
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

C-Pack of IPAs: A C90 Program Benchmark of Introductory

Programming Assignments

Pedro Orvalho
pmorvalho@tecnico.ulisboa.pt

INESC-ID, IST, U. Lisboa
Lisbon, Portugal

Mikoláš Janota
mikolas.janota@cvut.cz

Czech Technical University in Prague
Prague, Czech Republic

Vasco Manquinho
vasco.manquinho@tecnico.ulisboa.pt

INESC-ID, IST, U. Lisboa
Lisbon, Portugal

ABSTRACT

Given the vast number of students enrolled in Massive Open Online
Courses (MOOCs), there has been a notable surge in automated
program repair techniques tailored for introductory programming
assignments (IPAs). These techniques leverage correct student im-
plementations to provide automated, comprehensive, and personal-
ized feedback to the students.

This paper presents C-Pack-IPAs, a publicly available benchmark
comprising student-program submissions for 25 distinct IPAs. C-
Pack-IPAs contains semantically correct, semantically incorrect,
and syntactically incorrect programs, along with a dedicated test
suite for each IPA. Hence, C-Pack-IPAs serves as a valuable resource
for evaluating the progress of novel automated program repair
frameworks, addressing both semantic and syntactic aspects, with
a specific focus on providing feedback to novice programmers.
Notably, some semantically incorrect programs in C-Pack-IPAs
have been manually fixed and annotated with diverse program
features, enhancing their utility for the development of various
program analysis frameworks. Moreover, we conducted evaluations
on C-Pack-IPAs using two leading semantic program repair tools
tailored for IPAs, Clara and Verifix.

CCS CONCEPTS

• Applied computing → Computer-assisted instruction; • Theory
of computation → Program semantics; Program analysis;
Program reasoning; • Computing methodologies → Machine
learning.

KEYWORDS

Introductory Programming Assignments, Programming Education,
Automated Program Repair, Semantic Program Repair, Syntactic
Program Repair, Computer-Aided Education

ACM Reference Format:

Pedro Orvalho, Mikoláš Janota, and Vasco Manquinho. 2024. C-Pack of IPAs:
A C90 Program Benchmark of Introductory Programming Assignments. In
2024 ACM/IEEE International Workshop on Automated Program Repair (APR

’24), April 20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3643788.3648010

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
APR ’24 , April 20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0577-9/24/04.
https://doi.org/10.1145/3643788.3648010

1 INTRODUCTION

Nowadays, thousands of students enroll every year in programming-
oriented university courses and in Massive Open Online Courses
(MOOCs) [4]. Providing feedback to novice students in introductory
programming assignments (IPAs) in these courses requires substan-
tial effort and time by the faculty. Hence, there is an increasing need
for systems that offer automated, comprehensive, and personalized
feedback to students with incorrect submissions in programming
assignments.

Typically, in Computer Science courses, a programming assign-
ments follow a familiar pattern: the lecturer outlines a computa-
tional problem, students devise solutions, and each solution un-
dergoes evaluation for correctness using predetermined tests. If
the students’ tentative solutions do not pass a given test, they are
deemed incorrect without helpful feedback. In instances where
students’ programs fail a subset of the predefined tests, seeking
feedback from the lecturer becomes a common practice to under-
stand the reasons behind the unexpected behavior. When a program
fails to pass even a single predefined test, it signifies a semantic
error in the implementation. Unfortunately, due to the escalating
number of student enrollments, personalized feedback from the
faculty may not always be feasible. Therefore, automated semantic
program repair frameworks [1, 4, 6, 7, 10–12, 18, 20, 22] are ideal
for providing hints on how students should repair their incorrect
programming assignments.

This paper presents C-Pack-IPAs, a C90 Program benchmark of
introductory programming assignments (IPAs). C-Pack-IPAs com-
prises students’ programs submitted for 25 different IPAs alongwith
the respective test suite used for each assignment. The details of the
IPAs are provided in Section 3. For each IPA, C-Pack-IPAs includes
sets of both semantically correct and incorrect implementations.
Additionally, C-Pack-IPAs encompasses a collection of syntactically
faulty programs submitted for each IPA. The primary objective of
this paper is to present C-Pack-IPAs, a resource featuring seman-
tically and syntactically incorrect student implementations. This
benchmark is intended to facilitate the evaluation of novel auto-
mated program repair frameworks, addressing both semantic and
syntactic aspects, with a focus on assisting novice programmers.

C-Pack-IPAs includes a subset of semantically incorrect pro-
grams, manually annotated with various features such as the num-
ber of faults in each program, the location of these faults, and the
type of each fault. Additionally, C-Pack-IPAs also comprises cor-
rected versions of these programs, which were manually fixed. The
availability of annotated and fixed programs serves as a valuable
resource, allowing developers to validate their results during the
development of novel program analysis tools, particularly for tasks
such as program repair and fault localization.

1

https://orcid.org/0000-0002-7407-5967
https://orcid.org/0000-0003-3487-784X
https://orcid.org/0000-0002-4205-2189
https://doi.org/10.1145/3643788.3648010
https://doi.org/10.1145/3643788.3648010

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

APR ’24 , April 20, 2024, Lisbon, Portugal P. Orvalho, M. Janota, and V. Manquinho

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: High-level Description of C-Pack-IPAs Benchmark.

