux’s
negotiating strategy for the one-off contracts, which is es-
sentially the same used in (Benisch et al. 2006).

Long-term Contract Negotiation and Procurement The
negotiation of the long-term contracts is conducted on the
first day of each game, and each agent receives a reserve
price pres, an α and a β before it computes a bid for each
component. The main challenge the agent faces when com-
puting a bid, composed of a desired maximum weekly quan-
tity and a bid price, is the high uncertainty it has about the
customer demand and the prices of components in the one-
off contract markets. Thus, the strategy used by CMieux
relies on average one-off contract prices (P̄one−off ) from
previous games to compute a bid price for pexec. The for-
mula is given in Equation 2.

p = max(P̄one−off , ρ+ increment) (2)

The first value of the max function in Equation 2 com-
putes a bid price (p) for low reserve prices (smaller than a
threshold, P̄one−off ). Thus, when reserve prices are low the
agent is willing to buy components from the long-term con-
tract suppliers for a price equal to the average one-off con-
tract price. The second value of the max function in Equa-
tion 2 computes a bid price for high reserve prices (when
ρ ≥ P̄one−off ), and sets p to be very close to ρ.

The requested maximum weekly quantity in each bid is
considered a parameter in the model that must be adjusted
to reflect the amount of risk the agent is willing to take with
the long-term contracts. Empirically, it was determined that
on average the loss from unsold inventory in low customer
demand games outweighed the profits from sales in higher
demand games. This problem occurred due to the very low
flexibility (approximately 15%) between the minimum and
maximum weekly quantities, which was not large enough to
cover all the different customer demand scenarios. Thus, a
more conservative strategy was adopted and the requested
maximum weekly quantity was adjusted to suit low demand
games.

One-off Contract Procurement The module is designed
to rapidly adapt to changing market conditions and exploit
gaps in the one-off contract market to ensure that its procure-
ment prices tend to fall below its competitors. Each day, the
procurement module performs two tasks: i.) it attempts to
identify a particularly promising subset of current supplier
offers, and ii.) it constructs a combination of RFQs to be
sent to suppliers that balances the agent’s component needs
with identified gaps in current supplier contracts.

Accepting Supplier Offers The module accepts supplier
offers using a rule-based decision process. The agent begins
by selecting offers that are satisfactory based on price, quan-
tity and due date using historical data. In an effort to keep the
agent’s reputation as high as possible, the agent first accepts
offers that satisfy the quantity and due date requirements of
the corresponding RFQ (“full offers”). Next, if still needed,
satisfactory offers with relatively large quantities (“partial
offers”), or early due dates (“earliest complete offers”) are
also accepted.

Sending Supplier Requests In order to determine the
amount of components needed, the procurement module
computes the difference between the inventory required to
maintain production levels specified by the customer orders,
and the projected inventory from the long-term and one-off
contract suppliers for the remainder of the game. How-
ever, CMieux does not need to procure this entire difference
each day. The components are not needed immediately, thus
it can divide the purchasing of components across several
days. This will not only enable the agent to aggressively
procure components within a specific scheduling window,
but also allow the agent to buy some of the components it
needs well in advance, when they are likely to be cheapest.

The process of computing what specific requests to send
to suppliers is then decomposed by component type. For
each component type, the procurement module generates
several sets of lead times and searches for the set with the
highest utility. This utility is computed by approximating
the sum of the utility of the components they request and
subtracting their forecast prices. The sets of lead times with
the greatest utility for each component are sent as RFQs to
the appropriate suppliers. The reserve price of each RFQ is
set to be the average utility of the components it includes.

CrocodileAgent
CrocodileAgent’s architecture is based on incorporating a
generic intelligent software agent model (Podobnik, Trzec,
and Jezic 2007) into the IKB framework (Vytelingum et al.
2005), a three layered agent-based framework for designing
strategies in electronic trading markets. The following sec-
tions describe the approach for handling long-term contract
negotiation and one-off contract procurement.

Negotiating Long-term Contracts At the start of the
game the CrocodileAgent negotiates long-term contracts
for each component. After the suppliers announce reserve
prices for each component CrocodileAgent calculates the
maximum weekly quantity it will request. The requested
quantity, Q̂j , for each component j is a linear function of



its reserve price (ρ, where ρ is represented as a fraction of
the component’s base price). The reserve price may assume
any value in the interval [ρmin, ρmax], so Q̂j is calculated as
shown in Equation 3.

Q̂j = (
ρmax − ρ

ρmax − ρmin
)Qmaxj + (3)

(1− ρmax−ρ
ρmax−ρmin

)Qminj

where:
Qminj , Qmaxj - the minimum and maximum quantity

requested for component j.

After the maximum weekly quantities have been deter-
mined, CrocodileAgent submits a long-term contract bid
for each component with price equal to the reserve price
(p = ρ).

