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Abstract There is increasing demand from both organizations and individuals for 
technology capable of enforcing sophisticated, context-sensitive policies, whether 
security and privacy policies, corporate policies or policies reflecting various reg-
ulatory requirements. In open environments, enforcing such policies requires the 
ability to reason about the policies themselves as well as the ability to dynamical-
ly identify and access relevant sources of information. This article introduces a 
semantic web framework and a meta-control model to orchestrate policy reason-
ing with the identification and access of relevant sources of information. Specifi-
cally, sources of information are modeled as web services with rich semantic pro-
files. Policy Enforcing Agents rely on meta-control strategies to dynamically in-
terleave semantic web reasoning and service discovery and access. Meta-control 
rules can be customized to best capture the requirements associated with different 
domains and different sets of policies. This architecture has been validated in the 
context of different domains, including a collaborative enterprise domain as well 
as several mobile and pervasive computing applications deployed on Carnegie 
Mellon’s campus. We show that, in the particular instance of access control poli-
cies, the proposed framework can be viewed as an extension of the XACML ar-
chitecture, in which Policy Enforcing Agents offer a particularly powerful way of 
implementing XACML’s Policy Information Point (PIP) and Context Handler 
functionality. At the same time, our proposed architecture extends to a much wid-
er range of policies and regulations. Empirical results suggest that the semantic 
framework introduced in this article scales favorably on problems with up to hun-
dreds of services and tens of service directories. 



1   Introduction  

The increasing reliance of individuals and organizations on the Web to help mediate a 
variety of activities is giving rise to a demand for richer policies (e.g. security and pri-
vacy policies as well as other corporate or regulatory policies) and more flexible mech-
anisms to enforce these policies. People may want to selectively expose sensitive in-
formation to others based on the evolving nature of their relationships, or share infor-
mation about their activities under particular conditions. This trend requires context-
sensitive security and privacy policies, namely policies whose conditions are not tied to 
static considerations but rather conditions whose satisfaction, given the very same ac-
tors (or principals), will likely fluctuate over time. Enforcing such policies in open 
environments is particularly challenging for several reasons: 

 
− Sources of information available to verify these policies may vary from one 

principal to another (e.g. different users may have different sources of location 
tracking information made available through different cell phone operators); 

− Available sources of information for the same principal may vary over time (e.g. 
when a user is on company premises her location may be obtained from the 
wireless LAN location tracking functionality operated by her company, but, 
when she is not, this information can possibly be obtained via her  cell phone 
operator); 

− Available sources of information may not be known ahead of time (e.g. new lo-
cation tracking functionality may be installed or the user may roam into a new 
area). 

 
Accordingly, enforcing context-sensitive policies in open domains requires the ability 
to opportunistically interleave policy reasoning with the dynamic identification, selec-
tion and access of relevant sources of contextual information. This requirement exceeds 
the capability of decentralized trust management infrastructures proposed so far and 
calls for policy enforcing mechanisms capable of operating according to significantly 
less scripted scenarios than is the case today. It also calls for much richer service pro-
files than those found in early web service standards. 

 
We introduce a semantic web framework and a meta-control model for dynamically 

interleaving policy reasoning and external service identification, selection and access. 
Within this framework, external sources of information are wrapped as web services 
with rich semantic profiles allowing for the dynamic discovery and comparison of 
relevant sources of information. The framework is applicable to a number of domains 
where policy reasoning requires the automatic discovery and access of external sources 
of information. This is illustrated by drawing on examples from our work on collabora-
tive enterprise scenarios as well as on mobile and pervasive computing applications we 
have deployed at Carnegie Mellon University.  Independently of the particular domain, 
our framework relies on Policy Enforcing Agents (PEA) to enforce one or more types 
of policies The range of the policies can be broad, and may include access control poli-
cies, privacy policies or regulations such export control policies, HIPPA policies or US 
Safe Harbor policies. We show that, in the case of access control policies, our frame-
work can be viewed as an extension of XACML by providing a practical and particular 



powerful implementation of what the XACML architecture refers to as Policy Infor-
mation Points (PIP) and Context Handler functionality [33]. We proceed to show that 
our framework extends to a broader class of corporate and regulatory policies and pro-
vide empirical evidence that our architecture scales favorably to problems with up to 
hundreds of sources of information and tens of service directories. 

 
The remainder of this paper is organized as follows. Section 2 provides a brief over-

view of relevant work in decentralized trust management and semantic web technolo-
gies. Section 3 introduces a particular instantiation of a Policy Enforcing Agent devel-
oped to enforce access control policies and obfuscation policies (namely policies that 
manipulate the level of accuracy or inaccuracy at which information or services can be 
accessed). We refer to this particular class of PEAs as Information Disclosure Agents 
(IDA). This section further details the different modules of an IDA and how their opera-
tions are opportunistically orchestrated by meta-control strategies in response to incom-
ing requests. Section 4 details how IDAs can be viewed as extensions of the XACML 
architecture. Section 5 discusses the application of PEAs to a broader range of context-
sensitive policies.  Additional implementation details along with empirical results are 
presented in Section 6. Section 7 contains some concluding remarks.   

2   Related Work  

The work presented in this paper builds on concepts of decentralized trust management 
developed over the past decade (see [4] as well as more recent research such as 
[2,3,13]) . Most recently, a number of researchers have started to explore opportunities 
for leveraging the openness and expressive power associated with semantic web 
frameworks in support of decentralized trust management (e.g. [1, 5, 6, 11, 13, 26, 29, 
30] to name just a few) and policy aware web information sharing scenarios [17, 18] . 
Our earlier work in this area involved the development of semantic web reasoning 
engines (or “Semantic e-Wallets”) that enforce context-sensitive privacy and security 
policies in response to requests from context-aware applications implemented as intel-
ligent agents [8, 9]. Semantic e-Wallets played a dual role of gatekeeper and clearing-
house for sources of information about a given entity (e.g. user, device, service or or-
ganization). In this paper, we introduce a more decentralized framework, where policies 
can be distributed across any number of agents and web services. The main contribu-
tion of the work discussed here is in the development and initial evaluation of a seman-
tic web framework and a meta-control model for opportunistically interleaving policy 
reasoning and web service discovery to enforce context-sensitive policies (e.g. privacy 
and security policies). This contrasts with the more scripted approaches to interleaving 
these two processes adopted in our earlier work on Semantic e-Wallets. 

 
Our research builds on recent work on semantic web service languages, (e.g. OWL-S 

[35], WSMO [42], SAWSDL [38]) and semantic web service discovery functionality. 
Early work in this area by Paolucci et al. [22] focused on matching semantic descrip-
tions of services being sought with semantic profiles of services being offered that 
include descriptions of input, output, preconditions and effects (see also our own work 



in this area [24]). More recently discovery functionality has also been proposed that 
takes into account security annotations [16].  

