
EA-Analyzer: Automating Conflict Detection in Aspect-Oriented Requirements

Alberto Sardinha, Ruzanna Chitchyan, Nathan Weston, Phil Greenwood, Awais Rashid

Computing Department
Lancaster University

Lancaster, LA1 4WA, UK
{sardinha, rouza, westonn, greenwop, awais}@comp.lancs.ac.uk

Abstract—One of the aims of Aspect-Oriented Requirements
Engineering is to address the composability and subsequent
analysis of crosscutting and non-crosscutting concerns during
requirements engineering. Composing concerns may help to
reveal conflicting dependencies that need to be identified
and resolved. However, detecting conflicts in a large set of
textual aspect-oriented requirements is an error-prone and
time-consuming task. This paper presents EA-Analyzer, the
first automated tool for identifying conflicts in aspect-oriented
requirements specified in natural-language text. The tool is
based on a novel application of a Bayesian learning method
that has been effective at classifying text. We present an
empirical evaluation of the tool with three industrial-strength
requirements documents from different real-life domains. We
show that the tool achieves up to 92.97% accuracy when one
of the case study documents is used as a training set and the
other two as a validation set.

Keywords-Aspect-Oriented Requirements Engineering;
Aspect-Oriented Software Development; Conflicting
Dependencies; Requirements Analysis; Requirements
Composition.

I. INTRODUCTION

Aspect-Oriented Requirements Engineering (AORE) [9]

aims to address the composability and subsequent analysis

of crosscutting and non-crosscutting concerns. In AORE, a

concern encapsulates one or more requirements related to a

certain matter of interest. For example, a security concern

may contain a data encryption requirement and a security

check requirement. Concerns that crosscut other concerns

are called crosscutting concerns or aspects (e.g., security,

distribution, and performance).

Compositions are used to explicitly represent and analyze

the interdependencies between concerns. The composed

concerns are also utilized as a basis for detecting potential

conflicts between concerns before architecture is derived. In

some cases, the detection of a conflicting dependency also

reveals the tradeoff of a development technique in a very

early stage of the software life cycle [3].

Many AORE approaches [4] [7] [12] for detecting con-

flicts require some formal specification of requirements. The

main disadvantage of these approaches is that the transfor-

mation of textual requirements into specific formal represen-

tations may require substantial time and effort. Our experi-

ence suggests that the analysis of conflicting dependencies in

textual requirements is still being done manually with visual

inspection. Furthermore, the detection of conflicts in large

textual specifications is an error-prone and time-consuming

task that creates a burden on the requirements engineer.

This paper presents EA-Analyzer, the first automated tool

for identifying conflicts in textual aspect-oriented require-

ments. The tool operates on RDL specifications; RDL [2]

provides an annotation mechanism for large textual specifi-

cations which enables the definition of compositions based

on semantic natural-language operators (see example in Fig-

ure 2). A Bayesian learning method, called Naive Bayes [5],

is utilized by the tool to learn the nature of the composed

concerns and to detect conflicts within a RDL specifica-

tion. We evaluated the tool with three industrial-strength

requirements documents from different real-life domains:

a Web-based application that manages health-related com-

plaints [11], a home automation system [8], and a customer

relationship management application [1]. The results show

that it achieves up to 92.97% accuracy when using one of the

documents as a training set and the other two as a validation

set.

This paper is organized as follows. Section II describes the

learning method for detecting conflicts and the EA-Analyzer

tool, one of the key contributions of this paper. Section III

presents the empirical evaluation of the tool, another key

contribution of this paper. Finally, the conclusions are pre-

sented in Section IV.

II. EA-ANALYZER

EA-Analyzer is a tool for detecting conflicts within a

textual aspect-oriented requirements document. In our ap-

proach, the problem of detecting conflicts is formulated as

a classification problem, which is a well-studied problem

in machine learning [5]. The tool operates on RDL by

using its compositions and natural-language requirements,

and utilizes composed concerns to decide whether they have

a conflicting dependency among requirements.

