
Conflict Identification with EA-Analyzer

Alberto Sardinha1, Ruzanna Chitchyan2, João Araújo3, Ana Moreira3
and Awais Rashid4

Abstract Conflict Identification in Aspect-Oriented Requirements Engineering
(AORE) is an integral step toward resolving conflicting dependencies between
requirements at an early stage of the software development. However, to date
there has been no work supporting detection of conflicts in a large set of textual
requirements without converting texts into an alternative representation (such as
models or formal specification) or direct stakeholder involvement. Here, we
present EA-Analyzer, an automated tool for identifying conflicts directly in
aspect-oriented requirements specified in natural-language text. This chapter is
centered on a case-study based discussion of the accuracy of the tool. EA-
Analyzer is applied to the Crisis Management System, a case study used as an
established benchmark in several areas of aspect-oriented research.

1 Introduction to Conflict Identification in Aspect-
Oriented Requirements

Aspect-Oriented Requirements Engineering (AORE) [Rashid et al., 2003] aims at
addressing the identification, representation, modularization, composition and
subsequent analysis of crosscutting requirements. Identification and resolution of
conflicts between concerns is often an essential part of the analysis activity. Since
in AORE most concern inter-relationships can be defined via compositions,
composition specifications are also a natural focus for conflict identification work.
Thus, it is not surprising that a number of studies have been focusing on conflict
detection and resolution via composition definitions [Brito et al., 2007; Sardinha
et al., 2013; Weston et al., 2008].

As discussed in previous chapters, although most requirements documents tend
to be written in natural language, research on conflict detection in aspect-oriented
(AO) textual requirements tends to re-format the textual artifacts before starting
the conflict identification process. For instance, some researchers tackle the

1 INESC-ID and Instituto Superior Técnico, UTL, Portugal
2 Department of Computer Science, University of Leicester, UK
3 Informatics Department, CITI/FCT, Universidade Nova de Lisboa, Portugal
4 Computing Department, Lancaster University, UK

Jose Alberto Sardinha

Jose Alberto Sardinha

2

conflict identification by first carrying out formalization of requirements and
compositions [Laney et al., 2004; Mostefaoui and Vachon, 2007; Weston et al.,
2008]; others represent requirements and compositions via models, then undertake
model-based analysis [Mehner et al., 2006; Barais et al., 2008]; and, finally, others
involve stakeholders to help in conflict identification and resolution based on the
priorities explicitly expressed by the stakeholders [Brito et al., 2007]. Prior to our
work discussed below, there has been no research on text-only based conflict
identification in AORE.

This chapter presents EA-Analyzer, a tool for identifying conflicts in textual
AO requirements, without needing to convert the textual artifacts into an
alternative format, or engaging stakeholders directly. The tool operates on
annotated natural language text and compositions defined using the RDL
annotations [Chitchyan et al., 2007]. The annotations do not alter or reduce the
textual requirements, but only decorate text with syntactic and semantic linguistics
tags [Chitchyan, 2007]. A Bayesian learning method, called Naive Bayes
[Mitchell, 1997], is utilized by EA-Analyzer to learn the nature of the composed
concerns and to detect conflicts within the textual specifications.

This chapter is centered on a case-study based discussion of the accuracy of the
tool, where EA-Analyzer is applied to the Crisis Management System, a case
study used as an established benchmark in several areas of aspect-oriented
research. The initial evaluation of the tool suggests that this is a promising
direction for text-based conflict identification.

The rest of this chapter is organized as follows. Section 2 presents the related
work and discusses the advantages and disadvantages of aspect-oriented
approaches when compared to EA-Analyzer. Section 3 details the approach and
the EA-Analyzer tool developed to address the problems discussed in the pervious
section. Section 4 presents the case study demonstrating the evaluation of the tool.
Section 5 concludes the chapter.

2 Related Work

The most popular approaches that deal with conflicts in requirements are the goal-
oriented and aspect-oriented ones; hence, Section 2.1 presents some related work
on goal-oriented approaches and Section 2.2 discusses the related approaches of
aspect-oriented requirements engineering, where EA-Analyzer is a novel approach
within this research area.