Each week CrocodileAgent chooses an actual quantity
to order (Qorderj ) for each long-term contract based on the
amount of components it has in inventory (Nj). This quan-
tity increases linearly from a fixed constant σ% to 100% of
the maximum quantity in the long-term contract (Qltsmax) as
the number of components in inventory decreases. The for-
mula is given in Equation 4.

Qorderj = min(Qltsmax× (4)
N+

j −σ%×N−j +(σ%−100%)×Nj

N+
j −N

−
j

, Qltsmax)

where:
N−
j , N+

j - minimum and maximum inventory level for
component j,

Negotiating One-off Contracts CrocodileAgent breaks
up the procurement problem with one-off contracts into two
different sub-problems: strategy on the first day (day 0) and
replenishment of components during the rest of the game.
A close examination of the baseline TAC SCM Game rules
(Collins et al. 2006) (which also defines the SCM-PC one-
off contract supplier model) suggests that procurement of
components at the very beginning of the game (day 0 pro-
curement) can provide components with low prices through-
out the game (because there is no prior component demand).
Although the concept of day 0 procurement strategy has
some similarities with long-term contract negotiation, these
two procurement strategies are totally independent because
each component is available from two different suppliers:
one that only offers long-term contracts and one that only
sells components with one-off contracts.

Day 0 Strategy with One-off Contracts The goal of us-
ing the day 0 strategy is to acquire components for the be-
ginning of the game and (if possible) buy cheap components
with longer lead times. CrocodileAgent sends a fixed set of
five RFQs on day 0. The parameters for day 0 procurement
were determined by conducting a series of experiments.

Component Purchase During the Game with One-off
Contracts Throughout the game CrocodileAgent uses the
one-off contracts to fill in gaps in its inventory not covered

by the long-term contracts or day 0 strategy. At the begin-
ning of each day, the agent calculates the quantity of each
component that has been previously ordered but not yet de-
livered (Qoutstandingj ). This quantity is multiplied by a fixed
distance factor, so that orders with longer lead times have
a smaller weight than orders with shorter lead times. If
the quantity in inventory plus the outstanding quantity for
a component is less than a fixed threshold, a more aggres-
sive strategy is used where five RFQs are sent to the supplier
with short lead times and relaxed reserve prices. Otherwise,
RFQs are sent to suppliers with fixed lead times so that it
can replenish its inventory without exceeding a maximum
amount.

The one-off contract suppliers sometimes offer bargains
on very short lead times (e.g. lead times of 2 or 3 days). In
order to capitalize on these bargains, CrocodileAgent sends
RFQs with short lead times and low reserve prices during
the first few days of the game and as long as its outstanding
components are not more than a certain percentage above an
acceptable maximum.

2007 TAC SCM-PC Results and Analysis
This section presents the results of the final rounds of the
2007 TAC-SCM Procurement Challenge. The final rounds
were held at the Twenty-Second Conference on Artificial In-
telligence (AAAI-07). They featured twelve games, three
games for each combination of three agents out of the four
finalists. The final standings are presented in Table 1, the
value in the third column is the average profit accumulated
by each agent over the course of the nine games it played in.

Table 1: Final Standings for the 2007 SCM-PC

Games Number Average
Agent Played of Games Score

(out of 12) Won
PhantAgent 9 4 8,731,513

CMieux 9 6 7,405,743
CrocodileAgent 9 2 6,399,115

Warrior 9 0 4,200,440

In addition to the overall competition results we also per-
formed a finer pairwise comparison of the top three agents
to account for the fact that they did not all participate in the
same games. Table 2 presents the performance of pairs of
agents in all of the games involving them both. For the top
three agents there are three distinct pairs and each pair par-
ticipated in six common games. As can be seen, the pairwise
results provide a different ranking with CMieux ahead of the
other two agents and PhantAgent ahead of CrocodileAgent.
It is also worth noting that these results are consistent with
the number of games won by each agent throughout the fi-
nals, with CMieux winning 6 out 9 games, PhantAgent 4 out
of 9 games and CrocodileAgent 2 out of 9 games.

The discrepancy between the overall rankings and pair-
wise rankings can be explained by the varying demand con-
ditions faced by agents in different games. PhantAgent



achieved a higher overall score than CMieux because it par-
ticipated in one game with a high customer demand, and was
able to successfully take advantage of this opportunity.

Table 2: Final “Pairwise” Standings for the 2007 SCM-PC

Agent Games Number of Average
Played Games Won Score

CMieux 6 4 7,149,838
PhantAgent 6 2 6,788,197

Agent Games Number of Average
Played Games Won Score

CMieux 6 4 8,286,761
CrocodileAgent 6 1 4,385,217

Agent Games Number of Average
Played Games Won Score

PhantAgent 6 3 10,027,071
CrocodileAgent 6 1 7,096,601

We will now present analysis of several important aspects
of the game as well as graphs that illustrate the effect of
the strategies adopted by the top three agents. The follow-
ing sub-sections describe the sales volume of each agent, the
one-off and long-term contract mixes, and the average pro-
curement costs.