In order to detect conflicts with EA-Analyzer, the follow-

ing steps are required: (i) Identify all the sets of concerns

that crosscut one or more base concerns, also known as

Compositional Intersections (Section II-A); (ii) Generate

training examples for the learning method by labeling the

Compositional Intersections (Section II-B); and, (iii) Train

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.31

518

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.31

532

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.31

532

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.31

530

Figure 1. The User Interface for Generating Training Examples

the classifier based on the examples generated in step (ii)

(Section II-C).

A. Identifying Compositional Intersections

Compositional Intersections are used as a basis to detect

conflicts among composed concerns, because they explicitly

represent the interactions of a concern with other concerns

with reference to a base requirement. This Section describes

the algorithm used to identify Compositional Intersections,

which is a modified version of the algorithm in [6].

Let C1, C2, C3, ..., Cn be concerns in the system re-

quirements and Ri,j be the requirement i encapsulated

by concern Cj . The compositions in the aspect-oriented

specification describe how a set of constraint requirements,

Crk = {Ri,j |QCr
k }, crosscut a set of base requirements,

Brk = {Ri,j |QBr
k }, where QCr

k and QBr
k are, respectively,

the constraint and base query of composition k.

Let Sci,j be the set of compositions where Ri,j is a

base requirement. Thus, the Compositional Intersection of

requirement Ri,j is defined by equation 1.

CIi,j =
⋃

k∈Sci,j

Crk (1)

A Compositional Intersection is the union of all the

constraint requirements that crosscut the same base require-

ment. Figure 2(a) presents an example of a composition in

RDL from the Health Watcher system [11] that selects the

constraint requirement R1,1 = “The system should use a

security protocol when sending data over the internet” to

crosscut the following base requirements: R2,1 = “The login

and password are sent to the server”, R2,2 = “The conclusion

is sent to the server”, and R2,3 = “The entered data is trans-

mitted to the server”. A second composition from the Health

Watcher system selects another constraint requirement R3,1

= “The response time must not exceed 5 seconds” to crosscut

the base requirement R2,3 = “The entered data is transmit-

ted to the server”. Thus, the compositional intersection of

R2,3 is {R1,1, R3,1}. So for each base requirement in the

specification, we can find a Compositional Intersection.

(a) Composition enforcing use of a security protocol (i.e., encryption
protocol) when sending/receiving data over internet

(b) A set of requirements selected by the base query from 2(a)

Figure 2. An Example of the RDL from the Health Watcher System

B. Generating Training Examples

In many classifiers, such as the Bayesian learning method

in EA-Analyzer, labeled examples are used to estimate

a target function that maps an input vector of features

into classes. The features in our classification problem

are extracted from the requirements in the Compositional

519533533531

Figure 3. The User Interface for Analyzing the Estimated Probabilities

Intersections. In addition, we have two classes, namely the

class of Conflict, when two or more requirements present a

conflicting dependency, or the class of Harmony, when all

the requirements are interacting harmoniously.
However, labeled examples are time-consuming to obtain,

because they normally require a human annotator to examine

and label each training example. Therefore, to reduce the

burden on the human annotator, we implemented an interface

in the tool that helps a user label each Compositional

Intersection and save this training data for the learning

process. Figure 1 shows the user interface (UI) in EA-

Analyzer that helps a human annotator in the task of labeling

the Compositional Intersections. In the UI, the human anno-

tator is only required to select the conflicting requirements

from the top list, and the tool automatically labels each

Compositional Intersection based on the occurrences of the

conflicting dependency.
The example in Section II-A presents a Compositional

Intersection of R2,3 (“The entered data is transmitted to the

server”) where R1,1 (“The system should use a security

protocol when sending data over the internet”) and R3,1

(“The response time must not exceed 5 seconds”) are cross-

cutting R2,3. This is a well-known example of a potential

conflict between Security Protocol, such as Encryption, and

Performance [10]. In EA-Analyzer, the user is only required

to select these requirements, and the tool is made responsible

for labeling the Compositional Intersections (i.e., either

Conflict, if both requirements crosscut the same base, or

Harmony, otherwise).

