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“Instead of just considering programs composed of procedures which can recursively call

themselves, why not get really sophisticated, and invent programs which can modify them-

selves – programs which can act on programs, extending them, improving them, generalizing

them, fixing them, and so on? This kind of ’tangled recursion’ probably lies at the

heart of intelligence”

– Douglas R. Hofstadter. Gödel, Escher, Bach: an Eternal Golden Braid [1]. 1979.

2+2=4
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Resumo

A crescente procura por programação deu origem a todos os tipos de cursos focados em exer-

cícios de programação introdutórios (IPAS). Como consequência do elevado número de alunos in-

scritos, o desafio principal nestes cursos é fornecer feedback útil e personalizado aos estudantes.

Esta tese apresenta o MENTOR, uma ferramenta de reparação automática de programas (APR) orien-

tada para fornecer feedback automatizado para exercícios introdutórios de programação. O MENTOR

aborda este desafio gerando possíveis reparações semânticas para programas dos alunos, permitindo

reparações semânticas validadas através da execução de um conjunto de testes e indicando os seg-

mentos defeituosos aos estudantes.

Ao contrário dos sistemas de reparação simbólica como o CLARA e o VERIFIX, que exigem im-

plementações corretas com grafos de fluxo de controlo idênticos (CFGs), a abordagem do MENTOR

baseada em Modelos de Linguagem de Grande Escala (LLM) permite reparações mais flexíveis, sem

necessidade de alinhamento estrutural rigoroso. O MENTOR agrupa submissões corretas indepen-

dentemente dos CFGs e emprega um módulo de alinhamento de variáveis baseado em Redes Neurais

em Grafo (GNNS) para maior precisão. O módulo de localização de falhas do MENTOR, o CFAULTS,

utiliza técnicas MaxSAT para identificar segmentos defeituosos com precisão. O módulo reparador do

MENTOR integra Métodos Formais e LLMS através de um ciclo de Síntese Indutiva Guiada por Con-

trariedade (CEGIS), refinando iterativamente as reparações. Este trabalho propõe também um sistema

de avaliação automática, GITSEED, que fornece feedback personalizado aos alunos sobre as submis-

sões de código e integra com sucesso o CFAULTS para uma deteção eficaz de falhas no código dos

estudantes. Resultados experimentais no C-PACK-IPAS demonstram que o MENTOR melhora signi-

ficativamente as taxas de sucesso na reparação, alcançando 64,4% em reparações, comparado com

apenas 6,3% para o VERIFIX e 34,6% para o CLARA.

Palavras-chave: Reparação Automática de Programas, Agrupamento de Programas, Análise

de Programas, Localização de Falhas Baseada em Fórmulas, Reparação de Programas com Modelos

de Linguagem de Grande Escala, Educação Assistida por Computador.
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Abstract

The increasing demand for programming education has given rise to all kinds of online evalua-

tions such as Massive Open Online Courses (MOOCs) focused on introductory programming assign-

ments (IPAS). As a consequence of a large number of enrolled students, one of the main challenges

in these courses is to provide valuable and personalized feedback to students. This thesis presents

MENTOR, a semantic automated program repair (APR) framework designed to provide Automated

Feedback for Introductory Programming Exercises. MENTOR addresses this challenge by generat-

ing possible repairs for faulty student programs, enabling semantic repairs validated through execution

on a test suite and by highlighting these faulty statements to the students. Hence, in the context of

this work, we provide scientific contributions in several areas, such as program clustering and analysis,

automated fault localization and program repair. MENTOR advances the state of the art in the referred

areas and provides an innovative practical framework to be deployed in educational environments.

Unlike symbolic repair tools like CLARA and VERIFIX, which require correct implementations with

identical control flow graphs (CFGs), MENTOR’s Large Language Model (LLM)-based approach en-

ables flexible repairs without strict structural alignment. MENTOR clusters successful submissions

regardless of CFGs and employs a Graph Neural Network (GNN)-based variable alignment module for

enhanced accuracy. MENTOR’s fault localization module, CFAULTS, leverages MaxSAT techniques to

pinpoint buggy code segments precisely. MENTOR’s program fixer integrates Formal Methods (FM) and

LLMS through a Counterexample Guided Inductive Synthesis (CEGIS) loop, iteratively refining repairs.

Furthermore, this work also proposes a language-agnostic automated assessment tool, GITSEED, that

enhances student learning by providing personalized feedback on code submissions and successfully

integrates CFAULTS for effective fault detection on student code. Experimental results on C-PACK-IPAS

demonstrate that MENTOR significantly improves repair success rates, achieving 64.4%, compared to

just 6.3% for VERIFIX and 34.6% for CLARA.

Keywords: Automated Program Repair, Program Clustering, Program Analysis, Formula-based

Fault Localization, LLM-Driven Program Repair, Computer-Aided Education.
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1
Introduction

“Computers are good at following instructions, but not at reading your mind.”

– Donald E. Knuth.
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Nowadays, thousands of students enroll every year in programming-oriented Massive Open Online

Courses (MOOCs) [2]. Additionally, due to the COVID-19 pandemic, even small programming courses

are utilizing online automated assessment tools. Providing feedback to novice students on introductory

programming assignments (IPAs) in these courses requires substantial effort and time from the faculty.

Consequently, there is an increasing need for systems that can offer automated, comprehensive, and

personalized feedback on incorrect programming assignments. Thus, automated program repair (APR)

has become crucial for delivering automatic, personalized feedback to each novice programmer [3].

Typically, a programming assignment in Computer Science (CS) courses follows a pattern: the lec-

turer defines a computational problem; students program a solution; and each solution is submitted and

checked for correctness using predefined tests. If a student’s solution fails a given test, it is deemed

incorrect without providing helpful feedback. When students encounter issues with their code, they often

ask the lecturer for feedback on the unexpected behavior. If their program does not pass at least one

predefined test, it indicates that their implementation is semantically incorrect. Unfortunately, person-

alized feedback from lecturers is often unfeasible due to the growing number of student enrollments.

Therefore, semantic APR frameworks [2, 4–12] are ideal for offering hints on how students can repair

their incorrect programming assignments. Another significant challenge for test-based evaluation in pro-

gramming education is differentiating between a nearly semantically correct program with minor syntax

errors (which does not compile) and a semantically incorrect program. In many cases, simply pointing

out the location of syntactic errors (e.g., the line number) may be insufficient for students to understand

what is wrong with their programs. Consequently, syntactic repair frameworks typically suggest concrete

repairs to the code [3, 13–15].

Several APR systems aim to assist students and lecturers by providing automated personalized

feedback in IPAS. APR tools provide various types of feedback, such as highlighting buggy statements

in students’ programs [16], generating a corrected version of an incorrect program [9], or explaining code

errors in natural language [17]. These systems benefit both students and lecturers: for lecturers, they

simplify assignment evaluation and enable programming courses to scale to larger student numbers by

reducing the demand for personalized feedback. For students, APR technology enhances self-tutoring

by providing prompt, personalized feedback on syntactic and semantic errors.

Compiler error messages do not always provide a precise location for syntax errors [15]. Addition-

ally, these feedback messages can be too complex for novice programmers to comprehend. Over the

past few years, various techniques have been proposed to address syntactic errors in IPAS, with the

majority employing machine learning models. Several works [13, 14, 18, 19] approach the problem of

syntactic repair as a machine translation task, converting buggy code into correct syntactic code. RLAs-

sist [15] utilizes a reinforcement learning approach to fix compile errors in IPAS. DrRepair [3] employs

a graph neural network to reason about syntax errors and compiler feedback messages in order to cor-

rect incorrect student solutions. More recently, PYDEX [20] uses iterative querying with CODEX, a Large

Language Model (LLM) trained for coding tasks (LLMC), incorporating test-based few-shot selection and

structure-based program chunking to repair both syntax and semantic errors in Python assignments.

Recently, Large Language Models (LLMS) have also been employed for APR [20–23], but they often

2
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Figure 1.1: General framework for clustering-based Program Repair.

produce extensive rewrites instead of minimal adjustments. This tendency results in more invasive fixes,

making it more difficult for students to learn from their mistakes.

The field of automated program repair [24–26] has primarily focused on fixing semantic errors [2,

10, 11, 19, 27–30], typically using program specifications such as test suites or reference solutions.

However, most of these works assume that the students’ programs compile successfully. Semantic

automated repair techniques can be classified into two distinct methodologies: semantic-based and

search-based (also known as generate-and-validate). Semantic-based repair approaches utilize con-

straint solving and symbolic execution of programs [31] to synthesize repairs based on semantic in-

formation. In contrast, generate-and-validate techniques [32, 33] apply a set of predefined mutation

operators to modify the input program, generating multiple candidate solutions, which are then validated

for correctness against a test suite.

Recent research has introduced semantic-based program repair frameworks [2, 10, 11, 34] for IPAS

that leverage a large number of previously enrolled students in a programming course to obtain diverse

correct implementations for each programming assignment. Having a similar correct implementation

enables the computation of a smaller set of repairs to fix an incorrect program, rather than relying

on the full set of repairs needed to make the submission semantically equivalent to a fixed reference

implementation. However, analyzing all previous correct submissions for an IPA is often infeasible, as

this set typically consists of thousands of programs. To tackle this problem, different program clustering

approaches have been proposed to use in program repair tools which enable focusing only on the

representatives of the clusters. Figure 1.1 shows the overall architecture of these clustering-based

program repair tools. Given a set of N correct submissions and a test suite, these tools compute K

clusters of programs (N >> K) and use only the set of K clusters’ representatives in the repair process.

Given an incorrect student submission, these frameworks use clustering methods to find the most similar

correct submission from the set of K clusters’ representatives to provide a minimal set of repairs to

the student. CLARA [2] is a clustering-based program repair tool that clusters the correct programs

based on their dynamic equivalence [35] and control flow, i.e., the order in which program statements,

instructions, and function calls are executed. SARFGEN [10] computes program representations based

3



Table 1.1: Test-suite with three tests (t0, t1, and t2). Given as input three numbers (num1, num2, and
num3), each test should return the value in its respective output column.

Input Outputnum1 num2 num3
t0 1 2 3 3
t1 -1 -2 -3 -1
t2 1 2 1 2

on each program’s abstract syntax tree (AST) and clusters the programs based on their representations.

SEMCLUSTER [34] utilizes both the control flow and the data flow of each program, where the data flow

tracks the number of occurrences of consecutive values that a variable takes during its lifetime.

The problem of program equivalence, i.e., deciding if two programs are equivalent, is undecidable [36,

37]. On that account, finding an adequate representation for programs that performs well on program

clustering is a challenging problem. The above-mentioned program representations used in the field of

APR may be fragile, as we are going to show in Section 1.2.

Thus, this work presents MENTOR, a semantic program repair tool capable of providing Automated

Feedback for Introductory Programming Exercises. MENTOR takes advantages of previous students’

submissions from past years to help repairing incorrect submissions. MENTOR, presented in Sec-

tion 1.3, tries to overcome the current state-of-the-art program repair tools’ drawbacks listed in Chapter 3.

MENTOR has four main objectives: (1) to advance the current state-of-the-art in program clustering and

program repair; (2) to improve the state-of-the-art in MaxSAT-based fault localization; (3) to enable the

repair of a buggy program using a correct implementation whose control-flow graph (CFG) does not need

to match the faulty program’s CFG; and (4) to provide personalized and sound feedback to students.

1.1 Motivation

Imagine you are a lecturer in an introductory programming course with hundreds of students. For

the first programming assignment, you ask your students to write a small program in the C programming

language that finds and returns the maximum of three given numbers. A possible solution for this

exercise is to initially assign the first number as the maximum and then check if either of the following

two numbers is greater. If so, the maximum number is updated. Finally, the function should return the

maximum number. Listing 1.1 presents a possible C implementation for this programming assignment,

function int max_three(int num1, int num2, int num3).

This is your students’ first programming assignment, so many of them will need feedback on pro-

gramming in C, as they may not be familiar with its syntax. Another concern is how to explain to each

student the semantic errors in their code, specifically, what the problem is and why their program does

not exhibit the expected behavior. For example, consider the following student submission, Listing 1.2,

for the same exercise described in Listing 1.1:
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Listing 1.1: Function int max_three(int num1,
int num2, int num3) finds and returns the
maximum number among num1, num2 and num3.

1 int max_three(int num1, int num2, int num3){

2 int max = num1;

3 if(num2 > max){

4 max = num2;

5 }

6 if(num3 > max){

7 max = num3;

8 }

9 return max;

10 }

Listing 1.2: An erroneous implementation of
the max_three function with syntactic and
semantic errors.

1 int max_three(int n1, int n2, int n3){

2 int max = 0;

3 if(n1 > max){

4 max = n1;

5 }

6 if (n2 > max){

7 max = n2;

8 {

9 if (n3 > max){

10 max = n3;

11 }

12 return max /* Missing ; */

13 }

This student’s submission contains both syntactic and semantic errors. Syntactic errors are high-

lighted in red, while semantic errors are highlighted in orange. Regarding syntax, the student has mis-

placed a brace { on line 8 and forgotten a semicolon after the return statement on line 12. Regarding

the program’s semantics, consider the test-suite presented in Table 1.1. After correcting the syntatic

errors, the program provides the expected output for test t0 and t2, but it fails to pass test t1 because the

max variable is initialized as zero on line 3. Consequently, if all three numbers provided in the input are

negative, this function will return zero.

With hundreds of students enrolled in your class, providing this kind of personalized syntactic and

semantic feedback to each student becomes impractical. Hence, there has been a growing interest

in automated program repair techniques in programming courses over the last decade, particularly

due to the increasing number of students in programming-oriented Massive Open Online Courses

(MOOCs) [15]. Therefore, students can benefit from having access to a system that can guide them

in improving their IPAS.

1.2 Problem Description

In an introductory programming course, novice students typically develop a wide variety of solutions

for the same introductory programming assignment (IPA). These differences can be syntactic (e.g.,

variables’ names and structures used) or semantic (e.g., different data-flow). However, two significantly

different programs, syntactically and semantically, can still be correct implementations for the same IPA.

Example 1. Consider the following two programs written in C. Both programs compute the sum of all

the natural numbers from 1 to a given number n i.e.
∑n

i=1 i.
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Listing 1.3: Program that uses a while-loop to sum
all the natural numbers from 1 to n.

1 int main(){

2 int n;

3 int sum=0, i;

4 scanf("%d", &n);

5 i = 1;

6

7 while(i <= n) {

8 sum = sum+i;

9 i++;

10 }

11

12 printf("%d\n",sum);

13

14 return 0;

15 }

Listing 1.4: Program that uses a for-loop and an
auxiliary function to sum all the natural numbers
from 1 to n.

1 int sum_for(int n){

2 int j, s=0;

3 for(j=1; j <= n; j++){

4 s = j + s;

5 }

6 return s;

7 }

8

9 int main(){

10 int n, s;

11 scanf("%d", &n);

12 s = sum_for(n);

13 printf("%d\n", s);

14 return 0;

15 }

Observe that the program on Listing 1.3 uses a while-loop that iterates over the natural numbers

from 1 to n. However, the program on the right, Listing 1.4, calls an auxiliary function (int sum_for(int

n)) that uses a for-loop to iterate the set of natural numbers from 1 to n. Hence, both programs are

semantically equivalent since they produce the same result. However, if we create a representation

of these programs using their syntax or abstract syntax trees (ASTS), the representations will differ

significantly. In terms of syntax, the variable names (e.g., i, j, s, sum) and structures (e.g., while, for)

are different. Additionally, the program on the right calls an auxiliary function, whereas the complete

code of the first program is contained within the main function.

Current state-of-the-art automated program repair (APR) frameworks, such as CLARA [2] and VE-

RIFIX [9], rely on strict repair techniques that require at least one correct implementation for the same

IPA with an identical program structure (control flow and loop sequence) as the incorrect submission.

If such implementation does not exist, these tools cannot repair the student’s submission returning an

error of mismatch structure. For example, consider the following program in Listing 1.5, which is another

implementation for the same IPA described in Example 1. This program is semantically incorrect since

the variable j is assigned to the value of 9 instead of 0:

Listing 1.5: Program that uses a for-loop to sum all the natural numbers from 1 to n.

