
A meta-control architecture for orchestrating policy en-
forcement across heterogeneous information sources

Jinghai Rao, Alberto Sardinha and Norman Sadeh

School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue,

Pittsburgh, PA, 15213, USA
{jinghai; alberto; sadeh}@cs.cmu.edu

Keyword: Semantic Web, Context Sensitive Policies, Web services, security and
privacy

Abstract There is increasing demand from both organizations and individuals for
technology capable of enforcing sophisticated, context-sensitive policies, whether
security and privacy policies, corporate policies or policies reflecting various reg-
ulatory requirements. In open environments, enforcing such policies requires the
ability to reason about the policies themselves as well as the ability to dynamical-
ly identify and access relevant sources of information. This article introduces a
semantic web framework and a meta-control model to orchestrate policy reason-
ing with the identification and access of relevant sources of information. Specifi-
cally, sources of information are modeled as web services with rich semantic pro-
files. Policy Enforcing Agents rely on meta-control strategies to dynamically in-
terleave semantic web reasoning and service discovery and access. Meta-control
rules can be customized to best capture the requirements associated with different
domains and different sets of policies. This architecture has been validated in the
context of different domains, including a collaborative enterprise domain as well
as several mobile and pervasive computing applications deployed on Carnegie
Mellon’s campus. We show that, in the particular instance of access control poli-
cies, the proposed framework can be viewed as an extension of the XACML ar-
chitecture, in which Policy Enforcing Agents offer a particularly powerful way of
implementing XACML’s Policy Information Point (PIP) and Context Handler
functionality. At the same time, our proposed architecture extends to a much wid-
er range of policies and regulations. Empirical results suggest that the semantic
framework introduced in this article scales favorably on problems with up to hun-
dreds of services and tens of service directories.

1 Introduction

The increasing reliance of individuals and organizations on the Web to help mediate a
variety of activities is giving rise to a demand for richer policies (e.g. security and pri-
vacy policies as well as other corporate or regulatory policies) and more flexible mech-
anisms to enforce these policies. People may want to selectively expose sensitive in-
formation to others based on the evolving nature of their relationships, or share infor-
mation about their activities under particular conditions. This trend requires context-
sensitive security and privacy policies, namely policies whose conditions are not tied to
static considerations but rather conditions whose satisfaction, given the very same ac-
tors (or principals), will likely fluctuate over time. Enforcing such policies in open
environments is particularly challenging for several reasons:

− Sources of information available to verify these policies may vary from one

principal to another (e.g. different users may have different sources of location
tracking information made available through different cell phone operators);

− Available sources of information for the same principal may vary over time (e.g.
when a user is on company premises her location may be obtained from the
wireless LAN location tracking functionality operated by her company, but,
when she is not, this information can possibly be obtained via her cell phone
operator);

− Available sources of information may not be known ahead of time (e.g. new lo-
cation tracking functionality may be installed or the user may roam into a new
area).

Accordingly, enforcing context-sensitive policies in open domains requires the ability
to opportunistically interleave policy reasoning with the dynamic identification, selec-
tion and access of relevant sources of contextual information. This requirement exceeds
the capability of decentralized trust management infrastructures proposed so far and
calls for policy enforcing mechanisms capable of operating according to significantly
less scripted scenarios than is the case today. It also calls for much richer service pro-
files than those found in early web service standards.

We introduce a semantic web framework and a meta-control model for dynamically

interleaving policy reasoning and external service identification, selection and access.
Within this framework, external sources of information are wrapped as web services
with rich semantic profiles allowing for the dynamic discovery and comparison of
relevant sources of information. The framework is applicable to a number of domains
where policy reasoning requires the automatic discovery and access of external sources
of information. This is illustrated by drawing on examples from our work on collabora-
tive enterprise scenarios as well as on mobile and pervasive computing applications we
have deployed at Carnegie Mellon University. Independently of the particular domain,
our framework relies on Policy Enforcing Agents (PEA) to enforce one or more types
of policies The range of the policies can be broad, and may include access control poli-
cies, privacy policies or regulations such export control policies, HIPPA policies or US
Safe Harbor policies. We show that, in the case of access control policies, our frame-
work can be viewed as an extension of XACML by providing a practical and particular

powerful implementation of what the XACML architecture refers to as Policy Infor-
mation Points (PIP) and Context Handler functionality [33]. We proceed to show that
our framework extends to a broader class of corporate and regulatory policies and pro-
vide empirical evidence that our architecture scales favorably to problems with up to
hundreds of sources of information and tens of service directories.

The remainder of this paper is organized as follows. Section 2 provides a brief over-

view of relevant work in decentralized trust management and semantic web technolo-
gies. Section 3 introduces a particular instantiation of a Policy Enforcing Agent devel-
oped to enforce access control policies and obfuscation policies (namely policies that
manipulate the level of accuracy or inaccuracy at which information or services can be
accessed). We refer to this particular class of PEAs as Information Disclosure Agents
(IDA). This section further details the different modules of an IDA and how their opera-
tions are opportunistically orchestrated by meta-control strategies in response to incom-
ing requests. Section 4 details how IDAs can be viewed as extensions of the XACML
architecture. Section 5 discusses the application of PEAs to a broader range of context-
sensitive policies. Additional implementation details along with empirical results are
presented in Section 6. Section 7 contains some concluding remarks.

2 Related Work

The work presented in this paper builds on concepts of decentralized trust management
developed over the past decade (see [4] as well as more recent research such as
[2,3,13]) . Most recently, a number of researchers have started to explore opportunities
for leveraging the openness and expressive power associated with semantic web
frameworks in support of decentralized trust management (e.g. [1, 5, 6, 11, 13, 26, 29,
30] to name just a few) and policy aware web information sharing scenarios [17, 18] .
Our earlier work in this area involved the development of semantic web reasoning
engines (or “Semantic e-Wallets”) that enforce context-sensitive privacy and security
policies in response to requests from context-aware applications implemented as intel-
ligent agents [8, 9]. Semantic e-Wallets played a dual role of gatekeeper and clearing-
house for sources of information about a given entity (e.g. user, device, service or or-
ganization). In this paper, we introduce a more decentralized framework, where policies
can be distributed across any number of agents and web services. The main contribu-
tion of the work discussed here is in the development and initial evaluation of a seman-
tic web framework and a meta-control model for opportunistically interleaving policy
reasoning and web service discovery to enforce context-sensitive policies (e.g. privacy
and security policies). This contrasts with the more scripted approaches to interleaving
these two processes adopted in our earlier work on Semantic e-Wallets.

Our research builds on recent work on semantic web service languages, (e.g. OWL-S

[35], WSMO [42], SAWSDL [38]) and semantic web service discovery functionality.
Early work in this area by Paolucci et al. [22] focused on matching semantic descrip-
tions of services being sought with semantic profiles of services being offered that
include descriptions of input, output, preconditions and effects (see also our own work

in this area [24]). More recently discovery functionality has also been proposed that
takes into account security annotations [16].