 
Other relevant work includes languages for capturing user privacy preferences such 

as P3P’s APPEL language [36], and for capturing access control privileges such as the 
Security Assertion Markup Language (SAML) [34], the XML Access Control Markup 
Language (XACML) [33] and the Enterprise Privacy Authorization Language (EPAL) 
[32]. These languages do not take advantage of semantic web concepts and do not at-
tempt to solve the problem of identifying and gathering information required to enforce 
policies.  Rein [14, 15] is another semantic web framework for modeling and reasoning 
over policies that has been developed concurrently with ours. While the objectives of 
Rein are generally similar to ours, the work presented in this paper focuses specifically 
on the process of orchestrating policy reasoning with the identification and access of 
relevant sources of information required to verify policies. KAoS is another semantic 
web framework that has looked at integrating semantic web service concepts with poli-
cy reasoning [30]. Our Semantic e-Wallets as well as research described herein has    
relied on an extension of OWL Lite known as ROWL to represent policies that refer to 
concepts defined with respect to ontologies [8, 9, 10]. While ROWL has been a con-
venient extension of OWL to represent and reason about rules, it is by no means the 
only available option. In fact, ROWL shares many traits with several other languages. 
One better known language in this area is RuleML [37], a proposed standard for a rule 
language, based on declarative logic programs. Another is SWRL [12], which uses 
OWL-DL to describe a subset of RuleML. The focus of the present paper is not on 
semantic web rule languages but rather on a semantic web framework and a meta-
control model for enforcing context-sensitive policies. For the purpose of this paper, the 
reader can simply assume that the expressiveness of our own ROWL language is by 
and large similar to that of a language like SWRL with both languages supporting the 
combination of Horn-like rules with one or more OWL knowledge bases.  

 
Another relevant line of research involves work on trust negotiation, namely the de-

velopment of interactive protocols to incrementally establish trust through the dynamic 
exchange of credentials.  In particular, PeerTrust [20] uses logic programming to repre-
sent and reason about access control policies. This includes the delegation of terms in a 
Horn clause to other peers for evaluation. Another example of work in this area is 
Trust-Serv [28], a model-driven trust negotiation framework for Web services. While in 
these systems, the process of identifying sources of information to enforce policies is 
encoded in the form of rules, the framework presented in this article also allows for the 
dynamic discovery of relevant sources of information (in addition to being able to 
model rules such as those described in the trust negotiation literature). This additional 
flexibility makes it possible to support significantly more open environments, where 
one is not required to anticipate all possible sources of relevant information ahead of 
time.  

 
 
 
 



3   Information Disclosure Agents  

 
Figure 1. Information Disclosure Agents: Overall Architecture 

This section introduces a particular type of Policy Enforcing Agent responsible for 
controlling access to an information service. We refer to this type of agent as an Infor-
mation Disclosure Agent and use it to illustrate our architecture for Policy Enforcing 
Agents. Specifically, consider an environment where sources of information are all 
modeled as services that can be automatically discovered based on rich ontology-based 
profiles advertised in service directories. Each service has an owner, whether an indi-
vidual or an organization, which is responsible for setting policies for it, with policies 
represented as rules. Policies include both access control policies (e.g. who has the right 
to access a service and under which particular conditions) and obfuscation policies (i.e. 
policies that manipulate the level of accuracy or inaccuracy of information being dis-
closed). 

 
An Information Disclosure Agent (IDA) receives requests for information or service 

access. In processing these requests, it is responsible for enforcing access control and 
obfuscation polices specified by its owner and captured in the form of rules. As it pro-
cesses incoming queries (or, more generally, requests), the agent records status infor-
mation that helps it monitor its own progress in enforcing its policies and in obtaining 
the necessary information to satisfy the request. This typically involves submitting 
multiple requests to a policy reasoner module and an information collector module. The 
latter can draw on both local knowledge as well as external sources of information – 



including possible interactions with users. All communication with the outside is as-
sumed to be encrypted and digitally signed.  

Meta-control rules support the implementation of different orchestration strategies, 
from simple sequential control flows to more sophisticated processes capable of auto-
matically accessing directories and concurrently collecting information from multiple 
sources.  Strategies are executed by selectively activating different IDA modules (e.g. 
policy reasoning modules, local information reasoner, service invocation module, etc.). 
This is further detailed later in this and other Sections. 

In our current implementation, the meta-controller and information collector are 
rule-based engines implemented in JESS [7]. For efficiency reasons they are imple-
mented as separate modules within the same JESS reasoning engine (i.e. each module 
comes with its own set of rules and control can be passed back and forth between the 
modules).  In some domains, we have also used JESS to implement the policy reasoner 
module, while in others we have wrapped “legacy” policy reasoners (e.g. Sun’s 
XACML Policy Decision Point used for the work described in Section 4).  

3.1 Meta-controller 

A PEA’s Meta-Controller consists of a Meta-Control submodule, a Housekeeping 
submodule, and a Query Status Information knowledge base. As the PEA processes 
incoming queries, its meta-controller monitors progress and determines what to do next. 
Specifically, it continuously cycles through the following three basic steps: 

1. The Meta-Control submodule analyzes the latest query status information and de-
cides which of the PEA’s module(s) to invoke next to perform particular tasks 
(e.g. obtaining information required to evaluate a policy or invoking the policy 
reasoner). As it invokes these modules the Meta-Control submodule updates rele-
vant query status information (e.g. updating the status of a query from “not yet 
processed” to “being processed”, identifying query elements that still need to be 
evaluated, etc.).  

2. Modules complete their tasks (whether successfully or not) and report back to the 
Meta-Controller – occasionally modules may also report on their ongoing pro-
gress in handling a task. 

3. The Housekeeping submodule updates detailed status information based on in-
formation received from other modules and performs additional housekeeping ac-
tivities (e.g., cleaning up status information that has become obsolete, caching the 
results of recent requests for possible re-use and to mitigate the effects of possible 
denial of service attacks, etc.) 

 
Query status information helps the PEA monitor how far along it is in processing 

individual requests, namely determining whether the request (or query) complies with 
relevant access control policies, gathering the requested information and applying rele-
vant obfuscation rules, if any, to sanitize information before it is returned to the re-
quester. It is expressed according to a taxonomy of predicates intended to keep track of 
different activities typically involved in processing a query. This includes the status of 
individual queries as well as the status of query elements they give rise to. Examples of 



query elements include the evaluation of particular rules (e.g. “If the requester is a 
preferred supplier, it can have access to our component requirements forecast”). Query 
elements are also used to model the need to obtain information required to evaluate 
individual rules (e.g. “is this particular company a preferred supplier?”, or “which de-
partment does this employee work for?”). Processing query elements may in turn gen-
erate new query elements, whose statuses also need to be tracked. Accordingly, query 
status information includes whether a query (or query element) has been or is being 
processed, what individual query elements it has given rise to, whether these elements 
have been processed, etc. All status information is annotated with time stamps.  

