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Abstract. Automated program analysis is a pivotal research do-
main in many areas of Computer Science — Formal Methods and
Artificial Intelligence, in particular. Due to the undecidability of the
problem of program equivalence, comparing two programs is highly
challenging. Typically, in order to compare two programs, a relation
between both programs’ sets of variables is required. Thus, mapping
variables between two programs is useful for a panoply of tasks such
as program equivalence, program analysis, program repair, and clone
detection. In this work, we propose using graph neural networks
(GNNS) to map the set of variables between two programs based
on both programs’ abstract syntax trees (ASTS). To demonstrate the
strength of variable mappings, we present three use-cases of these
mappings on the task of program repair to fix well-studied and recur-
rent bugs among novice programmers in introductory programming
assignments (IPAS). Experimental results on a dataset of 4166 pairs
of incorrect/correct programs show that our approach correctly maps
83% of the evaluation dataset. Moreover, our experiments show that
the current state-of-the-art on program repair, greatly dependent on
the programs’ structure, can only repair about 72% of the incorrect
programs. In contrast, our approach, which is solely based on vari-
able mappings, can repair around 88.5%.

1 Introduction

The problem of program equivalence, i.e., deciding if two programs
are equivalent, is undecidable [33, 6]. On that account, the problem
of repairing an incorrect program based on a correct implementation
is very challenging. In order to compare both programs, i.e., the cor-
rect and the faulty implementation, program repair tools first need to
find a relation between both programs’ sets of variables. Besides pro-
gram repair [1], the task of mapping variables between programs is
also important for program analysis [40], program equivalence [8],
program clustering [27, 39], and clone detection [15].

Due to a large number of student enrollments every year in pro-
gramming courses, providing feedback to novice students in in-
troductory programming assignments (IPAS) requires substantial
time and effort by the faculty [41]. Hence, there is an increas-
ing need for systems capable of providing automated, comprehen-
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sive, and personalized feedback to students in programming assign-
ments [12, 10, 11, 1]. Semantic program repair has become crucial to
provide feedback to each novice programmer by checking their IPAS

submissions using a pre-defined test suite. Semantic program repair
frameworks use a correct implementation, provided by the lecturer or
submitted by a previously enrolled student, to repair a new incorrect
student’s submission. However, the current state-of-the-art tools on
semantic program repair [10, 1] for IPAS have two main drawbacks:
(1) require a perfect match between the control flow graphs (loops,
functions) of both programs, the correct and the incorrect one; and
(2) require a bijective relation between both programs’ sets of vari-
ables. Hence, if one of these requirements is not satisfied, then, these
tools cannot fix the incorrect program with the correct one.

For example, consider the two programs presented in Figure 1.
These programs are students’ submissions for the IPA of printing all
the natural numbers from 1 to a given number n. The program in List-
ing 1 is a semantically correct implementation that uses a for-loop to
iterate all the natural numbers until n. The program in Listing 2 uses
a while-loop and an auxiliary function. This program is semantically
incorrect since the student forgot to initialize the variable j, a fre-
quent bug among novice programmers called missing expression/as-
signment [35]. However, in this case, state-of-the-art program repair
tools [10, 1] cannot fix the buggy program, since the control flow
graphs do not match either due to using different loops (for-loop vs.
while-loop) or due to the use of an auxiliary function. Thus, these
program repair tools cannot leverage on the correct implementation
in Listing 1 to repair the faulty program in Listing 2.

To overcome these limitations, in this paper, we propose a novel
graph program representation based on the structural information of
the abstract syntax trees (ASTS) of imperative programs to learn
how to map the set of variables between two programs using graph
neural networks (GNNS). Additionally, we present use-cases of pro-
gram repair where these variable mappings can be applied to repair
common bugs in incorrect students’ programs that previous tools are
not always capable of handling. For example, consider again the two
programs presented in Figure 1. Note that having a mapping between
both programs’ variables (e.g. {n : l; i : j}) lets us reason about, on
the level of expressions, which program fixes one can perform on the
faulty program in Listing 2. In this case, when comparing variable i
with variable j one would find the missing assignment i.e., j = 1.
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Listing 1: A semantically correct student’s implementation.

1 int main(){
2 int n, i;
3 scanf("%d", &n);
4 for(i = 1; i <= n; i++){
5 printf("%d\n", i);
6 }
7 return 0;
8 }

Listing 2: A semantically incorrect student’s implementation since
the variable j in the main function is not initialized.

1 void loop(int j, int l){
2 while (l >= j){
3 printf("%d\n", j);
4 ++j;
5 }
6 }
7 int main(){
8 int j, l;
9 scanf("%d", &l);

10 loop(j, l);
11 return 0;
12 }

Figure 1: Two implementations for the IPA of printing all the natural numbers from 1 to a given number n. The program in Listing 2 is
semantically incorrect since the variable j, which is the variable being used to iterate over all the natural numbers until the number l, is not
being initialized, i.e., the program has a bug of missing expression. The mapping between these programs’ sets of variables is {n : l; i : j}.

Another useful application for mapping variables between differ-
ent programs is fault localization. There is a body of research on fault
localization [16, 21, 22, 23], that requires the usage of assertions in
order to verify programs. Variable mappings can be helpful in shar-
ing these assertions among different programs. Additionally, several
program repair techniques (e.g., SEARCHREPAIR [18], CLARA [10])
enumerate all possible mappings between two programs’ variables
during the search for possible fixes, using a correct program [10]
or code snippets from a database [18]. Thus, variable mappings can
drastically reduce the search space, by pruning all the other solutions
that use a different mapping.