1 int main(){

2 int n, j, s=0;

3 scanf("%d", &n);

4 for(j=9; j < n; j++){

5 s = j + s;

6 }

7 printf("%d\n",s);

8 return 0;

9 }
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Current state-of-the-art APR tools cannot repair this program using the correct implementations pre-

sented in Example 1. These tools return a mismatch structure error because this program has a different

loop structure compared to Listing 1.3 (while-cycle vs. for-cycle). Additionally, Listing 1.4 calls an auxil-

iary function (int sum_for(int n)) while this program does not.

Furthermore, Large Language Models (LLMS) have been used for APR [20–23, 38–41] but often

make extensive rewrites instead of minimal adjustments. This tends to lead to more invasive fixes,

making it harder for students to learn from their mistakes.

Thus, MENTOR aims to address the limitations of current state-of-the-art APR frameworks for IPAS

by enabling the repair of a student’s incorrect submission without requiring a correct implementation with

the same program structure, while also minimizing changes to the student’s code.

1.3 MENTOR

This work presents MENTOR, a clustering-based semantic program repair tool capable of providing

Automated Feedback for Introductory Programming Exercises. MENTOR takes advantages of previous

students’ submissions from past years to aid in repairing incorrect submissions.

As shown in Figure 1.2, MENTOR receives as input an incorrect submission for a given introductory

programming assignment (IPA), a test suite, and a set of N correct submissions for the same IPA. MEN-

TOR is divided into five main modules, as depicted in Figure 1.2: (1) program clustering, (2) variable

aligner, (3) fault localization, (4) program fixer, and (5) decider.

MENTOR starts by clustering, using INVAASTCLUSTER [42], all correct submissions using these

program’s sets of invariants and abstract syntax trees (ASTS). Next, MENTOR employs Graph Neural

Networks (GNNS) to map the set of variables between each cluster’s representative and the incorrect

submission based on the ASTS of both programs. Mapping variables between two programs is crucial

for a wide range of tasks, such as program equivalence, program analysis, and program repair.

For fault localization, MENTOR utilizes CFAULTS [16], a novel formula-based fault localization tech-

nique for C programs capable of addressing multiple faults. CFAULTS leverages Model-Based Diagnosis

(MBD) with multiple observations, consolidating all failing test cases into a unified MaxSAT formula to

ensure consistency in the fault localization process.

The program fixer module integrates all the features computed so far: (1) cluster representatives, (2)

variable mappings, and (3) localized faulty statements. These features are incorporated into prompts

for various Large Language Models (LLMS) to guide our LLM-driven counterexample guided program

repair processes. Finally, in the decider module, MENTOR checks if the candidate program proposed

by the program fixer is correct by evaluating it against the provided test suite. If the candidate program

remains incorrect, the program fixer generates a new candidate. Otherwise, MENTOR returns person-

alized feedback to students, either by highlighting the buggy statements in their code or by providing the

repaired program.

Experimental results on C-PACK-IPAS, our benchmark of IPAS, demonstrate that MENTOR’s hybrid

repair method, integrating FM-based fault localization with Large Language Models (LLMS), significantly
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Figure 1.2: Overview of MENTOR.

enhances repair success rates while yielding smaller, more precise fixes. This innovative approach

outperforms other existing repair strategies and state-of-the-art symbolic tools. For instance, VERIFIX

repairs only 6.3% of the benchmarks, and CLARA achieves a repair rate of 34.6%. In contrast, depending

on the prompt configuration and the specific LLM utilized, MENTOR achieves impressive repair rates

ranging from 37.3% to 64.4% on C-PACK-IPAS.

Furthermore, this work also presents GITSEED, a language-agnostic automated assessment tool

integrated with GITLAB, designed to enhance Programming Education and Software Engineering (SE).

This tool not only facilitates students’ learning of git fundamentals but also provides personalized feed-

back on their code submissions.

A distinctive aspect of MENTOR is its pedagogical approach. Rather than providing direct fixes,

the tool highlights problematic areas in the student’s code, encouraging independent problem-solving.

MENTOR’s fault localization module, CFAULTS, has been successfully integrated into GITSEED to ac-

curately identify faults in students’ programs. This teaching strategy, designed to better prepare students

for future challenges, has proven effective since approximately 70% of Computer Science students at

Instituto Superior Técnico found MENTOR’s feedback beneficial to their learning. Furthermore, our

evaluation shows that both GITSEED and MENTOR significantly enhance student engagement and

learning outcomes.

Even though MENTOR employs this pedagogical approach of highlighting issues rather than provid-

ing direct fixes, it always repairs the given program. This allows for the possibility of offering alternative

forms of feedback. For instance, the repaired program could be converted into a program sketch that

outlines the expected solution structure. This would give students insight into the necessary program

structure without revealing the precise fixes, encouraging independent problem-solving while still guiding

them toward the correct solution.

As illustrated in Figure 1.3, MENTOR aims to support both students and lecturers by offering au-

tomated personalized feedback in IPAS. MENTOR provides benefits for both groups: for lecturers, it
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Figure 1.3: Benefits of using MENTOR.

simplifies the evaluation process and allows programming courses to scale to larger enrollments, as the

need for direct personalized feedback from the lecturer is significantly reduced. For students, MENTOR

improves their self-learning experience by providing targeted feedback on syntactic and semantic errors

in a shorter time frame.

To summarize, this work makes the following contributions:

• C-PACK-IPAS: A benchmark consisting of C programs submitted for 25 different IPAS over three

academic years. C-PACK-IPAS includes semantically correct, semantically incorrect, and syntac-

tically incorrect programs, as well as a comprehensive test suite for each IPA (see Chapter 4);

• INVAASTCLUSTER: A novel and efficient clustering approach for submissions in introductory pro-

gramming assignments (IPAS) using invariant sets and AAST representations (see Chapter 5);

• MULTIPAS: A program transformation tool capable of augmenting imperative program benchmarks

through six different syntactic mutations and three semantic transformations (see Chapter 6);

• Graph-based Program Representation: A new program representation that abstracts variable

names, using a representative variable node for each variable, connected to all occurrences in the

program. This allows for leveraging Graph Neural Networks (GNNS) to map variables between

programs, disregarding variable identifiers (see Chapter 7);

• CFAULTS: A MaxSAT-based fault localization tool for C programs, which considers multiple failing

test cases and formulates fault localization as a unified optimization problem (see Chapter 8);

• GITSEED: An open-source, language-agnostic automated assessment tool for Software Engi-

neering (SE) and Programming Education, integrated with GITLAB (see Chapter 9);

• LLM-Driven Counterexample Guided Inductive Synthesis (CEGIS): A novel approach to Au-

tomated Program Repair that employs MaxSAT-based fault localization to guide and refine Large

Language Models’ (LLMS) patches to buggy programs by providing bug-free program sketches (see

Chapter 10).
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1.4 Organization

This document is organized as follows. Chapter 2 presents the basic definitions and notation used in

the following chapters. Afterwards, Chapter 3 provides some background on Program Repair.

Chapter 4 presents C-PACK-IPAS which is the benchmark of student program submissions for 25

distinct IPAS, used to evaluate this work. Next, Chapter 5 describes INVAASTCLUSTER, which is our

program clustering tool. Afterwards, Chapter 6 presents MULTIPAS, our program transformation tool that

can augment IPAS benchmarks by applying syntactic and semantic mutations to programs, introducing

faults in the IPAS to enhance C-PACK-IPAS. In Chapter 7, we use graph neural networks (GNNs) to

map the set of variables between two programs based on both programs’ abstract syntax trees (ASTS).

Furthermore, Chapter 8 presents CFAULTS which is a novel formula-based fault localization (FBFL)

approach for C programs with multiple faults. Next, GITSEED, our language-agnostic automated as-

sessment tool (AAT) designed for Programming Education and Software Engineering (SE) and backed

by GITLAB is presented in Chapter 9.

Chapter 10 proposes a novel approach that combines the strengths of MaxSAT-based fault local-

ization, Large Language Models (LLMS), along with all the work described in the previous chapters, to

enhance APR for IPAS. Finally, Chapter 11 presents the main conclusions.
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2
Preliminaries

“A good notation has a subtlety and suggestiveness which at times make it almost seem like

a live teacher.”

– Bertrand Russell.
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This chapter provides some definitions that will be used throughout this manuscript. Some of the

following definitions were adapted from other works [43–48]. First, Section 2.1 presents some basic

definitions of propositional logic. Afterwards, Section 2.2 provides concepts on the field of program-

ming languages, and Section 2.3 defines control and data flow graphs used to represent programs.

Finally, Section 2.4 presents some well-known problems in Computer Science, such as Program Syn-

thesis and Repair.

2.1 Logic

Definition 1 (Propositional Literal). A propositional literal is a Boolean variable x (positive literal) or

its negation ¬x (negative literal).

Definition 2 (Clause). The disjunction of literals (e.g., x ∨ y) is called a clause.

Definition 3 (Formula). A propositional formula φ in the conjunctive normal form (CNF) is a conjunction

of clauses (e.g., φ = (x ∨ y) ∧ (x ∨ z)).

Definition 4 (Interpretation). Let c be a clause, L be the set of c’s literals and m be an interpretation,

such that, ∀l ∈ L, m : l → {0, 1}. The clause c is satisfied by m if and only if at least one literal

in L is satisfied by m. A formula φ is satisfied by an interpretation m if and only if all of φ’s clauses

are satisfied by m.

Definition 5 (Boolean Satisfiability Problem (SAT)). SAT is the decision problem for propositional

logic, i.e., to decide if a given propositional formula φ has a satisfying interpretation or prove that such

an interpretation does not exist [44].

SAT was the first problem proven to be NP-Complete in 1971 by Cook [49]. There are innumerous

problems that can be modeled as a propositional formula. The satisfiability of such formulas is checked

by logical engines called solvers.

Definition 6 (Solver). A Solver is a logic engine capable of deciding if a given propositional formula, φ,

is satisfiable. In this case, the solver produces an interpretation (attribution) of φ such that φ evaluates

true. Otherwise, the solver returns that φ is unsatisfiable [50].

Example 2. Let φ1 = (x1 ∨ ¬x2) ∧ (x1 ∨ x2) be a propositional logic formula and {x1, x2} be the set of

φ1’s variables. A SAT solver would produce one of two possible interpretations of φ1: {(x1, 1), (x2, 0)} or

{(x1, 1), (x2, 1)}.

Consider another propositional logic formula φ2 = (x1 ∨ ¬x2) ∧ ¬x1 ∧ x2. There is no possible

interpretation that makes φ2 satisfiable. Hence, a SAT solver would return "unsatisfiable" for this formula.

Definition 7 (Maximum Satisfiability (MaxSAT).). The Maximum Satisfiability (MaxSAT) problem is an

optimization version of SAT, i.e., the goal is to find an assignment that maximizes the number of satisfied

clauses in a CNF formula. In partial MaxSAT, clauses in φ are split in hard φh and soft φs. Given a formula

φ = (φh, φs), the goal is to find an assignment that satisfies all hard clauses in φh while minimizing the
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Hard: h1 : (v1 ∨ v2) h2 : (¬v2 ∨ v3) h3 : (¬v1 ∨ ¬v3)
Soft: s1 : (¬v1) s2 : (¬v3)

Figure 2.1: Example of a MaxSAT formula

number of unsatisfied soft clauses in φs. The partial MaxSAT problem can be further generalized to

the weighted version, where each soft clause has an associated weight, and the optimization goal is to

minimize the sum of the weights of the unsatisfied soft clauses [51, 52]. Finally, we assume that φh is

satisfiable. Figure 2.1 presents an example of a partial MaxSAT formula of cost 1 since either v1 or v3

must be assigned to true.

Definition 8 (Minimal Correction Subset (MCS)). Let φ = (φh, φs) be a partial MaxSAT formula. A

Minimal Correction Subset (MCS) µ of φ is a subset µ ⊆ φs where φh ∪ (φs \ µ) is satisfiable and, for

all c ∈ µ, φh ∪ (φs \ µ) ∪ {c} is unsatisfiable [51]. A dual concept of MCSes are Minimal Unsatisfiable

Subsets (MUSes) [53, 54].

Definition 9 (Satisfiability Modulo Theories (SMT)). The Satisfiability Modulo Theories (SMT) prob-

lem is a generalization of the SAT problem. Given a decidable first-order theory T , a T -atom is a ground

atomic formula in T . A T -literal is either a T -atom t or its complement ¬t. A T -formula is similar to a

propositional formula, but a T -formula is composed of T -literals instead of propositional literals. Given

a T -formula φ, the SMT problem consists of deciding if there exists a complete assignment over the

variables of φ such that φ is satisfied. Depending on the theory T , the variables can be of type integer,

real, Boolean, among others [45].

Example 3. Let φ1 = (x1 ≥ 0) ∧ (x1 ≤ 4) ∧ (x2 ≤ 2) ∧ (x1 + x2 = 5) be an SMT formula where T is

the Linear Integer Aridefinitionetic (LIA) theory. Clearly, φ1 is satisfiable and a possible solution would

be x1 = 4, x2 = 1.

Let φ2 = (x1 ≥ 0) ∧ (x1 ≤ 3) ∧ (x2 ≤ 1) ∧ (x1 + x2 = 5) be an SMT formula also in the LIA theory.

In this case, φ2 is unsatisfiable since there is no assignment to the problem variables such that φ2 is

evaluated to true.

2.2 Languages and Programs

Definition 10 (Onto Relation). A function/relation f : A → B is onto if f(A) = B, i.e., every b ∈ B is

the image of some a ∈ A [55].

Definition 11 (One-to-one Relation). A function/relation f : A → B is one-to-one if a 6= a′ implies

f(a) 6= f(a′), i.e., distinct points in A have distinct images in B [55].

Definition 12 (Bijective Relation). A function/relation f : A → B is a bijection iff f is simultaneously

an onto relation and an one-to-one relation [55].

Clearly, if f : A → B is a bijective relation (see Definition 12) for two finite sets A and B then these

two sets have the same cardinality, i.e., |A| = |B|.
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Definition 13 (Isomorphism). An isomorphism is an information preserving transformation. The word

"isomorphism" applies when two complex structures (e.g., functions, graphs) can be mapped onto each

other. With this mapping, each part of one structure has a corresponding part in the other structure, i.e.,

the two parts play similar roles in their respective structures [1].

Considering Defintion 13, we can clearly see that a relation f : A→ B is an isomorphism if and only

if f is bijective relation [55].

Definition 14 (Context-free Grammar). A context-free grammar G is a 4-tuple (V, Σ, R, S), where V is

the set of non-terminals symbols, Σ is the set of terminal symbols, R is the set of rules and S is the start

symbol. A context-free grammar describes all the strings permitted in a particular formal language [46].

Definition 15 (Domain-Specific Language (DSL)). A Domain-specific Language (DSL) is a tuple

(G, Ops), where G is a context-free grammar (G = (V, Σ, R, S)) and Ops is the semantics of DSL opera-

tors. The context-free grammar G has the rules to generate all the programs in the DSL. The semantics

of DSL operators is necessary to analyze conflicts and make deductions [47].

Each symbol σ ∈ Σ corresponds to built-in DSL constructs (e.g., if, while, return), constants,

variables or inputs of the system. Each production rule p ∈ R has the form p = (A → σ(A1, . . . , Am)),

where σ ∈ Σ is a DSL construct and A1, . . . , Am ∈ Σ are symbols for the arguments of σ.

Definition 16 (Bag of Words (BoW)). A Bag of Words (BoW) representation [56] is a vector repre-

sentation where a tokenized sentence is represented as a bag of its words in a vector. The vector

representation contains information on the number of times each token in the language appears in the

sentence. Note that this model does not consider the language’s grammar and even word order. The

tokenization step divides a string into n-grams, which are sub-sequences of the original string of n items.

The following example presents a small illustration of a vector representation of a phrase using

a BoW model.

Example 4. Let B be a bag of words model computed using the following sentences: {′aa′, ′e i′,-
′a e i o u′, ′o i′}

Given the phrase p =′ a i a u′, the vector representation of p is, B(p) = [0.5, 0.0, 0.25, 0.0, 0.25].

The size of B(p) is 5 since 5 is the size of the vocabulary of B. For each entry s of B(p), B(p)[s]

corresponds to the percentage of p that is equal to s. For example, the symbol a appears twice in a

four-symbol phrase. Hence B(p)[a] = 0.5.