 
Query status information is updated by asserting new facts (in the query status in-

formation knowledge base), with old statuses being cleaned up. As query updates come 
in, they trigger one or more meta-control rules, which in turn result in additional query 
status information updates and the invocation of one or more modules (e.g. policy rea-
soning module, local information reasoner, etc.).  
 
     An IDA’s Meta Controller relies on meta-control rules to analyze query status in-
formation and determine which module(s) to activate next. Meta-control rules are mod-
eled as if-then clauses, with Left Hand Sides (LHSs) specifying their premises and 
Right Hand Sides (RHSs) their conclusions. LHS elements refer to query status infor-
mation, while RHS elements contain facts that result in module activations. Query 
status information helps keep track of how far along the IDA is in obtaining the infor-
mation required by each query and in enforcing relevant policies. Query status infor-
mation in the LHS of meta-control rules is expressed according to a taxonomy of predi-
cates that helps the agent keep track of queries and query elements - e.g., whether a 
query has been or is being processed, what individual query elements it has given rise 
to, whether these elements have been cleared by relevant access control policies and 
sanitized according to relevant obfuscation control policies, etc. All status information 
is annotated with time stamps. Specifically, query status information includes: 

 
− A query status ID 
− Status predicates to describe the status of a query or query element 
− A query ID and query element ID to which the predicate refers 
− A parent query status ID to help keep track of dependencies (e.g. a query ele-

ment may be needed to help check whether another query element is consistent 
with a context-sensitive access control policy). These dependencies, if passed be-
tween IDA agents, can also help detect deadlocks (e.g. two IDA agents each wait-
ing for information from the other to enforce their policies) 

− A time stamp that describes when the status information was generated or updat-
ed. This information is critical when it comes to determining how much time has 
elapsed since a particular module or external service was invoked. It can help the 
agent look for alternative external services or decide when to prompt the user (e.g. 
to decide whether to wait any longer) 

 
A sample of query status predicates is provided in Table 1. Clearly, different taxono-
mies of predicates can lead to more or less sophisticated meta-control strategies. For the 
sake of clarity, status predicates in Table 1 are organized in seven categories: 1) com-



munication; 2) query; 3) query elements; 4) access control; 5) obfuscation; 6) service 
discovery and 7) service invocation. 

 Sample Status Predicates Description 
 
 
1) 

Query-Received A particular query has been received.  
Sending-Response Response to a query is being sent 
Query-make-deadlock The incoming query may result in an endless loop. According to 

different meta control rules, the IDA may respond a failure to query 
sender, or consult the user to handle the problem. 

Response-Sent Response has been successfully sent 
Response-Failed Response failed (e.g. message bounced back) 

 
 
 
 
2) 

Processing Query Query is being processed 
Query Decomposed Query has been decomposed (into primitive query elements) 
All-Elements-Available All query elements associated with a given query are available (i.e. all 

the required information is available) 
All-Elements-Cleared All query elements have been cleared by relevant access control 

policies 
Clearance-Failed Failed to clear one or more access control policies 
All-Elements-Sanitized All query elements have been sanitized according to relevant obfusca-

tion policies 
Sanitization-Failed Failed to pass one or more obfuscation policies 

 
 
 
 
 
3) 

Element-Needed A query element is needed. Query elements may result from the 
decomposition of a query or may be needed to enforce policies. The 
query element’s origin helps distinguish between these different cases 

Processing-Element A need for a query element is  being processed 
Element-Available Query element is available 
Element-Cleared Query element has been cleared by relevant access control policies 
Clearance-Failed Failed to pass one or more access control policies 
Element-Sanitized Query element has been sanitized using relevant obfuscation policies 
Sanitization-Failed Failed to pass one or more obfuscation policies 
Element-locally-available The value of a query element can not be obtained from the local 

domain ontologies 
4) Clearance-Needed A query or query element needs to be cleared by relevant access 

control rules 
5) Sanitization-Needed Query or query element has to be sanitized subject to relevant obfusca-

tion policies 
 
 
6) 

Element-need-service A query element requires the identification of a relevant service 
No-service-for-Element No service could be identified to help answer a query element. This 

predicate can be refined to differentiate between different types of 
services (e.g. local versus external) 

Service-identified One or more relevant services have been identified to help answer a 
query element 

 
 
 
 
 
7) 

Waiting-for-service-
response 

A query element is waiting for a response to a query sent to a service 
(e.g. query sent to a location tracking service to help answer a query 
element corresponding to a user’s location) 

Failed-service-invocation A service failed to be invoked. Again this predicate could be refined to 
distinguish between different types of failure (e.g. service down, 
access denied, etc.) 

Service-response-time-
out 

The service doesn’t respond the query for a time longer than the 
threshold. It will results in a failed-service-response  

service-response-
available 

A response has been returned by the service. This will typically result 
in the creation of an “Element-Available” status update. 

Table 1. Sample list of status predicates. 

 
 



Meta status is updated by asserting new facts into the working context (with old status-
es being cleaned up). As query updates come in, they trigger one or more meta-control 
rules, which in turn result in additional query status information updates and possibly 
additional actions. Below is an example of a meta-control rule that invokes a service 
after it is identified. Depending on the invocation result, the current meta-status gets 
updated to “waiting-for-service-response” or “failed-service-invocation” 

 
(defrule invoke-service-if-identified  
  ?x <- (metastatus  
    (statusID ?sid) 
    (predicate "service-identified")  
    (parentID ?pid)  
    (timeStamp ?) 
    (queryID ?qid) 
    (elementID ?eid) 
  ) 
  => 
  (bind ?result (invoke-service ?eid)) 
  (bind ?time ((new java.util.Date) getTime)) 
  (if (= ?result “success”) 
    (assert (metastatus  
      (statusID ?*statusID*) 
      (predicate "waiting-for-service-response")  
      (parentID ?sid)  
      (timeStamp ?time) 
      (queryID ?qid) 
      (elementID ?eid) 

)) 
(retract ?x)  

 Else 
    (assert (metastatus  
      (statusID ?*statusID*) 
      (predicate "failed-service-invocation")  
      (parentID ?sid)  
      (timeStamp ?time) 
      (queryID ?qid) 
      (elementID ?eid) 

)) 
(retract ?x)  

) 
  (bind ?*statusID* (+ ?*statusID* 1)) 
)   
 

Meta-control rules can also be defined to consult with users, whether to ask for a par-
ticular piece of information (i.e. using a user as an external source of information) or to 
decide what to do next (e.g. to decide whether or not to abandon a particular course of 
action in situations that are taking longer than expected). 

