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Abstract

Nowadays, with the massive amount of data that data analysts have to deal with, they frequently
find tables with interesting data and they do not know how these tables were generated from a database.
Hence, there is an increasing need for systems capable of solving the problem of Query Reverse Engi-
neering (QRE). Given a database D and an output table Q(D), these systems have to find a query Q,
such that, when running Q on D, the result is equal to Q(D). QRE is a subfield of Program Synthesis.

The goal of Program Synthesis is to automatically generate programs that satisfy a given high-level
specification. Since the 60’s, Program Synthesis is a well-studied problem, and has been considered the
Holy Grail of Computer Science. Until now, program synthesizers have been using a single tree repre-
sentation to represent programs. We propose a novel enumeration-based SQL synthesizer SQUARES,
that uses a new line representation where we represent each program line with its own subtree.

Experimental results on the synthesis of SQL queries, show that the proposed line-based encoding
allows a faster enumeration of programs when compared to the usual tree-based encoding. Moreover,
while the tree-based encoding does not scale beyond a small number of operations, the new line-based
encoding allows finding programs with a larger sequence of operations. Experimental results on the
synthesis of SQL queries from OutSystems show that SQUARES outperforms Scythe, a state-of-the-art
SQL synthesizer.

Keywords: Program Synthesis, Query Reverse Engineering, Satisfiability Modulo Theories (SMT),

Enumeration-Based Program Synthesis, SQL

1. Introduction

The goal of Program Synthesis is to automatically
generate programs that satisfy a given high-level
specification [I7]. Since the 60’s, Program Synthesis
is a well-studied problem, and has been considered
the Holy Grail of Computer Science [T, [15].

Nowadays, the use of input-output examples as
specifications is a common approach [II]. Even
though these specifications are incomplete (i.e., a
program may satisfy the specification but may not
be the program that the user desires), these are easy
to create and can be used to solve many real-world
applications. This subfield of Program Synthesis
is known as Programming By Example (PBE) and
it has received more attention in the last decade.
PBE has been used to automate tedious tasks in
a plethora of applications, such as string manipula-
tions in spreadsheets [9] 26], table reshaping [7] and
SQL queries [33, 135, [37].

Even though there are many approaches to pro-
gram synthesis [11], one of the most common ap-
proaches is to perform an enumerative search over
the space of programs that satisfy the specifica-
tions [7, 8, [19]. Fig. [1] shows the high-level archi-
tecture of enumeration-based program synthesizers.
They take as input the specification that describes
the intention of the user (e.g., input-output exam-
ples) and a domain-specific language (DSL) that de-
fines the search space. Program synthesizers typi-
cally enumerate programs in increasing order of the
number of DSL components. For each candidate
program P, they check if P satisfies the specifica-
tion. If this is the case, then a program consistent
with the specification has been found. Otherwise,
the program synthesizer learns a reason for failure
and enumerates the next candidate program.

Since the beginning of the 215¢ century, with the
Big Data revolution, several companies started hav-
ing trouble with the management of their databases,
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Figure 1: Enumeration-based Program Synthesis

concerning the massive amount of data that sud-
denly appeared. Although most users know how
to make a description of what they want, or what
the task should do, sometimes they do not know
how to express it in a query language, such as SQL.
On that account, more and more systems started to
appear in order to help end-users query a relational
database [16], B0}, BT [37]. This subfield of Program
Synthesis became known as Query Synthesis, where
the goal is to find the query desired by the user [30].

This thesis is concerned with the problem of
Query Synthesis from input-output examples, most
commonly known as Query Reverse Engineering
(QRE) which is a subfield of Programming By Ex-
ample. Given a database D, and an output table
Q(D), the goal is to synthesize a query Q, such that,
when running Q on D the result is Q(D) [30]. We
focus on a new system, SQUARES, whose objective
is to solve QRE for a subset of SQL.

1.1. Motivating Example

Suppose that a user wants to synthesize an
SQL query using examples. In particular,
given tables supplier and parts, with the
schema “supplier(id: integer, sname: string)”
and “parts(id: integer, pname: string)”, the user
wants to find the mnames of parts, pnames, for
which there is some supplier El This could be
accomplished with the following SQL query:

SELECT pname
FROM parts, supplier
WHERE parts.id = supplier.id

To enumerate the space of programs that satisfy
the specifications, program synthesizers must first
construct an underlying representation of the fea-
sible space. Figure [2] shows the typical tree repre-
sentation used by program synthesizers [2, [7, [],
for the above query example. Each node can be a
library component or a terminal symbol. Program
synthesizers can then traverse the space of possi-
ble candidates by enumerating all possible trees of
a given depth. However, for approaches that rely
on logical deduction, the space of feasible programs
is encoded a priori by using either a Boolean Sat-
isfiability (SAT) or a Satisfiability Modulo Theory

1 This corresponds to exercise 5.2.1 from a classic textbook
on databases [24]

(SMT) formula [7, [8]. A common approach to en-
code all feasible programs is to represent them using
a k-tree, where each node has exactly k children and
k is the largest number of parameters of the func-
tions in our library of components. Figure [2| shows
an example of a 3-tree where each node has 3 chil-
dren. A complete program corresponds to assigning
a label to each node. Components that may have
less than 3 parameters (e.g., SELECT), will have the
empty label € assigned to their unused children.