Labs #IPAs

#Correct

Submissions

#Semantically

Incorrect

Submissions

#Syntactically

Incorrect

Submissions

Lab02 10 799 486 223
Lab03 7 351 699 106
Lab04 8 465 246 119
Total 25 1615 1434 448

The main contributions of this work are:
• C-Pack-IPAs, a benchmarks consisting of C programs submitted

for 25 different IPAs, during three academic years. C-Pack-IPAs
contains semantically correct, semantically incorrect, and syn-
tactically incorrect programs plus a test suite for each IPA.

• A subset of C-Pack-IPAs’s semantically incorrect programs has
been manually fixed and annotated, incorporating several pro-
gram features such as the number of faults and the locations of
these faults.

• The evaluation of C-Pack-IPAs was conducted using two state-
of-the-art program repair tools tailored for IPAs;

• C-Pack-IPAs is going to be publicly available on GitHub: https:
//github.com/pmorvalho/C-Pack-IPAs.
The structure of the remainder of this paper is as follows. Sec-

tion 2 presents C-Pack-IPAs. Next, Section 3 presents a brief de-
scription of the set of programming exercises. Section 4 presents the
experimental evaluation where we evaluated C-Pack-IPAs using
state-of-the-art program repair tools. Lastly, Section 5 describes
related work, and the paper concludes in Section 6.

2 C-PACK-IPAS

C-Pack-IPAs is a pack of student programs developed during an
introductory programming course in the C programming language.
These programs were collected over three distinct practical classes
for 25 different IPAs at Instituto Superior Técnico, throughout three
academic years. The set of submissions was split into three groups:
semantically correct, semantically incorrect, and syntactically in-
correct submissions. The students’ submissions that satisfied the
set of input-output test cases for each IPA were considered semanti-
cally correct. The submissions that failed at least one input-output
test but successfully compiled were considered semantically incor-
rect implementations. Lastly, the students’ submissions that did not
successfully compile were considered syntactically incorrect.

Table 1 presents the number of submissions gathered. For 25
different programming exercises, this benchmark contains 1615 dif-
ferent correct programs, 1434 semantically incorrect submissions,
and 448 syntactically incorrect implementations. C-Pack-IPAs is
organized chronologically. This arrangement proves valuable for
training and evaluating new program analysis tools. For instance,
the programs from the first academic year can serve as training data,
those from the second year as the validation set, and the programs
from the third year as the evaluation set. Appendix A presents three
tables with the number of student submissions (correct, semanti-
cally incorrect and syntactically incorrect) received for each of the
25 different programming assignments.

Furthermore, C-Pack-IPAs only contains students’ submissions
that gave their permission to use their programs for academic pur-
poses. Each student’s identification was anonymized for privacy
reasons, and all the comments were removed from their programs.
A unique identifier was assigned to each student. These identifiers
are consistent among different IPAs and different years of the pro-
gramming course. For example, if the identifier stu_15 appears in
more than one programming exercise, it corresponds to the same
student. If some students take the course more than once, they
are always assigned to the same anonymized identifier. Currently,
C-Pack-IPAs contains submissions from 102 different students.

Annotated Programs. A benchmark of programs should be
enriched with informative annotations, enabling developers to val-
idate their results while developing novel program analysis tools
for tasks such as program repair and fault localization. With this
objective in mind, we have meticulously annotated the Lab 02
submissions in C-Pack-IPAs with various program features. These
annotations serve as valuable resources for developers and facilitate
the training and evaluation of machine learning models. Each se-
mantically incorrect program in C-Pack-IPAs’s Lab 02 submissions
has been annotated with the following features::

• #Variables : indicates the number of different variables present
in each program;

• Program Features : encompasses various program features, includ-
ing uninitialized variables, segmentation faults, etc., providing
valuable information for analysis;

• #Passed Tests : represents the count of passed tests from the test
suite;

• #Failed Tests : specifies the number of failed tests from the test
suite;

• IO tests’ output : presents the output obtained by running the
incorrect program with the test suite;

• #Faults : indicates the total number of faults present in the pro-
gram;

• Faults : enumerates the list of faulty instructions/expressions
within the program;

• Faulty Lines : lists the program lines containing faults;
• Faults’ Types : specifies the types of each fault in the program;
• Repair Actions : enumerates the required repair actions to fix the

faulty instructions/expressions, with possible actions including
Insert, Replace, Remove, or Move;

• Suggested Repairs : provides a list of suggested repairs for each
identified faults in the program;

• Next Correct Submission : indicates the path to the subsequent
correct submission by the same student, if available.

Table 2 presents the various types of faults used to annotate pro-
grams in C-Pack-IPAs. For each manually annotated fault type, the
table presents the count of faulty programs exhibiting that specific
fault, categorized by each exercise of Lab 02. The most prevalent
fault types include Presentation Error (differences only in white
spaces), Incorrect Output (output is incorrect), and Uninitialized

Variable. Additionally, at the bottom of Table 2, the average number
of faults in programs for each exercise of Lab 02 is provided. All
annotations are stored in two formats: as plain text (txt) files and
within an sqlite3 database.

2

https://github.com/pmorvalho/C-Pack-IPAs
https://github.com/pmorvalho/C-Pack-IPAs

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

C-Pack-IPAs: A C90 Program Benchmark of IPAs APR ’24 , April 20, 2024, Lisbon, Portugal

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 2: The number of faulty programs in each exercise of Lab02, with different types of program faults.