Other relevant work includes languages for capturing user privacy preferences such

as P3P’s APPEL language [36], and for capturing access control privileges such as the
Security Assertion Markup Language (SAML) [34], the XML Access Control Markup
Language (XACML) [33] and the Enterprise Privacy Authorization Language (EPAL)
[32]. These languages do not take advantage of semantic web concepts and do not at-
tempt to solve the problem of identifying and gathering information required to enforce
policies. Rein [14, 15] is another semantic web framework for modeling and reasoning
over policies that has been developed concurrently with ours. While the objectives of
Rein are generally similar to ours, the work presented in this paper focuses specifically
on the process of orchestrating policy reasoning with the identification and access of
relevant sources of information required to verify policies. KAoS is another semantic
web framework that has looked at integrating semantic web service concepts with poli-
cy reasoning [30]. Our Semantic e-Wallets as well as research described herein has
relied on an extension of OWL Lite known as ROWL to represent policies that refer to
concepts defined with respect to ontologies [8, 9, 10]. While ROWL has been a con-
venient extension of OWL to represent and reason about rules, it is by no means the
only available option. In fact, ROWL shares many traits with several other languages.
One better known language in this area is RuleML [37], a proposed standard for a rule
language, based on declarative logic programs. Another is SWRL [12], which uses
OWL-DL to describe a subset of RuleML. The focus of the present paper is not on
semantic web rule languages but rather on a semantic web framework and a meta-
control model for enforcing context-sensitive policies. For the purpose of this paper, the
reader can simply assume that the expressiveness of our own ROWL language is by
and large similar to that of a language like SWRL with both languages supporting the
combination of Horn-like rules with one or more OWL knowledge bases.

Another relevant line of research involves work on trust negotiation, namely the de-

velopment of interactive protocols to incrementally establish trust through the dynamic
exchange of credentials. In particular, PeerTrust [20] uses logic programming to repre-
sent and reason about access control policies. This includes the delegation of terms in a
Horn clause to other peers for evaluation. Another example of work in this area is
Trust-Serv [28], a model-driven trust negotiation framework for Web services. While in
these systems, the process of identifying sources of information to enforce policies is
encoded in the form of rules, the framework presented in this article also allows for the
dynamic discovery of relevant sources of information (in addition to being able to
model rules such as those described in the trust negotiation literature). This additional
flexibility makes it possible to support significantly more open environments, where
one is not required to anticipate all possible sources of relevant information ahead of
time.

3 Information Disclosure Agents

Figure 1. Information Disclosure Agents: Overall Architecture

This section introduces a particular type of Policy Enforcing Agent responsible for
controlling access to an information service. We refer to this type of agent as an Infor-
mation Disclosure Agent and use it to illustrate our architecture for Policy Enforcing
Agents. Specifically, consider an environment where sources of information are all
modeled as services that can be automatically discovered based on rich ontology-based
profiles advertised in service directories. Each service has an owner, whether an indi-
vidual or an organization, which is responsible for setting policies for it, with policies
represented as rules. Policies include both access control policies (e.g. who has the right
to access a service and under which particular conditions) and obfuscation policies (i.e.
policies that manipulate the level of accuracy or inaccuracy of information being dis-
closed).

An Information Disclosure Agent (IDA) receives requests for information or service

access. In processing these requests, it is responsible for enforcing access control and
obfuscation polices specified by its owner and captured in the form of rules. As it pro-
cesses incoming queries (or, more generally, requests), the agent records status infor-
mation that helps it monitor its own progress in enforcing its policies and in obtaining
the necessary information to satisfy the request. This typically involves submitting
multiple requests to a policy reasoner module and an information collector module. The
latter can draw on both local knowledge as well as external sources of information –

including possible interactions with users. All communication with the outside is as-
sumed to be encrypted and digitally signed.

Meta-control rules support the implementation of different orchestration strategies,
from simple sequential control flows to more sophisticated processes capable of auto-
matically accessing directories and concurrently collecting information from multiple
sources. Strategies are executed by selectively activating different IDA modules (e.g.
policy reasoning modules, local information reasoner, service invocation module, etc.).
This is further detailed later in this and other Sections.

In our current implementation, the meta-controller and information collector are
rule-based engines implemented in JESS [7]. For efficiency reasons they are imple-
mented as separate modules within the same JESS reasoning engine (i.e. each module
comes with its own set of rules and control can be passed back and forth between the
modules). In some domains, we have also used JESS to implement the policy reasoner
module, while in others we have wrapped “legacy” policy reasoners (e.g. Sun’s
XACML Policy Decision Point used for the work described in Section 4).

3.1 Meta-controller

A PEA’s Meta-Controller consists of a Meta-Control submodule, a Housekeeping
submodule, and a Query Status Information knowledge base. As the PEA processes
incoming queries, its meta-controller monitors progress and determines what to do next.
Specifically, it continuously cycles through the following three basic steps:

1. The Meta-Control submodule analyzes the latest query status information and de-
cides which of the PEA’s module(s) to invoke next to perform particular tasks
(e.g. obtaining information required to evaluate a policy or invoking the policy
reasoner). As it invokes these modules the Meta-Control submodule updates rele-
vant query status information (e.g. updating the status of a query from “not yet
processed” to “being processed”, identifying query elements that still need to be
evaluated, etc.).

2. Modules complete their tasks (whether successfully or not) and report back to the
Meta-Controller – occasionally modules may also report on their ongoing pro-
gress in handling a task.

3. The Housekeeping submodule updates detailed status information based on in-
formation received from other modules and performs additional housekeeping ac-
tivities (e.g., cleaning up status information that has become obsolete, caching the
results of recent requests for possible re-use and to mitigate the effects of possible
denial of service attacks, etc.)

Query status information helps the PEA monitor how far along it is in processing

individual requests, namely determining whether the request (or query) complies with
relevant access control policies, gathering the requested information and applying rele-
vant obfuscation rules, if any, to sanitize information before it is returned to the re-
quester. It is expressed according to a taxonomy of predicates intended to keep track of
different activities typically involved in processing a query. This includes the status of
individual queries as well as the status of query elements they give rise to. Examples of

query elements include the evaluation of particular rules (e.g. “If the requester is a
preferred supplier, it can have access to our component requirements forecast”). Query
elements are also used to model the need to obtain information required to evaluate
individual rules (e.g. “is this particular company a preferred supplier?”, or “which de-
partment does this employee work for?”). Processing query elements may in turn gen-
erate new query elements, whose statuses also need to be tracked. Accordingly, query
status information includes whether a query (or query element) has been or is being
processed, what individual query elements it has given rise to, whether these elements
have been processed, etc. All status information is annotated with time stamps.

Query status information is updated by asserting new facts (in the query status in-

formation knowledge base), with old statuses being cleaned up. As query updates come
in, they trigger one or more meta-control rules, which in turn result in additional query
status information updates and the invocation of one or more modules (e.g. policy rea-
soning module, local information reasoner, etc.).

 An IDA’s Meta Controller relies on meta-control rules to analyze query status in-
formation and determine which module(s) to activate next. Meta-control rules are mod-
eled as if-then clauses, with Left Hand Sides (LHSs) specifying their premises and
Right Hand Sides (RHSs) their conclusions. LHS elements refer to query status infor-
mation, while RHS elements contain facts that result in module activations. Query
status information helps keep track of how far along the IDA is in obtaining the infor-
mation required by each query and in enforcing relevant policies. Query status infor-
mation in the LHS of meta-control rules is expressed according to a taxonomy of predi-
cates that helps the agent keep track of queries and query elements - e.g., whether a
query has been or is being processed, what individual query elements it has given rise
to, whether these elements have been cleared by relevant access control policies and
sanitized according to relevant obfuscation control policies, etc. All status information
is annotated with time stamps. Specifically, query status information includes:

− A query status ID
− Status predicates to describe the status of a query or query element
− A query ID and query element ID to which the predicate refers
− A parent query status ID to help keep track of dependencies (e.g. a query ele-

ment may be needed to help check whether another query element is consistent
with a context-sensitive access control policy). These dependencies, if passed be-
tween IDA agents, can also help detect deadlocks (e.g. two IDA agents each wait-
ing for information from the other to enforce their policies)

− A time stamp that describes when the status information was generated or updat-
ed. This information is critical when it comes to determining how much time has
elapsed since a particular module or external service was invoked. It can help the
agent look for alternative external services or decide when to prompt the user (e.g.
to decide whether to wait any longer)

A sample of query status predicates is provided in Table 1. Clearly, different taxono-
mies of predicates can lead to more or less sophisticated meta-control strategies. For the
sake of clarity, status predicates in Table 1 are organized in seven categories: 1) com-

munication; 2) query; 3) query elements; 4) access control; 5) obfuscation; 6) service
discovery and 7) service invocation.