A large downside of a k-tree representation is the
exponential growth of the size of the tree with re-
spect to its depth. For instance, Figure [2| would
need 40 nodes to represent the search space for 3
lines of code with & = 3. If we consider programs
with 10 lines of code with k = 4, then we would
need to build a tree with 1,398,101 nodes. Since
the encoding’s complexity depends on the number
of nodes, this makes it intractable to enumerate the
search space of candidate programs using an SMT
encoding.

1.2. Contributions

In this work, we propose a new line representation
illustrated in Figure[3] where we represent each pro-
gram line with its own subtree and add additional
constraints to connect the multiple subtrees. For
the above SQL query, we would only need 12 nodes
using a line-based representation instead of the 3-
tree representation’s 40 nodes. When considering
programs with 10 lines of code and k = 4, the line-
based representation only needs 50 nodes instead
of the 1,398,101 nodes required by the tree-based
representation.

We also present a novel program synthesizer,
SQUARES, that uses Enumeration-based Program
Synthesis. SQUARES was developed on top of
a state-of-the-art synthesis framework Trinity [19].
Trinity uses the traditional tree-based representa-
tion of a program, while SQUARES incorporates
our new line representation illustrated in Figure [3]

SQUARES’ goal is to synthesize SQL queries
from input-output examples, i.e., solve the problem
of Query Reverse Engineering. We gathered SQL
instances previously used by well-known SQL syn-
thesizers [7, B3], B7] and some query examples used
in OutSystems’ Engineering Database [22]. We
evaluate our system with these instances and com-
pare its performance against Scythe [33], a state-
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Ls : SELECT Ly : FROM L, : WHERE
Loy pname € Ly parts supplier = parts.id supplier.id

Figure 3: Line-based representation of the search space

of-the-art synthesizer presented at PLDI'17, whose
goal is to solve the problem of Query Reverse En-
gineering.

2. Preliminaries
This section provides some definitions and notation
that will be used throughout the document.

We assume that the reader is familiar with the
Boolean Satisfiability Problem. Otherwise, the in-
terested reader is referred to the literature [I], [4] for
more details.

Definition 1 (SAT Solver). A SAT Solver is a
logic engine capable of deciding if a given propo-
sitional formula ¢ is satisfiable. In this case, the
solver produces a truth assignment to the variables
of ¢ such that ¢ evaluates to true. Otherwise, the
solver returns that ¢ is unsatisfiable [18].

Definition 2 (Satisfiability Modulo Theo-
ries (SMT)). The Satisfiability Modulo Theories
(SMT) problem is a generalization of the SAT prob-
lem. Given a decidable first-order theory T, a T-
atom is a ground atomic formula in T. A T-literal
is either a T-atom t or its complement —t. A T-
formula is similar to a propositional formula, but a
T-formula is composed of T-literals instead of propo-
sitional literals. Given a T-formula ¢, the SMT
problem consists of deciding if there exists a com-
plete assignment over the variables of ¢ such that
¢ 1is satisfied. Depending on the theory T, the vari-
ables can be of type integer, real, Boolean, among
others [21]].

Example 1. Let ¢1 = (1 > 0) A (1 < 4) A (22 <
Q)N (x1+x2 =5) be an SMT formula where T is the
Linear Integer Arithmetic (LIA) theory. Clearly, ¢1

is satisfiable and a possible solution would be x1 =
4,29 = 1. Let ¢po = (l‘l > 0)/\(1‘1 < 3)/\(.’1,‘2 <
1) A (z1 + 22 =5) be an SMT formula also in the
LIA theory. In this case, ¢ is unsatisfiable since
there is no assignment to the problem variables such
that ¢o is evaluated to true.

Definition 3 (Table). A Table I' is a 3-tuple
(C,R,¢). The number of columns is denoted by C,
and the numbers of rows by R. I'¢, , is the element
in the column c; and row ri. A column of a table
T is normally called an attribute of T [7].

Definition 4 (Schema Graph). A database D is
represented by its schema graph Gs = (Ng, Es). Ng
is the set of nodes and Eg denotes the set of edges.
FEach node in Ng corresponds to a distinct table T’
in D. FEach edge between two distinct tables I'y and
I's is in Eg if a join is possible between these two
tables, i.e. if both tables share an attribute [1])].

