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Abstract

One of the aims of Aspect-Oriented Requirements Engineering is to
address the composability and subsequent analysis of crosscutting and
non-crosscutting concerns during requirements engineering. A com-
position definition explicitly represents interdependencies and inter-
actions between concerns. Subsequent analysis of such compositions
helps to reveal conflicting dependencies that need to be resolved in
requirements. However, detecting conflicts in a large set of textual
aspect-oriented requirements is a difficult task as a large number of
explicitly defined interdependencies need to be analyzed. This paper
presents EA-Analyzer, the first automated tool for identifying conflicts
in aspect-oriented requirements specified in natural-language text. The
tool is based on a novel application of a Bayesian learning method.
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We present an empirical evaluation of the tool with three industrial-
strength requirements documents from different domains and a fourth
academic case study used as a de facto benchmark in several areas of
the aspect-oriented community. This evaluation shows that the tool
achieves up to 93.90% accuracy regardless of the documents chosen as
the training and validation sets.

1 Introduction

Aspect-Oriented Requirements Engineering (AORE) [2] [4] [37] aims to ad-
dress the composability and subsequent analysis of crosscutting and non-
crosscutting concerns. In AORE, a concern encapsulates one or more re-
quirements related to a certain matter of interest. For example, a security
concern may contain a data encryption requirement and a security check
requirement. A concern that intersects with other concerns is called a cross-
cutting concern or an aspect. For instance, a set of security requirements
that crosscut other requirements is called a security aspect in AORE.

A composition is used to explicitly represent and analyze the interde-
pendencies between concerns. Compositions are also utilized for detecting
potential conflicts between concerns before an architecture structure is de-
rived. However, detecting conflicts in a large set of textual Aspect-Oriented
(AO) requirements is a difficult task as a significant number of explicitly
defined interdependencies need to be analyzed.

Presently, there are three streams of research on conflict detection in AO
textual requirements: (i) formalization of requirements and compositions;
(ii) model-based representations and analysis; and (iii) stakeholder priority-
based analysis. Yet, each of these research directions has its drawbacks.
The formalization-based work [23] [31] [49] for detecting conflicts requires
transformation of textual requirements into specific formal representations,
costing substantial time and effort. Conversion of text and compositions
into models for analysis [27] [5] often leads to losing relevant information.
Finally, the stakeholder priority-based work [7] is both effort intensive, and
relies on subjective judgement of each stakeholder. As a result, conflict de-
tection in large textual specifications is an error-prone and time-consuming
task that puts a burden on the requirements engineer, and is still often
performed fully manually via visual inspection.

This paper presents EA-Analyzer, the first automated tool for identifying
conflicts in textual AO requirements. The tool operates on annotated nat-
ural language text and compositions defined using these annotations [11].
These annotations do not alter or reduce the textual requirements, but only
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decorate text with syntactic and semantic linguistics tags [39]. A Bayesian
learning method, called Naive Bayes [28], is utilized by EA-Analyzer to learn
the nature of the composed concerns and to detect conflicts within the com-
position specifications. We evaluated the tool with three industrial require-
ments documents and a well established academic case study: a Web-based
application that manages health-related complaints [47], a home automa-
tion system [36], a customer relationship management application [3], and a
crisis management system [22]. The results show that EA-Analyzer achieves
very high accuracy results, up to 93.90%, regardless of the documents cho-
sen, as long as the training documents have a sufficient number of training
examples.

The key contributions of this paper are twofold. First, we demonstrate
the technical feasibility of automated conflict detection in textual AO re-
quirements. Here we also describe in detail the learning method used by
EA-Analyzer to automate the process of detecting conflicts. The learning
method in EA-Analyzer is a novel application of the Naive Bayes classifier,
in which the problem of detecting conflicts is formulated as a text classifi-
cation problem. Second, we show that it is possible to detect conflicts with
a high accuracy in textual AO requirements, provided that the training set
has a sufficient number of examples. In order to confirm the second contri-
bution, we present an empirical evaluation of the tool with four requirements
documents, where three documents originate from industrial organizations
from different domains and the fourth document is a well established case-
study widely used by many AO researcherss to evaluate various modeling
techniques.

This paper is organized as follows. Section 2 provides some background
about conflict detection techniques in AORE. Section 3 describes the process
for detecting conflicts in a large set of textual AO requirements utilizing the
EA-Analyzer tool, one of the key contributions of this paper. Section 4
presents the empirical evaluation of the tool, another key contribution of
this paper. Section 5 provides a brief overview of relevant work in natural
language processing approaches for requirements engineering (RE), conflict
detection in RE, and machine learning approaches for text classification.
Finally, the conclusions are presented in Section 6.

2 Background

AORE techniques enable the early identification of candidate crosscutting
concerns within problem domains. These strategies allow requirements en-
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gineers to specify how requirements interact with one another. AORE ap-
proaches provide significant advantages for reasoning about requirements,
as mutual influences and tradeoffs can be identified before an architecture
structure is derived. In addition, the transition to an AO architecture can
be eased by the explicit recognition of early aspects within the domain.

However, AORE also brings with it a significant challenge - namely, the
accurate detection of conflicts between requirements. Moreover, detecting
conflicts in requirements that interact with one another can become very
time consuming in a large set of textual requirements. The issue of detect-
ing conflicts has received a great deal of research attention within the AO
community when the conflict is expressed at the implementation level; but
research at the requirements level is much less mature. In this section, we
perform a brief survey of existing AORE approaches that support conflict
detection, before explaining the approach we take and presenting our conflict
detection tool in subsequent sections.

2.1 Formalization-Based approaches

Many current conflict detection approaches require some formal specification
of requirements in order to support this activity. In other words, they require
precise expression of the properties of requirements in order to determine
whether compositions of requirements invalidate these properties.

Laney et. al. [23] introduce Composition Frames, which model the se-
mantics of requirements (in the form of Problem Frames) being composed
with one another. The requirements of the composition - that is, the formal
properties of its satisfaction - can be validated against the state machine
expressed in the Composition Frame, and conflicts detected. The validity of
the conflict detection thus depends on the sound construction of the Problem
Frames and their compositions.