 Sample Status Predicates Description

1)

Query-Received A particular query has been received.
Sending-Response Response to a query is being sent
Query-make-deadlock The incoming query may result in an endless loop. According to

different meta control rules, the IDA may respond a failure to query
sender, or consult the user to handle the problem.

Response-Sent Response has been successfully sent
Response-Failed Response failed (e.g. message bounced back)

2)

Processing Query Query is being processed
Query Decomposed Query has been decomposed (into primitive query elements)
All-Elements-Available All query elements associated with a given query are available (i.e. all

the required information is available)
All-Elements-Cleared All query elements have been cleared by relevant access control

policies
Clearance-Failed Failed to clear one or more access control policies
All-Elements-Sanitized All query elements have been sanitized according to relevant obfusca-

tion policies
Sanitization-Failed Failed to pass one or more obfuscation policies

3)

Element-Needed A query element is needed. Query elements may result from the
decomposition of a query or may be needed to enforce policies. The
query element’s origin helps distinguish between these different cases

Processing-Element A need for a query element is being processed
Element-Available Query element is available
Element-Cleared Query element has been cleared by relevant access control policies
Clearance-Failed Failed to pass one or more access control policies
Element-Sanitized Query element has been sanitized using relevant obfuscation policies
Sanitization-Failed Failed to pass one or more obfuscation policies
Element-locally-available The value of a query element can not be obtained from the local

domain ontologies
4) Clearance-Needed A query or query element needs to be cleared by relevant access

control rules
5) Sanitization-Needed Query or query element has to be sanitized subject to relevant obfusca-

tion policies

6)

Element-need-service A query element requires the identification of a relevant service
No-service-for-Element No service could be identified to help answer a query element. This

predicate can be refined to differentiate between different types of
services (e.g. local versus external)

Service-identified One or more relevant services have been identified to help answer a
query element

7)

Waiting-for-service-
response

A query element is waiting for a response to a query sent to a service
(e.g. query sent to a location tracking service to help answer a query
element corresponding to a user’s location)

Failed-service-invocation A service failed to be invoked. Again this predicate could be refined to
distinguish between different types of failure (e.g. service down,
access denied, etc.)

Service-response-time-
out

The service doesn’t respond the query for a time longer than the
threshold. It will results in a failed-service-response

service-response-
available

A response has been returned by the service. This will typically result
in the creation of an “Element-Available” status update.

Table 1. Sample list of status predicates.

Meta status is updated by asserting new facts into the working context (with old status-
es being cleaned up). As query updates come in, they trigger one or more meta-control
rules, which in turn result in additional query status information updates and possibly
additional actions. Below is an example of a meta-control rule that invokes a service
after it is identified. Depending on the invocation result, the current meta-status gets
updated to “waiting-for-service-response” or “failed-service-invocation”

(defrule invoke-service-if-identified
 ?x <- (metastatus
 (statusID ?sid)
 (predicate "service-identified")
 (parentID ?pid)
 (timeStamp ?)
 (queryID ?qid)
 (elementID ?eid)
)
 =>
 (bind ?result (invoke-service ?eid))
 (bind ?time ((new java.util.Date) getTime))
 (if (= ?result “success”)
 (assert (metastatus
 (statusID ?*statusID*)
 (predicate "waiting-for-service-response")
 (parentID ?sid)
 (timeStamp ?time)
 (queryID ?qid)
 (elementID ?eid)

))
(retract ?x)

 Else
 (assert (metastatus
 (statusID ?*statusID*)
 (predicate "failed-service-invocation")
 (parentID ?sid)
 (timeStamp ?time)
 (queryID ?qid)
 (elementID ?eid)

))
(retract ?x)

)
 (bind ?*statusID* (+ ?*statusID* 1))
)

Meta-control rules can also be defined to consult with users, whether to ask for a par-
ticular piece of information (i.e. using a user as an external source of information) or to
decide what to do next (e.g. to decide whether or not to abandon a particular course of
action in situations that are taking longer than expected).

In general, different collections of query status predicates and meta-control rules

will result in different behaviors. Accordingly, our meta-control architecture enables
one to tailor Policy Enforcing Agents to the particular policies and scenarios associated
with a given domain, with simpler domains giving rise to simpler sets of behaviors and

more complex ones allowing for more sophisticated logic to handle a wider range of
situations. Figure 2 depicts the overall set of behaviors associated with a relatively
simple set of status predicates and meta-control rules. In this particular case, upon re-
ceiving a request, the IDA generates an information status update indicating that a new
query has been received. This information is expressed as a tuple of the form (statusID
predicate queryID elementID parentID timestamp) such as (status1 query-received
query1 nil nil time1). Because receiving a query is the first step, there is no parent ID
and no query element so their values are nil. Next, the meta-controller generates a new
status update indicating that the request has to be run against relevant access control
rules, - e.g. (status2 clearance-needed query1 element1 status1 time2). This status up-
date in turn results in the meta-controller invoking the policy reasoner, which in turn
can lead to the creation of one or more query elements. Given this particular set of
meta-control rules, the IDA first tries to find the information required for each query
element in its local knowledge. If this does not work, the IDA creates an element-not-
known-locally status predicate, which in turn leads to the creation of an element-need-
service status predicate. This status predicate later triggers a service identification step.
This will typically followed by the actual identification of a service, its invocation and
eventually the IDA obtains the information required to determine whether its policy is
satisfied, etc.

While this section focused on Information Disclosure Agents, it is easy to see that

context-sensitive policies other than access control policies and obfuscation policies
can easily be enforced with agents built around a similar architecture with status predi-
cates and meta-control modules used to orchestrate policy reasoning and the collection
of relevant information.. In the remainder of this paper, we generically refer to these
agents as Policy Enforcing Agents (PEAs).

Figure 2. An example set of meta-control rules

3.2 Policy Reasoner

The PEA’s policy reasoning engine is responsible for evaluating relevant policies and
returning policy decisions. For the sake of simplicity, we assume that all relevant poli-
cies are stored within the policy reasoner or in a centralized knowledge base (or data-
base) accessible to the policy reasoner. In general, policies may come from multiple
sources (e.g. combination of department policies, corporate policies and government
regulations). If this is the case, a more general policy collection module similar to the
PEA’s information collector might be required to identify all relevant policies. Some
policies could also be embedded in other PEAs, which could themselves be modeled as
external sources of information. For example, checking whether an employee has de-
partmental approval to request a vacation could be performed by querying a depart-
mental service, which could evaluate corresponding policies on the fly. This latter con-
figuration is covered by the architecture presented in this paper.

 In general, the policy reasoner includes the following modules:

1. Query Decomposition Module takes as input a particular query and breaks it
down into elementary needs for information, which can each be thought of as
subgoals or sub-queries. We refer to these as Query Elements. The value of a
Query Element can be obtained just based on facts contained in the agent’s lo-
cal knowledge base, or by invoking both local and remote services.

2. Access Control Module is responsible for determining whether a particular que-
ry or sub-query is consistent with relevant access control policies – modeled as
access control rules. While some policies can be checked just based on facts
contained in the agent’s local knowledge base, many policies require obtaining
information from a combination of both local and external sources. When this
is the case, rather than immediately deciding whether or not to grant access to a
query, the Access Control Module needs to request additional facts – also mod-
eled as Query Elements.