Definition 5 (Context-free Grammar (CFG)).
A context-free grammar G is a 4-tuple (V, 2, R, S),
where V is the set of non-terminals symbols, X is
the set of terminal symbols, R is the set of rules
and S is the start symbol. A CFG describes all the
strings permitted in a certain formal language [12].

Definition 6 (Domain-Specific Language
(DSL)). A Domain-specific Language (DSL) is a
tuple (G, Ops), where G is a context-free grammar
(5= (V,%,R,S)) and Ops is the semantics of DSL
operators. The CFG G has the rules to generate all
the programs in the DSL. The semantics of DSL op-
erators is necessary to analyze conflicts and make
deductions [§].



Each symbol o € ¥ corresponds to built-in DSL
constructs (e.g., SELECT, WHERE, FROM), constants,
variables or inputs of the system. Each production
rule p € R has the form p = (A — (A1, ..., An)),
where o € 3 is a DSL construct and Ay,..., A, €
Y. are symbols for the arguments of o.

Example 2. Consider the DSL D in Fig. [{| and
suppose that a user wants to solve the query pre-
sented in section i.e. she wants to find all
the names of parts for which there is some sup-
plier. The desired query from D is the following
select_from(column(pname), join(parts, supplier)).
This query is obtained using three production rules
p1 = select_from, py = column and p3 = join.

Definition 7 (Program Space). Program space
is the space with all possibilities for program can-
didates in a certain programming language. The
program space grows exponentially with the size of
the desired program [11)].

Program synthesizers search the space of pro-
grams described by a given domain-specific lan-
guage (DSL).

Definition 8 (Synthesis Problem). Given (S, 3,
Ops), being S a program’s specification (e.g. input-
output examples), G a CFG and Ops the semantics
for a particular DSL, the goal of synthesis is to infer
a program P such that (1) the program is produced
by G, (2) the program is correct with respect to Ops
and (3) P is consistent with S [7].

(S,9,0ps) - P

Definition 9 (Programming By Example
(PBE)). Given (€,G, Ops), being € = (Ein, Eout)
a set of input-output examples, G a grammar and
Ops the semantics for a particular DSL, the goal of
Programming by Fxample is to infer a program P
such that (1) the program is consistent with G, (2)
the program is correct with respect to Ops and (3)
T(gzn) = Eout 1(7/-

(€,9,0ps) - P

PBE is a special case of Program Synthesis, where
the specification is described by a set of input-
output examples.

Definition 10 (Query Reverse Engineering
(QRE)). Let D be a database with schema graph
G and let Q(D) be an output table, which is the re-
sult of running some unknown query Q on D. The
goal of QRE is to produce a query Q whose result is
Q(D), given (G,2(D)) [30].

(5,9(D)) - Q
QRE is a special case of PBE, where the examples
are constructed from database tables.

3. Background

This section provides some background on Program
Synthesis and on the problem of Query Reverse
Engineering.

3.1. Program Synthesis

To the best of our knowledge, the first refer-
ences to Program Synthesis date back to the 60’s
[3,B82]. Since then a large body of research has been
conducted regarding the problem of synthesizing
programs automatically [I1]. The problem of Pro-
gram Synthesis has three fundamental character-
istics [I1]: program space, user intent and search
technique.

3.1.1. Program Space

The number of program candidates in the program
space grows exponentially with the size of the de-
sired program. Early applications for Program Syn-
thesis were based in searches in an exponentially
growing tree. Modern approaches use heuristics for
cutting the tree, reducing the search space [13].

3.1.2. User Intent

The second main issue of Program Synthesis is
to completely understand the user’s desire, given
the specification provided by the user. In order
to express the user’s desire several different ap-
proaches take inputs such as: natural-language de-
scriptions [0, [10, B5], a few input-output exam-
ples [8, [0, 20], partial programs [I5] 27] or related
programs [25] B30].

3.1.3. Search Techniques

There are four main search techniques for Program
Synthesis: constraint solving, deductive, enumera-
tive and statistical [II]. However, it is possible to
use a combination of these techniques [4] [§].

3.2. Enumeration-Based Program Synthesis
This section presents the idea behind several
state-of-the-art synthesizers [7, 8, [19] that use
enumeration-based Program Synthesis. These syn-
thesizers [7, [8, [19] rely on logical deduction, the
space of feasible programs must be encoded a pri-
ori by using either a Boolean Satisfiability (SAT)
or a Satisfiability Modulo Theory (SMT) formula.
As presented in Fig. [T} these systems take as in-
put a set of input-output examples and a set of li-
brary components that define the search space and
typically enumerate programs in increasing order of
number of components.