Mostefaoui and Vachon [31] consider AO models specified in Aspect-
UML, including formal annotations of aspects and joinpoints. These Aspect-
UML models are transformed into Alloy, a structural modeling language
based on first-order logic. Alloy includes an analyzer to check the validity
of assertions over a model. The Aspect-UML model of an AO system can
be checked for aspects introducing properties that invalidate other aspect
assumptions, thus identifying conflicts.

Similarly, Weston et. al. [49] present a conflict detection technique based
on the Requirements Description Language [11]. The basis of this approach
is the transformation of compositions into temporal logic formulae using a
catalogue of formalizations of natural language operators. The semantics
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of the compositions can thus be compared with others to identify temporal
comflicts between requirements.

The major disadvantage of these approaches is the substantial time and
effort needed to transform requirements into the required formal represen-
tations. In addition, any errors introduced during the formalization process
can lead to an inaccurate representation of the conflicts present in the re-
quirements.

2.2 Model-based approaches

As an alternative to the formalization-based approaches, many approaches
take a design-level view of conflict or interaction detection; that is, they
require requirements to be (at least initially) structured into specific models
before conflicts can be detected.

Mehner et. al. [27] model requirements as use-cases in UML, and the
crosscutting concerns are modeled using activities that refine those use-
cases. The approach then translates these UML diagrams into type graphs,
and activities are modeled as graph transformations. Applying these graph
transformations sequentially can reveal conflicts between requirements. A
similar technique based on statechart weaving on UML models was proposed
in [45].

In a similar vein, Barais et. al. [5] adapt the Theme/UML [4] approach
to formally model compositions between base and aspect concerns. Certain
forms of conflict based on global properties, such as visibility and kind,
can be discerned and automatically resolved. A similar technique for class
diagrams was presented in [40].

The disadvantage of such approaches are twofold. First, the modelling
process adds an extra step to the conflict detection process, which may
require additional time and effort. Second, the structuring of requirements
into models may be a lossy technique, so the information encoded in the
requirements, including potential conflicts, may be hidden from the engineer
when analysing the interactions.

2.3 Stakeholder priority-based approaches

Other approaches to conflict detection take a higher-level view of interac-
tions between concerns based on their relative importance to stakeholders.
If interactions can be identified using a technique such as ARCADE [37],
the stakeholders can then determine whether such compositions are posi-
tive, negative or neutral from their point of view, and refine the require-
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ments accordingly [37]. Alternatively, stakeholders state their preferred
non-functional requirements up-front; mathematical reasoning techniques
can then be applied to assist conflict resolution [7].

These approaches are very useful, because stakeholder engagement is a
strong element for resolving conflicts. Tools for detecting conflicts, such as
the one presented in this paper, can be used to ascertain the existence of
conflicting dependencies in large requirements document, helping the stake-
holders select the conflicts that need to be resolved.

3 Detecting Conflicts in a Large Set of Textual
Aspect-Oriented Requirements

This section describes the process used by EA-Analyzer to detect conflicts
in a large set of textual AO requirements. The process starts with the an-
notation of a requirements document written in natural language. The an-
notation is conducted semi-automatically using a tool called EA-Miner [42].
EA-Miner processes the textual requirements and a requirements analyst
specifies compositions to reflect the relationships between requirements of
a given domain. The annotated text along with the compositions is then
used by EA-Analyzer to detect conflicts within the requirements document.
Below a running example is used to illustrate the process.

3.1 Running Example: Web-based Information System

Our running example - the Health Watcher (HW) system [47] - is a typical
Web-based information system. The system is used by citizens to register
health related complaints. The requirements document of HW is rich in
both functional and non-functional requirements with many crosscutting
concerns, such as security, performance and distribution. Figure 1 presents
the two non-functional requirements in the HW specification that we use to
illustrate the process of detecting conflicts in a AO textual requirements.
The reasons for selecting these two requirements are the following: (i) The
two requirements crosscut other requirements in the specification (e.g., the
requirements in Figure 2(c)); and, (ii) The two non-functional requirements
are well-known examples of potential conflicts between Security Mechanism,
such as Encryption, and Performance [43].
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Figure 1: Security and Performance Requirements in the HW Specification

3.2 Annotating Textual Requirements with the Requirements
Description Language

The annotations of the Requirements Description Language (RDL) [11] uti-
lize the richness of the natural language for expressing the dependencies and
interactions between various groups of requirements (such as viewpoints,
use-cases, etc.) in large textual specifications. Related sets of requirements
are grouped into a concern - or module of interest - in RDL. Figure 2(a)
shows an example of the Security requirement in Figure 1 that has been
annotated with the RDL tags. The process of adding the RDL tags to the
text of requirement is performed by EA-Miner [42].

RDL tags express dependencies and interactions between requirements.
These tags allow the analyst to define domain relationships (via composi-
tions) using only natural language text. For example, RDL compositions can
mandate that certain requirements must precede another, such as an En-
cryption requirement must be satisfied before any requirement that sends
data. Another example could specify that a particular action is carried out
by an actor or on an element whenever a certain condition is met (e.g.,
prohibit download of files whenever the system is used from an untrusted
workstation). The details of RDL tags structure, composition definitions,
and annotation automation are presented in [11]. The annotated require-
ments and compositions are then used by EA-Analyzer to detect conflicts,
this process is presented in Section 3.3.

Since interactions and dependencies expressed in compositions tend to be
relevant for actions and requirements that are often located across modules,
a set of interaction points will have to be identified for their representation.
For instance, sending data is an action that appears in many concerns in the
HW system, such as login, complaint updating, and new employee registra-
tion. RDL supports direct referencing to such interesting points (also called
pointcuts in Aspect-Oriented Software Development terminology) through
the natural language itself. The direct referencing in RDL differs from the
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(a) The RDL annotated extract of a requirement of the Security concern

(b) Composition enforcing use of a security protocol (i.e., encryption protocol) when sending
or receiving data over internet

(c) A set of requirements selected by the base query from 2(b)

Figure 2: An Example of the RDL from the HW System

current established practice of using extraneous syntactic scaffolding, such
as manually finding and providing name or number-based IDs to any part of
text where such points of interest are located (e.g., use-case step numbers).