Lab 02

Fault Type Ex 01 Ex 02 Ex 03 Ex 04 Ex 05 Ex 06 Ex 07 Ex 08 Ex 09 Ex 10

Incomplete Binary Operation 1 2
Incorrect Data Type 1 3

Incorrect Input 4 4 3 1
Incorrect Output 63 18 11 14 3 3 3 6 17 3

Misplaced Expression 1
Misplaced Loop Decrement 1

Missing Expression 2 6
Missing Instruction 1 2 8
Missing Instructions 5

Missing Loop Decrement 2
Missing Loop Increment 1 1

Missing Output 1
Missing Variable 1 2 6
Non-zero Return 1
Presentation Error 44 26 22 27 2 1 6 3 2

Uninitialized Variable 11 12 1 3 1 5
Variable Misuse 2 1 3 5 1 1 2

Wrong Binary Operation 4 2 1 1
Wrong Comparison Operator 3 12 3 1 1

Wrong Exercise 8 2 2 1
Wrong Expression 7 1 2 6 1 3 1
Wrong Initialization 1 1
Wrong Instruction 5

Wrong Literal 1 1 2 2 3
Wrong Parameter 1

Average Number of Faults 1.8 1.56 1.28 2.06 1.33 3.56 2.36 1.91 1.58 1.43

Organization. C-Pack-IPAs is structured by lab and exercise,
organized chronologically by academic year. Each program is stored
in its respective folder, along with the program’s output results for
the test suite and the previously described handmade annotations.

3 IPAS DESCRIPTION

The set of IPAs corresponds to three different lab classes of the
introductory programming course to the C programming language.
Each lab class focuses on a different topic of the C programming
language. In Lab02, the students learn how to programwith integers,
floats, IO operations (mainly printf and scanf), conditionals (if-
statements), and simple loops (for and while-loops). In Lab03, the
students learn how to program with loops, nested loops, auxiliary
functions, and chars. Finally, in Lab04, the students learn how to
program with integer arrays and strings. The textual description of
each programming assignment can be found in the public GitHub
repository, and the input/output tests used to evaluate semantically
the set of students’ submissions. Moreover, there is also a reference
implementation for each IPA in the public git repository that can
be used by program repair frameworks that only accept a single
reference implementation to repair incorrect programs. Appendix A
presents the entire list of IPAs.

4 EXPERIMENTAL RESULTS

To evaluate C-Pack-IPAs, we used two publicly available state-of-
the-art program repair tools for fixing introductory programming
assignments (IPAs): Clara [4] and Verifix [1]. We simply focused
on the set of semantically incorrect programs which is composed
by 1434 programs as presented in Table 1.

Clara and Verifix. Verifix [1] aligns the control flow graph
(CFG) of an incorrect program with the reference solution’s CFG.
Then, using that alignment relation and MaxSMT solving, Verifix
proposes fixes to the incorrect program. Verifix also requires a

compatible control flow graph between the incorrect and the cor-
rect program. On the other hand, to repair an incorrect program,
Clara [4] receives either one or a set of correct programs. This
set of programs corresponds to clusters’ representatives produced
by Clara. During Clara’s repair process, if none of the correct
programs provided has an exact match with the incorrect submis-
sion’s control flow, then Clara is not able to repair the program
and returns a Structural Mismatch error. Otherwise, Clara gath-
ers the set of repairs using each correct program and returns the
minimal one. Since Clara can take advantage of several correct
implementations from previous years for a given IPA, we fed Cla-
ra all correct programs, from the three different academic years,
to generate clusters for each IPA in our benchmark. Furthermore,
we also run Clara using the faculty’s reference implementation
for each IPA, i.e., Clara uses a single program and not a set of
clusters’ representatives. Moreover, we run Verifix using also the
reference implementation since Verifix can only accept a single
correct program as input.

Experimental Setup. All the experiments were conducted on an
Intel(R) Xeon(R) Silver computer with 4210R CPUs @ 2.40GHz,
using a memory limit of 32GB and a timeout of 600 seconds.

Results. Table 3 presents the number of programs repaired by
Verifix, Clara (utilizing a single reference implementation), and
Clara (utilizing its own clusters). The results indicate that Verifix
demonstrates success primarily in Lab 02, repairing approximately
19% of the programs. However, Verifix encounters challenges in
repairing 80% of Lab 02 and the entire set of programs from Lab 03
and Lab 04. The primary factor influencing Verifix’s performance
is its limited support for certain C Library functions utilized in
several exercises. For instance, nearly all exercises in Lab 03 involve
the use of C Library functions such as putchar or getchar, which
are not supported by Verifix.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

APR ’24 , April 20, 2024, Lisbon, Portugal P. Orvalho, M. Janota, and V. Manquinho

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 3: The number of programs repaired by Verifix, Clara without using clusters and Clara using clusters.

Lab 02

Unsuccessful

Repair Method % Fixed % Structural Mismatch % Unsupported Features % Other Errors/Exceptions % Timeouts (600s)

Verifix 93 (19.14%) 92 (18.93%) 55 (11.32%) 246 (50.62%) 0 (0.0%)
Clara (No Clusters) 275 (56.58%) 210 (43.21%) 0 (0.0%) 1 (0.21%) 0 (0.0%)
Clara (Clusters) 346 (71.19%) 12 (2.47%) 0 (0.0%) 33 (6.79%) 95 (19.55%)

Lab 03

Unsuccessful

Repair Method % Fixed % Structural Mismatch % Unsupported Features % Other Errors/Exceptions % Timeouts (600s)

Verifix 0 (0.0%) 0 (0.0%) 699 (100.0%) 0 (0.0%) 0 (0.0%)
Clara (No Clusters) 11 (1.57%) 511 (73.1%) 138 (19.74%) 39 (5.58%) 0 (0.0%)
Clara (Clusters) 168 (24.03%) 65 (9.3%) 138 (19.74%) 328 (46.92%) 0 (0.0%)