Definition 17 (Program). A program is considered sequential, comprising standard statements such as

assignments, conditionals, loops, and function calls, each adhering to their conventional semantics in C.

A program is deemed to contain a bug when an assertion violation occurs during its execution with input

I. Conversely, if no assertion violation occurs, the program is considered correct for input I. In cases

where a bug is detected for input I, it is possible to define an error trace, representing the sequence of

statements executed by program P on input I.
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Definition 18 (Trace Formula (TF)). A Trace Formula (TF) is a propositional formula that is SAT iff there

exists an execution of the program that terminates with a violation of an assert statement while satisfying

all assume statements. For further information on TFs, interested readers are referred to [57, 58].

Definition 19 (Basic Block (BB)). A basic block is a linear sequence of program instructions having

one entry point (the first instruction executed) and one exit point (the last instruction executed). It may, of

course, have many predecessors and many successors and may even be its own successor. Program

entry blocks might not have predecessors that are in the program; program terminating blocks never

have successors in the program [48].

Definition 20 (Program Invariant). Program invariants are conditions that must always be true at a

given point during a program’s execution.

Dynamically generated program invariants are likely invariants observed during several program ex-

ecutions for a given program. The dynamically generated set of program invariants provides information

about a program’s behavior, i.e., its semantics. Program invariants are usually used to assert some

assurances throughout a program (assertions).

Example 5. Let us examine the following C program that computes the sum of all the natural numbers

from 1 to a given number n i.e.
∑n

i=1 i.:

1 int main(){

2 int n, sum=0, i;

3 scanf("%d", &n);

4 i = 0;

5 while(i < n) {

6 i++;

7 sum = sum+i;

8 }

9 printf("%d\n",sum);

10

11 return 0;

12 }

There are three basic blocks (see Definition 19) in this program: BB1 (lines 2 − 4), BB2 (lines 5 − 8)

and BB3 (lines 9 − 11). Consider that the variable n is always assigned to a natural number, n > 0.

If a dynamic invariant detector (e.g. Daikon [59]) is used in this program, the following set of program

invariants (see Definition 20) is observed at each iteration of the while-loop: n > 0; sum ≥ 0; 0 ≤ i ≤ n.

Definition 21 (Abstract Syntax Tree (AST)). An abstract syntax tree ( AST) is a syntax tree in which

each node represents an operation, and the children of the node represent the arguments of the oper-

ation for a given programming language described by a Context-free Grammar [46]. An AST depicts a

program’s grammatical structure [60]. Fig. 2.2a presents a small example of the AST representation for

the declaration int i.

Definition 22 (Anonymized Abstract Syntax Tree (AAST)). An anonymized abstract syntax tree

(AAST) is an AST in which nodes that have identifiers are anonymized, i.e., a node’s identifier (name of
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decl

i id int type

(a) AST representation.

decl

ID id int type

(b) AAST representation.

Figure 2.2: Small example of an AST and an AAST for the declaration, int i = 1. An integer variable
with identifier i.

a function or variable) is replaced by a unique token (ID). Fig. 2.2b shows the AAST representation for

the same declaration presented previously, int i.

Definition 23 (Program Sketch.). A program sketch is a partially incomplete program where all buggy

statements are replaced by placeholders, identified as “@ HOLES @”. These placeholders indicate pro-

gram parts that need to be synthesized to ensure the program complies with a given specification (e.g.,

a test suite).

Definition 24 (Formula-based Fault Localization (FBFL)). Given a faulty program and a test suite with

failing test cases, formula-based fault localization (FBFL) methods encode the localization problem into

an optimization problem to identify a minimal set of faulty statements (diagnoses) within a program. FBFL

tools leverage MaxSAT and the theory of Model-Based Diagnosis (MBD) [16, 54, 61–63]. Moreover,

these FBFL tools enumerate all diagnoses of a MaxSAT formula corresponding to bug locations.

2.3 Flow Representations

There are two types of dependencies in a program: (1) data dependencies and (2) control dependencies.

Definition 25 (Data dependence). A data dependence exists between two statements in a program

whenever a variable that appears in one statement is assigned to an incorrect value if the two statements

are reversed [64].

Let us look back at the program presented in Example 5. One can clear see that the 7th line of code

(sum = sum+i) depends on the execution of the 6th line (i++), since executing the 7th line before the 6th

would result in an incorrect value for the variable sum.

Definition 26 (Control dependence). A control dependence occurs between a statement and a control

predicate whose value dictates if the statement is executed or not [64].

In Example 5, both the 6th and 7th lines of code depend on the predicate on line 4 since its value

determines whether the program executes the body of the while-loop or jumps to the next instruc-

tion in line 9.

Definition 27 (Control flow path). A control flow path is defined by the order in which program state-

ments, instructions, and function calls are executed.
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1 int max_three(int num1, int num2, int num3){
2 int max = num1;
3 if(num2 > max)
4 {
5 max = num2;
6 }
7 if(num3 > max)
8 {
9 max = num3;

10 }
11 return max;
12 }

(a) Function max_three.

function entry

int max = num1;
if(num2 > max)

max = num2;

if (num3 > max)

T
F

max = num3;

return max;

T

F

function exit

(b) Control flow graph of function max_three.

Figure 2.3: Function int max_three(int num1, int num2, int num3) which finds and returns the
maximum number among num1, num2 and num3, presented earlier in Listing 1.1 and its control flow
graph (see Definition 29).

Definition 28 (Data flow path). A data flow path tracks the number of occurrences of consecutive

values a variable takes during its lifetime.

Definition 29 (Control flow Graph (CFG)). A control flow graph (CFG) is a directed graph in which the

nodes represent basic blocks, and the edges represent control flow paths [48].

Figure 2.3b shows the control flow graph of function int max_three(int num1, int num2, int

num3) presented in Figure 2.3a. The nodes represent the set of basic blocks (see Definition 19) of

the program. This graph represents every possible control flow path (see Defintion 27) of the function

max_three. The CFG depicts the control dependencies (see Definition 26) in a given program.

Given a program P , the set of all P ’s dependencies may be viewed as inducing a partial ordering on

the program’s statements that must be followed to preserve P ’s semantics [64], i.e., some permutations

between P ’s statements may result in a program with similar semantics or may break some dependence

of P which results in a program with different semantics.

Definition 30 (Program Dependence Graph (PDG)). A program dependence graph (PDG) is the graph

representation of a program in which the nodes represent statements and predicate expressions, and

the edges represent both the data dependencies and the control conditions on which the execution of

the operations depends [64].

An example of a PDG can be found in Figure 2.4. Figure 2.4b shows the PDG representation of the

program presented in Figure 2.4a. On this graph, each node corresponds to a program statement. The

17



1 int main(){
2 int n, sum=0, i;
3 scanf("%d", &n);
4 i = 0;
5 while(i < n) {
6 i++;
7 sum = sum+i;
8 }
9 printf("%d\n",sum);

10 return 0;
11 }

(a) Program that computes
∑n

i=1 i.

main()int n, sum=0, i;

scanf("%d", n);

i = 0;

while(i < n)

i++; sum = sum+i;

printf("%d",sum);

return 0;

(b) PDG of the program on the left.

Figure 2.4: Program that computes
∑n

i=1 i, and its program dependence graph (PDG).

blue dashed arrows depict the data dependencies (see Definition 25) between two program statements.

On the other hand, the black arrows represent the basic block that the program statement depends on.

2.4 Synthesis and Repair

Definition 31 (Synthesis Problem). Given (S, G, Ops), being S a program’s specification (e.g., input-

output examples), G a context-free grammar, and Ops the semantics for a particular DSL, the goal of

synthesis is to infer a program P such that (1) the program is produced by G, (2) the program is correct

concerning Ops and (3) P is consistent with S [65].

Program Synthesis has even been considered the Holy Grail of Computer Science [66].

A program synthesizer is, according to Manna and Waldinger [67], "a system that takes such a

relational description (e.g., input-output examples) and tries to produce a program that is guaranteed

to satisfy the relationship". Program synthesizers search the space of programs described by a given

domain-specific language (DSL).

Definition 32 (Counterexample Guided Inductive Synthesis (CEGIS)). CEGIS is an iterative algo-

rithm commonly used in Program Synthesis and Formal Methods to construct programs or solutions that

satisfy a given specification [68–70]. CEGIS consists of two steps: the synthesis step and the verifica-

tion step. Given the specification of the desired program, the inductive synthesis procedure generates

a candidate program. Next, the candidate program P is passed to the verification step, which checks

whether P satisfies all possible inputs’ specifications. Otherwise, the Checker produces a counterexam-

ple c from the satisfying assignment, which is then added to the set of inputs passed to the synthesizer,

and the loop repeats. The synthesis engine refines its hypothesis using this counterexample to avoid

similar mistakes in subsequent iterations. This iterative loop (comprising candidate generation, verifi-

cation, counterexample generation, and refinement) continues until a correct candidate is found that

satisfies all given specifications and constraints.
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Definition 33 (Programming By Example (PBE)). Given (E, G, Ops), being E = (Ein, Eout) a set of

input-output examples, G a grammar and Ops the semantics for a particular DSL, the goal of Program-

ming by Example is to infer a program P such that (1) the program is consistent with G, (2) the program

is consistent with Ops and (3) P(Ein) = Eout [65].

PBE is a special case of Program Synthesis, where the program specification is a set of input-output

examples [45, 71–76].

Definition 34 (Semantic Program Repair.). Given (T, G, O, P ), let T be a set of input-output examples

(test suite), G be a grammar, O be the semantics for a particular Domain-specific language, and P be

a syntactically well-formed program (i.e. sets of statements, instructions, expressions) consistent with

G and O but semantically erroneous for at least one of the input-output tests i.e., ∃(ti
in, ti

out) ∈ T :

P (ti
in) 6= ti

out.

The goal of Semantic Program Repair is to find a program Pf by semantically change a subset S1 of

P ’s statements (S1 ⊆ P ) for another set of statements S2 consistent with G and O, such that,

Pf = ((P \ S1) ∪ S2)

and

∀(ti
in, ti

out) ∈ T : Pf (ti
in) = ti

out.

Semantic program repair can be performed using a set of program statements from one (resp.

several) semantically correct program(s) in the case of implementation-based program repair (resp.

clustering-based program repair). Moreover, semantic program repair tools can also perform program

synthesis (see Definition 31 and 33) to synthesize the set of program statements S2 needed to fix the

erroneous program P .
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3
Background

“Computer science is no more about computers than astronomy is about telescopes.”

– Edsger Dijkstra.
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This chapter provides some background on the topic of automated program repair. Section 3.1

presents different types of program executions, while Section 3.2 focuses on fault localization tech-

niques. Next, Section 3.3 presents current state-of-the-art on automated program repair, followed by

Section 3.4 which covers related work on automated assessment tools. To conclude, Section 3.5 pro-

vides an overview of recent work on the field of providing feedback to students in introductory program-

ming courses.

3.1 Program Executions

This section provides the notions of several types of program executions. First, Section 3.1.1 presents

the traditional concept of concrete execution of a program. Section 3.1.2 introduces symbolic execution.

Lastly, Section 3.1.3 shows concolic execution.

The following function max_three, presented earlier in Listing 1.1, is reintroduced for the reader’s

convenience since this function will be used as a running example to explain the different types of

program executions.

Listing 3.1: max_three, a function that finds and returns the maximum number among three numbers.

1 int max_three(int num1, int num2, int num3)

2 {

3 int max = num1;

4 if(num2 > max){

5 max = num2;

6 }

7 if(num3 > max){

8 max = num3;

9 }

10 return max;

11 }

3.1.1 Concrete Execution

Each program has a sequence of instructions and conditions, i.e., its code. A concrete execution is

the sequence of instructions that is executed for a given set of input values assigned to the program’s

variables. Different inputs may result in a different sequence of instructions.

Consider the program presented in Listing 3.1. Depending on the values assigned to the variables

num1, num2 and num3, different sequences of this program’s instructions may be executed. For example,

consider the first input test from the test suite presented in Table 10.1: {num1=1, num2=2, num3=3}.

Running the program with these values, all lines of the function max_three are executed since num1 <

num2 < num3. However, if we consider the second test in Table 10.1, {num1=-1, num2=-2, num3=-3},

both if-conditions on lines 4 and 7 fail then lines 5 and 8 are not executed on this concrete execution.
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3.1.2 Symbolic Execution

Symbolic execution tools assign symbolic values for inputs instead of assigning the actual inputs as

a concrete execution of the program would. Symbolic execution [31, 77, 78] is a technique for program

analysis that explores all possible execution paths of a program. Instead of using concrete values for

inputs, symbolic execution tools assign symbolic values to input variables, allowing the exploration of

multiple execution paths simultaneously. Then the program is executed symbolically on these symbolic

inputs. A symbolic execution tool builds a first-order formula by collecting symbolic path constraints

and using a theorem prover to verify if a given branch is feasible. The first-order formula is built by

connecting: (1) the variables’ symbolic values with the expressions the program executes and (2) the

conditional branches’ constraints that represent the program’s several outcomes.

Each time a conditional branch is encountered, the symbolic execution tool forks the current sym-

bolic path into two. The first path corresponds to the conditional expression’s then-block, represented

by the conjunction of the current symbolic formula and the conditional expression. The second path

corresponds to the else-block, represented by the conjunction of the symbolic formula and the negation

of the conditional expression.

For example, consider again the function max_three presented in Listing 3.1. A symbolic execution

framework would find four different symbolic paths for this function as presented by the symbolic tree in

Figure 3.1. Each path is defined by its own symbolic formula as follows:

• P1←− (num1 < num2) ∧ (num2 < num3);

• P2←− (num1 < num2) ∧ ¬(num2 < num3);

• P3←− ¬(num1 < num2) ∧ (num2 < num3);

• P4←− ¬(num1 < num2) ∧ ¬(num2 < num3);

A few examples of symbolic execution engines are KLEE [79] for the C language, Symbolic Path-

Finder [80, 81] for the Java language and Cosette [82] for the JavaScript language. Symbolic execution

has various applications, from the automatic generation of high-coverage tests [79] to program verifica-

tion [83]. However, there are two significant issues with symbolic execution. First, it does not scale for

large programs and cannot solve all the constraints that may be generated.

3.1.3 Concolic Execution

Concolic execution (a portmanteau of concrete and symbolic) is a hybrid approach of a symbolic

execution using actual inputs as concrete execution techniques instead of using symbolic values like

symbolic execution approaches. The idea is to explore all execution paths of the program being analyzed

one by one. Firstly, the concolic execution engine randomly chooses input values for the input variables.

Afterward, executes the program concretely on those values and saves the path constraints taken by this

concrete execution. Then, the concolic engine builds a first-order formula with these path constraints,

negates this formula and asks a solver for another interpretation for the program’s variables. If such
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Figure 3.1: Symbolic execution tree for function max_three(int num1, int num2, int num3),
presented in Listing 3.1.

interpretation exists, then it necessarily forces the program to explore a new execution path different

from the ones taken so far, described by the first-order formula.

For example, consider the function max_three presented in Listing 3.1. Assume that a concolic en-

gine randomly assigns num1 = 7, num2 = 5 and num3 = 10. Then, as Figure 3.2a shows, the concrete

execution using these values takes program through the execution path P3. Afterward, the concolic

engine construct the following formula for this path:

P3 = ¬(num1 < num2) ∧ (num1 < num3) (3.1)

To explore another execution path, the concolic engine asks the solver a model for the negation of

this formula, i.e., ¬P3. Let num1 = 4, num2 = 5 and num3 = 10 be the second model returned by the

solver. Figure 3.2b shows that if we concretely execute function max_three using these input values,

a different execution path is explored which is P1. This interaction with the solver continues until every

execution path is explored. Thus, the different collection of input tests generated by a concolic execution

engine, one for each execution path, is a high-coverage set of tests [79].

There are two main reasons for the rise of concolic execution. Firstly, every time the symbolic ex-

ecution tool hits a conditional expression, it has to interact with a solver to decide if both branches

(then-block and else-block) are feasible paths. Secondly, symbolic execution calls for implementing a

symbolic interpreter for a programming language. A few examples of well-known concolic execution

engines are CREST [84, 85] (formerly known as CUTE [86]), jCUTE [87], DART [88] and SAGE [89].
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(a) If num1 = 7, num2 = 5 and num3 = 10. The execu-
tion path is P3 (highlighted in blue).
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(b) If num1 = 4, num2 = 5 and num3 = 10. Now the ex-
ecution path is P1 (highlighted in blue).