2.1 Goal-Oriented Approaches

In the NFR framework [Chung et al., 1999], the focus is on the identification of
conflicts of non-functional requirements — it does not explicitly deal with

Jose Alberto Sardinha

Jose Alberto Sardinha

3

functional concerns, but establishes a link to them. The analysis starts with
softgoals, i.e. quality attributes of a system. The system’s softgoals may be
security, usability, performance and availability. In the NFR framework, softgoals
are normally decomposed and refined into more solution space model elements,
captured by a softgoal graph structure. By analyzing the graph, interfering
softgoals can be found, e.g. security goals interfere with usability in general.
Resolution of such conflicts is achieved by selecting the most appropriate
softgoals after some trade-off analysis.

i* [Yu, 1995] was developed for modeling and reasoning about organizational
environments and their information systems. It focuses on the concept of
intentional actor. i* has two main modeling components: the Strategic
Dependency (SD) model and the Strategic Rationale (SR) model. The SD model
describes the dependency relationships among the actors in an organizational
context. The SR model provides a more detailed level of modeling than the SD
model, since it focuses on the modeling of intentional elements (goals, softgoals,
tasks and resources) and relationships internal to actors. Intentional elements are
related by means-end or decomposition links. Means-end links are used to specify
alternative ways to achieve goals. Decomposition links are used to decompose
tasks. Apart from these two links, there are the contribution links, which can be
positive or negative. These are the basis for the conflict identification, which is
specified in a similar way to the NFR framework. In both approaches, the conflict
degree is specified and alternatives are used to solve conflicts.

KAOS [van Lamsweerde et al., 1991] is a systematic approach for discovering
and structuring system level requirements. In KAOS, goals can be divided into
requirements (a type of goal to be achieved by a software agent), expectations (a
type of goal to be achieved by an environment agent) and softgoals (e.g., quality
attributes). In KAOS, goals can be refined into subgoals through and/or
decompositions. There is also the possibility of identifying conflicts between non-
functional goals and represent it in the goal models.

2.2 Aspect-Oriented Requirements Engineering Approaches

Aspect-Oriented Requirement Engineering (AORE) approaches have enabled the
early identification of candidate crosscutting concerns within problem domains.
Such strategies enable requirements engineers to specify how requirements
compose with one another to explicitly externalize their interdependencies.

This has significant advantages for reasoning about requirements, as their
mutual influences and tradeoffs can be identified before architecture is derived. As
well as this, the transition to an aspect-oriented architecture can be eased by the
explicit recognition of early aspects within the domain.

However, this benefit also brings with it a significant challenge - namely, the
accurate detection of conflicts between requirements. The increased modularity

Jose Alberto Sardinha

4

and advanced composition mechanisms which AORE approaches tend to employ
can complicate the task of discerning where requirements interact with one
another and, whether a given interaction constitutes a potential conflict. This issue
has received a great deal of research attention within the AO community when the
conflict is expressed at the code level; but research at the requirements level is
much less mature. In this section we discuss the existing AORE approaches that
support conflict detection, and highlight the open issues in this area. We group the
available AORE approaches on basis of their overall conflict identification
strategy into the following three groups:

Formalization-Based approaches

Within the AO conflict detection research area, many current approaches
require some formal specification of requirements in order to detect conflicts
among requirements. In other words, these approaches require precise expression
of the properties of requirements and decide whether the compositions specified
over these requirements invalidate these properties.

Examples of this strand of work are the AO Composition Frames [Laney et al.,
2004]; Composition Frames model the semantics of requirements (in the form of
Problem Frames) being composed with one another. The requirements of this
composition - that is, the formal properties of its satisfaction - can be validated
against the state machine expressed in the Composition Frame, and thus conflicts
detected. Here the validity of the conflict detection depends on the sound
construction of the Problem Frames and their compositions.

In [Mostefaoui and Vachon, 2007], AO models are specified in Aspect-UML,
which includes formal annotations of aspects and joinpoints. These Aspect-UML
models are transformed into Alloy, a structural modeling language based on first-
order logic. Alloy includes an analyzer that can check the validity of assertions
over a model, and so the Aspect-UML model of an AO system can be checked for
aspects introducing properties to the system that render other aspect assumptions
invalid, and thus determine conflicts.