Lab 04

Unsuccessful

Repair Method % Fixed % Structural Mismatch % Unsupported Features % Other Errors/Exceptions % Timeouts (600s)

Verifix 0 (0.0%) 6 (2.44%) 237 (96.34%) 3 (1.22%) 0 (0.0%)
Clara (No Clusters) 0 (0.0%) 107 (43.5%) 138 (56.1%) 1 (0.41%) 0 (0.0%)
Clara (Clusters) 36 (14.63%) 18 (7.32%) 138 (56.1%) 54 (21.95%) 0 (0.0%)

As previously mentioned, if none of the correct programs pro-
vided matches the control flow of the incorrect submission exactly,
Clara issues a structural mismatch error. Table 3 reveals that Cla-
ra, when employing a reference implementation, exhibits a notably
higher percentage of structural mismatch errors compared to Cla-
ra utilizing clusters. This difference arises because clusters, with
multiple programs, offer various control flow options, leading to
a reduced rate of structural mismatches. Additionally, Clara gen-
erates a set of repairs for each cluster’s representative. Therefore,
a higher number of clusters corresponds to more time spent in
the repair process. This constitutes one of the primary reasons for
the increased occurrence of timeouts observed with Clara when
utilizing clusters as opposed to not using clusters.

Figure 1 presents a cactus plot illustrating the CPU time allo-
cated for repairing each program (on the 𝑥-axis) in relation with
the number of successfully repaired programs (on the 𝑦-axis) across
the three different repair techniques. The legend is organized in
descending order based on the count of programs successfully re-
paired. Notably, Verifix, within the 60-seconds, repairs 90 out of
1434 programs (approximately 6.5%). In comparison, Clara, utiliz-
ing a reference implementation, repairs 286 programs (20%), while
employing its own clusters allows Clara to repair around 500
programs within the same time limit (approximately 35%).

Figure 2 illustrates a scatter plot comparing the CPU time spent
using Clara’s clusters against running Clara with the faculty’s
reference implementation (no clusters). Each data point in the plot
represents a program, where the 𝑥-value (corresponding to using
Clara’s clusters) and 𝑦-value (representing no clusters) denote the
CPU time spent on repairing that program.

If a point falls below the diagonal, it indicates that using a ref-
erence implementation outperformed using clustering. In this sce-
nario, Clara, with its own clusters, repairs each program more
slowly than with a single correct program. Consequently, when con-
sidering programs repaired by both clustering methods, not using

clusters is faster, although repairs a significantly smaller number of
programs, as presented in Table 3. Additionally, Figure 2 highlights
that the set of programs repaired by Clara differs when using a
reference implementation compared to clusters.

In short, we evaluated two state-of-the-art semantic program
repair tools tailored for IPAs. Clara was the clear winner, repairing
550 programs equivalent to 38.4% of C-Pack-IPAs. This outcome
indicates ample room for improvement. Given that C-Pack-IPAs
encompasses 25 distinct IPAs of varying complexities, it stands as a
valuable resource for the development of advanced program repair
tools capable of addressing more intricate IPAs. Moreover, C-Pack-
IPAs [14] has also proven successful in evaluating various works
across program analysis [16, 17], program transformation [13], and
program clustering [15].

5 RELATEDWORK

Over the last few years, several program repair tools [4–6, 20] have
exploited diverse correct implementations from previously enrolled
students for each IPA to repair new incorrect student submissions.
On the one hand, some syntactic program repair tools [5, 21] have
been developed to help students with compilation errors. On the
other hand, semantic program repair has also been used to help
repair students’ programs semantically [1, 4, 6, 9, 20]. However,
the number of publicly available benchmarks to help develop and
evaluate new program repair tools is significantly small [13]. The
ITSP dataset [22] has been used by other automated software re-
pair tools [1, 22] that use only one reference implementation. This
dataset is also a collection of C programs although it is well balanced,
i.e., the number of correct submissions is closer to the number of
incorrect submissions in this dataset. The IntroClass dataset [8] is
a collection of C programs submitted to six different IPAs and has
the information about the number of defects in each program and
the total number of unique defects for each IPA. Codeflaws [19]
is a dataset of programs submitted for programming competitions

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

C-Pack-IPAs: A C90 Program Benchmark of IPAs APR ’24 , April 20, 2024, Lisbon, Portugal

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

0 100 200 300 400 500
#Programs Repaired

0

100

200

300

400

500

600
Ti

me
 (s

)
Clara (Clusters)
Clara (No Clusters)
Verifix

Figure 1: Cactus plot - The time spent by each method repair-

ing each semantically incorrect submission of C-Pack-IPAs,

using a timeout of 600 seconds.

100 101 102 103

Clara (Clusters)

100

101

102

103

Cl
ara

 (N
o C

lus
ter

s)

600 sec. timeout

60
0 s

ec
. ti

me
ou

t

Figure 2: Scatter plot - Time Performance (600s) - Clara

(using clusters) VS Clara (reference implementation).

on the Codeforces website. More recently, BUGSC++ [2] has been
introduced. It is a benchmark that incorporates real-world bugs
collected from 22 open-source C/C++ projects.

In the context of the fault localization problem, TCAS [3] stands
out as a well-known program benchmark extensively utilized in
the literature. This benchmark comprises a C program and multi-
ple versions of it with intentionally introduced faults, with known
positions and types of these faults. More program benchmarks are
available for other languages than the C programming language. For
example, the dataset of Python programs used to evaluate Refac-
tory [6] is also publicly available. More datasets for automated
program repair applied to industry software are also available 1.