C. Training EA-Analyzer to Identify Conflicts
In EA-Analyzer, the problem of detecting conflicts within

a Compositional Intersection is formulated as a text classi-

fication problem, because the Compositional Intersections

are essentially composed of natural-language requirements.

The tool is an application of the Naive Bayes [5] classifier,

which is an effective approach to the problem of learning to

classify text [5].

In this classification problem, the input vector of features

is extracted from the text of the requirements, and an

estimated target function maps these features into a set of

classes V = {Conflict, Harmony}. Equation 2 shows the

Naive Bayes approach to classifying a new instance.

vNB = argmax
vj∈V

P (vj)
∏

i

P (ai|vj) (2)

where < a1, a2, ..., an > is the input vector of features

and V is a finite set of classes. The aim of this approach

is to assign the most probable target value, vNB , given the

input vector of features < a1, a2, ..., an >.

For example, the requirement R1,1 = “The system should

use a security protocol when sending data over the internet”

has the words “security protocol” and “data”, and it is also

a member of a Compositional Intersection. In order to cal-

culate the most probable class (Conflict or Harmony) for

this Compositional Intersection, we instantiate Equation 2

as follows:

vNB = argmax
vj∈V

P (vj)P (a1|vj)

...P (ai = “security protocol”|vj)
P (aj = “data”|vj)

...P (an|vj)

The Naive Bayes classifier has a learning step in which

the various P (vj) and P (ai|vj) terms are estimated. In

the text classification problem, these probabilities are esti-

mated based on the word frequencies over the training data.

Equations 3 and 4 are used in EA-Analyzer to estimate the

probabilities of Equation 2.

P (vj) =
|CIj |

|Examples| (3)

P (ai|vj) =
nk + θ

n + θ.|V ocabulary| (4)

520534534532

where Examples is a set of Compositional Intersections,

CIj is the subset of Examples that are labeled as vj ,

V ocabulary is a set of all distinct words wk that are selected

from Examples, n is the number of word positions in CIj ,

nk is the number of times a word wk occurs in class CIj ,

and θ is the Laplacian smoothing parameter.

In order to assess the quality of the estimation process,

EA-Analyzer has an interface that displays all the words

in V ocabulary and the associated probabilities P (ai|vj).
Figure 3 shows a table with the words sorted by the

fraction
P (ai|Conflict)
P (ai|Harmony) , which is a useful method for an-

alyzing the most probable words in the conflict class. For

example, the estimated probabilities for “security proto-

col” in Figure 3 are approximately P (ai|Conflict) =
0.0414 and P (ai|Harmony) = 0.0033. Thus, the frac-

tion
P (ai|Conflict)
P (ai|Harmony) is approximately 12.5730, which means

that “security protocol” is 12.5730 more likely to occur

in a Compositional Intersection that has been labeled as

Conflict.

III. EMPIRICAL EVALUATION

A. Study Configuration

Three documents were selected to be used in this study,

all originating from industrial organizations and each rep-

resentative of different domains. Furthermore, each of these

documents were created prior to the conception of this study

by industrial personnel. The three documents include:

• HealthWatcher [11] is a web-based health support

system which the public can use to register health-

related complaints and query disease and symptom

information.

• SmartHome [8] is an embedded system which provides

functionality to control various sensors and actuators

around the home (i.e., lights, blinds, heating, etc.).

• CAS [1] is a customer relationship management ap-

plication (CRM) which utilizes service mash-ups and

mobility support in a hosted software-as-a-service en-

vironment.

Each of these applications contain a range of different

requirements both functional and non-functional with some

types of requirements (e.g. security) occurring across the

applications. From previous analysis of these applications

they were known to contain requirements that are potentially

conflicting. However, no previous work had been undertaken

to determine whether these requirements do actually conflict

in each of these documents.