The referencing mechanism of the RDL is based on the natural language
itself and relies on its clearly defined set of syntactic rules and semantic ele-
ments, precise enough to support definition of a flexible composition mech-
anism for requirements analysis. The RDL annotations are added as XML
tags to the syntactic elements of the natural language, exploiting the desig-
nated semantic role each syntactic element has. An example is shown in Fig-
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ure 2(a): the natural language requirements are annotated with additional
information on their grammatical and semantic properties. Grammatical
properties are related to the grammatical functions of the words, the main
ones being:

• Subject: the entity that performs the main action of the sentence, or
its main theme (e.g., the system in Figure 2(a));

• Relationship: the main activity (e.g., use in Figure 2(a)) or property
of the sentence;

• Object: the entities most affected by the activity in the sentence, or
with respect to which the activity is realized (e.g., data in Figure 2(a)).

The semantic properties are related to grouping of words on the basis
of synonyms (e.g., send and transmit as shown in Figure 2(c)) or type. For
instance, verb types are based on the notion of a set of participatory roles
engaged in the given activities (e.g., both “Citizen sent the complaint” and
“Susan threw the ball” imply that someone (Citizen or Susan) playing the
Causer role puts into motion (send, throw) some Moving Thing role (com-
plaint, ball)). Such grammatical and semantic annotations of the require-
ments text in the RDL are provided via a general purpose Natural Language
Processing (NLP) tool, Wmatrix [39], that is used by EA-Miner [42] to gen-
erate the annotated RDL text.

3.2.1 Compositions

As shown in Figure 2(b), an RDL composition consists of three parts: Con-
straint, Base, and Outcome. Each of these parts has a semantic query (i.e.,
pointcut) expressed in terms of the natural language words and their prop-
erties. These queries select requirements (i.e., joinpoints) from all across
the specification document without reference to any structural information,
such as a requirement ID or string-based name matching.

For instance, the query relationship=“send” or relationship=“receive” in
the Base element of the composition in Figure 2(b) will select the require-
ment The system should use a security protocol when sending data over
internet in Figure 2(a), where the send verb of the query will match the
sending verb of the requirement. Similarly, if there were any other require-
ments either directly or via synonymy referring to send, they would also
be selected by the query in the Base element of Figure 2(b) (an example is
presented in Figure 2(c)). For each composition, a Constraint query selects
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some requirements which crosscut the requirements selected by the Base el-
ement’s query. The Outcome element may select some requirements which
should be checked as post-conditions (as in Figure 2(b)), though in some
cases the outcome may have an empty query (if no post-condition needs to
be checked). The details of the RDL are presented in [11, 9].

3.3 Detecting Conflicts with EA-Analyzer

EA-Analyzer detects conflicts within a textual AO requirements document.
In our approach, the problem of detecting conflicts is formulated as a classi-
fication problem, which is a well-studied problem in machine learning [28].
The tool operates on RDL in both the learning phase and the conflict detec-
tion phase. In other words, the compositions and annotated requirements
are used to train the tool in the first phase, and then utilizes the composed
concerns from the RDL to decide whether or not they have a conflicting
dependency among requirements.

Recall that compositions in AORE are utilized to explicitly represent
and analyze the interdependencies between requirements. In this context,
a conflict occurs when a crosscutting (functional or non-functional) require-
ment has a negative contribution with another (functional or non-functional)
crosscutting requirement on the same base requirement. For example, a data
encryption requirement and a response time requirement that crosscut the
same base requirement may lead to a conflicting dependency, because en-
cryption normally reduces the responsiveness of a system.

In order to detect conflicts with EA-Analyzer, the following steps are
required: (i) Identify all the sets of concerns that crosscut one or more base
concerns, also known as compositional intersections (Section 3.3.1); (ii) Gen-
erate training examples for the learning method by labeling the composi-
tional intersections (Section 3.3.2); and, (iii) Train the classifier based on
the examples generated in step (ii) (Section 3.3.3).

3.3.1 Identifying Compositional Intersections

Compositional intersections are used as a basis to detect conflicts among
composed concerns, because they explicitly represent the interactions of a
requirement with other requirements with reference to a base requirement.
This section describes the algorithm used to identify compositional intersec-
tions, which is a modified version of the algorithm in [30].

Let C1, C2, C3, ..., Cn be concerns in the system requirements and Ri,j

be the requirement i encapsulated by concern Cj . The compositions in
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the AO specification describe how a set of constraint requirements, Crk =
{Ri,j |QCr

k }, crosscut a set of base requirements, Brk = {Ri,j |QBr
k }, where

QCr
k and QBr

k are, respectively, the constraint and base query of composition
k.

Let Sci,j be the set of compositions where Ri,j is a base requirement.
Thus, the compositional intersection of requirement Ri,j is defined by equa-
tion 1.

CIi,j =
⋃

k∈Sci,j

Crk (1)

A compositional intersection is the union of all the constraint require-
ments that crosscut the same base requirement. For example, the composi-
tion in Figure 2(b) selects the constraint requirement R1,1 = “The system
should use a security protocol when sending data over the internet” to cross-
cut the base requirements in Figure 2(c) (R2,1 = “The login and password
are sent to the server”, R2,2 = “The conclusion is sent to the server”, and
R2,3 = “The entered data is transmitted to the server”). The HW system
also has a composition that selects a constraint requirement R3,1 = “The
response time must not exceed 5 seconds” to crosscut the base requirement
R2,3 = “The entered data is transmitted to the server”. Thus, the compo-
sitional intersection of R2,3 is {R1,1, R3,1}. So for each base requirement in
the specification, we can find a compositional intersection.

3.3.2 Generating Training Examples

In many classifiers, such as the Bayesian learning method in EA-Analyzer,
labeled examples are used to estimate a target function that maps an input
vector of features into classes. The features in our classification problem
are extracted from the requirements in the compositional intersections. In
addition, we have two classes, namely the class of Conflict, when two or more
requirements present a conflicting dependency, or the class of Harmony,
when all the requirements are interacting harmoniously.