Similarly, the work in [Weston et al., 2008] presents a conflict detection
technique based on transformation of textual compositions into temporal logic
formulae based on a catalogue of formalizations of natural language operators.
The semantics of the compositions can thus be compared with one another for
temporal overlap and violation of system properties, which implies a conflict
between requirements.

The major disadvantage of these approaches is that the transformation of
requirements into specific formal representations will require substantial time and
effort, which may outweigh the advantages of precisely detecting conflicts.
Moreover, the formalized representations become less accessible to broader
audiences. For instance, in order to understand implications of the Alloy analyzer
results, the analyst has to be familiar with the formalization framework. Moreover,

Jose Alberto Sardinha

5

if there are any errors introduced in the formalization process, the detected
conflicts may not be truly representative of those present in the requirements
themselves.

Model-based approaches

A number of AORE approaches take a (design-level) model-based view on
conflict detection; that is, they expect the requirements to be (at least initially)
structured into specific models before conflicts can be detected.

For instance, the work in [Mehner et al., 2006] models requirements as use
cases in UML notation, and the crosscutting concerns are activities which refine
the use cases. The approach then translates these UML diagrams into type graphs,
with activities being modeled as graph transformations. Applying these graph
transformations sequentially can thus reveal conflicts between requirements. A
similar technique based on statechart weaving on UML models was proposed in
[Shaker and Peters, 2006].

Similarly, the work in [Barais et al., 2008] adapts the Theme/UML [Baniassad
and Clarke, 2004] approach to formally model compositions between base and
aspect concerns. Certain forms of conflict based on global properties, such as
visibility and kind, can then be discerned and automatically resolved. Another
similar technique for class diagrams is presented in [Reddy et al., 2006].

The disadvantages of the model-based approaches are twofold. Firstly, the
necessity of modeling adds an extra step to the conflict detection process, which
may require additional time and effort. Secondly, the structuring of requirements
into models may lose information, which means that information encoded in the
requirements, including potential conflicts, may be omitted/lost before the
interaction analysis commences. Also, similar to formalization-based approaches,
a modeling error may invalidate the results of the analysis.

Stakeholder priority-based approaches

Finally, the stakeholder priority-based work [Moreira et al., 2005; Brito and
Moreira, 2003; Brito and Moreira, 2004; Rashid et al., 2003] handles conflicts via
stakeholder involvement. If interactions can be identified using a technique such
as ARCADE [Rashid et al., 2003], the stakeholders can then determine whether
such compositions are positive, negative or neutral from their point of view, and
refine the requirements accordingly [Rashid et al., 2003]. Alternatively,
stakeholders state their preferred non-functional requirements up-front, and
mathematical reasoning techniques (i.e., a multi-criteria decision making method
called Analytical Hierarchy Process [Saaty, 1980; Saaty, 2008]) are then applied
to help conflict resolution [Brito et al., 2007].

Jose Alberto Sardinha

6

More recently, in the AMPLE project [AMPLE, 2011], a novel hybrid
assessment method, HAM, was proposed and a software tool was developed.
HAM combines the best properties of two well known multi-criteria decision
making methods, the Analytical Hierarchy Process and the Weighted Average
[Triantaphyllou, 2000]; this combination helped to avoid some problematic
features of those methods [Ribeiro et al., 2011].

The main limitations of these approaches are that: (i) each concern must be
allocated a specific priority; (ii) conflict handling is often based on one criterion,
the priority (except for [Brito et al., 2007], where multi-criteria analysis is
supported); (iii) the conflict identification and resolution requires direct
involvement of the stakeholders.

In summary, although the above discussed AORE approaches can help in
conflict identification for AORE, what is missing from the current state of the art
is a tool-supported informal approach which is able to determine potential
interactions based on compositions of the requirements themselves, without
having to resort to the formalization / modeling or the subjective (and frequently
arbitrary) opinions of stakeholders. Such a tool would enable conflicts to be
detected quickly from textual specifications themselves, and thus provide a cost-
effective solution to developers.

3 Detecting Conflicts in an Aspect-Oriented
Specification

This section presents the EA-Analyzer tool and the process utilized to identify
conflicts between requirements in the Crisis Management System. We will start
presenting the annotation process of the Crisis Management specification with the
Requirements Description Language (RDL). The following sections describe the
inner workings of the tool on the annotated specification and an empirical
evaluation of the tool.