In programming courses, unlike in production code, typically,
there is a reference implementation for each programming exercise.
This comes with the challenge of comparing different names and
structures between the reference implementation and a student’s pro-
gram. To deal with this challenging task, we propose to map vari-
ables between programs using GNNS. Therefore, we explore three
tasks to illustrate the advantages of using variable mappings to repair
some frequent bugs without considering the incorrect/correct pro-
grams’ control flow graphs. Hence, we propose to use our variable
mappings to fix bugs of: wrong comparison operator, variable mis-
use, and missing expression. These bugs are recurrent among novice
programmers [35] and have been studied by prior work in the field
of automated program repair [3, 31, 37, 4].

Experiments on 4166 pairs of incorrect/correct programs show that
our GNN model correctly maps 83% of the evaluation dataset. Fur-
thermore, we also show that previous approaches can only repair
about 72% of the dataset, mainly due to control flow mismatches.
On the other hand, our approach, solely based on variable mappings,
can fix 88.5%.

The main contributions of this work are:

• A novel graph program representation that is agnostic to the names
of the variables and for each variable in the program contains a
representative variable node that is connected to all the variable’s
occurrences;

• We propose to use GNNS for mapping variables between pro-
grams based on our program representation, ignoring the vari-
ables’ identifiers;

• Our GNN model and the dataset used for this work’s training
and evaluation, will be made open-source and publicly avail-
able on GitHub: https://github.com/pmorvalho/ecai23-GNNs-for-
mapping-variables-between-programs.

The structure of the remainder of this paper is as follows. First,
Section 2 presents our graph program representations. Next, Sec-
tion 3 describes the GNNS used in this work. Section 4 introduces
typical program repair tasks, as well as our program repair approach
using variable mappings. Section 5 presents the experimental eval-
uation where we show the effectiveness of using GNNS to produce
correct variable mappings between programs. Additionally, we com-
pare our program repair approach based on the variable mappings
generated by the GNN with state-of-the-art program repair tools. Fi-
nally, Section 6 describes related work, and the paper concludes in
Section 7.

2 Program Representations

We represent programs as directed graphs so the information can
propagate in both directions in the GNN. These graphs are based on
the programs’ abstract syntax trees (ASTS). An AST is described
by a set of nodes that correspond to non-terminal symbols in the pro-
gramming language’s grammar and a set of tokens that correspond
to terminal symbols [14]. An AST depicts a program’s grammatical
structure [2]. Figure 2a shows the AST for the small code snippet
presented in Listing 3.

Regarding our graph program representation, firstly, we create a
unique node in the AST for each distinct variable in the program
and connect all the variable occurrences in the program to the same
unique node. Figure 2b shows our graph representation for the small
code snippet presented in Listing 3. Observe that our representa-
tion uses a single node for each variable in the program, the green
nodes a and b. Moreover, we consider five types of edges in our
representation: child, sibling, read, write, and chronological edges.
Child edges correspond to the typical edges in the AST representa-
tion that connect each parent node to its children. Child edges are
bidirectional in our representation. In Figure 2b, the black edges
correspond to child edges. Sibling edges connect each child to its
sibling successor. These edges denote the order of the arguments
for a given node and have been used in other program representa-
tions [3]. Sibling edges allow the program representation to differen-
tiate between different arguments when the order of the arguments
is important (e.g. binary operation such as ≤). For example, con-
sider the node that corresponds to the operation σ(A1, A2, . . . , Am).
The parent node σ is connected to each one of its children by a
child edge e.g. σ ↔ A1, σ ↔ A2, . . . , σ ↔ Am. Addition-
ally, each child its connected to its successor by a sibling edge e.g.
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Listing 3: Small example of a C code block with an expression.

1 { // a and b are ints
2 a = a - b;
3 }

block

assign

ID a expr

ID a op − ID b

(a) Part of the AST representation of Listing 3.

block

assign

ID expr

a

ID − ID

b

AST

Types of edges:

Sibling

Write

Read

Chronological

Variable Node

(b) Our program representation for the snippet presented in Listing 3.

Figure 2: AST and our graph representation for the small code snippet presented in Listing 3.

A1 → A2, A2 → A3, . . . , Am−1 → Am. In Figure 2b, the red
dashed edges correspond to sibling edges.

Regarding the write and read edges, these edges connect the ID
nodes with the unique nodes corresponding to some variable. Write
edges are connections between an ID node and its variable node.
This edge indicates that the variable is being written. Read edges are
also connections between an ID node and its variable node, although
these edges indicate that the variable is being read. In Figure 2b, the
blue dashed edge corresponds to a write edge while the green dashed
edges correspond to read edges. Lastly, chronological edges estab-
lish an order between all the ID nodes connected to some variable.
These edges denote the order of the ID nodes for a given variable
node. For example, in Figure 2b, the yellow dashed edge corresponds
to a chronological edge between the ID nodes of the variable a. Be-
sides the siblings and the chronological edges, all the other edges are
bidirectional in our representation.

The novelty of our graph representation is that we create a unique
variable node for each variable in the program and connect each vari-
able’s occurrence to its unique node. This lets us map two variables
in two programs, even if their number of occurrences is different in
each program. Furthermore, the variable’s identifier is suppressed af-
ter we connect all the variable’s occurrences to its unique node. This
way, all the variables’ identifiers are anonymized. Prior work on rep-
resenting programs as graphs [3, 37, 4] use different nodes for each
variable occurrence and take into consideration the variable identi-
fier in the program representation. Furthermore, to the best of our
knowledge, combining all five types of edges (sibling, write, read,
chronological, and AST) is also novel. Section 5.3 presents an abla-
tion study on the set of edges to analyze the impact of each type of
edge.