However, labeled examples are time-consuming to obtain, because they
normally require a human annotator to examine and label each training
example. Therefore, to reduce the burden on the human annotator, we
implemented a user interface (UI) to the tool that helps a user label each
compositional intersection and save the training data for the learning pro-
cess. Figure 3 presents the UI in EA-Analyzer that helps a human annotator
label the compositional intersections. In the UI, the human annotator is re-
quired only to select the conflicting requirements from the top list, and the
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Figure 3: The User Interface for Generating Training Examples

tool automatically labels each compositional intersection by using a brute
force procedure that labels each occurrence of the conflicting dependency.

The example in Section 3.3.1 presents a compositional intersection ofR2,3

(“The entered data is transmitted to the server”) where R1,1 (“The system
should use a security protocol when sending data over the internet”) and
R3,1 (“The response time must not exceed 5 seconds”) are crosscutting R2,3.
Recall that the compositional intersection in Section 3.3.1 is a well-known
example of a potential conflict between Security Protocol, such as Encryp-
tion, and Performance [43]. In EA-Analyzer, the user is required only to
select these requirements, and the tool is made responsible for labeling all
the compositional intersections (i.e., either Conflict, if both requirements
crosscut the same base, or Harmony, otherwise) in the requirements docu-
ment .

3.3.3 Training EA-Analyzer to Identify Conflicts

In EA-Analyzer, the problem of detecting conflicts within a compositional
intersection is formulated as a text classification problem, because the com-
positional intersections are essentially composed of natural language require-
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ments. The tool is an application of the Naive Bayes [28] classifier, which is
an effective approach to the problem of learning to classify text [26, 28, 16].

In EA-Analyzer’s text classification problem, the input vector of fea-
tures is extracted from the text of the requirements within a compositional
intersection, and an estimated target function maps these features into a set
of classes V = {Conflict,Harmony}. Equation 2 shows the Naive Bayes
approach to classifying a new compositional intersection (see Appendix A
for detailed explanation).

vNB = argmax
vj∈V

P (vj)
∏

i

P (ai|vj) (2)

where < a1, a2, ..., an > is the input vector of features and V is a finite set
of classes. The aim of the Naive Bayes approach is to assign the most prob-
able target value, vNB, given the input vector of features < a1, a2, ..., an >.

For example, the requirement in Figure 2(a) has the words “security pro-
tocol” and “data”, and it is also a member of a compositional intersection.
In order to calculate the most probable class (Conflict or Harmony) for
the compositional intersection, we instantiate Equation 2 as follows:

vNB = argmax
vj∈V

P (vj)P (a1|vj)

...P (ai = “security protocol”|vj)
P (aj = “data”|vj)

...P (an|vj)

The extraction of words from the requirements is a pre-processing stage
in machine learning called feature extraction [6]. The aim is to pre-process
an original input into a new space of features, in which the classification
problem is easier to solve. For instance, in the example above, the words
“security protocol” and “data” are selected as features for the Naive Bayes
classifier, while other words such as “a” and “over the internet” have not
been selected. The current version of EA-Analyzer relies on the RDL anno-
tation process as a method for extracting features.

The Naive Bayes classifier has a learning step in which the various P (vj)
and P (ai|vj) terms are estimated. In the text classification problem, these
probabilities are estimated based on the word frequencies over the training
data. Equations 3 and 4 are used in EA-Analyzer to estimate the probabil-
ities of Equation 2.
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P (vj) =
|CIj |

|Examples|
(3)

P (ai|vj) =
nk + θ

n+ θ.|V ocabulary|
(4)

Where Examples is a set of compositional intersections, CIj is the subset
of Examples that are labeled as vj , V ocabulary is a set of all distinct words
wk that are selected from Examples, n is the number of word positions in
CIj , nk is the number of times a word wk occurs in class CIj , and θ is the
Laplacian smoothing parameter.

(a) The Estimated Probabilities

(b) The Estimated Probability of “security protocol”

Figure 4: The User Interface for Analyzing the Estimated Probabilities

In order to assess the quality of the estimation process, EA-Analyzer has
an interface that displays all the words in V ocabulary and the associated
probabilities P (ai|vj). Figure 4 shows a table with the words sorted by the
fraction P (ai|Conflict)

P (ai|Harmony) , this is a useful method for analyzing the most proba-
ble words in the conflict class. For example, the estimated probabilities for
“security protocol” in Figure 4 are approximately P (ai|Conflict) = 0.0414
and P (ai|Harmony) = 0.0033. Thus, the fraction P (ai|Conflict)

P (ai|Harmony) is approxi-
mately 12.5730, which means that “security protocol” is 12.5730 more likely
to occur in a compositional intersection that has been labeled as Conflict.
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3.3.4 Advantages and Disadvantes of the Learning Method in
EA-Analyzer

The Bayesian learning technique in EA-Analyzer leads to a bag of words
model (BoW) [25]. The BoW is a method in NLP that models text as an
unordered collection of independent words represented in a term-frequency
vector, disregarding grammar1 and even word order.

In EA-Analyzer’s BoW, one can imagine there are two bags full of words.
The first bag is filled with words found in compositional intersections that
have a potential conflict such as the potential conflict in Section 3.3.1. The
second bag is filled with words found in compositions that do not have a
potential conflict. While some words can appear in both bags, the first bag
will contain conflict-related words such as “security protocol” and “sending”
much more frequently. On the other hand, the second bag will contain
more words related to the other requirements. Thus, if the text in the
requirements of a new compositional intersection has more words that come
from the first bag than the second bag, then it will be classified as a conflict.

The main advantages of the learning method in EA-Analyzer are twofold.
Firstly, the learning method only requires a small amount of training data
to estimate the parameters in the Naive Bayes classifier [28]. Secondly, this
learning method can be easily trained on a per-user basis, so that each or-
ganization can have their EA-Analyzer tool tailored for detecting conflicts
in their requirements documents. Moreover, it has been proven to be very
powerful (and with outstanding performance) in NLP problems such as text
classification and topic modeling. The disadvantage of this learning method
is that it only considers the distribution of the words and loses the relation-
ships between them. To overcome this problem, search engines commonly
use vocabularies consisting of combinations of words or expressions. The
same technique is used in EA-Analyzer in the feature extraction stage as
described in Section 3.3.3.