3.1 Annotating Textual Requirements with RDL

The Requirements Description Language (RDL) [Chitchyan, 2007] utilizes XML
tags to annotate a natural language specification, in order to express dependencies
and interactions between various groups of requirements (such as viewpoints and
use cases). A previous chapter of this book presents a detailed description of the
RDL and discusses the usability of the approach; hence, we refer the reader to this
chapter for a detailed discussion regarding the RDL.

Jose Alberto Sardinha

Jose Alberto Sardinha

7

Figures 1 and 2 show an example of a Non-Functional Requirement (NFR) in
the Crisis Management System that has been annotated with the RDL tags. The
annotated RDL text is generated with the semi-automated EA-Miner [Sampaio et
al., 2005] tool, which is based on a general purpose NLP tool, Wmatrix [Rayson,
2010].

<Concern name="Real-time">
…
<Requirement id="3">
 The <Subject>system</Subject>
 <Degree type="modal" semantics="obligation" level="high">shall</Degree>
 be able to
 <Relationship type="Move" semantics="Transfer_Posession">retrieve</Relationship>
 any stored
 <Object>information</Object>
 with a maximum
 <Object>delay</Object> of 500 milliseconds.
 </Requirement>
 </Concern>

Fig. 1 Example of a NFR requirement in the Crisis Management System

Fig. 2 Visualizing the NFR requirement in EA-Analyzer

In addition, the RDL tags also express dependencies and interactions between
requirements. Hence, an analyst can define domain relationships (via RDL
compositions) using only the natural language text. For instance, RDL
compositions can mandate that a requirement must precede another one, such as
the real-time requirement in Figure 1 (“The system shall be able to retrieve any
stored information with a maximum delay of 500 milliseconds”), which should be
satisfied before any other requirement that retrieves information.

8

An RDL composition consists of three parts, namely Constraint, Base, and
Outcome. Each part has a semantic query that selects requirements from the
specification with the aim of ensuring a desired interaction. For instance, Figure 3
presents a composition that must ensure that the requirements selected by the Base
query (e.g., “The system shall have access to detailed maps, terrain data and
weather conditions …” in Figure 4) are constrained by the requirements selected
by the Constraint query (i.e., “The system shall be able to retrieve any stored
information with a maximum delay of 500 milliseconds”).

<Composition name="Performance (Real-time)">
 <Constraint operator="apply">(subject="system" and relationship="retrieve" and
 object="information" and object="delay")</Constraint>
 <Base operator="before">relationship="handling" or relationship="processing" or
 relationship="request" and relationship="access"</Base>
 <Outcome operator="ensure"/>
</Composition>
Fig. 3 Example of a Composition in the Crisis Management System

Fig. 4 Visualizing the Composition in EA-Analyzer

3.2 Detecting Conflicts in the Crisis Management Specification

The main goal of EA-Analyzer is to detect conflicts within a textual specification
that has been previously annotated with RDL tags; recall that RDL tags are added
with the help of the EA-Miner tool. In addition, the tool has a Graphical User
Interface (GUI) that helps to visualize the annotated specification and the
composition, such as the examples in Figure 2 and 4.

Jose Alberto Sardinha

9

In EA-Analyzer, the problem of detecting conflicts is formulated as a
classification problem, which is a well-studied problem in machine learning
[Mitchell, 1997]. The tool operates on RDL by using its compositions and
annotated requirements, and utilizes composed requirements to decide whether
they have a conflicting dependency.

EA-Analyzer has to go through a learning process before the tool can be
utilized for detecting conflicts. The learning process consists of the following
steps: (i) Identifying all the sets of requirements that crosscut one or more base
concerns, also known as Compositional Intersections (Section 3.2.1); (ii)
Generating training examples for the learning method by labeling the
Compositional Intersections (Section 3.2.2); and, (iii) Training the classifier based
on the examples generated in step (ii) (Section 3.2.3).

3.2.1 Identifying Compositional Intersections

The first step in the learning process is concerned with the identification of the
compositional intersections; compositional intersections are used as a basis to
detect conflicts among composed concerns, because they explicitly represent the
interactions of a requirement with other requirements with reference to a base
requirement.