Figure 3.2: Concolic execution (two iterations) for function max_three(int num1, int num2, int
num3), presented in Listing 3.1.

Programmer Fault Localization Bug Report

Figure 3.3: Fault Localization (FL).

3.2 Fault Localization (FL)

Localizing system faults has always been one of the most time-consuming and expensive tasks in

software development. Given a buggy program, fault localization (FL) involves identifying locations in

the program that could cause a faulty behaviour (bug), as depicted in Figure 3.3. Fault localization (FL)

techniques typically fall into two main families: spectrum-based (SBFL) and formula-based (FBFL). The

following sections present each of these families. Additionally, program slicing [90–92] has also emerged

as a technique for localizing faults within programs.

3.2.1 Spectrum-Based Fault Localization (SBFL)

Spectrum-Based Fault Localization (SBFL) methods [93–98] estimate the likelihood of a statement

being faulty based on test coverage information from both passing and failing test executions. While

SBFL techniques are generally fast, they may lack precision, as not all identified statements are likely to

be the cause of failures [91, 99].
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Figure 3.4: Formula-Based Fault Localization (FBFL).

3.2.2 Formula-Based Fault Localization (FBFL)

Formula-Based Fault Localization (FBFL) approaches [62, 100–107] are considered exact. As shown

in Figure 3.4, FBFL methods encode the fault localization problem into several optimization problems

aimed at identifying the minimum number of faulty statements within a program. Typically, these methods

perform a MaxSAT call for each failing test, allowing them to individually identify a minimal set of faults

(diagnoses) for each failing test case rather than simultaneously addressing all failing test cases. Then,

FBFL methods apply their own aggregation techniques to all enumerated faults to determine the minimal

set of faults so they can report it back to the users. For instance, BUGASSIST [62] prioritizes faults based

on their occurrence frequency, while SNIPER [101] computes the Cartesian product of all faults and then

sorts the resulting sets of aggregated faults.

A more syntactic FBFL approach [91] is to use program slicing to enumerate all minimal sets of

repairs for a given faulty program. Another method for identifying the causes of faulty program behaviour

involves analyzing the variances between various versions of the software [92]. Refinement has a long-

standing tradition in verification; particularly for refining abstractions of reachable states [108–110]. In

that sense, our form of refinement is different because it enables us to more precisely pinpoint faults of

the user, at the sub-expression level.

Typically, FBFL approaches encode the localization problem as a Model-Based Diagnosis (MBD)

problem using a MaxSAT encoding.

Model-Based Diagnosis (MBD). The following definitions are commonly used in the MBD theory [16,

54, 61, 63]. A system description P is composed of a set of components C = {c1, . . . , cn}. Each

component in C can be declared healthy or unhealthy. For each component c ∈ C, h(c) = 0 if c is

unhealthy, otherwise, h(c) = 1. As in prior works [54, 111], P is described by a CNF formula, where Fc

denotes the encoding of component c:

P ,
∧

c∈C
(¬h(c) ∨ Fc) (3.2)
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Observations represent deviations from the expected system behaviour. An observation, denoted as

o, is a finite set of first-order sentences [54, 61], which is assumed to be encodable in CNF as a set of

unit clauses. In this work, the failing test cases represent the set of observations.

A system P is considered faulty if there exists an inconsistency with a given observation o when all

components are declared healthy. The problem of model-based diagnosis (MBD) aims to identify a set

of components which, if declared unhealthy, restore consistency. This problem is represented by the

3-tuple 〈P, C, o〉, and can be encoded as a CNF formula:

P ∧ o ∧
∧

c∈C
h(c) � ⊥ (3.3)

For a given MBD problem 〈P, C, o〉, a set of system components ∆ ⊆ C is a diagnosis iff:

P ∧ o ∧
∧

c∈C\∆
h(c) ∧

∧
c∈∆
¬h(c) 2 ⊥ (3.4)

A diagnosis ∆ is minimal iff no subset of ∆, ∆′ ( ∆, is a diagnosis, and ∆ is of minimal cardinality if

there is no other diagnosis ∆′′ ⊆ C with |∆′′| < |∆|.

A diagnosis is redundant if it is not subset-minimal [54].

To encode the Model-Based Diagnosis problem with one observation with partial MaxSAT, the set of

clauses that encode P (3.2) represents the set of hard clauses. The soft clauses consists of unit clauses

that aim to maximize the set of healthy components, i.e.,
∧

c∈C h(c) [63, 112]. This MaxSAT encoding of

MBD enables enumerating minimum cardinality diagnoses and subset minimal diagnoses, considering

a single observation. Furthermore, a minimal diagnosis is a minimal correction subset (MCS) of the

MaxSAT formula (see Definition 8). Given an inconsistent formula that encodes the MDB problem (3.3), a

minimal diagnosis ∆ satisfies (3.4), thereby making ∆ an MCS of the MaxSAT formula. BUGASSIST [62],

SNIPER [101], and other model-based diagnosis (MBD) tools for fault localization in circuits [54, 63, 112]

encode the localization problem with partial MaxSAT.

More recently, the MaxSAT encoding for MBD [54] has been generalized to multiple inconsistent

observations. Let O = {o1, . . . om} be a set of observations. Each observation is associated with a

replica Pi of the system P. The system remains unchanged given different observations, where the

components are replicated for each observation, but the healthy variables are shared. For a given

observation oi, a diagnosis is given by the following:

Pi ∧ oi ∧
∧

c∈C\∆
h(c) ∧

∧
c∈∆
¬h(c) 2 ⊥ (3.5)

The goal is to find a minimal diagnosis ∆ ⊆ C, such that ∆ is a minimal set of components when

deactivated the system becomes consistent with all observations O = {o1, . . . om}. Moreover, when

considering multiple observations, an aggregated diagnosis is a subset of components that includes one

possible diagnosis for each given observation.
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3.3 Automated Program Repair (APR)

A theme of research since the 80’s [113, 114], one of the main challenges in Automated Program

Repair for IPAS is to provide valuable and personalized feedback to students. Usually, this personalized

feedback is provided as a list of possible repairs to a student’s program. Automated program repair can

be of two different kinds: syntactic repair and semantic repair. Syntactic repairs provide students with

possible fixes to improve their programs that do not compile i.e., syntax errors. Semantic repairs are fixes

that improve a program’s behavior by checking the program’s performance on a set of tests provided by

the lecturer or by comparing the student’s program against a reference solution using program analysis.

The following sections present current state-of-the-art syntactic and semantic automated program

repair techniques and how these approaches can be used to provide feedback to students in introductory

programming exercises.

3.3.1 Syntactic Program Repair

Several syntactic errors arise because of the programmer’s inexperience or lack of attention to detail,

which causes compilation errors. These errors typically include missing declarations, missing delimiters

(e.g., braces), and type errors [3], which is usually the first issue in introductory programming courses.

The novice programmers struggle to comprehend the compiler errors messages [115]. In this section,

we will present some of the most recent work on syntactic program repair.

3.3.1.1 Sequence-to-Sequence Models

DEEPFIX [13] was developed by leveraging the structural similarities between natural languages and

programming languages. Both exhibit rich syntactic structures, and just as grammatical errors occur in

natural language, syntactic errors arise in programming languages. DEEPFIX approaches the problem of

syntactic program repair in the same way as machine translation, treating it as a sequence-to-sequence

learning problem where an erroneous program is transformed into a corrected one.

DEEPFIX employs a multi-layered, sequence-to-sequence neural network with attention mechanisms

to fix common syntactic errors in the C programming language. The model consists of an encoder

recurrent neural network (RNN) to process the input (an erroneous program) and a decoder RNN with

attention to generate the output (a syntactically correct program). As shown in Figure 3.5, DEEPFIX

operates as an end-to-end solution: given a program that fails to compile, it returns a version that

compiles successfully, without any external frameworks to assist in error detection and correction. The

only external tool used is a compiler, acting as an oracle to validate the final programs correctness and

ensure it compiles without errors.

Other works also use sequence-to-sequence models to repair syntax errors on programming assign-

ments [18, 19, 116]. TRACER [116] is similar to DEEPFIX but focuses only on single-line errors, while

DEEPFIX can fix multiple-line errors. SYNFIX [18] and SK_P [19] provide repairs for syntactic errors for

particular programming assignments. SK_P is capable of generating syntactic and semantic repairs for
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Figure 3.5: The iterative repair strategy of DEEPFIX [13].

a given program. The authors of SK_P try to learn task-specific patterns for a specific programming

assignment by training SK_P on correct student solutions for the same assignment. SYNFIX combines

a sequence-to-sequence model with a constraint-based synthesis step for syntactic and semantic pro-

gram repair. Given a set of correct students’ solutions for a particular programming assignment, SYNFIX,

like DEEPFIX, is trained to learn an output program, a syntactically-fixed program. Afterward, SYNFIX

uses a well-known constraint-based synthesis, Sketch [66], to find the minimal set of semantic repairs

needed to repair the program semantically. These frameworks, SK_P and SYNFIX are trained using

correct students’ submissions of the same problem. Therefore, these techniques cannot be used for a

new programming assignment without any correct submissions since there is no training data.

TEGCER [117] is an automated feedback tool for novice programmers. This tool uses supervised

learning to match compilation errors in new code submissions with pre-existing errors submitted by pre-

viously enrolled students. TEGCER only works for syntactic errors. TEGCER also performs variable re-

naming to each program. This tool renames the variables with their generic types using the LLVM [118],

a standard static analysis tool. Moreover, CLACER [119] is a neural network model designed to classify

compilation errors by proposing categories based on program tokens, aiming to improve localization

effectiveness and prediction performance, thereby enhancing the students’ learning process.

Large Language Models (LLMS). Large Language Models (LLMS) trained on code (LLMCS) have

demonstrated significant effectiveness in generating program fixes [21, 23, 38–41]. For instance, RING [21]

is a multilingual repair engine powered by an LLMC that uses fault localization information from error

messages and leverages the few-shot capabilities of LLMCS for code transformation. In the context of

Automated Program Repair (APR) for programming education, several works have explored the use of

LLMS for coding tasks [17, 20, 22]. PyDex [20], for example, employs iterative querying with CODEX, an

LLMC version of ChatGPT, using test-based few-shot selection and structure-based program chunking

to repair syntax and semantic errors in Python assignments. Similarly, CODEHELP [17] utilizes Ope-

nAI’s LLMS to provide textual feedback to students on their assignments. However, to the best of our

knowledge, no existing work has explored the use of LLMS guided by formula-based fault localization.

29



3.3.1.2 Abstract Syntax Tree Differences

Mesbah et al. [14] also tackled the problem of syntactic program repair with a Neural Machine Trans-

lation approach like DEEPFIX. Their technique, DEEPDELTA, focuses on learning Abstract Syntax Tree

(AST) changes instead of learning whole fixed programs. DEEPDELTA’s authors designed a new domain-

specific language called Delta that encodes changes to a program’s AST. DEEPDELTA receives as input

the compiler feedback information about the erroneous program and returns as output the set of changes

to the program’s AST, expressed in Delta. These Delta changes are the repairs needed to fix the syn-

tactic problems identified by the compiler.

DEEPDELTA is trained using developer data on compilation errors. The authors collected examples

of erroneous programs and the human-authored code changes that cause those failing programs to

correct syntactic programs at Google. Afterward, they generate the difference between the ASTs of

erroneous and fixed programs. Therefore, DEEPDELTA is trained using as input the compiler feedback

message and as output this difference between the erroneous and correct programs ASTs, written in

DEEPDELTA’s language Delta.

3.3.1.3 Reinforcement Learning

More recently, Gupta et al. [15] proposed RLASSIST, a Deep Reinforcement Learning agent that

fixes syntactic errors in introductory programming assignments. Usually, a programmer goes through

the program code in order to find the location of a given error when faced with one. When she finds the

bug location, she makes the necessary edits to the code to fix the bug.

RLASSIST is a reinforcement learning agent that mimics an experienced programmer’s actions by

accessing and modifying the program code. As demonstrated in Figure 3.6, given the incorrect program

presented in Listing 1.2, RLASSIST goes through the program code. When it finds a possible location

for the bug, RLASSISTs modifies that code segment. After each modification, RLASSIST asks a com-

piler, used as a black box, to validate the fixes proposed, i.e., checks if the number of error messages

decreased. The reward function used to train this reinforcement learning agent is a function that tries to

minimize the number of compiler error messages.

3.3.1.4 Graph Neural Networks

DRREPAIR [3] is a graph-based program repair framework that uses a graph neural network to fix a

syntactically incorrect program. Given an erroneous program and a compiler error message, DRREPAIR

builds a program-feedback graph to localize the buggy line in the program. As shown in Figure 3.7, this

graph connects a program to the diagnostic feedback provided by a compiler (given as input). It takes

as nodes all identifiers from the erroneous program code and the symbols that appear in the compiler

message and, to encode semantic correspondence, connects instances of the same symbol. Afterward,

Yasunaga and Liang [3] design a graph neural network using this program-feedback graph that connects

symbols relevant to program repair in the code and compiler feedback. This neural network models the

reasoning process.
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Figure 3.6: The erroneous program presented in Listing 1.2 and the sequence of actions taken by a
trained RLASSIST [15] agent to fix it: The error locations are highlighted in the red color. The arrows
show how the agent navigates over the program text. The edit actions are marked by e1 and e2.

DrRepair PDF
Friday, 4 March 2022 15:15

Figure 3.7: Given a broken program and diagnostic feedback (compiler error message), the goal of
DRREPAIR [3] is to localize an erroneous line and generate a repaired line. On the left is the erroneous
program presented in Listing 1.2, and on the right the compiler error message returned by gcc.

Table 3.1: Syntactic Tools

Tools Task
Specific

Multi-line
Debug Approach Programming

Language
Code

Available
SK_P [19] (2016) Yes No Seq-2-Seq Python No

DEEPFIX [13] (2017) No Yes Seq-2-Seq C Yes
TRACER [116] (2018) No No Seq-2-Seq C No

SYNFIX [18] (2018) Yes No Seq-2-Seq Python No
DEEPDELTA [14] (2019) No Yes Seq-2-Seq Java No
RLASSIST [15] (2019) No Yes RL C Yes
DRREPAIR [3] (2020) No Yes GNNs C Yes

3.3.1.5 Discussion

This section discusses the different aspects and drawbacks of various techniques presented in this

document for syntactic automated program repair.

Table 3.1 shows several aspects of recent syntactic repair tools. SK_P, SYNFIX, and TRACER
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are sequence-to-sequence models that can fix individual bugs, i.e., single-line bugs. Therefore, these

tools only work on programs that are almost syntactically correct. DEEPFIX and DEEPDELTA are also

sequence-to-sequence models, although these tools can fix multi-line bugs. SK_P and SYNFIX are task-

specific, i.e., are trained for a specific introductory programming assignment and cannot be used to pro-

vide feedback for other types of programming assignments. Between these five sequence-to-sequence

tools, only DEEPFIX is an open-source tool available on Bitbucket1. RLASSIST is also available online

on Bitbucket2. However, without a GPU, DEEPFIX and RLASSIST require a lot of training hours to work

since DEEPFIX’s and RLASSIST’s authors do not provide the learned weights of the neural networks

used for these frameworks’ papers.

Syntactic program repair can be used in introductory programming assignments to grade syntacti-

cal submissions and not to simply provide feedback to students. REFAZER [12] is a tool that learns

syntactic program transformations. The authors of REFAZER performed a study in an introductory pro-

gramming course. REFAZER learns program transformations using previous students’ incorrect and

correct submissions and then uses these transformations to correct new submissions.

3.3.2 Semantic Program Repair

Several semantic program repair techniques have been proposed to check if a student’s program is

semantically correct, i.e., if a given implementation has the behaviour expected by a lecturer. There are

several approaches to semantic program repair: semantic-based [4, 5, 7], solution-driven [2, 9–11, 120,

121], semantic code search [6, 122–126], static analysis violations [27, 28] and generate-and-validate

(a.k.a heuristic-based) techniques [32, 33, 127].

The typical way to provide feedback to students on their programming assignments is to provide

them with a failing test case, i.e., a test case on which their program returns an erroneous output. This

type of feedback is quite helpful since it mimics how experienced programmers develop their code [2].