We must also note that the binary classification of a relationship as
either harmony or conflict could be perceived as an over-simplification of
requirements’ relationships. The relationship of two quality requirements
could be considered conflicting in one system and tolerable in another by
a human analyst. EA-Analyzer will always pinpoint the potential presence
of such conflicts. It is then up to the requirements analyst to consider if a

1Please note that grammar and semantics are used in RDL composition definitions, as
discussed previously. Thus, they are indispensable in the task of collecting the required
bags or words. Once such words are collected, in the EA-Analyzer learning phase, the
grammar and semantics are not used any further.
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given potential conflict can be tolerable in a given context, and so disregard
it from the set of real conflicts for that system. Such classifications are not
directly supported by the conflict identification support of EA-Analyzer; we
consider these to constitute the follow-up step of conflict resolution.

4 Empirical Evaluation

4.1 Study Configuration

In order to conduct an effective evaluation of the EA-Analyzer tool, careful
consideration had to be given to the study configuration. Firstly, a series of
textual requirement documents had to be selected that could be analyzed
for conflicts. The documents were selected based on their suitability for
such a study, with selection criteria including: domain, requirement type,
complexity and use in previous studies. Four documents were selected for
this study, where three documents originate from industrial organizations
and the fourth document is a case-study extensively used in academia to
evaluate AO modeling techniques. Furthermore, each of these documents
was created prior to the conception of this study by external personnel. The
four documents include:

• HealthWatcher [47] is a web-based health support system which the
public can use to register health-related complaints and query disease
and symptom information.

• SmartHome [36] is an embedded system which provides functionality
to control various sensors and actuators around the home (i.e., lights,
blinds, heating, etc.).

• CAS [3] is a customer relationship management application (CRM)
which utilizes service mash-ups and mobility support in a hosted software-
as-a-service environment.

• Crisis Management [22] is a crisis management system for emergency
situations (e.g., natural disasters, accidents, terrorist attacks).

The documentation for each of these applications contains a range of dif-
ferent requirements, both functional and non-functional, with some types of
requirements (e.g. security) occurring across the applications. From previ-
ous analysis of these applications they were known to contain requirements
that are potentially conflicting. However, no work has been undertaken to
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determine whether these requirements do actually conflict in each of these
documents.

In order to process the documents with EA-Analyzer, each of them had
to be pre-processed using the RDL (see Section 3). In a previous study [10],
the HW requirements had already been re-structured using the RDL. Addi-
tionally, this study required evolving the HW RDL specification by adding
new requirements. Thus, we were able to evaluate EA-Analyzer’s ability
to identify conflicts in evolving documents (Section 4.1.2). To prepare the
other three documents using the RDL, two researchers were selected who
had an in depth knowledge of the SmartHome, the CRM and the Crisis
Management systems. Furthermore, both of these researchers had previous
experience of using the RDL to structure requirements documents. The
process of creating the RDL specification was supported by EA-Miner [42].
The output from EA-Miner provided the researchers with the annotated
sets of potential requirements and concerns. However, it was the responsi-
bility of the researchers to first determine whether the output was correct
and then create the appropriate compositions between the requirements of
concerns. Once RDL compositions were created, the texts and compositions
were provided to EA-Analyzer for processing.

HW1 HW2 SH CAS CM
Words in RDL 1521 1764 4699 1053 5961

Num. of Compositions 15 17 9 5 8
Num. of CI 77 89 71 16 43

Num. of Enc-Acc 0 14 4 0 16
Num. of Enc-Perf 23 23 5 3 16
Num. of FF-Avail 41 42 0 0 0
Num. of Ind-Sp 0 0 3 0 0

Num. of Ver-Conf 0 0 0 2 0

Table 1: Characteristics of the Requirements Documents

Table 1 shows some characteristics of the four documents selected for this
study: two versions of HW (HW1 and HW2), SmartHome (SH), CAS and
Crisis Management System (CM). The characteristics present two different
dimensions of the documents: (i) the size of the documents, by showing the
number of words, compositions and compositional intersections (CI); and
(ii) The types of conflict, by showing the number of compositional inter-
sections that have a specific type of well-known conflicting dependency (e.g.
between Encryption and Accuracy). A number of these well-known conflicts
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between non-functional requirements (NFR) have been previously identified
with each system used in our evaluation containing at least two different
types of these conflicts:

• Encryption - Accuracy (Enc-Acc) [12] - Encryption reduces the chance
of direct examination, a method for operationalizing Accuracy.

• Encryption - Performance (Enc-Perf) [43] - Introducing encryption
into a system reduces its responsiveness.

• Fix Fault - Availability (FF-Avail) [19] - Fixing faults increases the
downtime of a system, which reduces its availability.

• Indexing - Space (Ind-Sp) [12] - Indexing has a negative impact on
Space performance.

• Verification - Confidentiality (Ver-Conf) [12] - Verification, an oper-
ationalizing method of Accuracy, may hurt Confidentiality to ensure
access to the data if it has to be verified.

We have the following set of hypotheses for this evaluation. The first
null and alternative hypotheses relate to the accuracy of the tools, while the
second null and alternative hypotheses relate to the effectiveness of the type
of training data used:

• Null hypothesis 1 - H10: A low classification accuracy will be achieved
when testing the tool using training data from the same domain.

• Alternative hypothesis 1 - H11: A high classification accuracy will be
achieved when testing using training data from the same domain.

• Null hypothesis 2 - H20: The performance of the tool will remain the
same regardless of the training data selected for the learning method.

• Alternative hypothesis 2 - H21: The performance of the tool will differ
depending on the training data selected for the learning method.

We conducted three experiments to test the above hypotheses. First,
we tested hypothesis H1 by performing cross-validation within each of the
documents (HW2, SH, CAS and CM), where each example is tested in turn
(i.e., each compositional intersection in turn) as the validation data and the
remaining examples as the training data (Section 4.1.1). The technique for
testing H1 is known as leave-one-out cross-validation [6] and is commonly
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used in machine learning to estimate the generalization error of a learning
technique on a data set.