3. Obfuscation Module sanitizes information requested in a query according to
relevant obfuscation policies – also modeled as rules. As it evaluated relevant
obfuscation policies, this module too can post requests for additional Query El-
ements.

It should be emphasized that our architecture is not tied to a particular policy reasoner.
Instead, different policy reasoning engines can be plugged in to support reasoning
about different types of policies. This is illustrated in this paper by presenting examples
and results obtained with two different families of policy reasoners:

1. A family of JESS-based policy reasoners capable of enforcing a broad range of
policies. Policies are expressed as ROWL rules [10] that refer to concepts spec-
ified in domain-specific ontologies written in W3C’s OWL language [41].
ROWL has been used to specify a number of policies, from access control poli-
cies, to obfuscation policies, to message processing policies, etc. Instantiations
of this engine have been deployed in the context of several mobile and perva-
sive computing applications piloted on Carnegie Mellon’s campus (e.g.

MyCampus [27] and PeopleFinder [23] application) as well as in the context of
enterprise collaboration scenarios.

2. Sun’s XACML Policy Decision Point implementation, which evaluates
XACML decision requests against XACML access control policies. In this con-
figuration, the Sun PDP engine is wrapped to interoperate with our PEA archi-
tecture. This includes translating output from the Sun PDP engine into query
status information. This is further detailed in Section 4.

3.3 Information Collector

The Information Collector is responsible for gathering facts (or “information”) required
to evaluate a given decision request. It works under the supervision of the meta-
controller, which orchestrates policy reasoning and information collection. Facts re-
quired for evaluating policy decision requests may be known locally or may have to be
obtained from other sources of information. Accordingly, the Information Collector
comprises a Local Information Reasoner, a Service Discovery submodule, a Service
Invocation submodule. Note that the users themselves could be modeled as services that
can be queried for missing information. The Local Information Reasoner corresponds
to domain knowledge (facts and rules) known locally to the PEA. The Service Discov-
ery submodule helps the PEA identify potential sources of information to complement
its local knowledge.

In our current implementation, knowledge in the Location Information Reasoner is
represented using RDF/OWL and ROWL (for domain rules).Specifically, we use an
OWL meta-model, equivalent to OWL-Lite to interpret and reason about OWL state-
ments. Ontologies and annotations are translated into Jess facts, while inference rules
are translated into Jess rules through a combination of both forward and backward
chaining, with backward chaining used to express the “need” for facts and help identify
sources of information (or services) that are likely to provide these facts. For instance, a
rule that specifies that two people are colleagues if they have the same employer may
trigger one or more backward chaining rules to determine each person’s employer, e.g.
first looking for local information and, if this fails, possibly looking for external ser-
vices that can provide this information..

External services can be either pre-identified (using service identification rules such
as “When checking if someone is a company employee, ask the company’s HR service”)
or found with the help of directories (e.g. “find services that provide supplier ratings”),
whether internal to a given organization or external to it. Clearly, service identification
rules that map information needs onto specific services can yield significant speedups.
At the same time, the ability to rely on more general service discovery processes that
involve querying service directories and identifying matches based on rich service
annotations can provide a significantly greater level of openness. By allowing service
discovery rules to include both direct service identification rules and more complex
discovery and comparison rules, PEAs allow policy developers to selectively choose
between both options.

As already indicated, PEAs can possibly treat users as sources of additional domain
knowledge. It is worth noting that users can also serve as potential sources of meta-
control knowledge (e.g. if a particular query element proves too difficult to locate, the
user may be asked whether to give up).

3.4. Service Discovery and Invocation

A central element of our framework is the ability of PEA agents to dynamically identify
sources of information needed to process queries. Sources of information are modeled
as semantic web services and may operate subject to their own policies enforced by
their own PEA agents. Accordingly service invocation is itself implemented in the form
of queries sent to a service’s PEA agent.

In this paper, we use WOWL (Web services in OWL) to annotate services, as this
language has the merit of being fairly compact. We have also implemented variations
of our architecture using the OWL-S language [25] and could readily adopt other
equivalent frameworks (e.g. WSMO [42] or SAWSDL[38]). A WOWL service descrip-
tion includes:

1. The service’s output.
2. Its preconditions
3. Relevant non-functional attributes [21], if any
4. A description of how to invoke the service, including the service’s endpoints

and its input

In our current implementation, we use an XSLT transformation to convert WOWL
service profiles into service discovery rules expressed in Jess. The discovery rules are
expressed as “if-then” clauses - or “Left Hand Side” (LHS) implies “Right Hand Side”
(RHS). The LHS refers to the types of facts a given service can provide (as specified in
its output) and includes the service’s preconditions and input parameters. The RHS
creates a matching “service-identified” status predicate. In other words, given an ‘ele-
ment-need-service” status predicate indicating that one is looking for a service that can
provide a particular type of fact, all matching services whose preconditions and input
conditions are also satisfied will trigger matching service discovery rules. As they are
triggered, these rules will in turn result in the creation of matching “service identified”
status predicates indicating that any of these services can possibly yield the desired
information. The meta-controller can later decide which one(s) of the services to actual-
ly query – depending on its particular meta-control rules.

 Given that PEAs can look for and query external sources of information, whose
access may in turn be control by other PEAs, it is entirely possible to run into dead-
locks, e.g. two PEAs, each waiting for a response from the other before they can pro-
ceed with a given query. A simple solution to this problem can involve using timeouts,
which can themselves be implemented in the form of meta-control rules. Specifically,
in our current implementation, time-outs can be specified in the form of independent
threads, which periodically check the timestamp of the pending meta statuses. The rule

may simply specify the query is considered to have failed or it may ask the user wheth-
er to allocate more time for processing. In addition, all status information is annotated
with time stamps which can be used to detect timeout situations. Circular analysis has
also been implemented to help detect deadlocks independently of the length of time
taken by a given query.

This is done using query dependency graphs, in which each query is represented as

a node and query dependency is represented as a directed edge. If two queries that de-
pend on each other have the same sender, the same receiver and ask the same infor-
mation, they are in a deadlock situation. The agent that receives a query is responsible
for detecting the deadlock and can either respond with a query-failed response or ask
the sender to notify the user that a deadlock has been detected.

4. Access Control Agents based on XACML

One particular instance of an IDA is an Access Control Agent (ACA) which only
implements access control policies. Given the amount of effort invested by industry
over the past few years to define a standard for such agents, it makes sense to look at
how our PEA architecture relates to the architecture developed as part of the XACML
standard [33]. As it turns out, our PEA architecture can be viewed as an extension of
this standard and it is possible to build instantiations of our PEAs that rely on XACML
Policy Decision Points and on the XACML language to express and enforce access
control policies.. This is illustrated in Figure 3, which shows the architecture of an
ACA agent we have implemented using Sun’s XACML Policy Decision Point (PDP)
engine [40]. Incoming decision requests (or “queries”) are directed to the agent’s Meta-
Controller which doubles as an XACML Policy Enforcing Point (PEP). Queries are
converted from their native format to XACML, using a language adaptor, which essen-
tially subsumes part of the XACML Context Handler functionality, with the other part
being handled by the meta-controller. Missing information is dynamically identified
through interactions between the meta-controller and the Information Collector, the
latter playing the role of XACML Policy Information Point (PIP).

Figure 3. PEA Instantiated as an Access Control Agent
using Sun’s XACML Policy Decision Point engine.