1https://program-repair.org/benchmarks.html

6 CONCLUSION

C-Pack-IPAs, a C90 Program benchmark of introductory program-
ming assignments (IPAs), is a publicly available benchmark of
students’ submissions for 25 different programming assignments.
C-Pack-IPAs has a set of semantically correct and incorrect im-
plementations as well as syntactically faulty programs submitted
for each IPA. To the best of our knowledge, C-Pack-IPAs is one
of the few, if not the only, benchmark of IPAs written in the C
programming language that contains both semantically and syn-
tactically incorrect students’ implementations and diverse correct
implementations for the same IPA. Thus, C-Pack-IPAs can help
evaluate novel semantic, as well as syntactic, automated program
repair frameworks whose goal is to assist novice programmers in in-
troductory programming courses. We have also manually fixed and
annotated some of C-Pack-IPAs’s semantically incorrect programs
with several program features to help developing all sort of pro-
gram analysis frameworks. Additionally, we evaluated C-Pack-IPAs
using two state-of-the-art semantic program repair tools tailored
for IPAs, Clara and Verifix.

ACKNOWLEDGEMENTS

This work was partially supported by Portuguese national funds
through FCT, under projects UIDB/50021/2020 (DOI: 10.54499/-
UIDB/50021/2020), PTDC/CCI-COM/2156/2021 (DOI: 10.54499/-
PTDC/CCI-COM/2156/2021) and 2022.03537.PTDC (DOI: 10.54499/-
2022.03537.PTDC) and grant SFRH/BD/07724/2020. This work was
also supported by the European Regional Development Fund under
the Czech project AI&Reasoning no. CZ.02.1.01/0.0/0.0/15_003/0000466
(JP), and by theMEYSwithin the program ERCCZ under the project
POSTMAN no. LL1902 co-funded by the European Union under the
project ROBOPROX (reg. no. CZ.02.01.01/00/22_008/0004590). This
article is part of the RICAIP project that has received funding from
the EU’s Horizon 2020 research and innovation program under
grant agreement No 857306.

REFERENCES

[1] Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roy-
choudhury. 2022. Verifix: Verified Repair of Programming Assignments. ACM
Trans. Softw. Eng. Methodol. 31, 4 (2022), 74:1–74:31. https://doi.org/10.1145/
3510418

[2] Gabin An, Minhyuk Kwon, Kyunghwa Choi, Jooyong Yi, and Shin Yoo. 2023.
BUGSC++: A Highly Usable Real World Defect Benchmark for C/C++. In 38th

IEEE/ACM International Conference on Automated Software Engineering, ASE

2023, Luxembourg, September 11-15, 2023. IEEE, ASE 2023, 2034–2037. https:
//doi.org/10.1109/ASE56229.2023.00208

[3] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. 2005. Supporting
Controlled Experimentation with Testing Techniques: An Infrastructure and its
Potential Impact. Empir. Softw. Eng. 10, 4 (2005), 405–435. https://doi.org/10.
1007/S10664-005-3861-2

[4] Sumit Gulwani, Ivan Radicek, and Florian Zuleger. 2018. Automated clustering
and program repair for introductory programming assignments. In PLDI 2018.
ACM, "", 465–480.

[5] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish K. Shevade. 2017. DeepFix:
Fixing Common C Language Errors by Deep Learning. In AAAI 2017, Satinder P.
Singh and Shaul Markovitch (Eds.). AAAI Press, AAAI 2017, 1345–1351.

[6] Yang Hu, Umair Z. Ahmed, Sergey Mechtaev, Ben Leong, and Abhik Roychoud-
hury. 2019. Re-Factoring Based Program Repair Applied to Programming As-
signments. In 34th IEEE/ACM International Conference on Automated Software

Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE, USA,
388–398.

[7] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repairing
Programs with Semantic Code Search (T). In 30th IEEE/ACM International Confer-

ence on Automated Software Engineering, ASE 2015, Myra B. Cohen, Lars Grunske,
and Michael Whalen (Eds.). IEEE Computer Society, ASE 2015, 295–306.

5

https://program-repair.org/benchmarks.html
https://doi.org/10.1145/3510418
https://doi.org/10.1145/3510418
https://doi.org/10.1109/ASE56229.2023.00208
https://doi.org/10.1109/ASE56229.2023.00208
https://doi.org/10.1007/S10664-005-3861-2
https://doi.org/10.1007/S10664-005-3861-2

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

APR ’24 , April 20, 2024, Lisbon, Portugal P. Orvalho, M. Janota, and V. Manquinho

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

[8] Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass benchmarks for automated repair of C programs. IEEE Transactions

on Software Engineering 41, 12 (2015), 1236–1256.
[9] Xiao Liu, Shuai Wang, Pei Wang, and Dinghao Wu. 2019. Automatic grad-

ing of programming assignments: an approach based on formal semantics. In
Proceedings of the 41st International Conference on Software Engineering: Soft-

ware Engineering Education and Training, ICSE (SEET) 2019, Sarah Beecham and
Daniela E. Damian (Eds.). IEEE / ACM, ICSE 2019, 126–137.

[10] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. DirectFix: Look-
ing for Simple Program Repairs. In 37th IEEE/ACM International Conference

on Software Engineering, ICSE 2015, Antonia Bertolino, Gerardo Canfora, and
Sebastian G. Elbaum (Eds.). IEEE Computer Society, ICSE 2015, 448–458.