3.2.1. Tree-based Encoding

The tree-based encoding is currently used on sev-
eral state-of-the-art synthesizers [7l, 8 [19] to per-
form program enumeration [2I]. Given a DSL, pro-
gram synthesizers search for a program that is con-
sistent with the input-output examples provided by



select_from(cols, table) | join(table, table) | parts | supplier

table — —

cols —  column(col) | columns(col, cols)

col —  pname | sname | id | color | address | x
empty — empty

Figure 4: The grammar of a simple DSL for query synthesis; in this grammar, table is the start symbol. All
joins are natural joins (“,”) between columns with the same name. Given as input the tables supplier and
parts, with the schema “supplier(id: integer, sname: string)” and “parts(id: integer, pname: string)”.

select_from

supplier

Figure 5: K-tree representation of the query pre-
sented in Example

the user. For the search process to be complete,
these frameworks use a structure capable of repre-
senting every possible program up to some given
depth n. Let k be the greatest arity among DSL
constructs. For programs with n — 1 production
rules, synthesizers adopt a tree structure of depth
n, referred to as k-tree, where each node has exactly
k children. For example, Fig. [f] illustrates a 2-tree
of depth 2.

In order to perform program enumeration using
the tree representation, program synthesizers can
encode the tree as an SMT formula such that a
model of the SMT formula encodes a concrete pro-
gram by assigning a symbol to each node.

A detailed description of the SMT model follows.
First, the encoding variables are introduced. Next,
the constraints of the SMT model are presented.

3.2.2. Encoding Variables

Let s be the length of the DSL’s set of symbols,
s =|X|. Let id : ¥ — Ny be a function that maps
each symbol to an unique non-negative integer in
a one-to-one mapping. As a result, this function
provides a unique identifier (integer value between
0 and s) to each symbol in ¥. In our encoding,
we assume that the empty production symbol () is
mapped to 0 (i.e. id(e) = 0).

Consider the encoding for a program with a k-
tree of depth n. Assume each node in the k-tree is
assigned an unique index. Let N be the set of all
k-tree nodes indexes such that N = I U L where
I denotes the set of internal node indexes and L
denotes the set of leaf node indexes. Let C(7) denote
the set of child indexes of node ¢ € N. Clearly, if 4
is a leaf node (i € L), then C(i) = 0.

In our encoding we define the following variables:
V ={v; : 1 <i < |N|} : each variable v; denotes
the symbol identifier in node ¢ of the k-tree.

3.2.3. Constraints
Let D be a DSL, Prod(D) denotes the set of pro-
duction rules in D and T'erm(D) the set of terminal
symbols in D. Furthermore, let Types(D) denotes
the set of types used in D and Type(s) the type of
symbol s € Prod(D) U Term(D). If s € Prod(D),
then T'ype(s) denotes the return type of production
rule s.

To ensure that every program enumerated is well-
typed the following constraints must be satisfied:

Leaf Nodes. The leaf nodes can only be assigned
to terminal symbols because they have no children.
Therefore, we define the following constraint:

VielL: \/

pETerm(D)

vi = id(p) (1)

Internal Nodes. If a production rule p is as-
signed to an internal node, then the type of its
children nodes must match the types of parame-
ters of p. Let Type(p,j) denote the type of pa-
rameter j of production rule p € Prod(D). If
Jj > arity(p), then Type(p,j) = empty. If p is a
terminal symbol, p € Term(D), then for every j,
Type(p, j) = empty.

Let X(Type(p, j)) represent the subset of symbols
in ¥ of type Type(p, j).

Viel, jeC@i), peX :
\/ ’Uj:id(t)

teX(Type(p.j))

(2)

v; = id(p) =

With constraint , all the programs generated
will be well-typed since each node is only assigned
to a production rule if its children have the correct

type.

Example 3. Consider again the query in
Ezample [3 If the production select_from
is assigned to the program’s root, wvy, then

Y(Type(select_from,1)) = {column,columns}
and Y(Type(select_from,2)) =
{select_from, join, parts, supplier}. The



following constraint must be satisfied:
vy = id(select_from) = (vy = id(column)V
vy = id(columns)) and vy = id(select_from) =
(v = id(select_from) V vy = id(join)V
v = id(parts) V vs = id(supplier)).

Encoding Complexity. Let k be the greatest ar-
ity between DSL constructs and let n denote the
number of productions (lines of code) in a program.
In terms of nodes complexity, the number of nodes
used by tree-based enumeration increases exponen-
tially with the number of productions, as follows:

|

] 3)

3.3. Query Synthesis

Query Synthesis is a subfield of Program Synthe-
sis. Given a database D and a query specification
(e.g. input-output examples, natural language de-
scriptions), the goal is to achieve the desired query.

Query Reverse Engineering (QRE). As
defined in section QRE is a subprob-
lem of Programming By Example. QRE
has numerous applications [3I] like database
usability, data analysis and data security.