4.1 An Aerospace Contractor Scenario

The ACA agent depicted in Figure 1 has been implement tosupport the access control
requirements associated with a fictitious aerospace contractor, which we refer to as
United GenSat Corporation. United GenSat is a California-based manufacturer of geo-
stationary satellites. It builds two lines of communications satellites: the SAT 666 and
the SAT 777. These two lines of satellites are designed to support mobile communica-
tions, and a series of global positioning and military communications applications.

<Rule RuleId="Pre-approvedSupplierRule" Effect="Permit">
 <Target>
 <Subjects>
 <AnySubject/>
 </Subjects>
 <Resources>
 <Resource>
 <ResourceMatch MatchId="string-equal">
 <AttributeValue DataType="&XMLSchema;#string">

 ProductionSchedule
 </AttributeValue>
 <ResourceAttributeDesignator
 DataType="&XMLSchema;#string"
 AttributeId="resource-id"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId="string-equal">

 <AttributeValue
 DataType="&XMLSchema;#string">
 query
 </AttributeValue>
 <ActionAttributeDesignator
 DataType="&XMLSchema;#string"
 AttributeId="action-id"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 <Condition FunctionId="string-equal">
 <Apply FunctionId="string-one-and-only">
 <SubjectAttributeDesignator
 DataType="&XMLSchema;#string"
 AttributeId="SupplierCategory"/>
 </Apply>
 <AttributeValue
 DataType="&XMLSchema;#string">
 Pre-approved
 </AttributeValue>
 </Condition>
 <Condition FunctionId="string-equal">
 <Apply FunctionId="string-one-and-only">
 <SubjectAttributeDesignator
 DataType="&XMLSchema;#string"
 AttributeId="AuthorizedEmployee"/>
 </Apply>
 <AttributeValue DataType="&XMLSchema;#string">
 Yes
 </AttributeValue>
 </Condition>
</Rule>

Figure 4 Sample XACML policy limiting access to Production Schedule information
to authorized employees at pre-approved subcontractors.

Due to the sensitive nature of its activities and products, United GenSat is particularly
concerned about maintaining tight control over who accesses what information both
within its organization as well as in the context of interactions with its trading partners.
These interactions include the selective exchange of scheduling information to ensure
close coordination with key suppliers. Policies to control access to this information are
expressed in XACML. An example of one such policy is provided in Figure 4. The
policy only permits authorized employees (attribute of subject) of pre-approved suppli-
ers (attribute of subject) to query (attribute of action) the production schedule of prod-
ucts it is contributing to (attribute of resource).

Consider Bob, an employee at SATElectronics Corporation, a United GenSat suppli-
er pre-approved to access production schedule information of products it contributes to.
Bob sends a request to United GenSat, requesting next month’s production schedule for
the SAT 777. His request, which includes the identity of his company, is forwarded to
the appropriate United GenSat Access Control Agent (ACA). To determine whether to

grant access to the requested information, the ACA needs additional information,
namely (i) whether SATElectronics is pre-approved to obtain this information – for the
sake of simplicity we will just assume that this information is maintained in the ACA’s
local knowledge base, and (ii) whether Bob is an authorized SATElectronics employee
when it comes to accessing production schedule information. To answer this latter
question, the ACA needs to identify a service at SATElectronics and send it a query.

Upon receiving the request, United GenSat’s ACA generates an information status
update indicating that a new query has been received. This facts of the new query is
expressed as triples of the form (predicate subject object) – e.g. (sender query1 Bob)
or (ask query1 element1). Next, the meta-controller generates a new status update indi-
cating that the request has to be cleared based on applicable access control policies, The
required element to be cleared is also presented as a triple, like (schedule SAT777 ?s).
Here ?s represents a variable whose value is unknown. This status update in turn results
in the meta-controller invoking the policy reasoner, which in turn leads to the creation
of two query elements – one requiring to check whether Bob’s company, SATElectron-
ics, is pre-approved to access production schedule information and the other to check
whether Bob is an authorized employee. The meta-control rules are assumed to first
check the ACA’s local knowledge base and find that SATElectronics is indeed pre-
approved. On the other hand, Bob’s authorized employee status cannot be determined
locally. This results in the creation of an element-not-known-locally status predicate,
which in turn leads to the creation of an “element-need-service” status predicate, fol-
lowed by a service identification step. A SATElectronics service is identified and a
response eventually provided indicating that Bob is an authorized employee. As a result,
a status predicate is created indicating that Bob’s request has now been cleared.

A particularly interesting step in this scenario is the one through which the ACA

identifies a SATElectronics service capable of identifying whether Bob is an authorized
employee. Different processing flows are possible here, depending on the particular
meta-control rules and service discovery rules implemented in the ACA. In this particu-
lar implementation, the meta-controller first checks whether missing knowledge is
available locally. If that fails (as in this case), it turns to the service discovery module.
The service discovery module includes a number of rules aimed at making service
identification as efficient as possible, as well as extremely general “fall-back” rules in
case none of the more specialized rules produce results. In this example, we rely on a
service identification rule for checking attributes of employees of other companies. The
rule, in this simple scenario, just tells the ACA to check the company’s directory for a
service capable of providing the necessary query element (i.e. whether Bob is an au-
thorized employee). The directory is assumed to include a simple service called “Au-
thEmpService”, whose WOWL annotations indicate it can provide the missing infor-
mation - namely whether the employee (whose name is provided as input) is an author-
ized employee of SAT Electronics (see wowl:output in Figure 5).

<wowl:ServiceRule wowl:salience="100">
 <rdfs:label>SATElcEmpService</rdfs:label>
 <wowl:output>
 <scm:Company rdf:about="&var;#co">
 <scm:hasAuthorizedEmp

 rdf:resource="&var#emp"/>
 </scm:Company>
 </wowl:output>
 <wowl:precondition>
 <scm:Schedule rdf:about="&var;#sche">
 <scm:has Access rdf:resource="&var#emp"/>
 </scm:Schedule>
 </wowl:precondition>
 <wowl:precondition>
 <scm:Product rdf:about="&var;#product">
 <scm:hasSchedule
 rdf:resource="&var;#sche"/>
 </scm:Product>
 </wowl:precondition>
 <wowl:precondition>
 <scm:Company rdf:about="&var;#co">
 <scm:hasName rdf:resource="SATElectronics"/>
 </scm:Product>
 </wowl:precondition>
 <wowl:call>
 <wowl:Service wowl:name="AuthService">
 <wowl:endpoint>SATServiceAgent</wowl:endpoint>
 <wowl:input>
 <scm:People rdf:about="&var#emp">
 <scm:hasName rdf:about="&var#nam"/>
 </scm:People>
 </wowl:input>
 </wowl:Service>
 </wowl:call>
</wowl:ServiceRule>

Figure 5. WOWL Service profile

The service’s precondition further indicates that this particular service is specifically to
verify whether people are authorized to access production schedule information.

Admittedly, this scenario takes some short cuts. A more realistic variation would
have to do a better job at dealing with confidentiality considerations and would likely
involve multiple levels of indirection, with some service discovery performed by Unit-
ed GenSat’s ACA and some performed locally by SATElectronics in response to a
more general query from United GenSat. Nevertheless, once a service such as Au-
thEmpService in Figure has been identified, its profile can be used to automatically
generate an access request intended to verify whether Bob is an authorized employee.
This step is performed by the ACA’s service invocation module. It includes automati-
cally generating the necessary service query along with additional facts required by the
service as indicated in its input and precondition profile. In this particular case, the
query is of the form:

(query
 (sender "United GenSat")
 (predicate "&scm;#SATElectronics")
 (subject "&scm;#hasAuthorizedEmp")

 (object "&scm;#Bob"))

Based on the service’s input profile, the following fact is sent along with the query:

(triple
 (predicate "&scm;#hasName")
 (subject "&scm;#Bob")
 (object "Bob"))

Clearly, this assumes that both the service provider and service requester share a

common ontology. If not, semantic reasoning rules may be needed to establish a map-
ping between their respective ontologies.