The next set of experiments test hypothesis H2, whilst providing further
evidence for hypothesis H1. The first involved ascertaining the accuracy
of EA-Analyzer when attempting to find new conflicts in different versions
of the same requirements document (Section 4.1.2). Then, we assessed the
ability of EA-Analyzer to detect conflicts using training data gathered from
different domains (Section 4.1.3), where the training data was gathered from
each of the requirements documents in turn and applied to the remaining
documents in order to identify the conflicts.

4.1.1 Cross-Validation

In a data set with N examples, each round of the leave-one-out cross-
validation procedure [6] utilizes N − 1 examples to train a machine learning
technique and then validates it on the remaining example. In order to com-
pute the accuracy of a machine learning technique, the validation results are
averaged over the rounds.

For instance, a leave-one-out cross-validation procedure for a data set
with three examples {E1, E2, E3} would run as follows:

• Run 1: Train the machine learning technique with {E2, E3} and assess
the performance with {E1}. This generates performance score S1.

• Run 2: Train the machine learning technique with {E1, E3} and assess
the performance with {E2}. This generates performance score S2.

• Run 3: Train the machine learning technique with {E1, E2} and assess
the performance with {E3}. This generates performance score S3.

The accuracy of the leave-one-out cross-validation technique is then com-
puted as follows:

S =
S1 + S2 + S3

3

Tables 2 - 5 present the results of the leave-one-out cross-validation tech-
nique (now referred to as cross-validation) with a 95% confidence interval
(i.e., we are 95% confident that the interval contains the true population
mean). Each document has at least two types of NFR conflicts, and were
created using natural language from different personnel. All the results
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are compared to a baseline accuracy of 50% as randomly assigned classes
should yield an approximate 50% accuracy. Overall, the results show that
the learning method in EA-Analyzer was able to classify the compositional
intersections as Conflict or Harmony with an accuracy of 98.35% (average
of the results in Tables 2 - 5). Moreover, all the results are above the 50%
baseline accuracy.

Conflict C.V. ±95% Conf.Int. fp fn

Enc-Acc 98.86%± 2.23% 0% 1.14%
Enc-Perf 100% 0% 0%
FF-Avail 100% 0% 0%

Table 2: Cross-Validation - HW2

Conflict C.V. ±95% Conf.Int. fp fn

Enc-Acc 100% 0% 0%
Enc-Perf 100% 0% 0%
Ind-Sp 100% 0% 0%

Table 3: Cross-Validation - Smart Home

Conflict C.V. ±95% Conf.Int. fp fn

Enc-Perf 84.62%± 20.41% 15.38% 0%
Ver-Conf 100% 0% 0%

Table 4: Cross-Validation - CAS

Conflict C.V. ±95% Conf.Int. fp fn

Enc-Acc 100% 0% 0%
Enc-Perf 100% 0% 0%

Table 5: Cross-Validation - CM

It is important to note that misclassifying a Harmony compositional
intersection may have a different impact to misclassifying a Conflict com-
positional intersection. Thus, we also report the rate of false positives (fp)
and false negatives (fn); false positive rate is the proportion of Harmony
compositional intersections classified as Conflict, and the false negative rate
is the proportion of Conflict compositional intersections classified as Har-
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mony. In the CAS document, the Encryption - Performance conflict presents
a false positive rate of 15.38%, which means that 2 Harmony compositional
intersections were misclassified as Conflict.

The cross-validation results in Tables 2 - 5 show that EA-Analyzer can
learn to detect conflicts with a high accuracy, which leads us to reject H10

and accept H11. The results also show that documents with a small num-
ber of compositional intersections, such as the CAS document with 16 (see
Table 1), may present a lower accuracy.

4.1.2 Testing a Requirements Document that Evolved Over Time

This experiment involves evaluating the classification accuracy of EA-Analyzer
with a document that has evolved over time. In this evaluation, we selected
the first version of the HW document [47] to be our training set, and used
the evolved document in [10] to test the classification accuracy of the tool.
It is important to note that the first version of the document has only two
NFR conflict types (see Table 1), so the tool can detect only these conflict
types in the evolved version.

Table 6 shows the results of this experiment. On average, the classifi-
cation accuracy is 92.61% and the false positive rate is 7.39%, which repre-
sents 4 Harmony compositional intersections (out of 89) being misclassified
as Conflict. These results also show that the tool can achieve a high classi-
fication accuracy in this different experimental setting and provides further
evidence to accept hypothesis H11.

Conflict Accuracy fp fn

Enc-Perf 94.45% 4.55% 0%
FF-Avail 89.77% 10.23% 0%
Average 92.61% 7.39% 0%

Table 6: Experiment that uses HW1 as a training set and HW2 as a valida-
tion set

4.1.3 Using a Requirements Document to Learn to Detect Con-
flicts in Other Documents

In this experiment, we used each requirements document (HW2, SH, CAS
and CM) as a training set, and evaluated the classification accuracy of the
tool with the other three documents. This is the most challenging test for
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EA-Analyzer, because it tests the tool’s ability to generalize from different
documents in distinct domains. The vocabulary of each document poses
the most problems. As seen in Section 3.3.3, the words in the training
set (i.e., the words in the document) are used as features to the classifier.
However, some of the words appear only in one document (e.g., the HW2
document uses the term “security protocol” in a security requirement, while
the other documents use the term “encryption” for an equivalent security
requirement), which can significantly influence the classification accuracy of
the tool. Therefore, to address this issue, we provide a synonym list to the
tool so that it can match words that have the same meaning across multiple
documents.

Tables 7 - 10 present the classification accuracy of the tool with the
four different training sets. In this experiment, we used the the Encryption
- Performance conflict to evaluate the classification accuracy of the tool,
because it is the only NFR conflict type that occurs in all four documents
(see Table 1). In Table 7, EA-Analyzer achieves an accuracy of 93.90%
with the HW2 document as a training set. On the same training set, the
false positive rate is 6.10%, i.e., an average of 4.02 Harmony compositional
intersections were misclassified as Conflict. The experiment that uses the
Crisis Management document as a training set yields the same results as the
HW2 document.