The problem of QRE first appeared in 1975 by
Zloof [38]. Zloof introduced a new language called
”Query By Example” (QBE) [38, 39, [40] so the
users who did not know how to program with SQL
could query databases without having to compre-
hend SQL, just needing to learn QBE [38].

In the last decade several systems were developed
trying to solve QRE: TALOS [30, 31], SQLSyn-
thesizer [37], QFE [16], STAR [36], REGAL [28],
FastQRE [14], REGAL+ [29], PALEO [23], Mor-
pheus [7], Neo [§], Scythe [33] [34] and Trinity [19].

3.3.1. Scythe

Wang et al. [33 B4] proposed Scythe at PLDI'17,
a novel query-by-example synthesizer. Scythe can
synthesize expressive SQL queries and is considered
one of the best state-of-the-art synthesizers regard-
ing SQL generation.

This framework can be divided into two major
steps: synthesis and disambiguation. The synthe-
sizer is the step responsible for generating a set of
queries that are consistent with the specifications
provided by the user. Afterwards, the synthesizer
ranks all the generated queries (based on simplic-
ity and naturalness) and passes them to the dis-
ambiguation module, where the user chooses which
query is the desired one.

Regarding the synthesis process, Scythe decom-
poses this problem into two main parts: (1) syn-

thesis of skeletons (i.e. abstract queries) and (2)
synthesis of filter predicates.

Scythe starts by enumerating all possible query
skeletons that can be obtained considering the
schema graph (see Definition [4) provided by the
user as input examples. Secondly, Scythe removes
all skeletons whose schema graph does not corre-
spond to the output example, i.e., skeletons that do
not contain the output table are removed. After-
wards, all candidates use the input examples and
generalize the output table, hence, the system just
needs to find which predicates are going to be used.
This search for predicates can be huge. Therefore,
Wang et al. [33] proposed two optimizations: lo-
cally grouping candidate predicates and encode ta-
bles using bit-vectors. With these optimizations the
synthesis process is considerably accelerated, which
allow the synthesis of a wider range of SQL op-
erators. For more details the interested reader is
referred to the literature [4} B3].

4. SQUARES

This section provides the description of SQUARES,
A  SQL Synthesizer Using Query Reverse
Engineering, an enumeration-based PBE system
developed on top of a state-of-the-art synthe-
sis framework, Trinity [I9]. SQUARES’ goal is
to synthesize SQL queries from input-output
examples.

SQUARES, like Trinity, receives as input a set of
input-output examples, a DSL and an interpreter.
SQUARES’ synthesizer can be divided into two
main components: enumerator and decider. The
enumerator is responsible for enumerating all pos-
sible programs for the DSL, D, provided as input.
For each program P, the interpreter runs P on the
input examples and the decider compares if the out-
put matches the expected one. If the output of P
does not match, the decider produces a reason of
failure which is used by the enumerator to prune
all equivalent infeasible programs from the search
space, like in Neo []], afterwards, the next candi-
date program is enumerated. Otherwise, if the out-
put of P matches the expected one, the synthesizer
translates P to SQL and returns it.

For details about the structure of the input-
output examples, the SQUARES’ interpreter or the
heuristics used to cut the program space, the inter-
ested reader is referred to the literature [4].

4.1. Domain-Specific Language (DSL)

This section describes the Domain-Specific Lan-
guage (DSL) we use in SQUARES and from which
we generate SQL. Since constructing a SQL gram-
mar is very complex, we opted for creating a DSL
inspired by the R languageﬂ Having a query in R,

2https:/ /www.r-project.org
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table —

input | inner_join(table, table) | inner_join3(table, table, table) |

inner_joind(table, table, table, table) | filter(table, filterCondition) |
filters(table, filterCondition, filterCondition, op)) |
summariseGrouped(table, summariseCondition, Cols) |
anti_join(table, table) | left_join(table, table) | bind_rows(table, table) |

intersect(table, table)

tableSelect —

op —  Or | And
distinct —  true | false
empty —  empty

select(table, selectCols, distinct)

Figure 6: SQUARES’ DSL.

we can easily translate it to SQL as explained in
the end of this section.

Fig. [6] presents our DSL with five distinct types:
table, tableSelect, op, distinct and empty. The in-
put’s type is table and the output’s type is table-
Select. Regarding the variety of production rules,
we use the basic operations offered by R’s dplyr
E| library (e.g. inner_join, filter, summarise,
left_join). The terminals belonging to filterCon-
dition, summariseCondition, Cols, selectCols (Fig.
@, are computed on the fly, because they depend on
the input-output examples, as well as, the number
of input tables.