 
In general, different collections of query status predicates and meta-control rules 

will result in different behaviors. Accordingly, our meta-control architecture enables 
one to tailor Policy Enforcing Agents to the particular policies and scenarios associated 
with a given domain, with simpler domains giving rise to simpler sets of behaviors and 



more complex ones allowing for more sophisticated logic to handle a wider range of 
situations. Figure 2 depicts the overall set of behaviors associated with a relatively 
simple set of status predicates and meta-control rules. In this particular case, upon re-
ceiving a request, the IDA generates an information status update indicating that a new 
query has been received. This information is expressed as a tuple of the form (statusID 
predicate queryID elementID parentID timestamp) such as (status1 query-received 
query1 nil nil time1). Because receiving a query is the first step, there is no parent ID 
and no query element so their values are nil. Next, the meta-controller generates a new 
status update indicating that the request has to be run against relevant access control 
rules, - e.g. (status2 clearance-needed query1 element1 status1 time2). This status up-
date in turn results in the meta-controller invoking the policy reasoner, which in turn 
can lead to the creation of one or more query elements. Given this particular set of   
meta-control rules, the IDA first tries to find the information required for each query 
element in its local knowledge. If this does not work, the IDA creates an element-not-
known-locally status predicate, which in turn leads to the creation of an element-need-
service status predicate. This status predicate later triggers a service identification step. 
This will typically followed by the actual identification of a service, its invocation and 
eventually the IDA obtains the information required to determine whether its policy is 
satisfied, etc.  

 
While this section focused on Information Disclosure Agents, it is easy to see that 

context-sensitive policies other than access control policies and obfuscation policies 
can easily be enforced with agents built around a similar architecture with status predi-
cates and meta-control modules used to orchestrate policy reasoning and the collection 
of relevant information.. In the remainder of this paper, we generically refer to these 
agents as Policy Enforcing Agents (PEAs).  

 
 



 
Figure 2. An example set of meta-control rules 



3.2 Policy Reasoner 

The PEA’s policy reasoning engine is responsible for evaluating relevant policies and 
returning policy decisions. For the sake of simplicity, we assume that all relevant poli-
cies are stored within the policy reasoner or in a centralized knowledge base (or data-
base) accessible to the policy reasoner. In general, policies may come from multiple 
sources (e.g. combination of department policies, corporate policies and government 
regulations). If this is the case, a more general policy collection module similar to the 
PEA’s information collector might be required to identify all relevant policies. Some 
policies could also be embedded in other PEAs, which could themselves be modeled as 
external sources of information. For example, checking whether an employee has de-
partmental approval to request a vacation could be performed by querying a depart-
mental service, which could evaluate corresponding policies on the fly. This latter con-
figuration is covered by the architecture presented in this paper. 

    In general, the policy reasoner includes the following modules: 

1. Query Decomposition Module takes as input a particular query and breaks it 
down into elementary needs for information, which can each be thought of as 
subgoals or sub-queries. We refer to these as Query Elements. The value of a 
Query Element can be obtained just based on facts contained in the agent’s lo-
cal knowledge base, or by invoking both local and remote services.  

2. Access Control Module is responsible for determining whether a particular que-
ry or sub-query is consistent with relevant access control policies – modeled as 
access control rules. While some policies can be checked just based on facts 
contained in the agent’s local knowledge base, many policies require obtaining 
information from a combination of both local and external sources. When this 
is the case, rather than immediately deciding whether or not to grant access to a 
query, the Access Control Module needs to request additional facts – also mod-
eled as Query Elements.  

3. Obfuscation Module sanitizes information requested in a query according to 
relevant obfuscation policies – also modeled as rules. As it evaluated relevant 
obfuscation policies, this module too can post requests for additional Query El-
ements.  

It should be emphasized that our architecture is not tied to a particular policy reasoner. 
Instead, different policy reasoning engines can be plugged in to support reasoning 
about different types of policies. This is illustrated in this paper by presenting examples 
and results obtained with two different families of policy reasoners: 

1. A family of JESS-based policy reasoners capable of enforcing a broad range of 
policies. Policies are expressed as ROWL rules [10] that refer to concepts spec-
ified in domain-specific ontologies written in W3C’s OWL language [41]. 
ROWL has been used to specify a number of policies, from access control poli-
cies, to obfuscation policies, to message processing policies, etc. Instantiations 
of this engine have been deployed in the context of several mobile and perva-
sive computing applications piloted on Carnegie Mellon’s campus (e.g. 



MyCampus [27] and PeopleFinder [23] application) as well as in the context of 
enterprise collaboration scenarios. 

2. Sun’s XACML Policy Decision Point implementation, which evaluates 
XACML decision requests against XACML access control policies. In this con-
figuration, the Sun PDP engine is wrapped to interoperate with our PEA archi-
tecture. This includes translating output from the Sun PDP engine into query 
status information. This is further detailed in Section 4.  

3.3 Information Collector 

The Information Collector is responsible for gathering facts (or “information”) required 
to evaluate a given decision request. It works under the supervision of the meta-
controller, which orchestrates policy reasoning and information collection. Facts re-
quired for evaluating policy decision requests may be known locally or may have to be 
obtained from other sources of information. Accordingly, the Information Collector 
comprises a Local Information Reasoner, a Service Discovery submodule, a Service 
Invocation submodule. Note that the users themselves could be modeled as services that 
can be queried for missing information. The Local Information Reasoner corresponds 
to domain knowledge (facts and rules) known locally to the PEA. The Service Discov-
ery submodule helps the PEA identify potential sources of information to complement 
its local knowledge.  

In our current implementation, knowledge in the Location Information Reasoner is 
represented using RDF/OWL and ROWL (for domain rules).Specifically, we use an 
OWL meta-model, equivalent to OWL-Lite to interpret and reason about OWL state-
ments. Ontologies and annotations are translated into Jess facts, while inference rules 
are translated into Jess rules through a combination of both forward and backward 
chaining, with backward chaining used to express the “need” for facts and help identify 
sources of information (or services) that are likely to provide these facts. For instance, a 
rule that specifies that two people are colleagues if they have the same employer may 
trigger one or more backward chaining rules to determine each person’s employer, e.g. 
first looking for local information and, if this fails, possibly looking for external ser-
vices that can provide this information..  
 

External services can be either pre-identified (using service identification rules such 
as “When checking if someone is a company employee, ask the company’s HR service”) 
or found with the help of directories (e.g. “find services that provide supplier ratings”),  
whether internal to a given organization or external to it. Clearly, service identification 
rules that map information needs onto specific services can yield significant speedups. 
At the same time, the ability to rely on more general service discovery processes that 
involve querying service directories and identifying matches based on rich service 
annotations can provide a significantly greater level of openness. By allowing service 
discovery rules to include both direct service identification rules and more complex 
discovery and comparison rules, PEAs allow policy developers to selectively choose 
between both options.  

 



As already indicated, PEAs can possibly treat users as sources of additional domain 
knowledge. It is worth noting that users can also serve as potential sources of meta-
control knowledge (e.g. if a particular query element proves too difficult to locate, the 
user may be asked whether to give up). 

3.4. Service Discovery and Invocation 

A central element of our framework is the ability of PEA agents to dynamically identify 
sources of information needed to process queries. Sources of information are modeled 
as semantic web services and may operate subject to their own policies enforced by 
their own PEA agents. Accordingly service invocation is itself implemented in the form 
of queries sent to a service’s PEA agent.    