Table I shows some characteristics of the three documents

selected for this study (HealthWatcher (HW), SmartHome

(SH), and CAS). The characteristics present two different

aspects of the documents: (i) the size of the RDL, by show-

ing the number of words, compositions and Compositional

Intersections (CI); and (ii) the conflict, by showing the num-

ber of Compositional Intersections that have the Encryption

- Performance (Enc-Perf) conflict [10] (Enc-Perf is a well-

known conflict between non-functional requirements (NFR),

because introducing encryption into a system reduces its

responsiveness).

HW SH CAS
Words in RDL 1764 4699 1053

Num. of Compositions 17 9 5
Num. of CI 89 71 16

Num. of Enc-Perf 23 5 3

Table I
CHARACTERISTICS OF THE REQUIREMENTS DOCUMENTS

The hypotheses of this evaluation are the following: firstly,

we expect the tool to achieve a high classification accuracy

when testing it with different requirements documents from

different domains. Secondly, the performance of the tool will

differ depending on the training data. Therefore, to test the

hypotheses above, we assessed the ability of EA-Analyzer

to detect conflicts using training data gathered from different

domains.

B. Using a Requirements Document to Learn to Detect
Conflicts in Other Documents

In this experiment, we used each requirements document

in turn (HW, SH, and CAS) as a training set, and evaluated

the classification accuracy of the tool with the other two

documents. This is a challenging test for EA-Analyzer, be-

cause it shows the tool’s ability to generalize from different

documents in distinct domains. The vocabulary of each

document poses the most problems. As seen in Section II-C,

the words in the training set (i.e., the words in the document)

are used as features to the classifier. However, some of these

words occur in only one of the documents, and this can

significantly influence the classification accuracy of the tool.

Therefore, to address this issue, we also provide a synonym

list to the tool, so that it can match words that have the same

meaning across multiple documents.

Tables II - IV present the classification accuracy of the

tool with the three different training sets. All the results

are compared to a baseline accuracy of 50%. This is due

to the fact that randomly assigned classes should yield

an approximate 50% accuracy. In Table II, EA-Analyzer

achieves an accuracy of 92.97% with the Health Watcher

document as a training set. On this same training set, the

false positive rate is 7.03%, i.e., an average of 2.72 Harmony
CIs were misclassified as Conflict.

The classification accuracy of the tool with the Smart

Home and CAS training set are, respectively, 75.94% and

63.34%. In addition, the false negative rate of the Smart

Home training set is 22.15%, because 6 Conflict CIs were

misclassified as Harmony in the Health Watcher data set.

As seen in Table I, the Smart Home and CAS documents

have less examples of the Encryption - Performance conflict

than the Health Watcher document, and this suggests that

521535535533

the amount of Conflict examples may have an impact on the

classification accuracy.

On average, all the classification results are above the 50%

baseline accuracy. However, while using the CAS document

as a training set, the classification accuracy of the Health

Watcher document is only 34.09%. This suggests that the

size of the training set (the CAS document has only 16 CIs)

can significantly influence the classification accuracy of the

tool.

Validation Data Accuracy fp fn

SH 94.20% 5.80% 0%
CAS 87.50% 12.50% 0%

Weighted Average 92.97% 7.03% 0%

Table II
EXPERIMENT THAT USES HW AS A TRAINING SET AND THE OTHER TWO

DOCUMENTS AS A VALIDATION SET

Validation Data Accuracy fp fn

HW 73.86% 0% 26.14%
CAS 87.50% 12.50% 0%

Weighted Average 75.94% 1.90% 22.15%

Table III
EXPERIMENT THAT USES SH AS A TRAINING SET AND THE OTHER TWO

DOCUMENTS AS A VALIDATION SET

Validation Data Accuracy fp fn

HW 34.09% 65.91% 0%
SH 100% 0% 0%

Weighted Average 63.34% 36.66% 0%

Table IV
EXPERIMENT THAT USES CAS AS A TRAINING SET AND THE OTHER

TWO DOCUMENTS AS A VALIDATION SET

IV. CONCLUSIONS

Aspect-oriented requirements engineering provides an ef-

fective way to modularize and compose concerns in re-

quirements documents. The composed concerns are an ex-

cellent starting point for analyzing conflicting dependen-

cies. However, detecting conflicts in large aspect-oriented

requirements documents that have been specified in natural-

language is an error-prone and time-consuming task. There-

fore, to reduce the burden on the requirements engineer, it

is important to provide tools that can automate the process

of identifying conflicts.