3 Graph Neural Networks (GNNS)

Graph Neural Networks (GNNS) are a subclass of neural networks
designed to operate on graph-structured data [20], which may be
citation networks [7], mathematical logic [9] or representations of
computer code [3]. Here, we use graph representations of a pair of
ASTS, representing two programs for which we want to match vari-
ables, as the input. The main operative mechanism is to perform mes-
sage passing between the nodes, so that information about the global

problem can be passed between the local constituents. The content of
these messages and the final representation of the nodes is parameter-
ized by neural network operations (matrix multiplications composed
with a non-linear function). For the variable matching task, we do
the following to train the parameters of the network. After several
message passing rounds through the edges defined by the program
representations above, we obtain numerical vectors corresponding to
each variable node in the two programs. We compute scalar products
between each possible combination of variable nodes in the two pro-
grams, followed by a softmax function. Since the program samples
are obtained by program mutation, the correct mapping of variables
is known. Hence, we can compute a cross-entropy loss and mini-
mize it so that the network output corresponds to the labeled variable
matching. Note that the network has no information on the name of
any object, which means that the task must be solved purely based
on the structure of the graph representation. Therefore, our method
is invariant to the consistent renaming of variables.

Architecture Details. The specific GNN architecture used in this
work is the relational graph convolutional neural network (RGCN),
which can handle multiple edges or relation types within one
graph [34]. The numerical representation of nodes in the graph is
updated in the message passing step according to the following equa-
tion:

x′
i = Θroot · xi +

∑

r∈R

∑

j∈Nr(i)

1

|Nr(i)|Θr · xj ,

whereΘ are the trainable parameters,R stands for the different edge
types that occur in the graph, and Nr the neighbouring nodes of the
current node i that are connected with the edge type r [32]. After
each step, we apply Layer Normalization [5] followed by a Rectified
Linear Unit (ReLU) non-linear function.

We use two separate sets of parameters for the message passing
phase for the program with the bug and the correct program. Five
message passing steps are used in this work. After the message pass-
ing phase, we obtain numerical vectors representing every node in
both graphs. We then calculate dot products �a ·�b between the vectors
representing variable nodes in the buggy program graph a ∈ A and
the variable nodes from the correct graph b ∈ B, where A and B

P. Orvalho et al. / Graph Neural Networks for Mapping Variables Between Programs 1813



are the sets of variable node vectors. A score matrix S with dimen-
sions |A| × |B| is obtained, to which we apply the softmax function
on each row to obtain the matrix P . The values in each row of P
can now be interpreted as representing the probability that variable
ai maps to each of the variables bi.

4 Use-Cases: Program Repair

In this section, we propose a few use-cases on how to use variable
mappings for program repair. More specifically, to repair bugs of:
wrong comparison operator, variable misuse, and missing expres-
sion. These bugs are common among novice programmers [35] and
have been studied by prior work in the field of automated program
repair [3, 31, 37, 4]. The current state-of-the-art on semantic program
repair tools focused on repairing IPAS, such as CLARA [10] and VE-
RIFIX [1], are only able to fix these bugs if the correct expression in
the correct program is located in a similar program structure as the
incorrect expression in the incorrect implementation. For example,
consider again the two programs presented in Figure 1. If the loop
condition was incorrect in the faulty program, CLARA and VERIFIX

could not fix it, since the control flow graphs do not match. Thus,
these tools would fail due to structural mismatch.

The following sections present three program repair tasks that take
advantage of variable mappings to repair an incorrect program us-
ing a correct implementation for the same IPA without considering
the programs’ structures. Our main goal is to show the usefulness
of variable mappings. We claim that variable mappings are infor-
mative enough to repair these three realistic types of bugs. Given a
buggy program, we search for and try to repair all three types of bugs.
Whenever we find a possible fix, we check if the program is correct
using the IPA’s test suite.

Bug #1: Wrong Comparison Operator (WCO). Our first use-
case are faulty programs with the bug of wrong comparison op-
erator (WCO). This is a recurrent bug in students’ submissions to
IPAS since novice programmers frequently use the wrong operator,
e.g., i <= n instead of i < n.

We propose tackling this problem solely based on the variable
mapping between the faulty and correct programs, ignoring the pro-
grams’ structure. First, we rename all the variables in the incorrect
program based on the variable mapping by changing all the variables’
identifiers in the incorrect program with the corresponding variables’
identifiers in the correct implementation. Second, we count the num-
ber of times each comparison operation appears with a specific pair
of variables/expressions in each program. Then, for each comparison
operation in the correct program, we compute the mirrored expres-
sion, i.e., swapping the operator by its mirrored operator, and swap-
ping the left-side and right-side of the operation. This way, if the
incorrect program has the same correct mirrored expression, we can
match it with an expression in the correct program. For example, in
the programs shown in Figure 1, both loop conditions would match
even if they are mirrored expressions, i.e., i <= n and n >= i.

Afterwards, we iterate over all the pairs of variables/expressions
that appear in comparison operations of the correct program (plus the
mirrored expressions) and compare if the same pair of variables/ex-
pressions appear the same number of times in the incorrect program,
using the same comparison operator. If this is not the case, we try to
fix the program using the correct implementation’s operator in each
operation of the incorrect program with the same pair of variables/-
expressions. Once the program is fixed, we rename all the variables
based on the reverse variable mapping.

Bug #2: Variable Misuse (VM). Our second program repair
task are buggy programs with variables being misused, i.e., the stu-
dent uses the wrong variable in some program location. The wrong
variable is of the same type as the correct variable that should be
used. Hence, this bug does not produce any compilation errors. This
type of bug is common among students and experienced program-
mers [17, 36]. The task of detecting this specific bug has received
much attention from the Machine Learning (ML) research commu-
nity [3, 37, 42].