The classification accuracy of the tool with the Smart Home and CAS
training set are 75.94% and 63.34% respectively. In addition, the false neg-
ative rate of the Smart Home training set is 22.15%, because 6 Conflict
compositional intersections were misclassified as Harmony in the HW2 data
set. As seen in Table 1, the Smart Home and CAS documents have fewer ex-
amples of the Encryption - Performance conflict than the HW2 document,
which suggests that the amount of Conflict examples may have an impact
on the classification accuracy.

The weighted averages of this experiment are all above the 50% baseline
accuracy. However, the classification accuracy of the HW2 document in
Table 9 is 34.09%, which suggests that the size of the training set (the CAS
document has only 16 compositional intersections) can significantly influence
the classification accuracy of the tool and so causes us to reject hypothesis
H20 and accept H21.

4.2 Threats to Validity

When conducting a study of this nature a variety of threats exist which can
invalidate the collected results. The purpose of this section is to identify
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Validation Data Accuracy fp fn

SH 94.20% 5.80% 0%
CAS 87.50% 12.50% 0%
CM 100% 0% 0%

Weighted Average 93.90% 6.10% 0%

Table 7: Experiment that uses HW2 as a training set and the other two
documents as a validation set

Validation Data Accuracy fp fn

HW2 88.64% 0% 11.36%
CAS 87.50% 12.50% 0%
CM 100% 0% 0%

Weighted Average 92.05% 4.17% 3.79%

Table 8: Experiment that uses SH as a training set and the other two
documents as a validation set

Validation Data Accuracy fp fn

HW2 34.09% 65.91% 0%
SH 100% 0% 0%
CM 11.43% 88.57 0%

Weighted Average 48.51% 51.49% 0%

Table 9: Experiment that uses CAS as a training set and the other two
documents as a validation set

Validation Data Accuracy fp fn

HW2 100% 0% 0%
SH 94.20% 5.80% 0%

CAS 87.50% 12.5% 0%
Weighted Average 93.90% 6.10% 0%

Table 10: Experiment that uses CM as a training set and the other two
documents as a validation set
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some of the potential threats to validity and outline the steps undertaken
to limit their effect. It is inevitable that threats to validity can never be
eliminated completely, however, assurances can be given that any affect is
minimal and considered.

The most significant threat to validity of this experiment is the quality
of the RDL specification created by the participants involved in the study.
It is possible that the compositions which they have created are not a true
representation of the application. The creation of such compositions could
cause conflicts to be introduced that do not actually exist or conflicts omitted
which do exist. Moreover, this is a threat of the EA-Analyzer approach in
general, however, tool support is available to improve and aid developers
when constructing the RDL specifications. To ensure the quality of the
RDL for this study, the participants chosen to create the necessary RDL
and verify the results had an appropriate degree of proficiency in both the
RDL technique and the domains of the requirements documents. In some
cases, the authors of the original requirements documents were consulted.

Although a range of requirement documents from different domains have
been analyzed in this study, further analysis is needed to validate the wider
generality of the results collected here. For instance, documents from a
larger number of domains and with different sets of conflicting requirements
could help to further validate the ability of EA-Analyzer to detect conflicts
using existing training data. Similarly different documents are needed in
terms of size, style (i.e., use of language, document type, etc.) and stages
of maturity (i.e., initial version of the document up to the final version) to
verify the applicability of EA-Analyzer in different conditions. Despite not
fulfilling all of this criteria, this study has shown that EA-Analyzer does have
promise and is a useful tool for detecting conflicts in textual requirements.

4.3 Discussion of Results

The findings in this section show that EA-Anlyzer can achieve good results in
detecting conflicts in textual AO requirements. However, the outcomes are
not satisfactory if the requirements documents have only a small number of
examples of conflicts analyzed. As discussed previously, this has negatively
affected the findings of the CAS application producing noticeably worse re-
sults due to its small number of compositions and intersections. The lack
of examples makes it difficult to train EA-Analyzer for the CAS application
causing inaccuracies in the results. This type of scenario is typical of all
machine learning approaches where the lack of training data will inevitably
affect results. Although this outcome is disappointing, it is not too problem-
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atic as documents which have few training examples are likely to be small
requirements documents making it easier to identify conflicts manually and
without the aid of EA-Analyzer. However, when the documents are larger
they are likely to have more training examples which will increase the ac-
curacy of EA-Analyzer, importantly it is in these larger documents where
identifying conflicts is more difficult and so using EA-Analyzer is more de-
sirable.

On the other hand, although we achieve an accuracy of around 93%,
there will still be about 7% of misclassified conflicts and harmonies. How-
ever, it is not the intention of this tool to fully replace a requirements analyst,
but instead to assist him/her in identifying conflicts. Thus, the final deci-
sion on whether to accept or reject the suggested conflicts and harmonies
for each set of requirements ultimately rests with the analyst. In fact, this is
inevitable, as what is perceived as conflict in one system can be at harmony
in another if the analyst deems it tolerable in the given context. Thus,
the analyst should review the suggested classifications both for mistakes
(misclassifications) and for the acceptability of the suggestions for the given
system context.

5 Related Work

There is a large set of topics related to the work presented in this paper.
We broadly group these into three main categories: work related to the use
of NLP, work related to conflict identification in requirements, and work
related to text classification with machine learning approaches.