A compositional intersection is the union of all the constraint requirements
(i.e., requirements that have been selected by the constraint queries) that crosscut
the same base requirement. For instance, the Crisis Management specification has
a composition that selects the constraint requirement R3 of the Real-time concern
(i.e., “The system shall be able to retrieve any stored information with a maximum
delay of 500 milliseconds”) and the base requirement R1 of the Persistence
concern (i.e., “The system shall provide support for storing, updating and
accessing the following information…”). In addition, the specification has another
composition that selects the constraint requirement R5 of the Security concern (i.e.,
“All communications in the system shall use secure channels compliant with AES-
128 standard encryption”) and the aforementioned base requirement (i.e., R1 of the
Persistence concern). Hence, R3 of the Real-time concern and R5 of the Security
concern are part of the compositional intersection of R1 of the Persistence concern
as shown in Figure 5.

Fig. 5 Visualizing the Compositional Intersections in EA-Analyzer

Jose Alberto Sardinha

Jose Alberto Sardinha

10

3.2.2 Generating Training Examples

The machine learning technique utilized by EA-Analyzer requires a set of labeled
examples to train the tool. This step enables the tool to be trained on a per-
organization basis, so that each organization can have their EA-Analyzer tool
tailored for detecting conflicts in their requirements documents.

Labeled examples are time-consuming to obtain since they normally require a
human annotator to examine and label each training example. In order to reduce
this burden, we have implemented a module in EA-Analyzer that partially
automates this step. Figure 6 presents the user interface (UI) that helps the human
annotator label the composition intersection that has been previously identified
(Section 3.2.1). In the UI, the human annotator is only required to select the
conflicting requirements from the top list and the tool automatically performs a
brute force procedure that labels each occurrence of the conflicting dependency in
the set of examples (i.e., the compositional intersection that have been selected to
train the tool). Figure 6 shows also that the tool requires not only training
examples of conflicting dependencies within a compositional intersection but also
examples of requirements within a compositional intersection that are interacting
harmoniously.

Fig. 6 Generating Training Examples with EA-Analyzer

Jose Alberto Sardinha

Jose Alberto Sardinha

11

Figure 6 presents a well-known example of a potential conflict between an

Encryption requirement and a Performance requirement [Sampaio et al., 2007],
since introducing encryption into a system reduces its responsiveness. The
Encryption requirement is R5 of the Security concern (i.e., “All communications in
the system shall use secure channels compliant with AES-128 standard
encryption”) and the Performance requirement is R3 of the Real-time concern (i.e.,
“The system shall be able to retrieve any stored information with a maximum
delay of 500 milliseconds”). In this example, the human annotator has to select
these two conflicting requirements from the top list and the tool automatically
labels each occurrence of the conflicting dependency in the compositional
intersections below. The labeled examples are then saved to a file so that the tool
can train the machine learning technique.

3.2.3 Training EA-Analyzer to Identify Conflicts

EA-Analyzer utilizes the Naïve Bayes learning method to train the tool based on
the training examples provided in the previous step (Section 3.2.2). The learning
method leads to a bag of words model (BoW); the BoW is a method in Natural
Language Processing that models text as an ordered collection of independent
words represented in a term-frequency vector, disregarding grammar5 and even
word order.

For instance, one can imagine the BoW of EA-Analyzer with two bags full of
words. The first bag is filled with words found in compositional intersections that
have a potential conflict, such as the potential conflict presented in Section 3.2.2
(i.e., the well-known example of a potential conflict between an Encryption
requirement and a Performance requirement). The second bag is filled with words
found in compositions that do not have a potential conflict. While some words can
appear in both bags, the first bag will contain conflict-related words such as
“encryption” and “retrieve” much more frequently. On the other hand, the second
bag will contain more words related to the other requirements. Hence, a new
compositional intersection that has more words that come from the first bag than
the second bag will be classified as a conflict.

5 Please note that grammar and semantics are used in RDL composition definitions, as discussed

previously. Thus, they are indispensable in the task of collecting the required bags or words. Once such
words are collected, in the EA-Analyzer learning phase, the grammar and semantics are not used any
further.