Once again, we propose to tackle this problem based on the vari-
able mapping between the faulty program and the correct one, ignor-
ing the programs’ structure. We start by renaming all the variables
in the incorrect program based on the variable mapping. Then we
count the number of times each variable appears in both programs.
If a variable, x, appears more times in the incorrect program than in
the correct implementation, and if another variable y appears more
times in the correct program, then we try to replace each occurrence
of x in the incorrect program with y. Once the program is fixed, we
rename all the variables based on the reverse variable mapping.

Bug #3: Missing Expression (ME). The last use-case we will fo-
cus on is to repair the bug of missing expressions/assignments. This
bug is also recurrent in students’ implementations of IPAS [35]. Fre-
quently, students forget to initialize some variable or to increment a
variable of some loop, resulting in a bug of missing expression. How-
ever, unlike the previously mentioned bugs, this one has not received
much attention from the ML community since it is more complex
to repair this program fault. To search for a possible fix, we start by
renaming all the variables in the incorrect program based on the vari-
able mapping. Next, we count the number of times each expression
appears in both programs. Expressions that appear more frequently
in the correct implementation are considered possible repairs. Then,
we try to inject these expressions, one at a time, into the incorrect
implementation’s code blocks and check the program’s correctness.
Once the program is fixed, we rename all the variables based on the
reverse variable mapping. This task is solely based on the variable
mapping between the faulty and the correct programs.

5 Experiments

Experimental Setup. We trained the Graph Neural Networks on
an Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz server with 72
CPUs and 692GB RAM. Networks were trained using NVIDIA
GEFORCE GTX 1080 graphics cards with 12GB of memory. All the
experiments related to our program repair tasks were conducted on
an Intel(R) Xeon(R) Silver computer with 4210R CPUs @ 2.40GHz,
using a memory limit of 64GB and a timeout of 60 seconds.

5.1 IPAS Dataset

To evaluate our work, we used C-PACK-IPAS [26], a benchmark
of student programs developed during an introductory programming
course in the C programming language for ten different IPAS, over
two distinct academic years, at Instituto Superior Técnico. These
IPAS are small imperative programs that deal with integers and
input-output operations [30]. First, we selected a set of correct sub-
missions, i.e., programs that compiled without any error and satisfied
a set of input-output test cases for each IPA. We gathered 238 correct
students’ submissions from the first year and 78 submissions from
the second year. We used the students’ submissions from the first
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Table 1: Validation mappings fully correct after 20 training epochs.

Buggy Programs

WCO Bug VM Bug ME Bug All Bugs

Accuracy 93.7% 95.8% 93.4% 96.49%

Table 2: The number of correct variable mappings generated by our GNN on the evaluation dataset and the average overlap coefficients between
the real mappings and our GNN’s variable mappings.

Buggy Programs

Evaluation Metric WCO Bug VM Bug ME Bug All Bugs

# Correct Mappings 87.38% 81.87% 79.95% 82.77%
Avg Overlap Coefficient 96.99% 94.28% 94.51% 95.05%

# Programs 1078 1936 1152 4166

year for training and for validating our GNN and the submissions
from the second year for evaluating our work.

Since we need to know the real variable mappings between pro-
grams (ground truth) to evaluate our representation, we generated
a dataset of pairs of correct/incorrect programs to train and eval-
uate our work with specific bugs. This is a common procedure
to evaluate machine learning models in the field of program re-
pair [3, 37, 4, 42, 29]. To generate this dataset, we used MULT-
IPAS [28], a program modifier capable of mutating C programs syn-
tactically, generating semantically equivalent programs, i.e., chang-
ing the program’s structure but keeping its semantics. There are sev-
eral program mutations available in MULTIPAS: mirroring compari-
son expressions, swapping the if’s then-block with the else-block and
negating the test condition, increment/decrement operators mirror-
ing, variable declarations reordering, translating for-loops into equiv-
alent while-loops, and all possible combinations of these program
mutations. Hence, MULTIPAS has thirty-one different configurations
for mutating a program. All these program mutations generate se-
mantically equivalent programs. Afterwards, we also used MULT-
IPAS, to introduce bugs into the programs, such as wrong compar-
ison operator (WCO), variable misuse (VM), missing expression
(ME). Hence, we gathered a dataset of pairs of programs and the
mappings between their sets of variables [30]. Each pair corresponds
to a real correct student’s implementation, and the second program
is the student’s program after being mutated and with some bug in-
troduced. Thus, this IPA dataset is generated, although based on real
programs. The dataset is divided into three different sets: training set,
validation set, and evaluation set. The programs generated from first
year submissions are divided into a training and validation set based
on which students’ submissions they derive from. 80% of the stu-
dents supply the training data, while 20% supply validation data. The
evaluation set, which is not used during the machine learning opti-
mization, is chronologically separate: it consists only of second year
submissions, to simulate the real-world scenario of new, incoming
students. The training set is composed of 3372, 5170, and 2908 pairs
of programs from the first academic year for the WCO, VM, and ME
bugs, respectively. The validation set, which was used during devel-
opment to check the generalization of the prediction to unseen data,
comprises 1457, 1457, and 1023 pairs of programs from the first year.
Note that we subsample from the full spectrum of possible mutations,
to keep the training data size small enough to train the network with
reasonable time constraints. From each of the 31 combinations of
mutations, we use one randomly created sample for each student per
exercise. We found that this already introduced enough variation in
the training dataset to generalize to unseen data. Finally, the eval-

uation set is composed of 4166 pairs of programs from the second
year (see 3rd row, Table 2). This dataset will be publicly available
for reproducibility reasons.