From R to SQL. Each production rule present
in our DSL, Fig. [6] has a direct transla-
tion (interpretation) to R [4]. Each production
rule in R (e.g. anti_join, summarise) can be
easily translated into several operators in SQIE|
(e.g. anti_join — SELECT ... FROM... WHERE
NOT EXISTS ...). Therefore, we can generate pro-
grams with more SQL productions rules if we use a
DSL for R and then translate the desired program
to SQL, instead of generating a program directly
from a SQL grammar. R’s library dbplyr E| has a
built-in function, show_query, that receives a query
in R and translates it automatically to SQL. On
that account and for the sake of simplicity, we use
this function to obtain SQL from our DSL.

4.2. Line-based Encoding

In this section we propose a new encoding to repre-
sent symbolic programs. Our goal is to represent a
program as a sequence of lines where each line rep-
resents an operation in the DSL. Instead of using
a single k-tree to represent a program, each line is
represented as a tree with depth of 1.

Consider the program in Fig. [7] One can rep-
resent this program as three trees of depth 1 as
shown in Fig. Note that the result of the
program is the value returned by the third tree.

Shttps://cran.r-project.org/web/packages/-
dplyr/vignettes/dplyr.html

%https://dbplyr.tidyverse.org/articles/sql-
translation.html

Shttps://cran.r-project.org/web/packages/-
dbplyr/vignettes/dbplyr.html

Ly : rety < column(pname)
Ly @ rety < join(parts, supplier)
L3 : rety < select_from(rety, rets)

Figure 7: The query select_from(column(pname),
join(parts, supplier)), from Example divided into
three lines.

Observe that ret; is a new symbol that represents
the return value of line .

4.3. Encoding Variables

Recall that D denotes a DSL, Prod(D) the set
of production rules in D and Term(D) the set of
terminal symbols in D. Furthermore, Types(D)
denotes the set of types used in D and Type(s)
the type of symbol s € Prod(D) U Term(D). If
s € Prod(D), then Type(s) denotes the return type
of production rule s.

Consider the encoding for a program with n lines
where the maximum arity of the operators is k, then
we have the following variables: (1) O = {op; : 1 <
i < n} : each variable op; denotes the production
rule used in line i; (2) T = {¢; : 1 < i < n} :
each variable ¢; denotes the return type of line i;
(3) A={ai; : 1 <i<n,1<j<k}: ecach variable
a;; denotes the symbol corresponding to argument
7 in line 4;

4.4. Constraints

Besides the production rules Prod(D) and terminal
symbols Term(D), we define one return symbol for
each line in the program. Let Ret = {ret; : 1 <i <
n} denote the set of return symbols in the program.

In our encoding, we define a different non-
negative identifier for each symbol. Here, we ex-
tend the id function to also consider the symbols
that represent the return value of each line. Let
Symbols = Prod(D) U Term(D) U Ret define the
set of all symbols used in the program. Finally, let
id : Symbols — Ny and tid : Types(D) — Ny be
one-to-one mappings of symbols and types, respec-
tively, to non-negative integer values.


https://cran.r-project.org/web/packages/\protect \discretionary {\char \hyphenchar \font }{}{}dplyr/vignettes/dplyr.html
https://cran.r-project.org/web/packages/\protect \discretionary {\char \hyphenchar \font }{}{}dplyr/vignettes/dplyr.html
https://dbplyr.tidyverse.org/articles/sql-translation.html
https://dbplyr.tidyverse.org/articles/sql-translation.html
https://cran.r-project.org/web/packages/dbplyr/vignettes/dbplyr.html
https://cran.r-project.org/web/packages/dbplyr/vignettes/dbplyr.html

column

@ join
€ @ parts @ supplier

select_from

Figure 8: Each tree represents a production rule. The first tree represents line 1, the second tree represents
line 2 and the third tree represents line 3. ret; (resp. retz) denotes the value returned in line 1 (resp.

line 2).

First, the operations in each line
Hence, we have the fol-

Operations.
must be production rules.
lowing set of constraints:

V

pEProd(D)

Vi<i<n: (opi = id(p))  (4)

The operation symbol used in each line implies
the line’s return type.

V1<i<mn,pé€ Prod(D):

(opi = id(p)) = (t; = tid(Type(p)))

Given a sequence of operations, the arguments
of operation ¢ must either be terminal symbols or

return symbols from previous operations. Hence,
we have:

(5)

Vi<i<n1<j<k:

V (aij = id(s))

s€Term(D)U{ret,:r<i}

(6)

Arguments. The arguments for a given opera-
tion ¢ must have the same types as the parameters
of the production rule used in the operation. Let
Type(p, j) denote the type of parameter j of pro-
duction rule p € Prod(D). If j > arity(p), then
Type(p, j) = empty. Hence, we have the following
constraints when a return symbol is used as argu-
ment of an operation:

V1 <i<mn,p€ Prod(D),
1<j<arity(p),1 <r<i:

((op; = id(p)) A (aij = id(ret,))) =
= (tr = tid(Type(p, j)))