Customer Orders and Deliveries
To measure the sales volume of the top three SCM-PC
agents, we calculated their realized demand percentage, or
the fraction of the total possible demand that they were able
to satisfy. Figure 1 presents a pairwise comparison of the
average realized demand (with 95% confidence intervals) of
the top three agents. As in Table 2, the values shown for
each pair in Figure 1 are calculated using only the games that
pair participated in. CrocodileAgent had the highest average
realized demand amongst all agents. However, the overlap-
ping confidence intervals show that there was no statistically
significant difference between any of the agents.

Figure 1: Average Realized Demand

Quantity Ordered from the Suppliers
The average number of components ordered by each of the
top three agents from the one-off and the long-term contract
suppliers with 95% confidence intervals is presented in Fig-
ures 2 and 3. These graphs show that all three of the top
agents procure a substantial amount of components from the
more stable long-term market, but tend to buy significantly
more from the one-off contract market. While long-term
contracts provide some amount of flexibility in the weekly
orders, they are negotiated when the agents have no infor-
mation about the customer demand. It is not surprising that
these agents chose to rely more on one-off contracts since
they can be negotiated on a daily basis giving them more
flexibility to adapt to varying market conditions.

Figure 2: Average Number of Components Ordered from
the One-off Contract Suppliers

Figure 3: Average Number of Components Ordered from
the Long-term Contract Suppliers

Component Prices
Figure 4 presents the average weighted prices of components
purchased by each agent in both the long-term and one-off
contract markets combined (with 95% confidence intervals).
The graph shows that CMieux’s procurement prices were
significantly better than the other two agents when compared
across both markets.



Figure 4: Average Weighted Prices of Components from
Long-term and One-off Contracts

When we examine the one-off and long-term contract
markets separately we see that CrocodileAgent was able to
get significantly lower prices for long-term contracts than
the other two agents. CMieux’s long-term prices were a
close second to CrocodileAgent with an average difference
of 1.69%. In the one-off contract market CMieux has a sig-
nificant edge over the other two agents.

CrocodileAgent’s low long-term procurement costs can
be explained by the fact that it bids the lowest possible price
for all of the long-term contracts (as described in the previ-
ous section). However, the fact that CMieux had the low-
est overall procurement costs suggests that CrocodileAgent
was not able to procure enough from the long-term market
to overcome CMieux’s better prices in the one-off contract
market. CMieux’s dynamic one-off contract strategy for op-
timizing RFQs each day was more effective than the fixed
procurement strategies of the other agents. The additional
flexibility provided an advantage leading to the lowest over-
all average procurement costs.

Conclusions and Future Work
This paper began with a description of the Supply Chain
Trading Agent Competition Procurement Challenge (SCM-
PC). In addition to isolating the procurement decisions faced
by agents in the “baseline” Supply Chain Trading Competi-
tion, the SCM-PC rules extended the purchasing options to
include quantity flexible long-term contracts that are negoti-
ated once at the start of the game.

We then described the approaches of the top three SCM-
PC agents from the 2007 competition: PhantAgent (Uni-
versity “Politehnica” of Bucharest), CMieux (Carnegie Mel-
lon University) and CrocodileAgent (University of Zagreb).
These agents were shown to differ primarily in the ways
they predicted future demand and the flexibility they em-
ployed in their one-off contract procurement. In particular,
PhantAgent and CrocodileAgent used repeated queries with
fixed lead times, while CMieux varied its lead times between
queries.

Finally, we presented a detailed analysis of the results
from the actual competition. The results showed that the

agents used long-term procurement contracts to procure a
baseline inventory, but purchased the bulk of their compo-
nents with one-off contracts. This suggests that the existence
of a flexible one-off contract market enabled the agents to
mitigate the risk typically associated with long-term com-
mitments.

One potential short-coming of the results from the 2007
SCM-PC competition is that the agents and agent designers
had very little historical experience to learn from. This lack
of historical data may have made the game less dynamic and
slightly inefficient. In the future we plan to provide tools
allowing agents to analyze information from previous game
logs.

Another future change will involve improving the com-
petition structure itself. Our analysis of the results sug-
gested that CMieux was purchasing components signifi-
cantly cheaper than the other two agents, while maintain-
ing similar service levels. However, due to an imbalance in
game conditions CMieux placed behind PhantAgent in over-
all average profit. A closer look at the reasons for this dis-
crepancy revealed a flaw in the competition structure. Due
to the high variance in customer demand between games
the agents should not have been compared across games
in which they did not all compete. Our attempts to con-
trol for this after the fact (by comparing performance be-
tween agents only in games where they were both present)
appeared to correct the discrepancy.

We originally proposed the TAC SCM Procurement Chal-
lenge in order to better analyze best practices in procure-
ment in a more controlled setting. Largely, we believe we
have made significant progress towards this goal and have
gained important insights about automated supply chain pro-
curement markets. In 2008, we have decided to allow each
supplier to offer both one-off and long-term contracts, rather
than restricting each supplier to offer only one type of con-
tract. This is consistent with practices found in many actual
supply chains and also somewhat more challenging.
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