5.2 Training

At training time, since the incorrect program is generated, the map-
ping between the variables of both programs is known. The network
is trained by minimizing the cross entropy loss between the labels
(which are categorical integer values indicating the correct mapping)
and the values in each corresponding row of the matrix P . As an
optimizer, we used the Adam algorithm with its default settings in
PyTorch [19]. The batch size was 1. As there are many different pro-
grams generated by the mutation procedures, we took one sample
from each mutation for each student. Each network was trained for
20 full passes (epochs) over this dataset while shuffling the order of
the training data before each pass. For validation purposes, data cor-
responding to 20% of the students from the first year of the dataset
was kept separate and not trained on.

Table 1 shows the percentage of validation data mappings that
were exactly correct (accuracy) after 20 epochs of training, using
four different GNN models. Each GNN model was trained on pro-
grams with the bugs of wrong comparison operator (WCO), variable
misuse (VM), missing expression (ME) or all of them (All). Fur-
thermore, each GNN model has its own validation set with programs
with a specific type of bug. The GNN model trained on All Bugs was
validated using a mix of problems from each bug type. In the follow-
ing sections, we focus only on this last GNN model (All Bugs).

5.3 Evaluation

Our GNN model was trained on programs with bugs of wrong com-
parison operator (WCO), variable misuse (VM), and missing expres-
sion (ME). We used two evaluation metrics to evaluate the variable
mappings produced by the GNN. First, we counted the number of to-
tally correct mappings our GNN was able to generate. We consider a
variable mapping totally correct if it correctly maps all the variables
between two programs. Secondly, we computed the overlap coeffi-
cient between the original variable mappings and the variable map-
pings generated by our GNN. The overlap coefficient is a similarity
metric given by the intersection between the two mappings divided
by the length of the variable mapping.

The first row in Table 2 shows the number of totally correct vari-
able mappings computed by our GNN model. One can see that the
GNN maps correctly around 83% of the evaluation dataset. We have
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Table 3: Percentage of variable mappings fully correct on the validation set for different sets of edges used. Each type of edge is represented by
an index using the mapping: {0: AST; 1: sibling; 2: write; 3: read; 4: chronological}.

Edges Used All (1,2,3,4) (0,2,3,4) (0,1,3,4) (0,1,2,4) (0,1,2,3) (0,1)

Accuracy 96.49% 52.53% 73.76% 95.45% 94.87% 96.06% 94.74%

also looked into the number of variables in the mappings we were
not getting entirely correct. The results showed that programs with
more variables (e.g., six or seven variables) are the most difficult for
our GNN to map their variables correctly (see [30]). For this reason,
we have also computed the overlap coefficient between the GNN’s
variables mappings and the original mappings (ground truth). The
second row in Table 2 shows the average of the overlap coefficients
between the original variable mappings and the mappings generated
by our GNN model. The overlap coefficient [38] measures the inter-
section (overlap) between two mappings. If the coefficient is 100%,
both sets are equal. One set cannot be a subset of the other since both
sets have the same number of variables in our case. The opposite is
0% overlap, meaning there is no intersection between the two map-
pings. The GNN achieved at least 94% of overlap coefficients, i.e.,
even if the mappings are not always fully correct, almost 94% of the
variables are correctly mapped by the GNN.

Ablation Study. To study the effect of each type of edge in our
program representation, we have performed an ablation study on the
set of edges. Prior works have done similar ablation studies [3]. Ta-
ble 3 presents the accuracy of our GNN (i.e., number of correct map-
pings) on the evaluation dataset after 20 epochs. We can see that the
accuracy of our GNN drops from 96% to 53% if we remove the AST
edges (index 0), which was expected since these edges provide syn-
tactic information about the program. Removing the sibling edges
(index 1) also causes a great impact on the GNN’s performance,
dropping to 74%. The other edges are also important, and if we re-
move them, there is a negative impact on the GNN’s performance.
Lastly, since the AST and sibling edges caused the greatest impact,
we evaluated using only these edges on our GNN and got an accu-
racy of 94.7%. However, the model using all the proposed edges has
the highest accuracy of 96.49%.

5.4 Program Repair

This section presents the results of using variable mappings on the
three use-cases described in Section 4, i.e., the tasks of repairing bugs
of: wrong comparison operator (WCO), variable misuse (VM) and
missing expression (ME). For this evaluation, we have also used the
two current publicly available program repair tools for fixing intro-
ductory programming assignments (IPAS): CLARA [10] and VERI-
FIX [1]. Furthermore, we have tried to fix each pair of incorrect/cor-
rect programs in the evaluation dataset by passing each one of these
pairs of programs to every repair method: VERIFIX, CLARA, and our
repair approach based on the GNN’s variable mappings.

If our repair procedure cannot fix the incorrect program using the
most likely variable mapping according to the GNN model, then it
generates the next most likely mapping based on the variables’ distri-
butions computed by the GNN. Therefore, the repair method iterates
over all variable mappings based on the GNN’s predictions. Lastly,
we have also run the repair approach using as baseline variable map-
pings generated based on uniform distributions. This case simulates
most repair techniques that compute all possible mappings between
both programs’ variables (e.g., SEARCHREPAIR [18]).

Table 4 presents the number of programs repaired by each differ-
ent repair method. The first row presents the results for the baseline,
which was only able to fix around 50% of the evaluation dataset. In
the second row, the interested reader can see that VERIFIX can only
repair about 62% of all programs. CLARA, presented in the third row,
outperforms VERIFIX, being able to repair around 72% of the whole
dataset. The last row presents the GNN model. This model is the best
one repairing 88.5% of the dataset.