Jose Alberto Sardinha

12

3.2.4 Advantages and Disadvantages of the learning method of EA-Analyzer

This learning method in EA-Analyzer presents two advantages. First, the learning
method only requires a small amount of data to train the Naive Bayes classifier
[Mitchell, 1997]. Second, the learning method can be easily trained on a per-
organization basis, so that each organization can have their EA-Analyzer tool
tailored for detecting conflicts in their requirements documents. Moreover, it has
been proven to be very powerful (and with outstanding performance) in NLP
problems such as text classification and topic modeling. However, the main
disadvantage of this learning method is that it only considers the distribution of
the words and loses the relationships between them. To overcome this problem,
search engines commonly use vocabularies consisting of combinations of words or
expressions, and the same technique is used in EA-Analyzer.

In EA-Analyzer, the binary classification of a compositional intersection as
either harmony or conflict could be perceived as an over-simplification of
requirements’ relationships. The relationship of two quality requirements could be
considered conflicting in one system and tolerable in another by a human analyst.
However, EA-Analyzer will always pinpoint the potential presence of such
conflicts. It is then up to the requirements analyst to consider if a given potential
conflict can be tolerable in a given context, and so disregard it from the set of real
conflicts for that system. Such classifications are not directly supported by the
conflict identification support of EA-Analyzer; we consider these to constitute the
follow-up step of conflict resolution.

4 Empirical Evaluation

This section presents an empirical evaluation of the tool, where the main goal
was to assess the ability of EA-Analyzer to detect conflicts using training data
gathered from four different documents, each representing a different domain. The
documents were selected based on their suitability for this evaluation, with
selection criteria including: domain, requirement type, complexity and use in
previous studies. In addition, three documents originate from industrial
organizations and the fourth document is a case-study extensively used in
academia to evaluate AO modeling techniques. Furthermore, each of these
documents was created prior to the conception of this study by external personnel.
The four documents selected were:

• Health Watcher (HW) [Soares et al., 2006] is a web based health support

system which the public can use to register health-related complaints and
query disease and symptom information.

Jose Alberto Sardinha

13

• Smart Home (SH) [Pohl et al., 2005] is an embedded system which
provides functionality to control various sensors and actuators around the
home (i.e., lights, blinds, heating, etc.).

• CAS [Ayed and Genssler, 2009] is a customer relationship management
application (CRM) which utilizes service mash-ups and mobility support
in a hosted software-as-a-service environment.

• Crisis Management System (CM) [Kienzle et al., 2010] is a crisis
management system for emergency situations (e.g., natural disasters,
accidents, terrorist attacks).

The evaluation consists of four experiments, in which we utilized each

requirements document (HW, SH, CAS and CM) in turn as the training set and
evaluated the classification accuracy of the tool with the other three documents.
Table 1 shows some characteristics of the four documents selected for this study,
and the characteristics present two different dimensions of the requirements
specifications: (i) the size of the documents, by showing the number of words,
compositions and compositional intersections (CI); and (ii) the number of
compositional intersections that have the Encryption—Performance conflict. Each
experiment used the Encryption—Performance conflict to evaluate the
classification accuracy of the tool, because it is the only NFR conflict type that
occurs in all four documents.

 HW SH CAS CM

Words in RDL 1764 4699 1053 5961
Num. of Compositions 17 9 5 8
Num. of CI 89 71 16 43
Num. of CI with Encryption
– Performance conflict

23 5 3 16

Tab. 1 Results of the classification accuracy in each experiment

Table 2 presents the classification accuracy of the tool with the four different

training sets. The classification accuracy of the HW and CM documents is
93.90%, while the experiment with SH document achieved 92.05% and the CAS
experiment yielded a classification accuracy of 48.51%. All the results are
compared to a baseline accuracy of 50%, as randomly assigned classes should
yield an approximate 50% accuracy. The results that use HW, SH and CM as
training sets yield classifications results above the baseline accuracy; however, the
experiment with the CAS document yields a classification result below the
baseline accuracy. This may suggest that the size of the training set (the CAS
document has only 16 compositional intersections – see Table 1) can significantly
influence the classification accuracy of the tool. Despite the poor result with the
CAS document, the results with the other three document, when a larger number

Jose Alberto Sardinha

14

of examples are utilized to train the tool, present very high classification results.
This suggests that the machine learning technique in EA-Analyzer is capable of
detecting conflicts in aspect-oriented specifications. A more extensive and detailed
evaluation of the tool can be found in [Sardinha et al., 2013].