4.2 Updating Query Status Information

The following illustrates the processing of a query by an IDA, using the scenario intro-
duced above. Bob’s query about the production schedule of SAT777 is first processed
by the IDA’s Communication Gateway, resulting in a query information status update
indicating that a new query has been received. This information is expressed as a col-
lection of (predicate subject object) triples of the form:

(triple "Status#predicate" "status1" "query-received")
(triple "Query#queryId" "status1" "query1")
(triple "Query#parentId" "status1" nil)
(triple "Query#timestamp" "querystatus1" time1)
(triple "Query#sender" "query1" "Bob")
(triple "Query#element" "query1" "element1")
(triple "Ontology#schedule" "SAT777" "element1")

Next, the meta-controller activates the Query Decomposition Module, resulting in

the creation of two query elements: one query element to establish whether this request
is compatible with United GenSat’s access control policies and the other to obtain the
production schedule of SAT777:

(triple "Status#predicate" "status2" "clearance-needed")
(triple "Status#predicate" "status3" "element-needed")

Let us assume that the meta-controller decides to first focus on the “clearance-

needed” query element and invokes the Access Control Module which is actually an
XACML PDP. This module determines that two conditions need to be checked and
accordingly creates two new query elements (“check-conditions”). One condition re-
quires checking whether Bob is an authorized SATElectronics employee:

(triple "Status#predicate" "status4" "element-needed")
(triple "Query#queryId" "status4" "element2")
(triple "Query#parentId" "status4" "query1")
(triple "Query#condition" "element2" "Ontology#hasAuthorizedEmp ")
(triple "Ontology#hasAuthorizedEmp" "SATElectronics" "Bob")

Figure 6. Query status updates for a fragment of the scenario.

This condition in turn requires a series of information collection steps that are orches-
trated by the meta-control rules in United GenSat’s IDA. In this example, we assume
that the IDA’s local knowledge base does not know Bob’s employment information.
According the following query status information update is eventually generated:

(triple "Status#predicate" "status5" "element-not-locally-available")

(triple "Query#queryId" "status5" "element2")

United GenSat’s IDA has a meta-control rule to initiate service discovery when a query
element can not be found locally. The rule, expressed in CLIPS [31], is of the form:

(triple "Status#predicate" ?s1 "element-not-locally-available")
(triple "Status#predicate" ?s2 "element-needed ")
(triple "Query#queryId" ?s1 ?e1)
(triple "Query#queryId" ?s2 ?e1)
=>
(assert (triple "predicate" ?newstatus "element-need-service"))
(assert (triple "Query#queryId" ?newstatus ?e1)

Using this rule, the meta-controller now activates the Service Discovery Module. A
service to find Bob’s employment information is identified. This results in a query
status update of the type “service-identified”.

(triple "Status#predicate" ?s1 "element-need-service")
(triple "Status#predicate" ?s2 "service-identified")
(triple "Query#queryId" ?s1 ?e1)
(triple "Query#queryId" ?s2 ?service)
(triple "Query#parentId" ?s2 ?e1)
=>
(assert (triple "Status#predicate" ?newstatus "waiting-for-service-
response"))
(assert (triple "Status#queryId" ?newstatus ?service))

Note that, if there are multiple matching services, the service discovery module needs
rules to help select among them.

Let us assume that the service discovery module identifies that Bob’s employer,

SATElectronics is a trustful information source to answer if Bob is an authorized em-
ployee. The Housekeeping module updates the necessary Query Status Information,
indicating among other things that information about Bob’s information has been found
(“element-available”) and cleaning old status information. This is done using a rule of
the type:

?x <- (triple "Status#predicate" ?s1 "waiting-for-service-response")
?y <- (triple "Query#queryId" ?s1 ?service)
(triple "Status#predicate" ?s2 "service-response-available")
(triple "Query#queryId" ?s2 ?result)
=>
(retract ?x)
(retract ?y)
(assert (triple "Status#predicate" ?newstatus "element-available"))
(assert (triple "Query#queryId" ?newstatus ?result))

The scenario continues through several similar steps. A full flow diagram is shown
in Figure 6. For better readability, we do not restrict the syntax of the meta statuses
shown in this figure.

5. Beyond Access Control Policies

PEAs are not limited to information disclosure and enforcing access control policies.
The same meta-control architecture can be used to support more flexible processing
flows when it comes to enforcing a broad range of policies. This is illustrated in this
section by examining a scenario where United GenSat undertakes to develop a new
satellite model, SAT 888, for a client in the UK. As it works on the design of the SAT
888 in collaboration with both current and prospective suppliers, the company needs to
ensure compliance with a variety of policies. This includes compliance with corporate
supplier selection policies as well as with US export control regulations (e.g. the US
International Traffic in Arms Regulations, ITAR)

Figure 7. Using a PEA to check for compliance with supplier selection policies,
including supplier scoring requirements and government export controls.

United GenSat relies on a specialized PEA to help it ensure compliance with these
policies. As employees working on the SAT 888 refine their design and evaluate differ-
ent options, they submit policy conformance requests to the PEA. This includes check-
ing for compliance of sourcing decisions with both export control regulations and cor-
porate supplier selection policies. These policies are expressed in ROWL [10] and
require accessing a combination of corporate and external services to obtain up-to-date
supply ratings and export restrictions. An example of such a ROWL rule is shown in
Figure . It specifies that, when a product is to be exported (i.e. its country of destination
is not equal to “USA”), it is approved for export if its country of destination and its
Export Control Classification Number (ECCN) are not on the Bureau of Industry and

Security (BIS) Commerce Control List. If the combination of the product’s ECCN and
export country appears in the list (in the form of a “CCLStatement”), then an export
license has to be obtained.

As before, the PEA’s meta-control module orchestrates the evaluation of these poli-
cies, looking for information in its local knowledge base and, when necessary, looking
for services that can provide missing information. This latter step is performed with the
help of the PEA’s service discovery module. In this simple example, it is assumed that
the required services are known ahead of time. In other words, the PEA can rely on
simple service identification rules such as “When looking for a CCLStatement, issue a
query to the BIS Commerce Control List and Chart Service”.

<rowl:Rule>
 <rdfs:label>Export+Approval+Needed</rdfs:label>
 <rowl:head>
 <scm:Product rdf:ID="&var;#prod">
 <scm:hasExportApproval>
 <scm:ExportApprovalResult rdf:resource="&scm;#true"/>
 </scm:hasExportApproval>
 </scm:Product>
 </rowl:head>
 <rowl:body>
 <scm:Product rdf:ID="&var;#prod">
 <scm:hasDestination rdf:resource="&var;#country"/>
 </scm:Product>
 <rowl:not>
 <scm:Country rdf:resource="&var;#country">
 <rowl:equal-to rdf:resource="&scm;#USA"/>
 </scm:Country>
 </rowl:not>
 <scm:CCLStatement rdf:resource="&var;#ccl">
 <scm:hasProduct rdf:resource="&var;#prod"/>
 <scm:hasECCN rdf:resource="&var;#eccn"/>
 <scm:hasCountry rdf:resource="&var;#country"/>
 <scm:hasReason rdf:resource="&var;#reason"/>
 <scm:hasResult rdf:resource="&var;#result"/>
 </scm:CCLStatement>
 <rowl:or>
 <scm:Result rdf:resource="&var;#result">
 <rowl:equal-to rdf:resource="&scm:#not_in_list"/>
 </scm:Result>
 <scm:Result rdf:resource="&var;#result">
 <rowl:equal-to rdf:resource="&scm:#has_licence"/>
 </scm:Result>
 </rowl:or>
 </rowl:body>
</rowl:Rule>

Figure 8. A ROWL export control compliance policy

Because the BIS, ITAR and OFAC services used in this scenario do not exist at this
time (i.e. the current websites are not implemented as web services), our implementa-
tion of this scenario currently relies on stubs.