In this paper, we have presented two major contributions:

a tool for automating the process of detecting conflicts

within textual aspect-oriented requirements; and, an em-

pirical evaluation of the tool with three industrial-strength

requirements documents from different real-life domains.

The tool is a novel application of the Naive Bayes learn-

ing method, where the problem of detecting conflicts is

formulated as a text classification problem. Our empirical

evaluation has shown that it is possible to detect conflicting

dependencies with a high accuracy, provided that the training

set has a sufficient number of examples. Thus, we see

this work as a promising avenue for effort reduction in

requirements conflict identification.

V. ACKNOWLEDGEMENTS

This work has been supported by a Marie Curie Fellow-

ship from the European Commission (Grant Agreement No.

PIIF-GA-2008-221016) and by the European Commission

grant IST-215412 - Dynamic Variability in complex, Adap-

tive systems (DiVA).

REFERENCES

[1] D. Ayed, T. Genssler, Dynamic Variability in complex, Adap-
tive systems, Deliverable D6.1 of DiVA EC project, 2009.

[2] R. Chitchyan, A. Rashid, P. Rayson, R. Waters, Semantics-
based composition for aspect-oriented requirements engineer-
ing, in: AOSD ’07: Proceedings of the 6th international
conference on Aspect-oriented software development, ACM,
New York, NY, USA, 2007.

[3] L. Chung, B. A. Nixon, E. Yu, J. Mylopoulos, Non-Functional
Requirements in Software Engineering, Kluwer Academic
Publishers, 1999.

[4] R. Laney, L. Barroca, M. Jackson, B. Nuseibeh, Composing
requirements using problem frames, in: RE ’04: Proceedings
of the Requirements Engineering Conference, 12th IEEE In-
ternational, IEEE Computer Society, Washington, DC, USA,
2004.

[5] T. Mitchell, Machine Learning, McGraw Hill, 1997.

[6] A. Moreira, A. Rashid, J. Araújo, Multi-dimensional separa-
tion of concerns in requirements engineering, in: Proceedings
of the 13th IEEE International Conference on Requirements
Engineering (RE’05), 2005.

[7] F. Mostefaoui, J. Vachon, Design-level detection of interac-
tions in aspect-uml models using alloy, Journal of Object
Technology 6 (7) (2007) 137–165.

[8] K. Pohl, G. Böckle, F. van der Linden, Software Product
Line Engineering: Foundations, Principles, and Techniques,
Springer-Verlag New York, Inc., 2005.

[9] A. Rashid, A. Moreira, J. Araújo, Modularisation and compo-
sition of aspectual requirements, in: AOSD ’03: Proceedings
of the 2nd international conference on Aspect-oriented soft-
ware development, ACM, New York, NY, USA, 2003.

[10] A. Sampaio, P. Greenwood, A. F. Garcia, A. Rashid, A
comparative study of aspect-oriented requirements engineer-
ing approaches, in: ESEM ’07: Proceedings of the First
International Symposium on Empirical Software Engineering
and Measurement, IEEE Computer Society, Washington, DC,
USA, 2007.

[11] S. Soares, P. Borba, E. Laureano, Distribution and persistence
as aspects, Software: Practice and Experience 36 (7) (2006)
711–759.

[12] N. Weston, R. Chitchyan, A. Rashid, A formal approach
to semantic composition of aspect-oriented requirements, in:
RE ’08: Proceedings of the 16th International Requirements
Engineering Conference, 2008.

522536536534