There are several NLP-based approaches that use natural language as
initial input for concept identification [42] [4] [13] [46] [18] and/or for de-
riving various models [1] [8] [4] [13]. For instance, EA-Miner [42] supports
identification of crosscutting concerns in natural language requirements by
matching these requirements against a lexicon dedicated to known types of
crosscutting concerns (e.g. security, persistence, etc.). Theme/Doc [4] [13]
uses lexical analysis for identification of interdependent activities (i.e. verbs)
in NL requirements, as well as structuring verbs into sets of synonyms for
major theme construction. In [18], the AbstFinder tool is used for identifica-
tion of abstractions (i.e. concepts such as booking a flight) in requirements
elicitation documents. CCVerbFinder [46] uses NLP for action verb-based
feature identification in the code and related comments rather than require-
ments, though it is interesting to note that it also uses the notion of verb
and object. The Circe environment [1] helps extract abstractions from nat-
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ural language (Italian) texts, and build such models of the system as ER,
DFD, OO design, etc. In the Conceptual Linguistically based Object ori-
ented Representation language (COLOR-X) approach [8] the analyst has to
select sentences for tagging in an annotation tool, then manually transform
them into structured sentences as defined by set guidelines. The structured
sentences are then automatically transformed into a specification language
and represented as UML class diagram-like and state machine-like models.
However, none of these approaches uses NL text for conflict identification,
which is the main focus of our work.

There also are a number of RE approaches that focus on the issue of con-
flict identification [17] [34] [48] [32] [12]. For instance, the Viewpoints for
Inconsistency Management (VIM) approach uses viewpoints - partial spec-
ifications of system requirements - and suggests to define a set of viewpoint
consistency rules [17] [34] [33] to ensure system consistency upon viewpoint
composition. Such rules are exemplified in the xlinkit tool [32] and are based
on modeling formalisms (e.g., UML diagrams, etc.) and their augmentations
(e.g., naming conventions, etc.) represented in XMI. The Knowledge Ac-
quisition in Automated Specification (KAOS) approach [48] views require-
ments analysis as two coordinated tasks: requirements acquisition (where
requirements are structured into system models, e.g., goal graphs) and for-
mal specification [15]. The formally specified representation of requirements
can then be checked for various conflicts. The Non-Functional Requirements
Framework (NFRF)[12] supports identification of conflict points via correla-
tion catalogues which help to examine the cross-impact of the softgoals and
decide between competing alternative solutions. Here the non-functional re-
quirements must be modeled in a goal graph. Thus, none of these approaches
is designed for working with unconstrained natural language text.

The Naive Bayes approach has been applied to several text classification
tasks, including classifying usenet news articles [20], classifying e-mail into
folders [14] [35], identifying interesting news articles [24], and filtering spam
e-mails [41]. The text classification problem has also been addressed with
many machine learning techniques, such as nearest-neighbor methods [50],
support vector machines (SVM) [21], and boosting [44]. However, none of
these techniques have been applied to the problem of identifying conflicts in
natural language specifications.

Thus, despite the existence of numerous related approaches, the problem
of conflict identification using unrestricted NL as input (without any model
formalization) has not been addressed to date.
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6 Conclusions

AORE provides an effective way to modularize and compose concerns in
requirements documents. AORE externalizes concern interactions and in-
terdependencies in explicitly dedicated composition specifications. These
composed concerns along with their compositions are an excellent starting
point for analyzing conflicting dependencies. However, detecting conflicts in
large natural language AO requirements documents could be an error-prone
and time-consuming task due to the large number and complexity of the
inter-dependencies to be considered. As discussed earlier, the formalization-
, modeling-, and stakeholder-based approaches, developed to date in the
AORE community, are unable to provide low effort and high precision tech-
niques for conflict identification in textual AO requirements.

In this paper, we have presented EA-Analyzer - a tool which demon-
strates that it is indeed possible to automate the process of detecting con-
flicts within textual AO requirements compositions. The tool is implemented
as a novel application of the Naive Bayes learning method, in which the
problem of detecting conflicts is formulated as a text classification problem.

Moreover, we have evaluated the tool via an empirical evaluation with
three industrial-strength requirements documents and a well established aca-
demic case-study used in the AO research community. This empirical eval-
uation has shown that conflicting dependencies can be detected with a high
accuracy, provided that the training set has a sufficient number of examples.
Our future work will focus on evaluating the EA-Analyzer tool with other
requirements documents from different domains to validate the generaliza-
tion power of the Naive Bayes classifier. In future evaluations we will also
test a number of other classifiers, such as SVM [6] and nearest-neighbor
methods [6], to identify the best machine learning approach for detecting
conflicts. Also, we will investigate how other AO approaches, such as AR-
CADE [38] or CORE [29], can be supported by the tool.

Thus, with this first tool for automated conflict identification in tex-
tual AO requirements and compositions, we demonstrate that the power
of AORE to represent concern inter-relationships knowledge can be effec-
tively harvested for conflict detection and analysis. We see this work as the
stepping stone towards effort reduction in AO requirements conflict identi-
fication, and supporting application of advanced modularity and analysis in
textual requirements.
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A Naive Bayes - The Bayesian Approach in EA-
Analyzer

The problem of detecting conflicts in EA-Analyzer is formulated as a classifi-
cation problem. Thus, the input vector of features is extracted from the text
of the requirements, and an estimated target function maps these features
into a set of classes V = {Conflict,Harmony}. The aim of the Bayesian
approach [28] is to assign the most probable target value, vNB, given the
input vector of features < a1, a2, ..., an >:

vNB = argmax
vj∈V

P (vj |a1, a2, ..., an) (5)

Equation 6 presents the Bayes theorem:

P (vj |a1, a2, ..., an) =
P (a1, a2, ..., an|vj)P (vj)

P (a1, a2, ..., an)
(6)

Hence, from the Bayes theorem in Equation 6, we can rewrite Equation 5
as follows:

vNB = argmax
vj∈V

P (a1, a2, ..., an|vj)P (vj)
P (a1, a2, ..., an)

(7)

Since the denominator in Equation 7 does not depend on vj and the
values of a1, a2, ..., an are given, this denominator is a constant independent
of vj . Thus, we can rewrite Equation 7 as follows:

vNB = argmax
vj∈V

P (a1, a2, ..., an|vj)P (vj) (8)

The Naive Bayes approach assumes that the features are conditionally in-
dependent given vj . In other words, the probability of observing a1, a2, ..., an

is the product of the probabilities of each individual feature:

P (a1, a2, ..., an|vj) =
∏

i

P (ai|vj) (9)

Hence, we can rewrite Equation 8 as follows:

vNB = argmax
vj∈V

P (vj)
∏

i

P (ai|vj) (10)
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