The number of executions that resulted in a timeout (60 seconds)
is relatively small for VERIFIX and CLARA. Regarding our repair
procedure, it either fixes the incorrect program or iterates over all
variable mappings until it finds one that fixes the program. Thus, the
baseline and the GNN present no failed executions and considerably
high rates of executions that end up in timeouts, almost 50% for the
baseline and 11.5% in the case of the GNN model. Additionally, Ta-
ble 4 also presents the failure rate of each technique, i.e., all the com-
putations that ended within 60 seconds and did not succeed in fixing
the given incorrect program. VERIFIX has the highest failure rate,
around 35% of the entire evaluation set. CLARA also presents a sig-
nificant failure rate, about 28%. As explained previously, this is the
main drawback of these tools. Hence, these results support our claim
that it is possible to repair these three realistic bugs solely based on
the variable mappings’ information without matching the structure
of the incorrect/correct programs.

Furthermore, considering all executions, the average number of
variable mappings used within 60 seconds is 1.24 variable mappings
for the GNN model and 5.6 variable mappings when considering the
baseline. The minimum number of mappings generated by both ap-
proaches is 1, i.e., both techniques were able to fix at least one incor-
rect program using the first generated variable mapping. The maxi-
mum number of variable mappings generated was 32 (resp. 48) for
the GNN (resp. baseline). The maximum number of variable map-
pings used is high because the repair procedure iterates over all the
variable mappings until the program is fixed or the time runs out.
Moreover, even if we would only consider using the first variable
mapping generated by the GNN model to repair the incorrect pro-
grams, we would be able to fix 3377 programs in 60 seconds, corre-
sponding to 81% of the evaluation dataset.

Regarding the time performance of each technique, Figure 3 shows
a cactus plot that presents the CPU time spent, in seconds, on repair-
ing each program (y-axis) against the number of repaired programs
(x-axis) using different repairing techniques. One can clearly see a
gap between the different repair methods’ time performances. For ex-
ample, in 10 seconds, the baseline can only repair around 1150 pro-
grams, VERIFIX repairs around 2300, CLARA repairs around 2850
programs while using the GNN’s variable mappings, we can repair
around 3350 programs, i.e., around 17% more. We are considering
the time the GNN takes to generate the variable mappings and the
time spent on the repair procedure. However, the time spent by the
GNN to generate one variable mapping is almost insignificant. The
average time the GNN takes to produce a variable mapping is 0.025
seconds. The minimum (resp. maximum) time spent by the GNN,
considering all the executions is 0.015s (resp. 0.183s).
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Table 4: The number of programs repaired by each different repair technique: VERIFIX, CLARA, and our repair approach based on our GNN’s
variable mappings. The first row shows the results of repairing the programs using variable mappings generated based on uniform distributions
(baseline).

Buggy Programs Not Succeeded

Repair Method WCO Bug VM Bug ME Bug All Bugs % Failed % Timeouts (60s)

Baseline 618 (57.33%) 1187 (61.31%) 287 (24.91%) 2092 (50.22%) 0 (0.0%) 2074 (49.78%)

VERIFIX 555 (51.48%) 1292 (66.74%) 741 (64.32%) 2588 (62.12%) 1471 (35.31%) 107 (2.57%)
CLARA 722 (66.98%) 1517 (78.36%) 764 (66.32%) 3003 (72.08%) 1153 (27.68%) 10 (0.24%)
GNN 992 (92.02%) 1714 (88.53%) 981 (85.16%) 3687 (88.5%) 0 (0.0%) 479 (11.5%)

Figure 3: Cactus plot - The time spent by each method repairing each
program of the evaluation dataset, using a timeout of 60 seconds.

6 Related Work

Automated program repair [1, 24, 10, 12, 41] has become crucial
to provide feedback to novice programmers by checking their intro-
ductory programming assignments (IPAS) submissions using a test
suite. In order to repair an incorrect program with a correct refer-
ence implementation, CLARA [10] requires a perfect match between
both programs’ control flow graphs and a bijective relation between
both programs’ variables. Otherwise, CLARA returns a structural
mismatch error. VERIFIX [1] aligns the control flow graph (CFG)
of an incorrect program with the reference solution’s CFG. Then,
using that alignment relation and MAXSMT solving, VERIFIX pro-
poses fixes to the incorrect program. VERIFIX also requires a com-
patible control flow graph between the incorrect and the correct pro-
gram. BUGLAB [4] is a Python program repair tool that learns how
to detect and fix minor semantic bugs. To train BUGLAB, [4] ap-
plied four program mutations and introduced four different bugs to
augment their benchmark of Python programs. DEEPBUGS [31] uses
rule-based mutations to build a dataset of programs from scratch to
train its ML-based program repair tool. Given a program, this tool
classifies if the program is buggy or not.

Mapping variables can also be helpful for the task of code adap-
tion, where the repair framework tries to adapt all the variable names
in a pasted snippet of code, copied from another program or a
Stack Overflow post to the surrounding preexisting code [25]. ADAP-

TIVEPASTE [25] focused on a similar task to variable misuse (VM)
repair, it uses a sequence-to-sequence with multi-decoder trans-
former training to learn programming language semantics to adapt
variables in the pasted snippet of code. Recently, several systems
were proposed to tackle the VM bug with ML models [3, 13, 40].
These tools classify the variable locations as faulty or correct and
then replace the faulty ones through an enumerative prediction of
each buggy location [3]. However, none of these methods takes pro-
gram semantics into account, especially the long-range dependencies
of variable usages [25].