 

In this paper, we use WOWL (Web services in OWL) to annotate services, as this 
language has the merit of being fairly compact. We have also implemented variations 
of our architecture using the OWL-S language [25] and could readily adopt other 
equivalent frameworks (e.g. WSMO [42] or SAWSDL[38]). A WOWL service descrip-
tion includes: 

1. The service’s output.  
2. Its preconditions 
3. Relevant non-functional attributes [21], if any  
4. A description of how to invoke the service, including the service’s endpoints 

and its input 
 
In our current implementation, we use an XSLT transformation to convert WOWL 
service profiles into service discovery rules expressed in Jess. The discovery rules are 
expressed as “if-then” clauses - or “Left Hand Side” (LHS) implies “Right Hand Side” 
(RHS). The LHS refers to the types of facts a given service can provide (as specified in 
its output) and includes the service’s preconditions and input parameters. The RHS 
creates a matching “service-identified” status predicate.  In other words, given an ‘ele-
ment-need-service” status predicate indicating that one is looking for a service that can 
provide a particular type of fact, all matching services whose preconditions and input 
conditions are also satisfied will trigger matching service discovery rules. As they are 
triggered, these rules will in turn result in the creation of matching “service identified” 
status predicates indicating that any of these services can possibly yield the desired 
information. The meta-controller can later decide which one(s) of the services to actual-
ly query – depending on its particular meta-control rules.   

 
    Given that PEAs can look for and query external sources of information, whose 
access may in turn be control by other PEAs, it is entirely possible to run into dead-
locks, e.g. two PEAs, each waiting for a response from the other before they can pro-
ceed with a given query. A simple solution to this problem can involve using timeouts, 
which can themselves be implemented in the form of meta-control rules.  Specifically, 
in our current implementation, time-outs can be specified in the form of independent 
threads, which periodically check the timestamp of the pending meta statuses. The rule 



may simply specify the query is considered to have failed or it may ask the user wheth-
er to allocate more time for processing. In addition, all status information is annotated 
with time stamps which can be used to detect timeout situations. Circular analysis has 
also been implemented to help detect deadlocks independently of the length of time 
taken by a given query.  

 
This is done using query dependency graphs, in which each query is represented as 

a node and query dependency is represented as a directed edge. If two queries that de-
pend on each other have the same sender, the same receiver and ask the same infor-
mation, they are in a deadlock situation. The agent that receives a query is responsible 
for detecting the deadlock and can either respond with a query-failed response or ask 
the sender to notify the user that a deadlock has been detected.  

 
 

4. Access Control Agents based on XACML 

One particular instance of an IDA is an Access Control Agent (ACA) which only 
implements access control policies. Given the amount of effort invested by industry 
over the past few years to define a standard for such agents, it makes sense to look at 
how our PEA architecture relates to the architecture developed as part of the XACML 
standard [33]. As it turns out, our PEA architecture can be viewed as an extension of 
this standard and it is possible to build instantiations of our PEAs that rely on XACML 
Policy Decision Points and on the XACML language to express and enforce access 
control policies.. This is illustrated in Figure 3, which shows the architecture of an 
ACA agent we have implemented using Sun’s XACML Policy Decision Point (PDP) 
engine [40]. Incoming decision requests (or “queries”) are directed to the agent’s Meta-
Controller which doubles as an XACML Policy Enforcing Point (PEP). Queries are 
converted from their native format to XACML, using a language adaptor, which essen-
tially subsumes part of the XACML Context Handler functionality, with the other part 
being handled by the meta-controller. Missing information is dynamically identified 
through interactions between the meta-controller and the Information Collector, the 
latter playing the role of XACML Policy Information Point (PIP).  

 



 

Figure 3. PEA Instantiated as an Access Control Agent 
using Sun’s XACML Policy Decision Point engine. 

4.1 An Aerospace Contractor Scenario 

The ACA agent depicted in Figure 1 has been implement tosupport  the access control 
requirements associated with a fictitious aerospace contractor, which we refer to as 
United GenSat Corporation. United GenSat is a California-based manufacturer of geo-
stationary satellites. It builds two lines of communications satellites: the SAT 666 and 
the SAT 777. These two lines of satellites are designed to support mobile communica-
tions, and a series of global positioning and military communications applications.  

 
<Rule RuleId="Pre-approvedSupplierRule" Effect="Permit"> 
 <Target> 
  <Subjects> 
      <AnySubject/> 
  </Subjects> 
  <Resources> 
   <Resource> 
     <ResourceMatch MatchId="string-equal"> 
     <AttributeValue DataType="&XMLSchema;#string"> 

         ProductionSchedule 
       </AttributeValue> 
        <ResourceAttributeDesignator  
            DataType="&XMLSchema;#string" 
            AttributeId="resource-id"/> 
      </ResourceMatch> 
     </Resource> 
  </Resources> 
  <Actions> 
   <Action> 
    <ActionMatch MatchId="string-equal"> 



     <AttributeValue  
            DataType="&XMLSchema;#string"> 
       query 
     </AttributeValue> 
     <ActionAttributeDesignator  
            DataType="&XMLSchema;#string" 
            AttributeId="action-id"/> 
    </ActionMatch> 
   </Action> 
  </Actions> 
 </Target> 
 <Condition FunctionId="string-equal"> 
  <Apply FunctionId="string-one-and-only"> 
   <SubjectAttributeDesignator  
            DataType="&XMLSchema;#string" 
            AttributeId="SupplierCategory"/> 
  </Apply> 
  <AttributeValue  
            DataType="&XMLSchema;#string"> 
    Pre-approved 
  </AttributeValue> 
 </Condition> 
 <Condition FunctionId="string-equal"> 
  <Apply FunctionId="string-one-and-only"> 
   <SubjectAttributeDesignator  
            DataType="&XMLSchema;#string" 
            AttributeId="AuthorizedEmployee"/> 
  </Apply> 
  <AttributeValue DataType="&XMLSchema;#string"> 
    Yes 
  </AttributeValue> 
 </Condition> 
</Rule> 

Figure 4 Sample XACML policy limiting access to Production Schedule information 
to authorized employees at pre-approved subcontractors. 

 
Due to the sensitive nature of its activities and products, United GenSat is particularly 
concerned about maintaining tight control over who accesses what information both 
within its organization as well as in the context of interactions with its trading partners. 
These interactions include the selective exchange of scheduling information to ensure 
close coordination with key suppliers. Policies to control access to this information are 
expressed in XACML. An example of one such policy is provided in Figure 4. The 
policy only permits authorized employees (attribute of subject) of pre-approved suppli-
ers (attribute of subject) to query (attribute of action) the production schedule of prod-
ucts it is contributing to (attribute of resource).  