[11] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: scalable
multiline program patch synthesis via symbolic analysis. In ICSE 2016, Laura K.
Dillon, Willem Visser, and Laurie A. Williams (Eds.). ACM, ICSE 2016, 691–701.

[12] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: program repair via semantic analysis. In 35th International

Conference on Software Engineering, ICSE ’13, David Notkin, Betty H. C. Cheng,
and Klaus Pohl (Eds.). IEEE Computer Society, ICSE 2013, 772–781.

[13] Pedro Orvalho, Mikolás Janota, and Vasco Manquinho. 2022. MultIPAs: Applying
Program Transformations to Introductory Programming Assignments for Data
Augmentation. In Proceedings of the 30th ACM Joint European Software Engi-

neering Conference and Symposium on the Foundations of Software Engineering,

ESEC/FSE 2022. ACM, Singapore, 1657–1661. https://doi.org/10.1145/3540250.
3558931

[14] Pedro Orvalho, Mikolás Janota, and Vasco M. Manquinho. 2022. C-Pack
of IPAs: A C90 Program Benchmark of Introductory Programming Assign-
ments. CoRR abs/2206.08768 (2022). https://doi.org/10.48550/arXiv.2206.08768
arXiv:2206.08768

[15] Pedro Orvalho, Mikolás Janota, and Vasco M. Manquinho. 2022. InvAASTCluster:
On Applying Invariant-Based Program Clustering to Introductory Programming
Assignments. CoRR abs/2206.14175 (2022). https://doi.org/10.48550/arXiv.2206.
14175 arXiv:2206.14175

[16] Pedro Orvalho, Jelle Piepenbrock, Mikoláš Janota, and Vasco Manquinho. 2022.
Project Proposal: Learning Variable Mappings to Repair Programs. 7th Conference
on Artificial Intelligence and Theorem Proving, AITP 2022, September (2022).

[17] Pedro Orvalho, Jelle Piepenbrock, Mikolás Janota, and Vasco M. Manquinho.
2023. Graph Neural Networks for Mapping Variables Between Programs. In ECAI

2023 - 26th European Conference on Artificial Intelligence (Frontiers in Artificial

Intelligence and Applications, Vol. 372). IOS Press, Poland, 1811–1818. https:
//doi.org/10.3233/FAIA230468

[18] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit
Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017. Learning syn-
tactic program transformations from examples. In ICSE 2017, Sebastián Uchitel,
Alessandro Orso, andMartin P. Robillard (Eds.). IEEE / ACM, Argentina, 404–415.

[19] Shin Hwei Tan, Jooyong Yi, Yulis, Sergey Mechtaev, and Abhik Roychoudhury.
2017. Codeflaws: a programming competition benchmark for evaluating auto-
mated program repair tools. In Proceedings of the 39th International Conference

on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017 -

Companion Volume, Sebastián Uchitel, Alessandro Orso, and Martin P. Robillard
(Eds.). IEEE Computer Society, Argentina, 180–182.

[20] Ke Wang, Rishabh Singh, and Zhendong Su. 2018. Search, align, and repair:
data-driven feedback generation for introductory programming exercises. In
PLDI 2018. ACM, USA, 481–495.

[21] Michihiro Yasunaga and Percy Liang. 2020. Graph-based, Self-Supervised Pro-
gram Repair from Diagnostic Feedback. In ICML 2020 (Proceedings of Machine

Learning Research, Vol. 119). PMLR, Virtual Event, 10799–10808.
[22] Jooyong Yi, Umair Z. Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roy-

choudhury. 2017. A feasibility study of using automated program repair for
introductory programming assignments. In ESEC/FSE 2017. ACM, Germany,
740–751. https://doi.org/10.1145/3106237.3106262

A NUMBER OF SUBMISSIONS

Table 4 presents the number of semantically correct student sub-
missions received for 25 different programming assignments over
three lab classes for three different years. Next, Table 5 presents the
set of semantically incorrect submissions, while Table 6 describes
the set of syntactically incorrect programs.

B LIST OF INTRODUCTORY PROGRAMMING

ASSIGNMENTS (IPAS)

B.1 Lab02 - Integers and IO operations.

In Lab02, the students learn how to programwith integers, floats, IO
operations (mainly printf and scanf), conditionals (if-statements),
and simple loops (for and while-loops).

IPA #1: Lab02 - Ex01. Write a program that determines and prints
the largest of three integers given by the user.

IPA #2: Lab02 - Ex02. Write a program that reads two integers ‘N,
M‘ and prints the smallest of them in the first row and the largest
in the second.

IPA #3: Lab02 - Ex03. Write a program that reads two positive
integers ‘N, M‘ and prints "yes" if ‘M‘ is a divisor of ‘N‘, otherwise
prints "no".

IPA #4: Lab02 - Ex04. Write a program that reads three integers
and prints them in order on the same line. The smallest number
must appear first.

IPA #5: Lab02 - Ex05. Write a program that reads a positive integer
‘N‘ and prints the numbers ‘1..N‘, one per line.

IPA #6: Lab02 - Ex06. Write a program that determines the largest
and smallest number of ‘N‘ real numbers given by the user. Consider
that ‘N‘ is a value requested from the user. The result must be
printed with the command ‘printf("min: %f, max: %fñ", min, max)‘.
Hint: initialize the largest and smallest to the first read value.