This section presents test-driven approaches for semantic program repair: semantic-based, solution-

driven, and semantic code search approaches. Section 3.3.2.1 presents semantic-based methods that

verify a program’s behaviour considering only a collection of tests provided by the lecturer. Then, these

techniques try to synthesize a set of patches (repairs) that fix a program’s behaviour considering the

set of tests. Section 3.3.2.2 presents solution-driven methods that compare a program’s control flow

with one or several solutions provided by the lecturer, propose patches based on the difference between

the control flow of both programs, and check those repairs on a set of tests. Lastly, Section 3.3.2.3

presents semantic code search techniques that use a code snippets database. These methods query

the database for code based on a particular specification of desired behaviour. Given an input-output

example, these techniques search for a code fragment that produces the expected output on the given

input and fix the student’s program with this code fragment.

The interested reader is referred to the literature [24, 25] for more details about generate-and-validate

and static analysis violations techniques.

1https://bitbucket.org/iiscseal/deepfix
2https://bitbucket.org/iiscseal/rlassist
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3.3.2.1 Semantic-based Methods

This section presents semantic-based approaches for semantic software repair such as SemFix [4],

DirectFix [5] and Angelix [7]. These are techniques developed for real-world software and not for IPAS.

At the end of this section, a study [8] on applying these techniques to an educational setting is discussed.

The general idea of these techniques is to find the likely buggy region of a program given a test suite

and synthesize a repair.

SemFix [4] and DirectFix [5] SemFix uses fault localization frameworks to rank the program’s state-

ments by suspiciousness. Then, SemFix tries to generate a fix by replacing this statement with a sym-

bolic expression [31] that represents a generic value (see Section 3.1.2). SemFix runs the program

with this symbolic expression on the provided test-suite. The whole program is executed concretely until

the modified expression, and then it is executed symbolically [31]. With these executions, one for each

available test on the test suite, SemFix can generate a set of constraints representing the conditions that

the symbolic expression must satisfy to pass all tests. Although, SemFix is only able to fix single-line

bugs. DirectFix makes use of a MaxSMT formula to synthesize the minimal set of repairs required to

make a program pass all tests on a given test suite. In addition, DirectFix encodes a trace formula of the

whole program to fix more than one line at once, if necessary. However, this ability to fix multi-line bugs

makes DirectFix significantly less scalable than SemFix [7].

Angelix [7] tries to fix multi-line bugs without giving up scalability. This is possible using angelic

values, angelic states, angelic paths, and angelic forests. An angelic value is the expected value an

expression should return to pass a given test. An angelic state is the set of variables that are visible

in the scope of the expression being analyzed. An angelic path is encoded as a triple containing the

faulty expression and its respective angelic value and state, these paths can be achieved by symbolic

execution of programs [31]. Finally, an angelic forest is the set of angelic paths that encode a repair

problem. Angelix uses these forests to synthesize multi-line fixes.

Automated Software Repair Techniques in Introductory Programming Assignments Yi et al. [8]

did a feasibility study on using automated program repair techniques, used to fix bugs on large real-world

software, in introductory programming assignments. In student solutions that only failed a small number

of tests, automated software repair tools such as Angelix [7] were applied. However, with this study,

they realized that directly applying a technique from the real world in an educational setting would not

be as good as one might think. Yi et al. [8] argue that the main reason is that the student program is

normally more incorrect and fails more tests on a given test suite compared to experienced programmers

debugging real-world software. Usually, significant changes are needed to fix a student program [8].

Yi et al. [8] achieved good results applying these software repair techniques on programming assign-

ments by generating hints for students for each failing test and not trying to repair the whole program at

once. Yi et al. [8] did this by changing these frameworks’ repair policies. For a given erroneous program,

a set of repairs are suggested to the student if (1) the repaired program passes at least one more test
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and (2) all the tests passed by the student program are also passed by the repaired program. Therefore,

this is a good way of applying software repair techniques in introductory programming assignments.

Gao et al. [128] also perform a study with students using industrial automated testing on a framework

capable of providing feedback to students and also achieved good results.

3.3.2.2 Solution-driven Methods

Semantic-based program repair techniques may be overfitted to the test suite unavoidably providing

incorrect patches to a program [27, 129]. Another problem with semantic-based approaches is that

building a comprehensive collection of representative tests may be impracticable to obtain and may also

not completely express the behavior expected by the lecturer to the reference solution.

This section presents solution-driven approaches for semantic program repair. These approaches

fix a given incorrect solution by making its control flow similar to a given correct solution for the same

programming assignment. Solution-driven program repair techniques can be divided into two leading

families: implementation-based and clustering-based. The following sections will present both fami-

lies of approaches.

Implementation-based techniques

Some program repair tools [9, 121] use a single reference implementation provided by the lecturer

to repair a student’s program. These tools usually are only able to use one correct implementation to

repair each program.

Verifix [9] is an implementation-based method that aligns an incorrect program with the lecturer’s ref-

erence solution into an automaton. Using this alignment relation and MaxSMT solving, Verifix suggests

fixes to the incorrect submission. Ahmed et al. [9] stated in their paper that clustering-based program

repair tools take advantage of other students’ correct submissions for repairing incorrect submissions

since it is challenging to generate feedback when the control-flow graph (see Definition 29) of the stu-

dent program is different from the instructor’s reference program. Furthermore, the authors also express

that other repair tools, when collecting correct students’ submissions, only check if those submissions

pass a given set of input-output tests and do not verify their correctness against the lecturer’s imple-

mentation. Hence, Verifix proposes to overcome these drawbacks with verified repair, i.e., constantly

repairing a given incorrect student submission with a single correct reference implementation provided

by the lecturer by making the student’s submission semantically equivalent to the reference solution.

Verifix starts by modeling the reference implementation provided by the instructor and the incorrect

student submission as a Control Flow Automata (CFA) as Figure 3.8b shows which is essentially a

control-flow graph (Figure 3.8a) with code statements labeling the edges of the graph. Hence, a CFA

is a graph where the nodes represent control-flow decisions, and the edges represent guarded code

commands. Afterward, Verifix aligns both CFA using a syntax-based alignment technique, i.e., aligns

control entry nodes, control exit nodes, loop entry/exit nodes. For this syntax-based alignment, Verifix
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function entry

int max = num1;
if(num2 > max)

max = num2;

if (num3 > max)

T
F

max = num3;

return max;

T

F

function exit

(a) Control flow graph of function max_three.

q0start

q1 q2

q3 q4

q5

int max = num1;
(num2 > max)

int max = num1;
(num2 <= max)

max = num2;

(num3 <= max)(num3 > max)

max = num3;

return max;

(b) Control flow automata of function max_three.

Figure 3.8: CFG and CFA representations of function int max_three(int num1, int num2, int
num3) presented earlier in Listing 3.1.

requires a bijective relation between the set of variables of both programs. Hence, the incorrect program

must have the same number of variables as the lecturer’s implementation. There must also be a bijective

relation between the types of both programs’ sets of variables. Having such an aligned automaton, the

verification phase is to check if each pair of aligned edges are similar, i.e., are semantically equivalent.

If not, then there is no semantic equivalence between both programs, and a repair is needed.

Verifix’s repair process is based on the aligned CFA of both programs. The verification step to

check if a pair of aligned edges are equivalent is translated into an SMT formula. If this SMT formula

is satisfiable, then the generated satisfying assignment corresponds to a counter-example why both

edges are not equivalent. Verifix performs a repair based on program synthesis using these counter-

examples, more concretely a counter-example-guided inductive synthesis (CEGIS) [130]. This program

synthesis strategy synthesizes a fix for the incorrect program’s node that rules out the counter-example

generated previously. Verifix searches for a minimal repair for each aligned edge under consideration,

i.e., the repair modifies the minimum number of the program’s expressions. This is done by formulating

the problem as a MaxSMT problem. This way, the minimal repair preserves the maximum number of

original expressions of the incorrect student submission. Given a likely buggy program scope (an edge

of the CFA), Verifix starts by replacing this scope’s expressions with unique holes to synthesize, using
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CEGIS patches for each expression. The program space, i.e., space of possible patch candidates to

replace each expression, contains the original expression. Verifix tries to keep the original expressions

for as many holes as possible by giving a higher weight penalty to use a new synthesized expression by

the CEGIS over the original expression of the incorrect student’s submission. This assignment of weights

guarantees that the MaxSMT solver prefers the original expressions in the incorrect submission.

Verifix’s main drawbacks are:

• Verifix always aligns a given incorrect submission with the same reference implementation pro-

vided by the lecturer. Therefore, the set of repairs proposed by Verifix is not guaranteed to be

minimal. Perhaps using a correct implementation submitted by another student, the set of fixes

required to fix the incorrect program would be smaller and more straightforward.

• The syntax-based alignment technique used by Verifix requires a bijective relation between the set

of variables of both programs. Thus, if a student uses more or fewer variables than the instructor’s

implementation, Verifix cannot repair the student’s program.

• To perform verified repair, Verifix translates code into SMT logical formulae, although only certain

features of the C language are implemented. Hence, Verifix is only able to repair simple intro-

ductory imperative C programs and cannot be used to repair other languages or more complex C

programs (e.g., programs with multi-dimensional arrays).

• One of Verifix’s main objectives is to overcome the main drawback of other repair tools that make

the same control-flow assumption, i.e., assume that there is always a correct implementation with

the same control-flow graph as the incorrect submission. Verifix supposedly can repair submis-

sions whose control-flow graph is different from the lecturer’s program. However, as explained in

Section 1.2, Verifix cannot repair programs with a different number of auxiliary functions than the

reference implementation.

AutoGrader [121] is another implementation-based program repair tool that automatically compares

symbolic executions of a student’s submission against the executions of a reference solution on a given

test suite to grade students’ assignments. The novelty of AutoGrader is that when these executions are

semantically different, AutoGrader finds potential path differences between the executions of a student’s

submission and a reference implementation. Afterward, AutoGrader provides feedback to students in

the form of counter-examples for each path difference found.

Clustering-based techniques

Figure 3.9 shows the generic idea of clustering-based program repair frameworks [2, 10, 34, 131].

These frameworks receive an incorrect student submission, a test suite, and a collection of N correct

student submissions for the same IPA. For scalability concerns, these frameworks eliminate dynamically

equivalent correct programs with the provided test suite and through clustering techniques, i.e., seman-

tically equivalent solutions. Furthermore, those clustering approaches aggregate the set of N correct
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Figure 3.9: Clustering-based Program Repair.

solutions into K semantically different clusters (N � K). Finally, the repair tool uses these K clusters’

representatives to repair the incorrect student submission.

Program clustering has also been used to find different semantic solutions for a given programming

exercise [131–133]. PaCon [133] clusters programming assignments based on their symbolic analysis.

PaCon clusters two submissions together if their path conditions are equivalent. PaCon only takes

into consideration a program’s semantics. Overcode [132] lets the user visualize and explore different

implementations for the same exercise. SEMCLUSTER [34] clusters programs based on their control and

data flow features. SEMCLUSTER creates vector representations, program features vectors (PFV), for

each program using a test suite. This PFV takes into account control flow features as well as data flow

features. For each program, SEMCLUSTER counts the number of times each control flow path is used in

each test and builds a vector with this data. Afterward, SEMCLUSTER builds another vector containing

the data flow features, i.e., the number of occurrences of consecutive values a variable takes during its

lifetime. Finally, SEMCLUSTER merges these two feature vectors into a single vector, the PFV.

CLARA [2] takes advantage of existing correct students’ solutions for a given programming assignment

from past years’ submissions to present a new student with possible semantic repairs for an erroneous

program. Hence, Gulwani et al. [2] use the wisdom of the crowd to repair semantically a given erroneous

program for a particular introductory programming exercise.

CLARA works as presented in Figure 3.10. For a particular programming assignment, CLARA starts

by clustering the set of available correct student submissions from past editions of the programming

course. Gulwani et al. [2] cluster these correct programs based on their dynamic equivalence [35]

and their control-flow. Afterward, given an incorrect submission, CLARA finds, for each cluster, a set

of repairs that makes the incorrect program dynamic equivalent to the cluster of programs. CLARA

chooses the minimal set of repairs from all repair candidates (one for each cluster) and returns it to the

student. By doing this, Gulwani et al. [2] try to find the set of most similar correct student solutions.

Then they present the student with the set of modifications needed to get the student from an incorrect

to a valid solution.

Regarding Clara’s clustering method, Clara puts two programs into the same cluster if they have
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Figure 3.10: Overview of CLARA [2].

the same control flow structure and if there exists a mapping between their variables. Clara requires

a perfect match between the two programs’ control flow graphs (i.e. branches, loops, functions) and

a bijective relation between both programs’ variables. Otherwise, Clara returns a structural mismatch

error, and those programs are not clustered together. For each computed cluster, Clara keeps all the

programs’ information (e.g., expressions, variables) that belong to that cluster.

Clara receives one or more correct programs to repair a given incorrect program. This set of input

programs can correspond to a set of correct programs provided by the user or to clusters’ represen-

tatives generated by Clara. If Clara receives a set of clusters’ representatives, then Clara should also

receive all the information about the programs that are in each cluster to help with the repair process.

Clara generates a set of repairs considering each cluster separately. A repair is a program modification

that makes an expression of the incorrect program match with some expression of a program in the

cluster. Note however that the repairs proposed by Clara only suggest modifications to a program’s ex-

pressions and cannot modify the program’s control-flow. Each repair has a specific cost which is equal

to the syntactic difference (tree edit distance [134]) between the incorrect program’s AST (see Defini-

tion 21) and the repaired program’s AST. Clara matches each variable of the incorrect program with a

variable of the cluster’s representative and generates a set of repairs considering this mapping between

these variables. Consequently, considering all the possible repairs between the incorrect program and

a cluster’s representative, Clara takes advantage of constraint-optimization methods to find a consistent

subset of repairs, with the smallest cost, that fixes the incorrect programs and makes it compliant with

the test suite.

During Clara’s repair process, if none of the correct programs provided has an exact match with

the incorrect submission’s control flow/looping structure, then Clara is not able to repair the program

and returns a Structural Mismatch error. Otherwise, Clara gathers the set of repairs using each correct

program and returns the minimal set among them.
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More recently, Contractor and Rivero [135], Chowdhury et al. [136] improved CLARA’s matching

algorithm to a new graph matching algorithm that is more relaxed in terms of control flow restrictions.

However, this new graph-matching algorithm only works for Python programs.

SARFGEN [10] is another clustering-based semantic repair technique. For a given erroneous pro-

gram, it searches for the most similar correct solution among all correct solutions, aligns both programs,

and returns the minimal set of repairs needed to make the erroneous program semantically equivalent

to this solution.

SARFGEN, used for C# programs, creates programs embeddings based on the programs’ ASTs [137].

Then, given an incorrect program, finds the closest correct submission using those embeddings and

tries to repair the program by aligning the variables in both programs. As presented in Figure 3.11, first,

SARFGEN identifies similar correct student submissions by embedding a given erroneous program and

measures the distance between the generated embedding and the set of embeddings for the available

correct students’ solutions. Then in the Aligner step, SARFGEN aligns each code segment in the er-

roneous program with the segments on the correct submissions to suggest possible corrections to the

student program. Finally, in the Repairer step, given the set of corrections from the previous step, SAR-

FGEN generates and minimizes the set of fixes needed to perform on the student erroneous program to

make it semantically valid.

Refactory [11] uses existing correct student solutions, like CLARA [2] and SARFGEN [10], to fix incor-

rect students’ attempts. Although unlike previous approaches, Refactory does not require a significantly

large and diverse set of correct student submissions. It still works using only a reference solution pro-

vided by the lecturer to a specific programming assignment.

As presented in Figure 3.12, Refactory can be divided into three steps: (1) Refactoring, (2) Struc-

ture Alignment, and (3) Block Repair. Firstly using refactoring rules, Hu et al. [11] refactor the set of

correct programs to generate additional correct programs with a slightly different control flow but seman-

tically equivalent. These new programs are semantically equivalent to some previous correct program

with some mutations on its control-flow graph (see Definition 29) using pre-defined refactoring rules.

Figure 3.13 shows an example of a refactored program in Python.