7 Conclusions

This paper tackles the highly challenging problem of mapping vari-
ables between programs. We propose the usage of graph neural net-
works (GNNS) to map the set of variables between two programs
using our novel graph representation that is based on both programs’
abstract syntax trees. In a dataset of 4166 pairs of incorrect/correct
programs, experiments show that our GNN correctly maps 83% of
the evaluation dataset. Furthermore, we leverage the variable map-
pings to perform automatic program repair. While the current state-
of-the-art on program repair can only repair about 72% of the evalu-
ation dataset due to structural mismatch errors, our approach, based
on variable mappings, is able to fix 88.5%.

In future work, we propose to integrate our variable mappings into
other program repair tools to evaluate the impact of using these map-
pings to repair other types of bugs. Additionally, we will analyze
using our mappings to fix an incorrect program using several correct
programs.

Acknowledgements

This work was supported by Portuguese national funds through FCT
under projects UIDB/50021/2020, PTDC/CCI-COM/2156/2021,
2022.03537.PTDC and grant SFRH/BD/07724/2020. This work was
also supported by European funds through COST Action CA2011;
by the European Regional Development Fund under the Czech
project AI&Reasoning no. CZ.02.1.01/0.0/0.0/15_003/0000466
(JP), Amazon Research Awards (JP), and by the Ministry of Educa-
tion, Youth, and Sports within the program ERC CZ under the project
POSTMAN no. LL1902. This article is part of the RICAIP project
that has received funding from the EU’s Horizon 2020 research and
innovation program under grant agreement No 857306.

References

[1] Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and
Abhik Roychoudhury, ‘Verifix: Verified repair of programming assign-
ments’, ACM Trans. Softw. Eng. Methodol., (jan 2022).

P. Orvalho et al. / Graph Neural Networks for Mapping Variables Between Programs 1817



[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers: Prin-
ciples, Techniques, and Tools, Addison-Wesley series in computer sci-
ence / World student series edition, Addison-Wesley, 1986.

[3] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi,
‘Learning to represent programs with graphs’, in 6th International Con-
ference on Learning Representations, ICLR 2018, (2018).

[4] Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt,
‘Self-supervised bug detection and repair’, in NeurIPS, (2021).

[5] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton, ‘Layer nor-
malization’, CoRR, http://arxiv.org/abs/1607.06450, (2016).

[6] Berkeley R. Churchill, Oded Padon, Rahul Sharma, and Alex Aiken,
‘Semantic program alignment for equivalence checking’, in Proceed-
ings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI, pp. 1027–1040. ACM, (2019).

[7] Daniel Cummings and Marcel Nassar, ‘Structured citation trend pre-
diction using graph neural networks’, in ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3897–3901, (2020).

[8] Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and
Robert C. Miller, ‘Overcode: Visualizing variation in student solutions
to programming problems at scale’, ACM Trans. CHI., (2015).

[9] Zarathustra Amadeus Goertzel, Jan Jakubuv, Cezary Kaliszyk,
Miroslav Olsák, Jelle Piepenbrock, and Josef Urban, ‘The isabelle
ENIGMA’, in 13th International Conference on Interactive Theorem
Proving, ITP 2022, volume 237 of LIPIcs, pp. 16:1–16:21, (2022).

[10] Sumit Gulwani, Ivan Radicek, and Florian Zuleger, ‘Automated clus-
tering and program repair for introductory programming assignments’,
in PLDI 2018, pp. 465–480. ACM, (2018).

[11] Rahul Gupta, Aditya Kanade, and Shirish K. Shevade, ‘Deep reinforce-
ment learning for syntactic error repair in student programs’, in The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
pp. 930–937. AAAI Press, (2019).

[12] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish K. Shevade,
‘Deepfix: Fixing common C language errors by deep learning’, in AAAI
2017, pp. 1345–1351. AAAI Press, (2017).

[13] Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh, Petros Mani-
atis, and David Bieber, ‘Global relational models of source code’, in 8th
International Conference on Learning Representations, ICLR, (2020).

[14] John E. Hopcroft, RajeevMotwani, and Jeffrey D. Ullman, Introduction
to automata theory, languages, and computation, 3rd Edition, Pearson
international edition, Addison-Wesley, 2007.

[15] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stéphane
Glondu, ‘DECKARD: scalable and accurate tree-based detection of
code clones’, in 29th International Conference on Software Engineer-
ing (ICSE 2007), pp. 96–105. IEEE Computer Society, (2007).

[16] Manu Jose and Rupak Majumdar, ‘Cause clue clauses: error localiza-
tion using maximum satisfiability’, in Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2011, pp. 437–446. ACM, (2011).

[17] Rafael-Michael Karampatsis and Charles Sutton, ‘How often do single-
statement bugs occur?: The manysstubs4j dataset’, in MSR 2020, pp.
573–577. ACM, (2020).

[18] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun, ‘Repair-
ing programs with semantic code search (T)’, in 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2015,
pp. 295–306. IEEE Computer Society, (2015).

[19] Diederik P. Kingma and Jimmy Ba, ‘Adam: A method for stochastic
optimization’, in 3rd International Conference on Learning Represen-
tations, ICLR 2015, (2015).

[20] Thomas N. Kipf and Max Welling, ‘Semi-supervised classification
with graph convolutional networks’, in 5th International Conference
on Learning Representations, ICLR 2017, (2017).

[21] Robert Könighofer and Roderick Bloem, ‘Automated error localization
and correction for imperative programs’, in International Conference
on Formal Methods in Computer-Aided Design, FMCAD ’11, Austin,
TX, USA, October 30 - November 02, 2011, eds., Per Bjesse and Anna
Slobodová, pp. 91–100. FMCAD Inc., (2011).

[22] Si-Mohamed Lamraoui and Shin Nakajima, ‘A formula-based approach
for automatic fault localization of imperative programs’, in Interna-
tional Conference on Formal Engineering Methods, ICFEM 2014,
Luxembourg, Luxembourg, November 3-5, 2014. Proceedings, eds.,
Stephan Merz and Jun Pang. Springer, (2014).