IPA #7: Lab02 - Ex07. Write a program that asks the user for
a positive integer ‘N‘ and prints the number of divisors of ‘N‘.
Remember that prime numbers have 2 divisors.

IPA #8: Lab02 - Ex08. Write a program that calculates and prints
the average of ‘N‘ real numbers given by user. The program should
first ask the user for an integer ‘N‘, representing the number of num-
bers to be entered. The real numbers must be represented by float
type. The result must be printed with the command ‘printf("%.2f",
avg);‘.

IPA #9: Lab02 - Ex09. Write a program that asks the user for a
value ‘N‘ corresponding to a certain period of time in seconds. The
program should output this period of time in the format ‘HH:MM:SS‘.
Hint: use the operator that calculates the remainder of division (‘%‘).

IPA #10: Lab02 - Ex10. Write a program that asks the user for a
positive value ‘N‘. The output should present the number of digits
that make up ‘N‘ (on the first line), as well as the sum of the digits
of ‘N‘ (on the second line). For example, the number 12345 has 5
digits and the sum of these digits is 15.

B.2 Lab03 - Loops and Chars.

In this lab, the students learn how to program with loops, nested
loops, auxilary functions and chars.

IPA #11: Lab03 - Ex01. Write a program that draws a square of
numbers like the following using the function ‘void square(int N);‘.
The value of ‘N‘, given by the user, must be greater than or equal to

6

https://doi.org/10.1145/3540250.3558931
https://doi.org/10.1145/3540250.3558931
https://doi.org/10.48550/arXiv.2206.08768
https://arxiv.org/abs/2206.08768
https://doi.org/10.48550/arXiv.2206.14175
https://doi.org/10.48550/arXiv.2206.14175
https://arxiv.org/abs/2206.14175
https://doi.org/10.3233/FAIA230468
https://doi.org/10.3233/FAIA230468
https://doi.org/10.1145/3106237.3106262

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

C-Pack-IPAs: A C90 Program Benchmark of IPAs APR ’24 , April 20, 2024, Lisbon, Portugal

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: The number of semantically correct student submissions received for 25 different programming assignments over

three lab classes for three different years.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total

Year 1

Lab02 25 25 25 23 25 23 22 23 24 23 238

Lab03 20 18 16 7 16 17 20 - - - 114

Lab04 22 22 19 22 18 19 21 13 - - 153

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total

Year 2

Lab02 13 8 8 7 8 9 7 6 7 6 79

Lab03 6 5 3 1 4 7 7 - - - 33

Lab04 6 7 6 6 6 5 4 3 - - 43

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total

Year 3

Lab02 52 50 54 44 50 51 44 47 43 47 482

Lab03 40 39 37 10 15 37 26 - - - 204

Lab04 38 34 30 49 36 32 27 23 - - 269

Table 5: The number of semantically incorrect student submissions received for 25 different programming assignments over

three lab classes for three different years.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total

Year 1

Lab02 36 10 7 12 3 5 7 9 21 3 113

Lab03 32 35 20 69 16 17 9 - - - 198

Lab04 5 11 5 6 10 5 14 10 - - 66

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total

Year 2

Lab02 28 2 1 7 2 4 7 2 3 4 60

Lab03 14 10 11 17 15 6 4 - - - 77

Lab04 6 1 1 2 7 1 4 6 - - 28

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total

Year 3

Lab02 51 43 31 33 4 28 22 41 36 24 313

Lab03 58 76 44 121 63 31 31 - - - 424

Lab04 5 17 5 41 19 8 21 36 - - 152

Table 6: The number of syntactically incorrect student submissions received for 25 different programming assignments over

three lab classes for three different years.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total

Year 1

Lab02 6 0 1 5 4 4 4 2 1 2 29

Lab03 6 3 1 6 2 1 2 - - - 21

Lab04 2 1 1 0 5 0 1 2 - - 12

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total

Year 2

Lab02 6 3 0 5 1 5 0 0 0 0 20

Lab03 1 0 0 1 1 1 1 - - - 5

Lab04 0 0 0 1 1 1 4 0 - - 7

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total

Year 3

Lab02 24 17 14 20 10 27 11 31 8 12 174

Lab03 18 8 7 10 15 9 8 - - - 80

Lab04 14 7 4 18 15 10 11 21 - - 100

2. The tab (character ‘’⁀’‘) must be used as the separator. The square
shown is the example for ‘N = 5‘.

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

IPA #12: Lab03 - Ex02. Write a program that draws a pyramid of
numbers using the ‘void pyramid(int N);‘ function. The value of
‘N‘, given by the user, must be greater than or equal to 2. The space
(character ‘’ ’‘) must be used as the separator. The pyramid shown
is the example for ‘N = 5‘.

1

1 2 1

1 2 3 2 1

1 2 3 4 3 2 1

1 2 3 4 5 4 3 2 1

IPA #13: Lab03 - Ex03. Write a program that draws a cross on
diagonals using the ‘void cross(int N);‘ function. The asterisk (‘’*’‘
character) must be used to draw the cross; hyphen (‘’-’‘ character)
must be used as the separator. The crosses shown are the examples
for ‘N = 3‘ and ‘N=8‘.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

APR ’24 , April 20, 2024, Lisbon, Portugal P. Orvalho, M. Janota, and V. Manquinho

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

* - - - - - - *
- * - - - - * -
- - * - - * - -
- - - * * - - -
- - - * * - - -

* - * - - * - - * - -
- * - - * - - - - * -
* - * * - - - - - - *

IPA #14: Lab03 - Ex04. Write a program that reads a sequence
of numbers separated by spaces and newlines, and print the same
string, but the numbers in the output should not contain 0 at the
beginning, eg ‘007‘ should print ‘7‘. The exception is the number
0, which should be printed as 0. The string in the input ends with
‘EOF‘.Warning: Number values may be greater than the maximum

value of type ‘int‘ or any primitive type in C. Hint: the ‘int getchar()‘

function can be used to read a character.