 Training Sets
Validation Data HW SH CAS CM

HW 88.64% 34.09% 100.00%
SH 94.20% 100.00% 94.20%
CAS 87.50% 87.50% 87.50%
CM 100.00% 100.00% 11.43%

Weighted Average 93.90% 92.05% 48.51% 93.90%
Tab. 2 Results of the classification accuracy in each experiment

5 Conclusions

The AO approach is an effective way to modularize and compose concerns in
requirements specifications. In addition, AORE methods help to externalize
interactions and interdependencies between concerns by utilizing explicitly
dedicated composition specifications. These composed concerns are an excellent
starting point for detecting conflicts within the requirements specification.
However, detecting conflicts in large natural language specifications can be a
burden for a requirements engineers, due to the large number and complexity of
the interdependencies to be considered. As discussed earlier, the approaches based
on formal specifications, models and stakeholder priorities, developed to date in
the AORE community, are unable to provide low effort and high precision
techniques for conflict identification in large AO specifications.

This chapter presents the EA-Analyzer tool, in which we demonstrate that it is
indeed possible to automate the process of detecting conflicts within textual AO
requirements specifications. In addition, we present an empirical evaluation of the
tool with three industrial-strength requirements documents and a well established
academic case-study used in the AO research community. The results show that
conflicts within requirements specifications can be detected with a high accuracy,
as longs as a sufficient number of examples is utilized in the training set.

As future work, we will focus efforts on the empirical evaluation of the tool
with other requirements documents from different domains to validate the
generalization power of the learning method in EA-Analyzer. In addition, we will
also test a number of other classifiers in the tool, such as SVM [Bishop, 2006] and
nearest-neighbor methods [Bishop, 2006]. The utilization of different machine
learning classifiers may helps us identify the best machine learning approach for
detecting conflicts.

Jose Alberto Sardinha

Jose Alberto Sardinha

15

EA-Analyzer is the first tool for automated conflict identification in textual AO
requirements and compositions, and this work demonstrates that the power of
AORE to represent concern interrelationships knowledge can be effectively
harvested for conflict detection within natural language specifications. Hence, we
see this work as the stepping stone towards effort reduction in AORE conflict
identification, and supporting application of advanced modularity and analysis in
textual requirements.

References

1. AMPLE project: http://www.ample-project.net (2011)
2. Ayed, D., Genssler, T.: Dynamic variability in complex, adaptive systems. Deliverable D6.1

of DiVA EC project (2009)
3. Baniassad, E., Clarke, S.: Theme: An approach for aspect-oriented analysis and design. In:

ICSE’04: Proceedings of the 26th International Conference on Software Engineering. IEEE
Computer Society, Washington (2004)

4. Barais, O., Klein, J., Baudry, B., Jackson, A., Clarke, S.: Composing multi-view aspect
models. In: ICCBSS’08: Proceedings of the Seventh International Conference on
Composition-Based Software Systems (ICCBSS 2008). IEEE Computer Society,
Washington (2008)

5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
6. Brito, I., Moreira, A.: Towards a Composition Process for Aspect-Oriented Requirements.

presented at Early Aspects Workshop at AOSD'03, Boston, USA (2003)
7. Brito, I., Moreira, A.: Integrating the NFR Approach in a RE Model, presented at Early

Aspects Workshop at AOSD'04, Lancaster, UK (2004)
8. Brito, I.S., Vieira, F., Moreira, A., Ribeiro, R.: Handling conflicts in aspectual requirements

compositions. Transactions on Aspect Oriented Software Development (TAOSD) (2007)
9. Chitchyan, R.: Semantics-based composition for aspect-oriented requirements engineering.