In the second step, Refactory finds which correct program has the same control flow as the erroneous

program provided by the student. If there is no correct program with the same control flow, Refactory

assumes there is a bug on the student’s code control flow and performs a mutation to the student

program. This mutation causes modifications to the program’s control flow to make it identical to the

closest refactored correct program using a tree edit distance.
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1 def sum_until_k(n, k):
2 s=0
3 for j in range(n):
4 if s < k:
5 s = j + s
6

7

8 return s

1 def sum_until_k(n, k):
2 s=0
3 for j in range(n):
4 if s < k:
5 s = j + s
6 else:
7 pass
8 return s

Figure 3.13: Example of a correct program refactored.

In the last step, Refactory maps the refactored correct programs’ basic blocks to the erroneous

program’s basic blocks based on the control-flow graph’s isomorphism. With this mapping of blocks and

block variables, Refactory can infer input-output specifications of the student program from the refactored

programs executions. Refactory then compares each basic block from the incorrect submission with the

aligned basic block from the correct program. If the buggy program satisfies the correct program’s input-

output specification, it is considered correct. If it does not satisfy such specification, then that basic block

is deemed to be incorrect. Finally, using search-based synthesis, Refactory modifies the incorrect basic

blocks of the student program with a patch capable of making the program pass the given test-suite

provided as input.

3.3.2.3 Code Search Methods

Code search methods [6, 122–124, 126, 138, 139] are another family of semantic program repair

techniques. Code search uses a specification (e.g., input-output tests) to find code in a large repository

that satisfies that specification. To repair a given incorrect program, semantic code search methods do

not find the closest correct implementation for the same IPA or use a reference implementation provided

by the lecturer. Instead, these methods search for code fragments of other correct programs to repair a

given incorrect submission.
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SearchRepair [6] was proposed to take advantage of the significant corpus of existing open-source

code (e.g., GitHub, Bitbucket) to find possible repairs. To this end, SearchRepair uses semantic code

search [125], guided by a test suite, over these open-source code or a collection of previous correct

students’ submissions for a given IPA, to find potential fixes for buggy regions.

SearchRepair constructs a database of various code fragments taken from open-source projects or a

collection of correct submissions from a previous edition of an introductory programming course. On this

database, these code snippets are encoded, based on the input-output behavior, as SMT constraints for

repairing semantically erroneous programs. The code fragments’ SMT encoding is the disjunction of the

execution paths’ constraints.

SearchRepair uses Tarantula [140], a fault localization engine, to find the likely buggy code seg-

ments for a given failing program. For each buggy code segment, SearchRepair encodes as an SMT

formula the input-output constraint that defines this segment using the failing and passed tests. Then,

SearchRepair searches for compatible input-output SMT formulas on its database, i.e., these formulas

encode repairs that satisfy the input-output constraint of the buggy segment. Finally, SearchRepair, after

applying these repairs, checks if the repaired program passes all tests.

The input-output constraints are represented by the program state (values of the program’s vari-

ables) before and after each buggy code fragment. Since the authors believe that negative exam-

ples/failed tests would encode faulty behavior, only passing tests are used to encode input-output con-

straints to search for potential patches. SearchRepair searches for a code snippet compliant with these

constraints that can serve as a potential patch. If such a patch is found, SearchRepair renames the

variables by mapping the incorrect program’s variable to the code snippet and replaces the buggy re-

gion with this patch.

Regarding the granularity of the code fragments present in the database, SearchRepair assumes

that higher-granularity patches are likely to lead to higher-quality patches. Thus, this tool gathers entire

blocks of instructions (basic blocks) and sequences of 1 to 5 statements of code.

SearchRepair has three significant drawbacks:

• To find a consistent mapping between the variables of the incorrect program and the variables of

the code fragment, SearchRepair includes constraints encoding all possible mappings between

these two sets of variables;

• SearchRepair assumes a bijective relation between the program’s set of variables and the candi-

date repair (code fragment). Therefore, only patches with the same number of variables can be

found, making it impossible to find repairs that remove or introduce new variables to the program;

• SearchRepair disregards the negative example behavior (failed tests from the test suite) when

generating input-output constraints to search the database;

SOSRepair [122] is built on the ideas of SearchRepair [6]. The major difference between these

two frameworks is that SOSRepair has a more scalable search query encoding and can query large

databases of multi-million-line C projects [122].
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SOSRepair constructs a database of code snippets. It identifies candidate code fragments from the

C blocks taken from the programs’ AST (see Definition 21). Afzal et al. [122] performed a case study and

found out that snippets of the length of 3-7 lines achieve patches with higher quality. Hence, SOSRepair

has a database of code snippets encoded as constraints. These constraints have information about

the snippet’s variables and the static path constraints generated by each input-output test. These path

constraints are obtained by symbolically executing (see Section 3.1.2) the code snippet using KLEE [79].

Given an incorrect program and a test suite, SOSRepair, like SearchRepair, looks for a potential

patch on a code snippets database based on some specifications of desired behavior provided by

the test suite. SOSRepair uses this test suite to construct input-output constraints of the potential

buggy region and searches over the database code fragments with similar behavior. SOSRepair, unlike

SearchRepair, takes advantage of the negative example behavior (failed tests from the test suite) when

generating input-output constraints to search the database. SOSRepair’s query encoding allows the

search for patches that insert, delete and replace code. SOSRepair executes the program on the test

suite, saving the variables’ values in the buggy region, before (entry values) and after (exit values) the

region. To insert new code, the encoding enforces the potential patch to keep the same entry values

on the passing tests but to change the entry values on the failing tests. To replace buggy code, the

encoding enforces that the values of the variables after the code snippet (exit values) must remain the

same on the passing tests but have to change on the failing tests.

For each buggy code segment, SOSRepair encodes the buggy region input-output constraints. Then,

first, it tries deleting the buggy region. Next, SOSRepair attempts to replace the buggy region by search-

ing the database. Finally, if no code replacement was found, SOSRepair searches the database for a

code fragment to insert right before the buggy region. Finally, when a viable patch is found, SOSRepair

renames the variables by mapping the incorrect program’s variable to the code snippet and inserting the

patch right before the buggy region in the case of a code insertion or replaces the buggy region with this

patch in the case of code replacement.

SOSRepair has two significant drawbacks:

• SOSRepair considers a higher granularity of code fragments since the authors believe that replac-

ing entire loops/if-statements with similar statements is more likely to fix the code. However, when

considering an educational setting, this does not guarantee or even considers the generation of

the minimal set of repairs in order to help the novice programmers;

• To find a consistent mapping between the variables of the incorrect program and the variables

of the code fragment, SOSRepair, like SearchRepair, includes constraints encoding all possible

mappings between these two sets of variables;

3.3.2.4 Discussion

This section will discuss the different aspects and drawbacks of various techniques presented in this

document for semantic automated program repair.
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Table 3.2 shows several characteristics of recent test-driven, solution-driven, and clustering-based

semantic program repair tools. The repairs generated by test-driven approaches [4–7, 29] may not

be generalized to test cases that are not present in the test-suite, i.e., the repairs generated by these

approaches may be overfitted to the test-suite [129]. Using a reference implementation to check for

correctness reduces the overfitting in the test-suite [141].

Machine learning techniques, like sk_p [19] and SynFix [18], and clustering-based approaches, like

CLARA [2], require several student correct submissions to generate good quality repairs. Therefore,

machine learning techniques require considerable time to train students’ correct submissions. Afterward,

these approaches generate repairs faster [10]. However, the generated repairs are frequently imprecise

and not minimal [10]. The set of repairs proposed by Verifix [9] is not guaranteed to be minimal since

it always aligns a given incorrect submission with the same reference implementation provided by the

lecturer. Verifix also requires a bijective relation between the set of variables of both programs. Thus,

if a student uses more or fewer variables than the instructor’s implementation, Verifix cannot repair the

student’s program. Additionally, Verifix can supposedly repair submissions whose control-flow graph is

different from the lecturer’s program. However, as explained in Section 3.3.2.2, Verifix cannot repair

programs with a different number of auxiliary functions than the reference implementation.

Section 3.3.2.2 presented clustering-based program repair frameworks. CLARA [2] and SARF-

GEN [10] assume that there are several and diverse correct student submissions from past years.

These approaches need a substantial number of previous correct submissions to have diverse clus-

ters to provide valuable repair. Hence, for a novel programming assignment, these techniques do not

work. Refactory [11] and AutoGrader [121] deal with this problem using just one reference implemen-

tation. Furthermore, Clara requires a perfect match between the two programs’ control flow graphs

(i.e., branches, loops, functions) and a bijective relation between both programs’ variables. Otherwise,

Clara returns a structural mismatch error, and those programs are not clustered together. During Clara’s

repair process, if none of the correct programs provided has an exact match with the incorrect submis-

sion’s control flow, then Clara is not able to repair the program and returns a Structural Mismatch error.

Lastly, Refactory [11] relies on hand-crafted program refactoring rules currently implemented only for

Python programs.

As explained in Section 3.3.2.3, code search techniques, like SearchRepair [6] and SOSRepair [122],

use code snippets and have no knowledge of the program’s structure where that code fragment came

from. Therefore, there is no guarantee that the set of repairs proposed by a code search tool is the

minimal set required to fix a student’s program. SearchRepair includes constraints encoding all possible

mappings between these two programs’ sets of variables and assumes a bijective relation between the

programs’ variables. Therefore, only patches with the same number of variables can be found. More-

over, SearchRepair disregards the negative example behavior when generating input-output constraints

to search the database. SOSRepair considers a higher granularity of code fragments which does not

guarantee the generation of the minimal set of repairs to help the novice programmers. To find a con-

sistent mapping between the variables of the incorrect program and the variables of the code fragment,

SOSRepair, like SearchRepair, includes constraints encoding all possible mappings between these two
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Table 3.2: Semantic Tools

Tools Test-suite Multi-line
Debug Approach Programming

Language
Code

Available

SemFix [4] (2013) Yes No Symbolic Execution C No
DirectFix [5] (2015) Yes Yes Symbolic Execution; MaxSMT C No

SearchRepair [6] (2015) Yes No SMT C Yes
Angelix [7] (2016) Yes Yes Angelic Forests C Yes
CLARA [2] (2018) Yes Yes Clustering; Dynamic Analysis Python/C Yes

SARFGEN [10] (2018) No Yes Program Analysis C# No
Refactory [11] (2019) Yes Yes Refactoring Python Yes

AutoGrader [121] (2019) Yes Yes Symbolic Execution Python Yes
SOSRepair [122] (2019) Yes Yes Semantic Code Search C Yes

Verifix [9] (2021) Yes Yes Verified Repair C No

sets of variables.

Lastly, Large Language Models (LLMS) are used for semantic program repair but often make exten-

sive rewrites instead of minimal adjustments. This tends to lead to more invasive fixes, making it harder

for students to learn from their mistakes.

3.4 Automated Assessment Tools (AATs)

Automated Assessment Tools (AATs) Over the past decades, there has been a growing interest in

the automated evaluation of Software Engineering (SE) and Computer Science (CS) students [142]. Typ-

ically, AATs assess programming tasks using input/output (IO) tests predefined by the course’s faculty.

There exists a substantial number of AATs that function as web-based Integrated Development Envi-

ronments (IDEs) for evaluating students’ code using IO tests. Examples include CODEOCEAN [143],

MOOSHAK [144], and WEB-CAT [145]. Furthermore, AUTOLAB [146] and SUBMITTY [147] are open-

source web-based course management platforms that automatically grades students’ code. AUTOLAB

maintains scoreboards for each evaluation element in order to motivate the students, while SUBMITTY

provides an interface for Teaching Assistants (TAs) to manually grade assignments. CHECK50 [148] is

a Python command line tool that automatically assesses students code using IO tests, works for C and

Python programs.

Additionally, Codeboard.io [149] is a web-based IDE to teach programming tasks. Faculty members

can share programming exercises with the students. These exercises are assessed using a result string

or a set of predefined unit tests. The set of programming languages available is limited and Codeboard.io

is difficult to tailor in order to get more personalized feedback for the students. Drop Project [150] is a

web-based IDE where students drop their Java/Kotlin projects to check for correctness and quality using

a set of predefined unit tests and other software evaluation metrics. GRADESTYLE [151] serves as a

code style marker tool that provides feedback for assignments in Java by opening a GitHub issue in

each students repository. Moreover, GRADESCOPE [152] is another online tool to administer and grade

programming assignments as well as other kinds of assessments (e.g., exams). However, GRADESCOPE

only has paid licenses for education. Recently, Coleman and Sommer [153] proposed GIT-KEEPER, a

git-based assignment management system that automates the assessment of student submissions for
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programming assignments and automatically emails students their evaluation report. Lastly, GITHUB

CLASSROOM [154] is an AAT tool available on GITHUB that allows faculty to create and manage digital

classrooms and assignments. GITHUB CLASSROOM uses the same mechanism of a CI runner (GitHub

Actions) to process student code and report on quality aspects.

Competitive Programming Contests (CPCs) CPCs are online platforms that host programming con-

tests. In these websites, students and CS/SE professionals, engage in solving computational problems

under time/memory constraints. These contests serve as platforms to assess and enhance problem-

solving skills, algorithmic efficiency, and programming proficiency. Typically, CPCs assess contestants

code using an IO test suite. LEETCODE [155], TOPCODER [156], CODEFORCES [157], and REPLIT [158]

are among the most famous CPCs. Both CODEFORCES [157] and REPLIT [158] offer features for pro-

gramming education. However, the evaluation process relies solely on IO tests.

3.5 Providing Feedback

Feedback generation for students on programming exercises has received a fair amount of attention

from the scientific community over the last decade. Gulwani et al. [159], Singh et al. [160] study the

synthesis of solutions for geometric assignments enabling them to provide hints to students. Ahmed

et al. [161] generate problems and solutions in Natural Deduction with an offline computation of proofs.

Pex4fun [162] is an automated website for students to solve programming exercises; the website uses

advanced techniques from Formal Methods technology based on SMT to identify failing inputs of stu-

dents solutions. Solution correction for program assignments is related to Program Sketching or Program

Synthesis [163, 164]. Gulwani et al. [165] propose a small language extension that allows a lecturer to

specify an algorithmic strategy using key values that should appear during the execution of an imple-

mentation for a given IPA. Zimmerman and Rupakheti [166] proposed a tool capable of recommending

a reliable series of AST edits to the student program to transform it into the lecturer’s target solution.

CODERASSIST [167] is a counter-example guided feedback generation tool that provides feedback

on student implementations of dynamic programming algorithms. CODERASSIST starts by clustering

both correct and incorrect programs based on these dynamic programs’ syntactic features. Afterward,

CODERASSIST generates feedback for a buggy program by calling an SMT solver, using a counterexam-

ple obtained from an equivalence check against a correct implementation in the same cluster. However,

CODERASSIST only works for dynamic programs since the implemented feature extraction procedure

searches for syntactic features of dynamic programming algorithms. Thus, this tool cannot be used

for clustering our dataset of IPAS. Rocha et al. [168] introduce a framework to improve how teach-

ing assistants provide feedback in introductory programming courses, helping them understand differ-

ent feedback approaches and resources. This framework offers structured guidance for pedagogical

decision-making regarding adaptive feedback. Furthermore, CODEHOUND [169] is a system that auto-

matically tracks pedagogical code dependencies by using static analysis to detect function introductions

and reuse throughout an entire course. It offers instructors assistance in creating new content, collabo-
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rating on content refactoring, and estimating future course change costs. Furthermore, ODS [170] is a

system for detecting overfitting patches in automatic program repair. ODS utilizes supervised learning

with AST level code features and patch correctness labels to automatically learn a probabilistic model,

which can then classify new program repair patches.
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4
C-Pack of IPAS: A C90 Program

Benchmark of Introductory

Programming Assignments

“C is quirky, flawed, and an enormous success.”

– Dennis Ritchie.
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This chapter presents C-PACK-IPAS, a publicly available benchmark comprising student-program

submissions for 25 distinct IPAS. C-PACK-IPAS contains semantically correct, semantically incorrect,

and syntactically incorrect programs, along with a dedicated test suite for each IPA. Hence, C-PACK-

IPAS serves as a valuable resource for evaluating the progress of novel automated program repair

frameworks, addressing both semantic and syntactic aspects, with a specific focus on providing feedback

to novice programmers. Notably, some semantically incorrect programs in C-PACK-IPAS have been

manually fixed and annotated with diverse program features, enhancing their utility for the development

of various program analysis frameworks. Moreover, this chapter presents evaluations on C-PACK-IPAS

using two leading semantic program repair tools tailored for IPAS, CLARA and VERIFIX.