A given terminal symbol ¢ € Term(D) cannot be
used as argument j of an operation i if it does not
have the correct type:

(7)

Vl<i<n,pé€ Prod(D),1<j< arity(p),
s € {t € Term(D) : Type(t) # Type(p,j)} :
(opi = id(p)) = —(ai; = id(s))

(®)

Since the arity of a given operation i can be
smaller than k, we must also have that the ar-

Ly : rety < column(pname)

Ly : rety < join(parts, supplier)
Ls : rets < select_from(rety, rety)
Ly : rety < join(parts, supplier)
Ly : rety + column(pname)

L3 : rety < select_from(rety, rety)

Figure 9: Two different ways of representing the
program from Example [2|into three lines.

guments above the production’s arity must be as-
signed to the empty symbol:

V1 <i<mn,p€ Prod(D),arity(p) <j <k:
(opi = id(p)) = (as; = id(empty))

Encoding Complexity. Let k be the greatest ar-
ity between DSL constructs and let n denote the
number of productions (lines of code) in a program.
In terms of nodes complexity, we can observe a dras-
tic difference between both types of enumeration,
tree-based and line-based. The number of nodes
used by line-based enumeration increases linearly,
(k + 1) x n, because the enumerator uses n trees,
with k£ + 1 nodes each, to represent a program with
n production rules.

4.5. Symmetric Programs

In line-based encoding, the number of models of the
SMT formula is larger than the number of models in
the corresponding tree-based encoding, since each
program can have more than one representation,
i.e. symmetric programs.

Example 4. Consider the DSL in Fig.
and the program select_from(column( pname),
join(parts, supplier)) from Ezample [3 In
tree-based encoding this program has a single repre-
sentation shown in Fig. [J. However, for the same
program, line-based encoding has two possible rep-
resentations shown in Fig. @

In order to enumerate the same number of models
from the SMT formula in both types of enumera-
tion, we need to find these symmetries and block



them. Otherwise, symmetric programs as the one
in Fig. [0 will be enumerated and the synthesizer
will have to check both programs. Therefore, if we
have a model a of a line-based SMT formula and
the synthesizer verifies that the corresponding pro-
gram is not consistent with the input-output exam-
ples, then all models that encode programs sym-
metric to the one encoded by « can be blocked.
A simple way to find these symmetries is through
a Directed Acyclic Graph (DAG) of dependencies,
where a vertex is defined for each program line, and
edges correspond to the line dependencies in the
program. After building the graph, one can enu-
merate all possible topological orders of vertexes in
the dependency graph. Next, each program asso-
ciated with a topological order is blocked in the
SMT formula. Our experiments show that sym-
metry breaking does not improve the performance
of line-based enumeration. The interested reader is
referred to the literature [4, 21] for more details.

5. Experimental Results

SQUARES is implemented in Python and uses the
Z3 SMT solver [5] with the theory of Linear In-
teger Arithmetic to check the satisfiability of for-
mulas generated by our enumerator. We devel-
oped SQUARES on top of the Trinity [I9] synthesis
framework.

All of the experiments presented in this section
were conducted on an Intel(R) Xeon(R) computer
with E5-2630 v2 2.60GHz CPUs, using a memory
limit of 64GB and a time limit of 3,600 seconds.

5.1. Line-based vs Tree-based Encodings
Benchmark. We started with an initial set of 23
SQL instances (corresponding to Sections 5.1.1 and
5.1.2 of the database textbook [24]), these instances
were previously used by well-known SQL synthesiz-
ers [7, 33l B7]. Then we created variants of these
instances resulting in a total of 55 instances. Since
we want to study the performance of each encoding
with respect to the size of the synthesized query,
for each of these instances, we generate six different
SMT formulas to search for programs that use ex-
actly n production rules from our DSL, for a total
of 330 instances (55 x 6, 1 <=n <= 6).

Performance. Table [I] shows the number of in-
stances solved by each model for a given number
of lines in our DSL. The performance of both en-
codings is similar for programs with three or fewer
lines of code. However, when the program size in-
creases, the difference between these approaches be-
comes clear. The last column of Table[l] shows the
percentage of solved instances by each approach for
instances using more than three lines of code. The
tree-based model only solves around 33% of the in-
stances while line-based solves around 82%.
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Figure 10: Tree-based vs Line-based Enumerators.

In terms of time spent in each instance, Fig. [I0]
shows a cactus plot. This plot shows the synthesis
time (y-axis) against the number of instances solved
(z-axis). Fig. [10| supports the results shown in Ta-
ble [1} Additionally, this plot show that tree-based
enumeration is, in general, significantly slower than
line-based enumeration. These differences in time
and number of instances solved, in particular for the
instances with more than 3 lines, can be justified by
the exponential number of variables and constraints
required by tree-based enumeration.