Consider Bob, an employee at SATElectronics Corporation, a United GenSat suppli-
er pre-approved to access production schedule information of products it contributes to. 
Bob sends a request to United GenSat, requesting next month’s production schedule for 
the SAT 777.  His request, which includes the identity of his company, is forwarded to 
the appropriate United GenSat Access Control Agent (ACA). To determine whether to 



grant access to the requested information, the ACA needs additional information, 
namely (i) whether SATElectronics is pre-approved to obtain this information – for the 
sake of simplicity we will just assume that this information is maintained in the ACA’s 
local knowledge base, and (ii) whether Bob is an authorized SATElectronics employee 
when it comes to accessing production schedule information. To answer this latter 
question, the ACA needs to identify a service at SATElectronics and send it a query. 

Upon receiving the request, United GenSat’s ACA generates an information status 
update indicating that a new query has been received. This facts of the new query is 
expressed as  triples of the form (predicate subject object) – e.g. (sender query1 Bob) 
or (ask query1 element1). Next, the meta-controller generates a new status update indi-
cating that the request has to be cleared based on applicable access control policies, The 
required element to be cleared is also presented as a triple, like (schedule SAT777 ?s). 
Here ?s represents a variable whose value is unknown. This status update in turn results 
in the meta-controller invoking the policy reasoner, which in turn leads to the creation 
of two query elements – one requiring to check whether Bob’s company, SATElectron-
ics, is pre-approved to access production schedule information and the other to check 
whether Bob is an authorized employee. The meta-control rules are assumed to first 
check the ACA’s local knowledge base and find that SATElectronics is indeed pre-
approved. On the other hand, Bob’s authorized employee status cannot be determined 
locally. This results in the creation of an element-not-known-locally status predicate, 
which in turn leads to the creation of an “element-need-service” status predicate, fol-
lowed by a service identification step. A SATElectronics service is identified and a 
response eventually provided indicating that Bob is an authorized employee. As a result, 
a status predicate is created indicating that Bob’s request has now been cleared. 

 
A particularly interesting step in this scenario is the one through which the ACA 

identifies a SATElectronics service capable of identifying whether Bob is an authorized 
employee. Different processing flows are possible here, depending on the particular 
meta-control rules and service discovery rules implemented in the ACA. In this particu-
lar implementation, the meta-controller first checks whether missing knowledge is 
available locally. If that fails (as in this case), it turns to the service discovery module. 
The service discovery module includes a number of rules aimed at making service 
identification as efficient as possible, as well as extremely general “fall-back” rules in 
case none of the more specialized rules produce results. In this example, we rely on a 
service identification rule for checking attributes of employees of other companies. The 
rule, in this simple scenario, just tells the ACA to check the company’s directory for a 
service capable of providing the necessary query element (i.e. whether Bob is an au-
thorized employee). The directory is assumed to include a simple service called “Au-
thEmpService”, whose WOWL annotations indicate it can provide the missing infor-
mation - namely  whether the employee (whose name is provided as input) is an author-
ized employee of SAT Electronics (see wowl:output in Figure 5). 

 
<wowl:ServiceRule wowl:salience="100"> 
 <rdfs:label>SATElcEmpService</rdfs:label> 
 <wowl:output> 
  <scm:Company rdf:about="&var;#co"> 
   <scm:hasAuthorizedEmp 



          rdf:resource="&var#emp"/> 
  </scm:Company> 
 </wowl:output> 
 <wowl:precondition> 
  <scm:Schedule rdf:about="&var;#sche"> 
   <scm:has Access rdf:resource="&var#emp"/> 
   </scm:Schedule> 
 </wowl:precondition> 
 <wowl:precondition> 
  <scm:Product rdf:about="&var;#product"> 
   <scm:hasSchedule 
          rdf:resource="&var;#sche"/> 
  </scm:Product> 
 </wowl:precondition> 
 <wowl:precondition> 
  <scm:Company rdf:about="&var;#co"> 
   <scm:hasName rdf:resource="SATElectronics"/> 
  </scm:Product> 
 </wowl:precondition> 
 <wowl:call> 
  <wowl:Service wowl:name="AuthService"> 
   <wowl:endpoint>SATServiceAgent</wowl:endpoint> 
   <wowl:input> 
    <scm:People rdf:about="&var#emp"> 
      <scm:hasName rdf:about="&var#nam"/> 
    </scm:People> 
   </wowl:input> 
  </wowl:Service> 
 </wowl:call> 
</wowl:ServiceRule> 

Figure 5. WOWL Service profile 

 
The service’s precondition further indicates that this particular service is specifically to 
verify whether people are authorized to access production schedule information. 

Admittedly, this scenario takes some short cuts. A more realistic variation would 
have to do a better job at dealing with confidentiality considerations and would likely 
involve multiple levels of indirection, with some service discovery performed by Unit-
ed GenSat’s ACA and some performed locally by SATElectronics in response to a 
more general query from United GenSat. Nevertheless, once a service such as Au-
thEmpService in Figure  has been identified, its profile can be used to automatically 
generate an access request intended to verify whether Bob is an authorized employee. 
This step is performed by the ACA’s service invocation module. It includes automati-
cally generating the necessary service query along with additional facts required by the 
service as indicated in its input and precondition profile. In this particular case, the 
query is of the form: 

 
(query 
  (sender "United GenSat") 
  (predicate "&scm;#SATElectronics") 
  (subject "&scm;#hasAuthorizedEmp") 



  (object "&scm;#Bob")) 
 

Based on the service’s input profile, the following fact is sent along with the query:   
 
(triple 
  (predicate "&scm;#hasName") 
  (subject "&scm;#Bob") 
  (object "Bob")) 
 
Clearly, this assumes that both the service provider and service requester share a 

common ontology. If not, semantic reasoning rules may be needed to establish a map-
ping between their respective ontologies. 

4.2   Updating Query Status Information 

The following illustrates the processing of a query by an IDA, using the scenario intro-
duced above. Bob’s query about the production schedule of SAT777 is first processed 
by the IDA’s Communication Gateway, resulting in a query information status update 
indicating that a new query has been received. This information is expressed as a col-
lection of (predicate subject object) triples of the form: 

 
(triple "Status#predicate" "status1" "query-received") 
(triple "Query#queryId" "status1" "query1") 
(triple "Query#parentId" "status1" nil) 
(triple "Query#timestamp" "querystatus1" time1) 
(triple "Query#sender" "query1" "Bob") 
(triple "Query#element" "query1" "element1") 
(triple "Ontology#schedule" "SAT777" "element1") 
 
Next, the meta-controller activates the Query Decomposition Module, resulting in 

the creation of two query elements: one query element to establish whether this request 
is compatible with United GenSat’s access control policies and the other to obtain the 
production schedule of SAT777: 
 
(triple "Status#predicate" "status2" "clearance-needed") 
(triple "Status#predicate" "status3" "element-needed") 
 
Let us assume that the meta-controller decides to first focus on the “clearance-

needed” query element and invokes the Access Control Module which is actually an 
XACML PDP. This module determines that two conditions need to be checked and 
accordingly creates two new query elements (“check-conditions”). One condition re-
quires checking whether Bob is an authorized SATElectronics employee: 
 
(triple "Status#predicate" "status4" "element-needed") 
(triple "Query#queryId" "status4" "element2") 
(triple "Query#parentId" "status4" "query1") 
(triple "Query#condition" "element2" "Ontology#hasAuthorizedEmp ") 
(triple "Ontology#hasAuthorizedEmp" "SATElectronics" "Bob") 



Figure 6. Query status updates for a fragment of the scenario. 