Ph.D. thesis, Computing Department, Lancaster University (2007)
10. Chitchyan, R., Rashid, A., Rayson, P., Waters, R.: Semantics-based composition for aspect-

oriented requirements engineering. In: AOSD’07: Proceedings of the 6th International
Conference on Aspect-Oriented Software Development. ACM, New York (2007)

11. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional Requirements in Software
Engineering. Kluwer Academic, Dordrecht (1999)

12. Kienzle, J., Guelfi, N., Mustafiz, S.: Crisis management systems: A case study for aspect-
oriented modeling. In: Katz, S., Mezini, M., Kienzle, J. (eds.) Transactions on Aspect-
Oriented Software Development VII. Lecture Notes in Computer Science, vol. 6210, pp. 1–
22. Springer, Berlin (2010)

13. Laney, R., Barroca, L., Jackson, M., Nuseibeh, B.: Composing requirements using problem
frames. In: RE’04: Proceedings of the Requirements Engineering Conference, 12th IEEE
International. IEEE Computer Society, Washington (2004)

14. Mehner, K., Monga, M., Taentzer, G.: Interaction analysis in aspect-oriented models. In:
RE’06: Proceedings of the 14th IEEE International Requirements Engineering Conference.
IEEE Computer Society, Washington (2006)

15. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)
16. Moreira, A., Araújo, J., Rashid, A.: Multi-Dimensional Separation of Concerns in

Requirements Engineering. In: International Conference on Requirements Engineering (RE),
Paris, France, (2005)

Jose Alberto Sardinha

Jose Alberto Sardinha

16

17. Mostefaoui, F., Vachon, J.: Design-level detection of interactions in aspect-UML models
using Alloy. J. Object Technol. 6(7), 137–165 (2007)

18. Pohl, K., Bockle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer, New York (2005)

19. Rashid, A., Moreira, A., Araújo, J.: Modularisation and composition of aspectual
requirements. In: AOSD’03: Proceedings of the 2nd International Conference on Aspect-
Oriented Software Development. ACM, New York (2003)

20. Rayson, P.: Wmatrix. http://www.comp.lancs.ac.uk/ucrel/wmatrix/ (2010)
21. Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N., Song, E.,

Georg, G.: Directives for composing aspect-oriented design class models. In: Trans. Aspect-
Oriented Software Development, pp. 75–105 (2006)

22. Ribeiro, R., Moreira, A., Broek, P., Pimentel, A.: Hybrid Assessment Method for Software
Engineering Decisions. Decision Support Systems 51(1), 208-219 (2011)

23. Sampaio, A., Chitchyan, R., Rashid, A., Rayson, P.: EA-Miner: A tool for automating
aspect-oriented requirements identification. In: ASE’05: Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering. ACM, New York (2005)

24. Sampaio, A., Greenwood, P., Garcia, A.F., Rashid, A.: A comparative study of aspect-
oriented requirements engineering approaches. In: ESEM’07: Proceedings of the First
International Symposium on Empirical Software Engineering and Measurement. IEEE
Computer Society, Washington (2007)

25. Sardinha, A., Chitchyan, R., Weston, N., Greenwood, P., Rashid, A.: EA-Analyzer:
automating conflict detection in a large set of textual aspect-oriented requirements.
Automated Software Engineering 20(1), 111-135 (2013)

26. Saaty, T.: Decision making with the analytic hierarchy process. Int. J. Services Sciences 1,
83-98 (2008)

27. Saaty, T.: The Analytic Hierarchy Process. McGraw-Hill (1980)
28. Shaker, P., Peters, D.K.: Design-level detection of interactions in aspect-oriented systems.

In: Proceedings of the Aspects, Dependencies, and Interactions Workshop at ECOOP 2006
(2006)

29. Soares, S., Borba, P., Laureano, E.: Distribution and persistence as aspects. Softw. Pract.
Exp. 36(7), 711– 759 (2006)

30. Triantaphyllou, E.: Multi-Criteria Decision Making Methods: A Comparative Study. Kluwer
Academic Publishers (2000)

31. van Lamsweerde, A., Dardenne, A., Delcourt, B., Dubisy, F.: The KAOS project:
Knowledge acquisition in automated specification of software. In: Proceedings AAAI Spring
Symposium Series, Stanford University. American Association for Artificial Intelligence,
Washington (1991)

32. Weston, N., Chitchyan, R., Rashid, A.: A formal approach to semantic composition of
aspect-oriented requirements. In: RE’08: Proceedings of the 16th International Requirements
Engineering Conference (2008)

33. Yu, E.: Modelling Strategic Relationships for Process Reengineering. Ph.D. Thesis. Dept. of
Computer Science, University of Toronto (1995)