5.2. SQL Generation
In the interest of evaluating SQUARES’ SQL, we
compared the performance of SQUARES against
Scythe [33], a state-of-the-art SQL synthesizer pre-
sented in Section 3.3.11

5.2.1. Textbook Benchmark

Benchmark. We used the first 28 SQL queries of
the database textbook (corresponding to Sections
5.1.1 and 5.1.2 and part of 5.1.3 of the database
textbook [24]).

Performance and Discussion. Fig. shows
a cactus plot. Both systems had a similar perfor-
mance being able to solve 19 instances. However,
SQUARES is slightly faster than Scythe. This hap-
pens in 5 of the instances solved (almost 26%).
Regarding the SQL generation, both systems pro-
duce verbose SQL queries. We observed that nor-
mally Scythe produces queries with more inner SFE-
LECTs than SQUARES. Although both systems
produce queries with more inner SELECT's than a
human would write. However, some SQL dialects
accept at most two tables in a JOIN. Therefore,
in these cases the number of SELECTs would be
higher. SQUARES provides a cleaner presenta-
tion of the SQL comparing to Scythe thanks to sql-



Table 1: Number of solved instances by each approach.

Linesof Code | 1 | 2 | 3 | 4 | 5 | 6 | Total | % Solved | % Solved for LOC >= 4
# Instances | 55|55 |55|55|55(55| 330
Tree-based |55|55|54 34|18 | 2 | 218 66.06% 32.73%
Line-based 55 |55 | 5449|4839 | 300 90.91% 82.42%
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Figure 11: Performance of SQUARES and Scythe
on 28 instances from a database textbook [24].

parse ﬂ a python library to parse SQL. With this
library, we make the query more readable.

5.2.2. OutSystems Benchmark

Benchmark. In collaboration with Outsystems’
engineers and using SQL Server Management Stu-
dio ﬂ OutSystems’ main database D, was tracked
in order to collect all the queries that ran on D for
seven hours in five different days. The six most used
tables from the database where chosen. Hence, the
examples with other tables were excluded. After
we collected the queries that ran on D on those five
days, we removed the copies and chose only the ex-
amples that use the six tables. We achieved a set
of 20 queries.

Performance and Discussion. We observed
that Scythe only solves two instances out of twenty
(10 percent). On the other hand, SQUARES solved
all twenty instances. The poor performance of
Scythe can be explained by its problems with mem-
ory usage. We believe that Scythe encodes the ta-
bles’ data into constraints. Each input table, used
in the OutSystems’ examples, has two thousand five
hundred entries. Hence, this may be the reason that
Scythe returns, in 90 percent of the instances, an
OutOfMemoryError.

Shttps://pypi.org/project /sqlparse
“https://docs.microsoft.com/en-us/sql /ssms /sql-server-
management-studio-ssms

10

Regarding the generated SQL, it is difficult to
compare since Scythe only solves two instances. In
these two instances, both systems produce similar
queries.

6. Conclusions and Future Work

In this work, we propose SQUARES, an
enumeration-based program synthesizer whose
goal is to solve the problem of SQL Synthe-
sis by Example, also known as, Query Reverse
Engineering (QRE).

Until now, enumeration-based program synthe-
sizers [, 8, [19] have been using a tree-based encod-
ing (see Section to represent the search space
of possible programs. To the best of our knowledge,
SQUARES is the first enumeration-based program
synthesizer that uses a new representation of pro-
grams, where each program is represented as a se-
quence of lines [21].

Experimental results on the synthesis of SQL
queries, show that the proposed line-based encod-
ing allows a faster enumeration of programs when
compared to the usual tree-based encoding.

We compared SQUARES against Scythe [33], a
state-of-the-art QRE framework, in order to eval-
uate SQUARES in terms of SQL generation. We
used instances from a database textbook [24] and
instances from OutSystems’ database. Concerning
textbook instances, both systems show similar per-
formances and produce similar queries. Regarding
the OutSystems’ instances, SQUARES shows great
performance solving all of them. However, Scythe
shows a weak performance on these instances which
can be justified by its memory limitations.

As future work, it would be interesting to pursue
several topics regarding our line-based encoding and
our Domain-Specific Language (DSL).

With respect to our encoding, firstly, other sym-
metry breaking techniques should be tested, such
as breaking symmetries through a lexicographic or-
der. This type of symmetry breaking is expected to
improve the performance of the proposed line-based
encoding. Moreover, in order to evaluate our encod-
ing in terms of scalability, it would be interesting to
evaluate its performance generating programs with
more than six lines of code.

In regard to our DSL, it should be extended in
order to allow SQUARES to generate queries with
a larger diversity of SQL operators.


https://pypi.org/project/sqlparse
https://docs.microsoft.com/en-us/sql/ssms/sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/sql-server-management-studio-ssms
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