This chapter has been published as a workshop paper at the 5th International Workshop on Auto-

mated Program Repair, APR 2024 [171].

4.1 Introduction

Typically, in Computer Science courses, programming assignments follow a familiar pattern: the

lecturer outlines a computational problem, students devise solutions, and each solution undergoes eval-

uation for correctness using predetermined tests. If the students’ tentative solutions do not pass a given

test, they are deemed incorrect without helpful feedback. In instances where students’ programs fail

a subset of the predefined tests, seeking feedback from the lecturer becomes a common practice to

understand the reasons behind the unexpected behavior. When a program fails to pass even a single

predefined test, it signifies a semantic error in the implementation. Unfortunately, due to the increas-

ing number of student enrollments, personalized feedback from the faculty may not always be feasible.

Therefore, automated semantic program repair frameworks [2, 4–12] are ideal for providing hints on how

students should repair their incorrect programming assignments.

This chapter presents C-PACK-IPAS, a C90 Program benchmark of introductory programming as-

signments (IPAS). C-PACK-IPAS comprises students’ programs submitted for 25 different IPAS along

with the respective test suite used for each assignment. The details of the IPAS are provided in Sec-

tion 4.3. For each IPA, C-PACK-IPAS includes sets of both semantically correct and incorrect implemen-

tations. Additionally, C-PACK-IPAS encompasses a collection of syntactically faulty programs submitted

for each IPA. The primary objective of this chapter is to present C-PACK-IPAS, a resource featuring se-

mantically and syntactically incorrect student implementations. This benchmark is intended to facilitate

the evaluation of novel automated program repair frameworks, addressing both semantic and syntactic

aspects, with a focus on assisting novice programmers.

C-PACK-IPAS includes a subset of semantically incorrect programs, manually annotated with various

features such as the number of faults in each program, the location of these faults, and the type of each

fault. Additionally, C-PACK-IPAS also comprises corrected versions of these programs, which were

manually fixed. The availability of annotated and fixed programs serves as a valuable resource, allowing

developers to validate their results during the development of novel program analysis tools, particularly

for tasks such as program repair and fault localization.
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Table 4.1: High-level Description of C-PACK-IPAS Benchmark.

Labs #IPAs #Correct
Submissions

#Semantically
Incorrect

Submissions

#Syntactically
Incorrect

Submissions
Lab02 10 799 486 223
Lab03 7 351 699 106
Lab04 8 465 246 119
Total 25 1615 1431 448

The main contributions of this work are:

• C-PACK-IPAS, a benchmark consisting of C programs submitted for 25 different IPAS, during three

academic years. C-PACK-IPAS contains semantically correct, semantically incorrect, and syntac-

tically incorrect programs plus a test suite for each IPA.

• A subset of C-PACK-IPAS’s semantically incorrect programs has been manually fixed and anno-

tated, incorporating several program features such as the number of faults and the locations of

these faults.

• The evaluation of C-PACK-IPAS was conducted using two state-of-the-art program repair tools

tailored for IPAS: CLARA and VERIFIX;

• C-PACK-IPAS is publicly available on GitHub: https://github.com/pmorvalho/C-Pack-IPAs.

The structure of the remainder of this chapter is as follows. Section 4.2 presents C-PACK-IPAS. Next,

Section 4.3 presents a brief description of the set of programming exercises. Section 4.4 presents the

experimental evaluation where C-PACK-IPAS was evaluated using state-of-the-art program repair tools.

Lastly, Section 4.5 describes related work, and the chapter concludes in Section 4.6.

4.2 C-PACK-IPAS

C-PACK-IPAS is a pack of student programs developed during an introductory programming course

in the C programming language. These programs were collected over three distinct practical classes

for 25 different IPAS at Instituto Superior Técnico, throughout three academic years. The set of submis-

sions was split into three groups: semantically correct, semantically incorrect, and syntactically incorrect

submissions. The students’ submissions that satisfied the set of input-output test cases for each IPA

were considered semantically correct. The submissions that failed at least one input-output test but

successfully compiled were considered semantically incorrect implementations. Lastly, the students’

submissions that did not successfully compile were considered syntactically incorrect.

Table 4.1 presents the number of submissions gathered. For 25 different programming exercises, this

benchmark contains 1615 different correct programs, 1431 semantically incorrect submissions, and 448

syntactically incorrect implementations. C-PACK-IPAS is organized chronologically. This arrangement

proves valuable for training and evaluating new program analysis tools. For instance, the programs from

the first academic year can serve as training data, those from the second year as the validation set,
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Table 4.2: The number of faulty programs in each exercise of Lab02, with different types of program
faults.

Lab 02
Fault Type Ex 01 Ex 02 Ex 03 Ex 04 Ex 05 Ex 06 Ex 07 Ex 08 Ex 09 Ex 10

Incomplete Binary Operation 1 2
Incorrect Data Type 1 3

Incorrect Input 4 4 3 1
Incorrect Output 63 18 11 14 3 3 3 6 17 3

Misplaced Expression 1
Misplaced Loop Decrement 1

Missing Expression 2 6
Missing Instruction 1 2 8
Missing Instructions 5

Missing Loop Decrement 2
Missing Loop Increment 1 1

Missing Output 1
Missing Variable 1 2 6
Non-zero Return 1

Presentation Error 44 26 22 27 2 1 6 3 2
Uninitialized Variable 11 12 1 3 1 5

Variable Misuse 2 1 3 5 1 1 2
Wrong Binary Operation 4 2 1 1

Wrong Comparison Operator 3 12 3 1 1
Wrong Exercise 8 2 2 1

Wrong Expression 7 1 2 6 1 3 1
Wrong Initialization 1 1
Wrong Instruction 5

Wrong Literal 1 1 2 2 3
Wrong Parameter 1

Average Number of Faults 1.8 1.56 1.28 2.06 1.33 3.56 2.36 1.91 1.58 1.43

and the programs from the third year as the evaluation set. Appendix A.2 presents three tables with the

number of student submissions (correct, semantically incorrect and syntactically incorrect) received for

each of the 25 different programming assignments.

Furthermore, C-PACK-IPAS only contains students’ submissions that gave their permission to use

their programs for academic purposes. Each student’s identification was anonymized for privacy rea-

sons, and all the comments were removed from their programs. A unique identifier was assigned to

each student. These identifiers are consistent among different IPAS and different years of the program-

ming course. For example, if the identifier stu_15 appears in more than one programming exercise, it

corresponds to the same student. If some students take the course more than once, they are always

assigned to the same anonymized identifier. Currently, C-PACK-IPAS contains submissions from 102

different students.

Annotated Programs A benchmark of programs should be enriched with informative annotations,

enabling developers to validate their results while developing novel program analysis tools for tasks such

as program repair and fault localization. With this objective in mind, the Lab 02 submissions in C-PACK-

IPAS have been meticulously annotated with various program features. These annotations serve as

valuable resources for developers and facilitate the training and evaluation of machine learning models.

Each semantically incorrect program in C-PACK-IPAS’s Lab 02 submissions has been annotated with

the following features::

• #Variables : indicates the number of different variables present in each program;

• Program Features : encompasses various program features, including uninitialized variables, seg-
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mentation faults, etc., providing valuable information for analysis;

• #Passed Tests : represents the count of passed tests from the test suite;

• #Failed Tests : specifies the number of failed tests from the test suite;

• IO tests’ output : presents the output obtained by running the incorrect program with the test suite;

• #Faults : indicates the total number of faults present in the program;

• Faults : enumerates the list of faulty instructions/expressions within the program;

• Faulty Lines : lists the program lines containing faults;

• Faults’ Types : specifies the types of each fault in the program;

• Repair Actions : enumerates the required repair actions to fix the faulty instructions/expressions,

with possible actions including Insert, Replace, Remove, or Move;

• Suggested Repairs : provides a list of suggested repairs for each identified faults in the program;

• Next Correct Submission : indicates the path to the subsequent correct submission by the same

student, if available.

Table 4.2 presents the various types of faults used to annotate programs in C-PACK-IPAS. For each

manually annotated fault type, the table presents the count of faulty programs exhibiting that specific

fault, categorized by each exercise of Lab 02. The most prevalent fault types include Presentation

Error (differences only in white spaces), Incorrect Output (output is incorrect), and Uninitialized Variable.

Additionally, at the bottom of Table 4.2, the average number of faults in programs for each exercise of

Lab 02 is provided. All annotations are stored in two formats: as plain text (txt) files and within an

sqlite3 database.

Organization C-PACK-IPAS is structured by lab and exercise, organized chronologically by academic

year. Each program is stored in its respective folder, along with the program’s output results for the test

suite and the previously described handmade annotations.

4.3 IPAS Description

The set of IPAS corresponds to three different lab classes of the introductory programming course

to the C programming language. Each lab class focuses on a different topic of the C programming lan-

guage. In Lab02, the students learn how to program with integers, floats, IO operations (mainly printf

and scanf), conditionals (if-statements), and simple loops (for and while-loops). In Lab03, the students

learn how to program with loops, nested loops, auxiliary functions, and chars. Finally, in Lab04, the stu-

dents learn how to program with integer arrays and strings. The textual description of each programming
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Table 4.3: The number of programs repaired by VERIFIX, CLARA without using clusters and CLARA using
clusters.

Lab 02
Unsuccessful

Repair Method % Fixed % Structural Mismatch % Unsupported Features % Other Errors/Exceptions % Timeouts (600s)
Verifix 93 (19.14%) 92 (18.93%) 55 (11.32%) 246 (50.62%) 0 (0.0%)

Clara (No Clusters) 275 (56.58%) 210 (43.21%) 0 (0.0%) 1 (0.21%) 0 (0.0%)
Clara (Clusters) 346 (71.19%) 12 (2.47%) 0 (0.0%) 33 (6.79%) 95 (19.55%)

Lab 03
Unsuccessful

Repair Method % Fixed % Structural Mismatch % Unsupported Features % Other Errors/Exceptions % Timeouts (600s)
Verifix 0 (0.0%) 0 (0.0%) 699 (100.0%) 0 (0.0%) 0 (0.0%)

Clara (No Clusters) 11 (1.57%) 511 (73.1%) 138 (19.74%) 39 (5.58%) 0 (0.0%)
Clara (Clusters) 168 (24.03%) 65 (9.3%) 138 (19.74%) 328 (46.92%) 0 (0.0%)

Lab 04
Unsuccessful

Repair Method % Fixed % Structural Mismatch % Unsupported Features % Other Errors/Exceptions % Timeouts (600s)
Verifix 0 (0.0%) 6 (2.44%) 237 (96.34%) 3 (1.22%) 0 (0.0%)

Clara (No Clusters) 0 (0.0%) 107 (43.5%) 138 (56.1%) 1 (0.41%) 0 (0.0%)
Clara (Clusters) 36 (14.63%) 18 (7.32%) 138 (56.1%) 54 (21.95%) 0 (0.0%)

assignment can be found in the public GitHub repository, and the input/output tests used to evaluate se-

mantically the set of students’ submissions. Moreover, there is also a reference implementation for each

IPA in the public git repository that can be used by program repair frameworks that only accept a single

reference implementation to repair incorrect programs. Appendix A.1 presents the entire list of IPAS.

4.4 Experimental Results

To evaluate C-PACK-IPAS, we used two publicly available state-of-the-art program repair tools for

fixing introductory programming assignments (IPAS): CLARA [2] and VERIFIX [9]. We simply focused

on the set of semantically incorrect programs which is composed by 1434 programs as presented in

Table 4.1.

CLARA and VERIFIX VERIFIX [9] aligns the control flow graph (CFG) of an incorrect program with the

reference solution’s CFG. Then, using that alignment relation and MAXSMT solving, VERIFIX proposes

fixes to the incorrect program. VERIFIX also requires a compatible control flow graph between the in-

correct and the correct program. On the other hand, to repair an incorrect program, CLARA [2] receives

either one or a set of correct programs. This set of programs corresponds to clusters’ representatives

produced by CLARA. During CLARA’s repair process, if none of the correct programs provided has an

exact match with the incorrect submission’s control flow, then CLARA is not able to repair the program

and returns a Structural Mismatch error. Otherwise, CLARA gathers the set of repairs using each correct

program and returns the minimal one. Since CLARA can take advantage of several correct implemen-

tations from previous years for a given IPA, we fed CLARA all correct programs, from the three different

academic years, to generate clusters for each IPA in our benchmark. Furthermore, we also run CLARA

using the faculty’s reference implementation for each IPA, i.e., CLARA uses a single program and not

a set of clusters’ representatives. Moreover, we run VERIFIX using also the reference implementation

since VERIFIX can only accept a single correct program as input.
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Experimental Setup All the experiments were conducted on an Intel(R) Xeon(R) Silver computer with

4210R CPUs @ 2.40GHz, using a memory limit of 32GB and a timeout of 600 seconds.

Results Table 4.3 presents the number of programs repaired by VERIFIX, CLARA (utilizing a single

reference implementation), and CLARA (utilizing its own clusters). The results indicate that VERIFIX

demonstrates success primarily in Lab 02, repairing approximately 19% of the programs. However, VE-

RIFIX encounters challenges in repairing 80% of Lab 02 and the entire set of programs from Lab 03 and

Lab 04. The primary factor influencing VERIFIX’s performance is its limited support for certain C Library

functions utilized in several exercises. For instance, nearly all exercises in Lab 03 involve the use of C

Library functions such as putchar or getchar, which are not supported by VERIFIX.

As previously mentioned, if none of the correct programs provided matches the control flow of the

incorrect submission exactly, CLARA issues a structural mismatch error. Table 4.3 reveals that CLARA,

when employing a reference implementation, exhibits a notably higher percentage of structural mismatch

errors compared to CLARA utilizing clusters. This difference arises because clusters, with multiple pro-

grams, offer various control flow options, leading to a reduced rate of structural mismatches. Additionally,

CLARA generates a set of repairs for each cluster’s representative. Therefore, a higher number of clus-

ters corresponds to more time spent in the repair process. This constitutes one of the primary reasons

for the increased occurrence of timeouts observed with CLARA when utilizing clusters as opposed to not

using clusters.

Figure 4.1 presents a cactus plot illustrating the CPU time allocated for repairing each program (on

the x-axis) in relation with the number of successfully repaired programs (on the y-axis) across the

three different repair techniques. The legend is organized in descending order based on the count

of programs successfully repaired. Notably, VERIFIX, within the 60-seconds, repairs 90 out of 1434

programs (approximately 6.5%). In comparison, CLARA, utilizing a reference implementation, repairs

286 programs (20%), while employing its own clusters allows CLARA to repair around 500 programs

within the same time limit (approximately 35%).

Figure 4.2 illustrates a scatter plot comparing the CPU time spent using CLARA’s clusters against

running CLARA with the faculty’s reference implementation (no clusters). Each data point in the plot

represents a program, where the x-value (corresponding to using CLARA’s clusters) and y-value (repre-

senting no clusters) denote the CPU time spent on repairing that program.

If a point falls below the diagonal, it indicates that using a reference implementation outperformed

using clustering. In this scenario, CLARA, with its own clusters, repairs each program more slowly than

with a single correct program. Consequently, when considering programs repaired by both clustering

methods, not using clusters is faster, although repairs a significantly smaller number of programs, as

presented in Table 4.3. Additionally, Figure 5.8 highlights that the set of programs repaired by CLARA

differs when using a reference implementation compared to clusters.

In short, we evaluated two state-of-the-art semantic program repair tools tailored for IPAS. CLARA

was the clear winner, repairing 550 programs equivalent to 38.4% of C-PACK-IPAS. This outcome indi-

cates ample room for improvement. Given that C-PACK-IPAS encompasses 25 distinct IPAS of varying
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Figure 4.1: Cactus plot - The time spent by each method repairing each semantically incorrect submis-
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Figure 4.2: Scatter plot - Time Performance (600s) - CLARA (using clusters) VS CLARA (reference
implementation).

complexities, it stands as a valuable resource for the development of advanced program repair tools

capable of addressing more intricate IPAS. Moreover, C-PACK-IPAS [171] has also proven success-

ful in evaluating various works across program analysis [172, 173], program transformation [174], and

program clustering [42].