Going back to the ROWL policy listed in Figure 8, if there is a CCL Statement indi-
cating that the product’s ECCN and its export country are incompatible with export
restrictions, the policy will result in the creation of an “Element-Needed” status predi-
cate with attribute “has_license”. In other words, the policy reasoner will let the meta-
controller know that the only remaining option to satisfy this policy is to obtain an
export license. This in turn could prompt the launch of a process to obtain such a li-
cense or it could lead the United SatGen employee who submitted the validation re-
quest to look for a different design. This shows how PEAs could also be integrated into
workflow management functionality.

6 Current Implementation: Evaluation and Discussion

Our policy enforcing agents are currently implemented in JESS, a high-performance
rule-based engine in Java [7]. Domain knowledge, including service profiles, ontolo-
gies, annotations and semantic inference rules are expressed in OWL [41]. We have
implemented multiple instances of PEAs, including PEAs relying on different policy
languages and reasoning capabilities. This includes multiple instances of ROWL policy
reasoners and Sun’s more specialized PDP reasoner to enforce XACML policies. As
already indicated earlier ROWL could easily be replaced with languages such as
RuleML, SWRL or some similar language. XSLT transformations are used to translate
OWL facts and extensions of OWL (e.g. to model rules and queries) into CLIPS. Agent
modules are organized as JESS modules.

The performance of Jess is decided by the number of facts instead of the number of

rules. We have tested our system under different number of policies (rules), and the
CPU time required for answering a query has no significant difference. Therefore, our
scalability evaluation focuses on the size of ontology and service repository.

We have evaluated our solution on an IBM server with 2 Intel Xeon 3.0GHz CPU

and 3GB of RAM. The server was running Windows XP Professional OS, Java SDK
1.4.2 and Jess 6.1. Below we report empirical results obtained to evaluate the scalabil-
ity of our PEA implementation.

Specifically, the first table below reports results obtained using ontologies from the

Lehigh University Benchmark (LUBM) [19]. The results are based on an OWL univer-
sity ontology with around 10000 triples after translation. Results are reported for repos-
itories of 100, 200 and 500 randomly generated semantic web services in a single re-
pository. The input and output parameter types were randomly selected from the classes
in the domain ontology. CPU times are in milliseconds. We report the total time re-
quired to process a query as well as the amount of processing required by individual
modules, namely the meta-controller, access control reasoning module, local
knowledge reasoner and service discovery module.

Number of
Services

100 200 500

Meta-controller 397 500 1128
Access-controller 48 44 53
Local Knowledge 38 56 66
Service discovery 31 45 62
Total 514 645 1309

The result shows that the query time increases (nearly linearly) when the service reposi-
tory is growing. A second set of experiments involved distributing the service reposito-
ry by limiting the number of services in each repository, but increasing the number of
service repositores (or directories). Each directory had its own PEA agent with scenari-
os typically requiring multiple directory queries before an adequate service could be
identified. In these experiments, each repository agent had a lighter ontology with about
1000 triples and 100 registered services. Again, the table below reports over processing
time in milliseconds as well as the time required by individual modules.

Number of Ser-
vice Repositories

5 10 15 20

Meta-controller 56 124 156 285
Access-controller 15 15 44 70
Local Knowledge 14 33 51 114
Service discovery 20 60 89 151
Total 105 232 340 620

A Policy Enforcing Agent is also used to enforce people’s location privacy policies in a
PeopleFinder application we have deployed on Carnegie Mellon’s campus [23]. A
typical PeopleFinder PEA contains 500 triples. In experiments involving 200 users,
each with their own PEAs to enforce their privacy policies, a typical request for a user’s
location can be processed against the user’s policies within 100 msec.

The performance result shows that our solution can be viewed as practical and scala-

ble in the experimental settings. It should be noted that our solution is not JESS-
specific. At the same time, a significant number of experiments still need to be con-
ducted to gain a more comprehensive understanding of the scalability of our approach.
Other complex issues such as reasoning about provenance (i.e. possible conflicts of
interest of information sources used to build a proof) and inconsistent policies also
require significant additional work. Differentiating between situations where a policy
has been shown not to be satisfied and situations where the agent has not yet been able
to determine whether a policy is satisfied will likely call for differentiating between

classical negation and “negation as failure”. One possible solution here would be to use
a framework such as SweetRules as an add-on to our semantic web reasoner [39]

7 Concluding Remarks

In this paper, we presented a semantic web framework for dynamically interleaving
policy reasoning and external service discovery and access. Within this framework,
external sources of information are wrapped as web services with rich semantic profiles
allowing for the dynamic discovery and comparison of relevant sources of information.
Each entity (e.g. user, sensor, application, or organization) relies on one or more Policy
Enforcing Agents responsible for enforcing relevant policies in response to incoming
requests. These agents implement meta-control strategies to dynamically interleave
semantic web reasoning, service discovery and access. These meta-control strategies
can also be extended to treat the user as another source of information, e.g. to confirm
whether a given fact holds or to provide meta-control guidance such as deciding when
to abandon trying to determine whether a policy is satisfied.

We have shown that our architecture for Policy Enforcing Agents can be implement-

ed as an extension to XACML’s PIP and context handler functionality. We proceeded
to also show that it extends to a much broader class of corporate and regulatory policies
and presented an example where a PEA is used to enforce sourcing policies, both cor-
porate supplier selection policies and export control regulations. PEAs to enforce dif-
ferent types of policies or to operate on similar policies in different domains will rely
on slightly different sets of modules and different meta-control strategies, yet they can
all be implemented using the same meta-control architecture and many of the same
principles presented in this paper. They generally rely on a taxonomy of query infor-
mation status predicates to monitor their own progress in processing incoming queries
and enforcing relevant security and privacy policies. They use meta-control rules to
decide which action to take next (e.g. decomposing queries, seeking local or external
information, etc.).

We have implemented several instances of our PEAs in the context of collaborative

enterprise scenarios as well as in the context of several mobile and pervasive compu-
ting applications piloted on Carnegie Mellon’s campus. Empirical results presented in
this paper indicate that our existing implementation scales favorably on scenarios in-
volving up to hundreds of sources of information and tens of service directories. Future
work will focus on further exploring scalability issues, evaluating tradeoffs between the
expressiveness of meta-control rules and efficiency. Other issues of particular interest
include studying opportunities for concurrency (e.g. simultaneously accessing multiple
web services), dealing with real-time meta-control issues (e.g. deciding when to give up
or when to look for additional sources of information/web services), and better integrat-
ing the user as a source of information.

Acknowledgements

The work reported herein has been supported in part under DARPA contract F30602-
02-2-0035 (“DAML initiative”) and in part under ARO research grant D20D19-02-1-
0389 ("Perpetually Available and Secure Information Systems") to Carnegie Mellon
University’s CyLab.

References

 [1] R. Ashri, T. Payne, D. Marvin, M. Surridge and S. Taylor, Towards a Semantic Web Securi-
ty Infrastructure. In Proceedings of Semantic Web Services Symposium, 2004.

 [2] L.Bauer, S. Garriss, J. McCune, M.K. Reiter, J. Rouse, and P Rutenbar, “Device-Enabled
Authorization in the Grey System”, Submitted to USENIX Security 2005.