IPA #15: Lab03 - Ex05. Write a program that reads a sequence
of messages and prints them out, one per line. Each message is
delimited by quotation marks (character ‘"‘). The message can con-
tain an "escape sequence" - the character loses special meaning if it
is preceded by the character ‘̀(backslash). For example, the input
‘"af̈oob̃ar"̈‘ matches the message ‘a"foob̃ar"‘. So the backslash allows
you to include quotes in the message just like the backslash itself.

IPA #16: Lab03 - Ex06. Write a program that reads a positive
integer from the input (such as a sequence of characters up to 100
chars) and that decides whether the number read is divisible by 9. If
the number is divisible by 9, the program should print the message
‘yes‘, and should print ‘no‘ otherwise. Warning: Number values can

be greater than the maximum value of type ‘int‘ or any primitive

type in C. Hint: A number is divisible by 9 iff the sum of its digits is

divisible by 9. For example, the sum of the digits of the number 729
is 18, so it is divisible by 9. The fact can be seen from the following
equation: 7 x 100 + 2 x 10 + 9 = (7 x 99 + 7) + (2 x 9 + 2) + 9.

IPA #17: Lab03 - Ex07. Write a program that takes a sequence
of numbers and operators (‘+‘, ‘-‘) representing an arithmetic ex-
pression and returns the result of that arithmetic expression. The
string in the input ends with ‘ñ‘. You can assume that every two
numbers are always separated by ‘space, operator, space‘, i.e., ‘’op’‘,
for either of the 2 operators above. Example: Input ‘70 + 22 - 3‘
should return ‘89‘. Hint: You should start by converting a sequence of

digits (characters) to an integer.

B.3 Lab04 - Vectors and Strings.

In this lab, the students learn how to program with integers arrays
and strings.

IPA #18: Lab04 - Ex01. Write a program that asks the user for
a positive integer ‘n < VECMAX‘, where ‘VECMAX=100‘. Then
read ‘n‘ positive integers. At the end the program should write a
graphical representation of the values read as follows. The graph
shown is the example for ‘n = 3‘ and values ‘1 3 4‘.

*

IPA #19: Lab04 - Ex02. Write a program that asks the user for
a positive integer ‘n < VECMAX‘, where ‘VECMAX=100‘. Then
read ‘n‘ positive integers. At the end the program should write a
graphical representation of the values read as follows. The graph
shown is the example for ‘n = 3‘ and values ‘1 3 4‘.

**
**
*

IPA #20: Lab04 - Ex03. Write a program that asks the user for
a positive integer ‘n < VECMAX‘, where ‘VECMAX=100‘. Then
read ‘n‘ positive integers. At the end the program should write a
graphical representation of the values read as follows. The graph
shown is the example for ‘n = 3‘ and values ‘1 3 4‘.

*
**
**

Consider that in the following IPAs, all strings have a maximum
of ‘MAX = 80‘ characters (including the end-of-string character).

IPA #21: Lab04 - Ex04. Write a program that reads a word from
the terminal and checks whether the word is a palindrome or not.
A word is a palindrome if it is spelled the same way from left to
right and vice versa (eg "AMA" is a palindrome). If the word is a
palindrome, the program should print the value ‘yes‘, and ‘no‘ if
not. Hint: You can use ‘scanf("%s", s)‘ to read a word. Note that the

string ‘s‘ does not ask for ‘&‘ in ‘scanf‘.

IPA #22: Lab04 - Ex05. Write a program that reads characters from
the keyboard, character by character, until it finds the character ‘ñ‘
or EOF and writes the line read to the terminal. Implement the ‘int
leLinha(char s[])‘ function which reads the line into the string ‘s‘
and returns the number of characters read. Hint: After solving this
exercise, try using the ‘fgets‘ command.

IPA #23: Lab04 - Ex06. Write a program that reads a line from
the terminal (use the function from the previous exercise) and
writes the same text to the terminal, but with the lowercase letters
replaced by the respective uppercase letters. Implement the ‘void
uppercase(char s[])‘ function. Note: Remember that the string ‘s‘ is

changed by the ‘uppercase‘ function.

IPA #24: Lab04 - Ex07. Write a program that reads a line and
a character and writes to the terminal the same line where all
occurrences of the character were removed. Implement the ‘void
eraseCharacter(char s[], char c)‘ function that erases the character
‘c‘ from the string ‘s‘.

IPA #25: Lab04 - Ex08. Write a program that reads two integers
in decimal representation and prints the larger of those two num-
bers. You can assume that the two numbers have the same number
of digits and a maximum of 100 characters. Note: The numbers

may be too large to be stored in a ‘long long‘ variable, for example

‘998888888888888888887‘ and ‘9988888888888888888888‘.

8

	Abstract
	1 Introduction
	2 C-Pack-IPAs
	3 IPAs Description
	4 Experimental Results
	5 Related Work
	6 Conclusion
	References
	A Number of submissions
	B List of Introductory Programming Assignments (IPAs)
	B.1 Lab02 - Integers and IO operations.
	B.2 Lab03 - Loops and Chars.
	B.3 Lab04 - Vectors and Strings.