This condition in turn requires a series of information collection steps that are orches-
trated by the meta-control rules in United GenSat’s IDA. In this example, we assume 
that the IDA’s local knowledge base does not know Bob’s employment information. 
According the following query status information update is eventually generated:  

 
(triple "Status#predicate" "status5" "element-not-locally-available") 



(triple "Query#queryId" "status5" "element2") 
 

United GenSat’s IDA has a meta-control rule to initiate service discovery when a query 
element can not be found locally. The rule, expressed in CLIPS [31], is of the form: 

 
(triple "Status#predicate" ?s1 "element-not-locally-available") 
(triple "Status#predicate" ?s2 "element-needed ") 
(triple "Query#queryId" ?s1 ?e1) 
(triple "Query#queryId" ?s2 ?e1) 
=> 
(assert (triple "predicate" ?newstatus "element-need-service")) 
(assert (triple "Query#queryId" ?newstatus ?e1) 
 

Using this rule, the meta-controller now activates the Service Discovery Module. A 
service to find Bob’s employment information is identified. This results in a query 
status update of the type “service-identified”.  

(triple "Status#predicate" ?s1 "element-need-service") 
(triple "Status#predicate" ?s2 "service-identified") 
(triple "Query#queryId" ?s1 ?e1) 
(triple "Query#queryId" ?s2 ?service) 
(triple "Query#parentId" ?s2 ?e1) 
=> 
(assert (triple "Status#predicate" ?newstatus "waiting-for-service-
response")) 
(assert (triple "Status#queryId" ?newstatus ?service)) 

Note that, if there are multiple matching services, the service discovery module needs 
rules to help select among them. 

 
Let us assume that the service discovery module identifies that Bob’s employer, 

SATElectronics is a trustful information source to answer if Bob is an authorized em-
ployee. The Housekeeping module updates the necessary Query Status Information, 
indicating among other things that information about Bob’s information has been found 
(“element-available”) and cleaning old status information. This is done using a rule of 
the type:  

?x <- (triple "Status#predicate" ?s1 "waiting-for-service-response") 
?y <- (triple "Query#queryId" ?s1 ?service) 
(triple "Status#predicate" ?s2 "service-response-available") 
(triple "Query#queryId" ?s2 ?result) 
=> 
(retract ?x) 
(retract ?y) 
(assert (triple "Status#predicate" ?newstatus "element-available")) 
(assert (triple "Query#queryId" ?newstatus ?result)) 

The scenario continues through several similar steps. A full flow diagram is shown 
in Figure 6. For better readability, we do not restrict the syntax of the meta statuses 
shown in this figure.  



5. Beyond Access Control Policies 

PEAs are not limited to information disclosure and enforcing access control policies. 
The same meta-control architecture can be used to support more flexible processing 
flows when it comes to enforcing a broad range of policies. This is illustrated in this 
section by examining a scenario where United GenSat undertakes to develop a new 
satellite model, SAT 888, for a client in the UK. As it works on the design of the SAT 
888 in collaboration with both current and prospective suppliers, the company needs to 
ensure compliance with a variety of policies.  This includes compliance with corporate 
supplier selection policies as well as with US export control regulations (e.g. the US 
International Traffic in Arms Regulations, ITAR)  

 

 

Figure 7. Using a PEA to check for compliance with supplier selection policies, 
including supplier scoring requirements and government export controls. 

 

United GenSat relies on a specialized PEA to help it ensure compliance with these 
policies. As employees working on the SAT 888 refine their design and evaluate differ-
ent options, they submit policy conformance requests to the PEA. This includes check-
ing for compliance of sourcing decisions with both export control regulations and cor-
porate supplier selection policies. These policies are expressed in ROWL [10] and 
require accessing a combination of corporate and external services to obtain up-to-date 
supply ratings and export restrictions. An example of such a ROWL rule is shown in 
Figure . It specifies that, when a product is to be exported (i.e. its country of destination 
is not equal to “USA”), it is approved for export if its country of destination and its 
Export Control Classification Number (ECCN) are not on the Bureau of Industry and 



Security (BIS) Commerce Control List. If the combination of the product’s ECCN and 
export country appears in the list (in the form of a “CCLStatement”), then an export 
license has to be obtained.  

As before, the PEA’s meta-control module orchestrates the evaluation of these poli-
cies, looking for information in its local knowledge base and, when necessary, looking 
for services that can provide missing information. This latter step is performed with the 
help of the PEA’s service discovery module. In this simple example, it is assumed that 
the required services are known ahead of time. In other words, the PEA can rely on 
simple service identification rules such as “When looking for a CCLStatement, issue a 
query to the BIS Commerce Control List and Chart Service”. 

 
<rowl:Rule> 
  <rdfs:label>Export+Approval+Needed</rdfs:label> 
  <rowl:head> 
    <scm:Product rdf:ID="&var;#prod"> 
      <scm:hasExportApproval> 
        <scm:ExportApprovalResult rdf:resource="&scm;#true"/> 
      </scm:hasExportApproval> 
    </scm:Product> 
  </rowl:head> 
  <rowl:body> 
    <scm:Product rdf:ID="&var;#prod"> 
      <scm:hasDestination rdf:resource="&var;#country"/> 
    </scm:Product> 
    <rowl:not> 
      <scm:Country rdf:resource="&var;#country"> 
        <rowl:equal-to rdf:resource="&scm;#USA"/> 
      </scm:Country> 
    </rowl:not> 
    <scm:CCLStatement rdf:resource="&var;#ccl"> 
      <scm:hasProduct rdf:resource="&var;#prod"/> 
      <scm:hasECCN rdf:resource="&var;#eccn"/> 
      <scm:hasCountry rdf:resource="&var;#country"/> 
      <scm:hasReason rdf:resource="&var;#reason"/> 
      <scm:hasResult rdf:resource="&var;#result"/> 
    </scm:CCLStatement> 
    <rowl:or> 
      <scm:Result rdf:resource="&var;#result"> 
        <rowl:equal-to rdf:resource="&scm:#not_in_list"/> 
      </scm:Result> 
      <scm:Result rdf:resource="&var;#result"> 
        <rowl:equal-to rdf:resource="&scm:#has_licence"/> 
      </scm:Result> 
    </rowl:or> 
  </rowl:body> 
</rowl:Rule> 

Figure 8. A ROWL export control compliance policy 

 



Because the BIS, ITAR and OFAC services used in this scenario do not exist at this 
time (i.e. the current websites are not implemented as web services), our implementa-
tion of this scenario currently relies on stubs.  