 [3] L. Bauer, M.A. Schneider and E.W. Felten. "A General and Flexible Access Control System
for the Web", In Proceedings of the 11th USENIX Security Symposium, August 2002.

 [4] M. Blaze, J. Feigenbaum, an J. Lacy. “Decentralized Trust Management”. In Proceedings of
IEEE Conference on Security and Privacy. Oakland, CA. May 1996.

 [5] G. Denker, L. Kagal, T. Finin, M. Paolucci and K. Sycara, Security For DAML Web Ser-
vices: Annotation and Matchmaking, In Proceedings of the Second Intl Semantic Web Con-
ference, 2003.

 [6] L. Ding, P. Kolari , T. Finin , A. Joshi, Y. Peng and Y. Yesha. On Homeland Security and
the Semantic Web: A Provenance and Trust Aware Inference Framework, In Proceedings of
the AAAI Spring Symposium on AI Technologies for Homeland Security, 2005.

 [7] E. Friedman-Hill. Jess in Action: Java Rule-based Systems, Manning Publications Com-pany,
June 2003, ISBN 1930110898, http://herzberg.ca.sandia.gov/jess/

 [8] F. Gandon, and N. Sadeh. A semantic e-wallet to reconcile privacy and context awareness. In
Proceedings of the Second International Semantic Web Conference (ISWC03), 2003.

 [9] F. Gandon, and N. Sadeh. Semantic web technologies to reconcile privacy and context
awareness. Web Semantics Journal, 1(3), 2004.

 [10] F. Gandon, M. Sheshagiri, and N. Sadeh, “ROWL: Rule Language in OWL and Translation
Engine for JESS”. http://www.cs.cmu.edu/~sadeh/MyCampusMirror/ROWL/ROWL.html

 [11] R. Hull, B. Kumar, D. Lieuwen, P. Patel-Schneider, A. Sahuguet, S. Varadarajan, and A.
Vyas. Enabling context-aware and privacy-conscious user data sharing. In Proceedings of
2004 IEEE International Conference on Mobile Data Management, January 2004.

 [12] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M. Dean, SWRL:
Semantic Web Rule Language Combining OWL and RuleML. Version 0.6.

 [13] T. van der Horst, T. Sundelin, K. E. Seamons, and C. D. Knutson. Mobile Trust Negotiation:
Authentication and Authorization in Dynamic Mobile Networks. Eighth IFIP Conference on
Communications and Multimedia Security, Lake Windermere, England, 2004

 [14] Lalana Kagal, Tim Berners-Lee, Dan Connolly, and Daniel Weitzner, "Using Semantic
Web Technologies for Open Policy Management on the Web", 21st National Conference on
Artificial Intelligence (AAAI 2006).

 [15] L. Kagal, T. Finin, and A. Joshi. A policy language for a pervasive computing environment.
IEEE 4th International Workshop on Policies for Distributed Systems and Networks, 2003

 [16] L. Kagal, M. Paolucci, N. Srinivasan, G. Denker, T. Finin and K. Sycara, Authorization and
Privacy for Semantic Web Services, In Proceedings of Semantic Web Services Symposium,
AAAI 2004 Spring Symposium Series, Stanford University, California, March 2004.

 [17] Vladimir Kolovski, Yarden Katz, James Hendler, Daniel Weitzner, and Tim Berners-Lee
Towards a Policy-Aware Web, In Proceedings of Semantic Web and Policy Workshop, 2005

 [18] V. Kolovski, B. Parsia, Y. Katz, and J. Hendler. Representing web service policies in OWL-
DL. In Proceedings of the International Semantic Web Conference (ISWC), 2005.

 [19] The Lehigh Univeristy Benchmark, http://swat.cse.lehigh.edu/projects/lubm/
 [20] Wolfgang Nejdl, Daniel Olmedilla, Marianne Winslett, PeerTrust: Automated Trust Nego-

tiation for Peers on the Semantic Web, In Proceedings of the Workshop on Secure Data Man-
agement in a Connected World (SDM'04) in conjunction with 30th International Conference
on Very Large Data Bases, Aug.-Sep. 2004, Toronto, Canada

 [21] J. O'Sullivan, D. Edmond, and A.T. Hofstede. What's in a service? Towards accurate de-
scription of non-functional service properties. Distributedand Parallel Databases, 12:117.133,
2002.

 [22] M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara, Semantic Matching of Web Ser-
vices Capabilities, In Proceedings of the First Intl Semantic Web Conference, 2002.

 [23] Madhu Prabaker, Jinghai Rao, Ian Fette, Patrick Kelley, Lorrie Cranor, Jason Hong and
Norman Sadeh, Understanding and Capturing People’s Privacy Policies
in a People Finder, Accepted by 5th International Workshop on Privacy in UbiComp,
September 16, 2007 - Innsbruck, Austria

 [24] J. Rao. Semantic Web Service Composition via Logic-based Program Synthesis. PhD The-
sis. Norwegian University of Science and Technology. December 10, 2004.

 [25] J. Rao and N.M. Sadeh, “A Semantic Web Framework for Interleaving Policy Reasoning
and External Service Discovery”, Proceedings of International Conference on Rules and Rule
Markup Languages for the Semantic Web, Galway, Ireland, 10-12 November 2005.

 [26] N. M. Sadeh, T.C. Chan, L. Van, O. Kwon, and K. Takizawa. Creating an open agent envi-
ronment for context-aware m-commerce. In Agentcities: Challenges in Open Agent Envi-
ronments, 2003.

 [27] N.M. Sadeh, F. Gandon, and Oh Byung Kwon. Ambient Intelligence: The MyCampus
Experience. Carnegie Mellon University Technical Report. CMU-ISRI-05-123. June 2005.

 [28] Halvard Skogsrud, Boualem Benatallah, Fabio Casati, Trust-Serv: Model-Driven Lifecycle
Management of Trust Negotiation Policies for Web Services, WWW 2004, New York, USA

 [29] J. Undercoffer, F. Perich, A .Cedilnik, L. Kagal, and A. Joshi. A Secure Infrastructure for
Service Discovery and Access in Pervasive Computing. ACM Monet: Special Issue on Securi-
ty in Mobile Computing Environments, October 2003

 [30] A. Uszok, J. M. Bradshaw, R. Jeffers, M. Johnson, A. Tate, J. Dalton and S. Aitken, Policy
and Contract Management for Semantic Web Services. In Proceedings of Semantic Web Ser-
vices Symposium, AAAI 2004 Spring Symposium Series, Stanford California.

 [31] CLIPS. http://www.ghg.net/clips/CLIPS.html.
 [32] IBM, EPAL 1.1. http://www.zurich.ibm.com/security/enterprise-privacy/epal/.
 [33] OASIS, eXtensible Access Control Markup Language (XACML)
 [34] OASIS, Security Assertion Markup Language (SAML)
 [35] OWL-S: Semantic Markup for Web Services. http://www.w3.org/Submission/OWL-S
 [36]A P3P Preference Exchange Language(APPEL1.0) http://www.w3.org/TR/P3P-preferences/
 [37] The Rule Markup Initiative. (http://www.ruleml.org)
 [38] Semantic Annotation for Web Services Description Language,

http://www.w3.org/2002/ws/sawsdl/
 [39] SweetRules. http://sweetrules.projects.semwebcentral.org/
 [40] Sun’s XACML Implementation: http://sunxacml.sourceforge.net/.
 [41] W3C: OWL Web Ontology Language Overview, W3C Recommendation, Feb. 2004. D.

McGuinness & F. van Harmelen (Eds.) http://www.w3.org/TR/owl-features/
 [42] Web Service Modeling Ontology, WSMO. http://www.wsmo.org/