[23] Si-Mohamed Lamraoui and Shin Nakajima, ‘A formula-based approach
for automatic fault localization of multi-fault programs’, JIP, (2016).

[24] Xiao Liu, Shuai Wang, Pei Wang, and DinghaoWu, ‘Automatic grading
of programming assignments: an approach based on formal semantics’,
in ICSE (SEET) 2019, pp. 126–137. IEEE / ACM, (2019).

[25] Xiaoyu Liu, Jinu Jang, Neel Sundaresan, Miltiadis Allamanis, and
Alexey Svyatkovskiy, ‘Adaptivepaste: Code adaptation through learn-
ing semantics-aware variable usage representations’, CoRR, (2022).

[26] Pedro Orvalho, Mikoláš Janota, and Vasco Manquinho, ‘C-
Pack of IPAs: A C90 Program Benchmark of Introductory
Programming Assignments’, arXiv preprint arXiv:2206.08768,
https://doi.org/10.48550/arXiv.2206.08768, (2022).

[27] Pedro Orvalho, Mikolás Janota, and Vasco Manquinho, ‘InvAAST-
Cluster: On Applying Invariant-Based Program Clustering to Intro-
ductory Programming Assignments’, arXiv preprint arXiv:2206.14175,
https://doi.org/10.48550/arXiv.2206.14175, (2022).

[28] Pedro Orvalho, Mikolás Janota, and Vasco Manquinho, ‘MultIPAs:
Applying Program Transformations to Introductory Programming As-
signments for Data Augmentation’, in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2022, pp. 1657–
1661. ACM, (2022).

[29] Pedro Orvalho, Jelle Piepenbrock, Mikoláš Janota, and Vasco Man-
quinho, ‘Project Proposal: Learning Variable Mappings to Repair Pro-
grams’, in 7th Conference on Artificial Intelligence and Theorem Prov-
ing, AITP, (2022).

[30] Pedro Orvalho, Jelle Piepenbrock, Mikolás Janota, and Vasco Man-
quinho, ‘Graph Neural Networks For Mapping Variables Between
Programs – Extended Version’, arXiv preprint arXiv:2307.13014,
https://doi.org/10.48550/arXiv.2307.13014, (2023).

[31] Michael Pradel and Koushik Sen, ‘Deepbugs: a learning approach
to name-based bug detection’, ACM Program. Lang., 2(OOPSLA),
(2018).

[32] PyTorchGeometric. Documentation. https://pytorch-geometric.
readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.
RGCNConv, 2022. Accessed 2022-08-12.

[33] Henry Gordon Rice, ‘Classes of recursively enumerable sets and their
decision problems’, Transactions of the American Mathematical Soci-
ety, 74(2), 358–366, (1953).

[34] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne
van den Berg, Ivan Titov, and Max Welling, ‘Modeling relational data
with graph convolutional networks’, in The Semantic Web - 15th Inter-
national Conference, ESWC 2018, volume 10843 of Lecture Notes in
Computer Science, pp. 593–607. Springer, (2018).

[35] Shin Hwei Tan, Jooyong Yi, Yulis, Sergey Mechtaev, and Abhik Roy-
choudhury, ‘Codeflaws: a programming competition benchmark for
evaluating automated program repair tools’, in Proceedings of the 39th
International Conference on Software Engineering, ICSE 2017, eds.,
Sebastián Uchitel, Alessandro Orso, and Martin P. Robillard, pp. 180–
182. IEEE Computer Society, (2017).

[36] Daniel Tarlow, Subhodeep Moitra, Andrew Rice, Zimin Chen, Pierre-
Antoine Manzagol, Charles Sutton, and Edward Aftandilian, ‘Learning
to fix build errors with graph2diff neural networks’, in ICSE ’20: 42nd
International Conference on Software Engineering, pp. 19–20. ACM,
(2020).

[37] Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and
Rishabh Singh, ‘Neural program repair by jointly learning to localize
and repair’, in 7th International Conference on Learning Representa-
tions, ICLR 2019. OpenReview.net, (2019).

[38] MK Vijaymeena and K Kavitha, ‘A survey on similarity measures in
text mining’, Machine Learning and Applications: An International
Journal, 3(2), 19–28, (2016).

[39] Ke Wang, Rishabh Singh, and Zhendong Su, ‘Dynamic neural program
embeddings for program repair’, in 6th International Conference on
Learning Representations, ICLR 2018. OpenReview.net, (2018).

[40] Yu Wang, Ke Wang, Fengjuan Gao, and Linzhang Wang, ‘Learning se-
mantic program embeddings with graph interval neural network’, Proc.
ACM Program. Lang., 4(OOPSLA), 137:1–137:27, (2020).

[41] Michihiro Yasunaga and Percy Liang, ‘Graph-based, self-supervised
program repair from diagnostic feedback’, in ICML 2020, volume
119 of Proceedings of Machine Learning Research, pp. 10799–10808.
PMLR, (2020).

[42] Daniel Zügner, Tobias Kirschstein, Michele Catasta, Jure Leskovec,
and Stephan Günnemann, ‘Language-agnostic representation learning
of source code from structure and context’, in 9th International Con-
ference on Learning Representations, ICLR 2021,, (2021).

P. Orvalho et al. / Graph Neural Networks for Mapping Variables Between Programs1818

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.RGCNConv
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.RGCNConv
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.RGCNConv

	Introduction
	Program Representations
	Graph Neural Networks (GNNs)
	Use-Cases: Program Repair
	Experiments
	IPAs Dataset
	Training
	Evaluation
	Program Repair

	Related Work
	Conclusions