Going back to the ROWL policy listed in Figure 8, if there is a CCL Statement indi-
cating that the product’s ECCN and its export country are incompatible with export 
restrictions, the policy will result in the creation of an “Element-Needed” status predi-
cate with attribute “has_license”. In other words, the policy reasoner will let the meta-
controller know that the only remaining option to satisfy this policy is to obtain an 
export license. This in turn could prompt the launch of a process to obtain such a li-
cense or it could lead the United SatGen employee who submitted the validation re-
quest to look for a different design. This shows how PEAs could also be integrated into 
workflow management functionality.  

6  Current Implementation: Evaluation and Discussion  

Our policy enforcing agents are currently implemented in JESS, a high-performance 
rule-based engine in Java [7]. Domain knowledge, including service profiles, ontolo-
gies, annotations and semantic inference rules are expressed in OWL [41]. We have 
implemented multiple instances of PEAs, including PEAs relying on different policy 
languages and reasoning capabilities. This includes multiple instances of ROWL policy 
reasoners and Sun’s more specialized PDP reasoner to enforce XACML policies. As 
already indicated earlier ROWL could easily be replaced with languages such as 
RuleML, SWRL or some similar language. XSLT transformations are used to translate 
OWL facts and extensions of OWL (e.g. to model rules and queries) into CLIPS. Agent 
modules are organized as JESS modules.  

 
The performance of Jess is decided by the number of facts instead of the number of 

rules. We have tested our system under different number of policies (rules), and the 
CPU time required for answering a query has no significant difference. Therefore, our 
scalability evaluation focuses on the size of ontology and service repository.  

 
We have evaluated our solution on an IBM server with 2 Intel Xeon 3.0GHz CPU 

and 3GB of RAM. The server was running Windows XP Professional OS, Java SDK 
1.4.2 and Jess 6.1. Below we report empirical results obtained to evaluate the scalabil-
ity of our PEA implementation.  

 
Specifically, the first table below reports results obtained using ontologies from the 

Lehigh University Benchmark (LUBM) [19]. The results are based on an OWL univer-
sity ontology with around 10000 triples after translation. Results are reported for repos-
itories of 100, 200 and 500 randomly generated semantic web services in a single re-
pository. The input and output parameter types were randomly selected from the classes 
in the domain ontology. CPU times are in milliseconds. We report the total time re-
quired to process a query as well as the amount of processing required by individual 
modules, namely the meta-controller, access control reasoning module, local 
knowledge reasoner and service discovery module. 



 
 
 
 
 
 

Number of  
Services 

100 200 500 

Meta-controller 397 500 1128 
Access-controller 48 44 53 
Local Knowledge 38 56 66 
Service discovery 31 45 62 
Total 514 645 1309 

 
The result shows that the query time increases (nearly linearly) when the service reposi-
tory is growing. A second set of experiments involved distributing the service reposito-
ry by limiting the number of services in each repository, but increasing the number of 
service repositores (or directories). Each directory had its own PEA agent with scenari-
os typically requiring multiple directory queries before an adequate service could be 
identified. In these experiments, each repository agent had a lighter ontology with about 
1000 triples and 100 registered services. Again, the table below reports over processing 
time in milliseconds as well as the time required by individual modules. 

 
 

Number of Ser-
vice Repositories 

5 10 15 20 

Meta-controller 56 124 156 285 
Access-controller 15 15 44 70 
Local Knowledge 14 33 51 114 
Service discovery 20 60 89 151 
Total 105 232 340 620 

 
A Policy Enforcing Agent is also used to enforce people’s location privacy policies in a 
PeopleFinder application we have deployed on Carnegie Mellon’s campus [23]. A 
typical PeopleFinder PEA contains 500 triples. In experiments involving 200 users, 
each with their own PEAs to enforce their privacy policies, a typical request for a user’s 
location can be processed against the user’s policies within 100 msec.  

 
The performance result shows that our solution can be viewed as practical and scala-

ble in the experimental settings.  It should be noted that our solution is not JESS-
specific. At the same time, a significant number of experiments still need to be con-
ducted to gain a more comprehensive understanding of the scalability of our approach.  
Other complex issues such as reasoning about provenance (i.e. possible conflicts of 
interest of information sources used to build a proof) and inconsistent policies also 
require significant additional work. Differentiating between situations where a policy 
has been shown not to be satisfied and situations where the agent has not yet been able 
to determine whether a policy is satisfied will likely call for differentiating between 



classical negation and “negation as failure”. One possible solution here would be to use 
a framework such as SweetRules as an add-on to our semantic web reasoner [39] 

7   Concluding Remarks  

In this paper, we presented a semantic web framework for dynamically interleaving 
policy reasoning and external service discovery and access. Within this framework, 
external sources of information are wrapped as web services with rich semantic profiles 
allowing for the dynamic discovery and comparison of relevant sources of information. 
Each entity (e.g. user, sensor, application, or organization) relies on one or more Policy 
Enforcing Agents responsible for enforcing relevant policies in response to incoming 
requests. These agents implement meta-control strategies to dynamically interleave 
semantic web reasoning, service discovery and access.  These meta-control strategies 
can also be extended to treat the user as another source of information, e.g. to confirm 
whether a given fact holds or to provide meta-control guidance such as deciding when 
to abandon trying to determine whether a policy is satisfied. 

 
We have shown that our architecture for Policy Enforcing Agents can be implement-

ed as an extension to XACML’s PIP and context handler functionality. We proceeded 
to also show that it extends to a much broader class of corporate and regulatory policies 
and presented an example where a PEA is used to enforce sourcing policies, both cor-
porate supplier selection policies and export control regulations. PEAs to enforce dif-
ferent types of policies or to operate on similar policies in different domains will rely 
on slightly different sets of modules and different meta-control strategies, yet they can 
all be implemented using the same meta-control architecture and many of the same 
principles presented in this paper. They generally rely on a taxonomy of query infor-
mation status predicates to monitor their own progress in processing incoming queries 
and enforcing relevant security and privacy policies. They use meta-control rules to 
decide which action to take next (e.g. decomposing queries, seeking local or external 
information, etc.).  

 
We have implemented several instances of our PEAs in the context of collaborative 

enterprise scenarios as well as in the context of several mobile and pervasive compu-
ting applications piloted on Carnegie Mellon’s campus. Empirical results presented in 
this paper indicate that our existing implementation scales favorably on scenarios in-
volving up to hundreds of sources of information and tens of service directories. Future 
work will focus on further exploring scalability issues, evaluating tradeoffs between the 
expressiveness of meta-control rules and efficiency. Other issues of particular interest 
include studying opportunities for concurrency (e.g. simultaneously accessing multiple 
web services), dealing with real-time meta-control issues (e.g. deciding when to give up 
or when to look for additional sources of information/web services), and better integrat-
ing the user as a source of information. 
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