4.5 Related Work

The number of publicly available benchmarks to help develop and evaluate new program repair tools

is significantly small [174]. The ITSP dataset [8] has been used by other automated software repair
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tools [8, 9] that use only one reference implementation. This dataset is also a collection of C programs

although it is well balanced, i.e., the number of correct submissions is closer to the number of incorrect

submissions in this dataset. The INTROCLASS dataset [175] is a collection of C programs submitted

to six different IPAS and has the information about the number of defects in each program and the

total number of unique defects for each IPA. CODEFLAWS [176] is a dataset of programs submitted for

programming competitions on the Codeforces website. Lastly, BUGSC++ [177] is a benchmark that

compiles real-world bugs gathered from 22 open-source C/C++ projects.

In the context of the fault localization problem, TCAS [178] stands out as a well-known program

benchmark extensively utilized in the literature. This benchmark comprises a C program and multiple

versions of it with intentionally introduced faults, with known positions and types of these faults. More

program benchmarks are available for other languages than the C programming language. For exam-

ple, the dataset of Python programs used to evaluate REFACTORY [11] is also publicly available. More

datasets for automated program repair applied to industry software are also available 1.

4.6 Conclusion

C-PACK-IPAS, a C90 Program benchmark of introductory programming assignments (IPAS), is a

publicly available benchmark of students’ submissions for 25 different programming assignments. C-

PACK-IPAS has a set of semantically correct and incorrect implementations as well as syntactically

faulty programs submitted for each IPA. To the best of our knowledge, C-PACK-IPAS is one of the few, if

not the only, benchmark of IPAS written in the C programming language that contains both semantically

and syntactically incorrect students’ implementations and diverse correct implementations for the same

IPA. Thus, C-PACK-IPAS can help evaluate novel semantic, as well as syntactic, automated program

repair frameworks whose goal is to assist novice programmers in introductory programming courses.

We have also manually fixed and annotated some of C-PACK-IPAS’s semantically incorrect programs

with several program features to help developing all sort of program analysis frameworks. Additionally,

we evaluated C-PACK-IPAS using two state-of-the-art semantic program repair tools tailored for IPAS,

CLARA and VERIFIX.

1https://program-repair.org/benchmarks.html
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5
INVAASTCLUSTER: On Applying

Invariant-Based Program Clustering to

Introductory Programming

Assignments
“Good problems and mushrooms of certain kinds have something in common; they grow in clusters.”

– G. Polya, How To Solve It [179].
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Typically, automated program repair (APR) techniques focused on introductory programming assign-

ments (IPAS) use program clustering to take advantage of previous correct student implementations to

repair a new incorrect submission. These repair techniques use clustering methods since analyzing all

available correct submissions to repair a program is not feasible. However, conventional clustering meth-

ods rely on program representations based on features such as abstract syntax trees (ASTS), syntax,

control flow, and data flow.

This chapter proposes INVAASTCLUSTER, a novel approach for program clustering that uses dy-

namically generated program invariants to cluster semantically equivalent IPAS. INVAASTCLUSTER s

program representation uses a combination of the program’s semantics, through its invariants, and its

structure through its anonymized abstract syntax tree (AASTS). Invariants denote conditions that must

remain true during program execution, while AASTS are ASTS devoid of variable and function names,

retaining only their types. Our experiments show that the proposed program representation outper-

forms syntax-based representations when clustering a set of correct IPAS. Furthermore, we integrate

INVAASTCLUSTER into a state-of-the-art clustering-based program repair tool. Our results show that

INVAASTCLUSTER advances the current state-of-the-art when used by clustering-based repair tools by

repairing around 13% more students’ programs, in a shorter amount of time.

The work presented in this chapter is currently under review.

5.1 Introduction

Over the last few years, several program repair tools [2, 10, 11, 34] have appeared that use a

large number of diverse correct implementations submitted for each IPA by previously enrolled stu-

dents. Given an incorrect student submission, these frameworks use clustering methods to find the

most similar correct submission from previous years to provide a minimal set of repairs to the student.

Using the same reference implementation to fix all incorrect programs can potentially generate a large

set of repairs. On the other hand, having a similar correct implementation allows computing a smaller

set of repairs. However, comparing on the fly all previous correct student submissions against a given

incorrect submission is not feasible.

To tackle this problem, different program clustering approaches have been used in program repair

tools, which enable focusing only on the representatives of each cluster. CLARA [2] clusters the correct

programs based on their dynamic equivalence [35] and control flow, i.e., the order in which program

statements, instructions, and function calls are executed. SARFGEN [10] computes program represen-

tations based on each program’s abstract syntax tree. SEMCLUSTER [34] uses each program’s control

and data flow. A program’s data flow tracks the number of occurrences of consecutive values a variable

takes during its lifetime.

The problem of program equivalence, i.e., deciding if two programs are equivalent, is undecidable [36,

37]. On that account, finding an adequate representation for programs that performs well on program

clustering is a challenging problem. The previously-mentioned program representations used in the field

of program repair may be brittle. For instance, consider two programs that calculate the sum of natural
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numbers from 1 to a given number, one using a while-loop and the other a for-loop. Despite producing

the same result, their syntactic and structural differences pose challenges for conventional program

representations to recognize their semantic equivalence, as we will show in Section 5.2. To address this

problem, we propose to use dynamically-generated program invariants to cluster semantically equivalent

programs, overcoming some of the identified weaknesses. A program invariant is a condition that must

always be true at a given step of the program during its execution (see Section 5.3). Program invariants

are usually used to assert assurances throughout a program (assertions).

This chapter proposes to leverage the information of a program’s structure using its abstract syntax

tree (AST) together with semantic information provided by its invariants. Previous research has been

conducted regarding using invariants to promote patch diversity (i.e., diversity in the set of possible

repairs to a given incorrect program) on search-based program repair [180–182]. These works use

DAIKON [59] to generate invariant sets for each possible patch. DAIKON is a system that infers likely

dynamically generated invariants observed over several program executions. Therefore, these invariants

depend on the program executions. Nevertheless, previous work [180] showed promising results in using

invariants to semantically cluster patches to provide the user with a semantic reason for similar patches.

This chapter presents a novel approach for clustering introductory programming assignments (IPAS)

leveraging their sets of invariants. Our approach for clustering IPAS also takes into account each pro-

gram’s code and anonymized abstract syntax tree (AAST). AASTs are essentially ASTS stripped of

variable and function identifiers, preserving only their respective types (see Section 5.4.2). The main

contribution of this work is a vector representation of programs based on their invariants and AASTS,

bringing together their semantic and syntactic features. The proposed clustering technique has been

implemented in a framework INVAASTCLUSTER. This tool has been designed as an independent clus-

tering tool. Therefore, it can be used to help evaluate students’ submissions for IPAS by clustering

semantically equivalent solutions for programming exercises. However, INVAASTCLUSTER can also

be easily integrated into any clustering-based program repair tool for IPAS. Furthermore, INVAAST-

CLUSTER can even be used in a plagiarism detection tool, like MOSS [183].

Figure 5.1 shows the generic architecture of clustering-based program repair frameworks [2, 10, 34].

These frameworks receive an incorrect student submission, a test suite, and a collection of N correct

student submissions for the same IPA. For scalability concerns, these frameworks eliminate, through

clustering techniques, semantically equivalent solutions, i.e., dynamically equivalent correct programs,

given the provided input-output test suite. Those clustering approaches try aggregating the set of N cor-

rect solutions into K semantically different clusters (N � K). Finally, the repair tool uses these K

clusters’ representatives to repair the provided incorrect student submission. As Figure 5.1 shows, INV-

AASTCLUSTER can be used as the clustering technique of those clustering-based program repair tools.

However, some program repair tools [9, 121] use a single reference implementation provided by the

lecturer to repair a student’s program. Typically, these tools can only use one correct implementation

to repair each program. Therefore, INVAASTCLUSTER was designed to be also capable of finding on

a set of correct student submissions which submission is the closest correct solution to the incorrect

program. Thus, INVAASTCLUSTER can suggest a specific reference implementation for each incorrect

59



Correct 
Submissions

1.

2.

N.

InvAAST
Cluster

Incorrect
Submission

Test 
Suite

Submission
RepairedRepair

Framework

K correct 
programs
representatives

Figure 5.1: Clustering-based Program Repair.

submission that may require fewer changes to fix the program.

We evaluate INVAASTCLUSTER on C-PACK-IPAS [171], a real-world student programs developed

during a university introductory programming course. Experimental results show that the proposed

invariant-based representation improves upon syntax-based representations when performing program

clustering. Additionally, we integrate INVAASTCLUSTER into CLARA, a clustering-based program repair

tool, in order to compare our clustering technique against CLARA’s clustering method, which is the

current publicly available state-of-the-art method for clustering IPAS.

To summarize, this chapter makes the following contributions:

• We propose a novel and efficient approach for clustering submissions for introductory programming

assignments (IPAS) based on the submissions’ sets of invariants and AASTS representations.

• We present a study showing the results of using our program clustering tool, INVAASTCLUSTER,

on a set of 1620 real-world IPAS correct submissions to show the effectiveness of invariant-based

program clustering.

• We compare INVAASTCLUSTER with the clustering method used by the currently available state-

of-the-art program repair tools. Experimental results show that INVAASTCLUSTER outperforms

state-of-the-art clustering methods, allowing clustering-based program repair tools to fix around

13% more IPAS in a shorter amount of time.

• The INVAASTCLUSTER framework is publicly available on GitHub at https://github.com/pmorva-

lho/InvAASTCluster.

The structure of the remainder of this chapter is as follows. First, Section 5.2 illustrates the strengths

of using invariants for program representation. Section 5.3 describes how to gather and represent sets

of program invariants. Section 5.4 discusses several program representations, including a new invariant-

based program representation. Section 5.5 discusses the implementation of INVAASTCLUSTER. Sec-

tion 5.7 presents the experimental evaluation that supports our claim that invariant-based program repre-

sentations are beneficial to cluster programming assignments semantically. Finally, Section 5.8 presents

the related work, and the chapter concludes in Section 5.9.
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5.2 Motivation

Current program representations for repairing students’ programming assignments leverage certain

program features, such as code syntax [13], abstract syntax tree [10], control flow [2], and data flow [34],

to encode each program into a vector representation. However, all of these features have some weak-

nesses when we want to cluster programs based on their semantics.

Example 6. Consider the following two programs written in C, that compute the sum of all the natural

numbers from 1 to a given number n, i.e.,
∑n

i=1 i.
1 int n, sum = 0, i;

2 scanf("%d", &n);

3 i = 0;

4 while(i < n) {

5 i++;

6 sum = sum + i;

7 }

8 printf("%d\n",sum);

1 int j, n, s = 0;

2 scanf("%d", &n);

3

4 for(j = n; j > 0; j--)

5 {

6 s = j + s;

7 }

8 printf("%d\n", s);

Observe that the program on the left, in Example 6, uses a while-loop that iterates over the natural

numbers from 0 to n. The program on the right uses a for-loop that iterates from n to 0 in decreasing order.

However, both programs are semantically equivalent since both have the same result. Nevertheless, if

we build a program representation using the programs’ syntax or abstract syntax trees, both programs

will have very different representations. In terms of syntax, the names of the used variables (e.g. i, j,

s, sum) and structures (e.g. while, for) are different. Additionally, in terms of data flow and dynamic

equivalence, both programs are also different since, for example, the values assigned to the variable i

go from 0 to n in the first program while in the other the variable j is assigned the same values but in

decreasing order.

Consider that the variable n is always assigned to a natural number, n > 0. If a dynamic invariant

detector (e.g. DAIKON [59]) is used, the following set of invariants is observed:

• In the first program, at each iteration of the while-loop: n > 0; sum ≥ 0; 0 ≤ i ≤ n.

• In the second program, at each iteration of the for-loop: n > 0; s ≥ 0; 0 ≤ j ≤ n.

Therefore, after renaming some variables (sum → s; i → j), these two sets of invariants would be

considered equivalent. Hence, using sets of invariants allows finding semantically equivalent programs

that can differ in their syntax and/or data flow.

Hence, this chapter aims to improve the semantic representation of programming exercises using

their sets of invariants. These invariants are dynamically detected by DAIKON [59], at the beginning and

at the end of each scope, over several program executions using a predefined set of test cases for each

programming assignment. In addition to the set of invariants, which provides semantic information about

a program, we also leverage the information of a program’s structure to its anonymized abstract syntax

tree (AAST), i.e., an AST after removing all the variables’ names.
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CLARA. Furthermore, in this chapter, we compare our clustering approach against CLARA’s clustering

method since, to the best of our knowledge, CLARA [2] stands as the sole publicly accessible state-

of-the-art clustering-based repair tool for repairing IPAS. CLARA leverages correct solutions from past

years’ submissions for a programming assignment to suggest potential semantic repairs for an erroneous

program submitted by a new student.

CLARA’s Clustering Approach CLARA assigns two programs to the same cluster if they share iden-

tical control flow structures and possess a bijective mapping between their variables [135]. However, if

there is any deviation in the control flow graphs or a lack of bijective relation between variables, CLARA

returns a ’structural mismatch error’, resulting in these programs not being clustered together. For each

cluster generated, CLARA maintains a json file containing all relevant information about the programs,

including expressions and variables.

Revisiting the programs illustrated in Example 6, CLARA does not detect them as matching. Further-

more, when clustering both programs using CLARA’s method, they are assigned to separate clusters.

CLARA’s Repairing Process. To repair an incorrect program, CLARA receives either a single or multi-

ple correct programs, which can be representative of clusters produced by CLARA itself. In such cases,

CLARA also necessitates access to all pertinent information regarding the programs contained within

each cluster, stored in individual json files. CLARA proceeds to generate a series of repairs for each

cluster autonomously, wherein a repair entails adjusting a program to align an expression from the incor-

rect submission with an expression from a program within the cluster. It is important to emphasize that

CLARA’s repair suggestions are confined to modifying program expressions and do not involve altering

control flow. If CLARA encounters an incorrect program whose control flow does not precisely match any

of the correct programs provided, it flags a "Structural Mismatch" error, indicating an inability to repair

the program. Moreover, CLARA is unable to use the programs outlined in Example 6 for repairs, as it

does not identify them as matching.

In this chapter, our focus is not on enhancing CLARA’s repair procedure. Instead, we aim to compare

our clustering approach against CLARA’s clustering method, and evaluate CLARA’s repair performance

when utilizing its own clusters versus INVAASTCLUSTER’s clusters of programs.

5.3 Program Invariants

Program invariants are conditions that must always be true at a given point during a programs exe-

cution. Dynamically generated program invariants are likely invariants observed during several program

executions for a given program. The dynamically generated set of program invariants provides informa-

tion about a programs behavior, i.e., its semantics. If two programs share the same program invariants,

they are likely semantically equivalent. Hence, an invariant-based representation of programs should

allow us to find out which student submissions in a given programming assignment have the same or

similar behavior.
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In order to compare two sets of program invariants, a relation between the variables in both sets is

required. We propose to rename all the variables in a program based on the variables type and usage.

All the variables are renamed the first time they are assigned to some value in a program. The variables

new name is a concatenation between its type and a counter for how many variables have already been

renamed in the program. With this technique of variable renaming, two programs sets of invariants

can be easily compared. This method is very simple and fragile, although IPAS are usually relatively

small and simple imperative programs. Therefore, this naive approach should work for IPAS. Example 7

shows two programs whose variables were renamed using this variable renaming method.

Example 7. Consider again the programs presented in Example 6, it is important to note that all vari-

ables are renamed based on their usage. Specifically, each variable is renamed the first time it is

assigned a value in the program. For instance, in the first program, n is renamed to int2 since it is the

second variable to be used, in the scanf (line 2). After renaming all variables based on their usage,

the following mapping of variables for the first program is obtained: {sum → int0; n → int1; i → int2}.

Applying the same procedure to the second program yields the mapping {s→ int0; n→ int1; j → int2}.

Thus, the two programs after renaming are as follows:

1 int int1, int0 = 0, int2;

2 scanf("%d", &int1);

3 int2 = 0;

4 while(int2 < int1){

5 int2++;

6 int0 = int0 + int2;

7 }

8 printf("%d\n",int0);

1 int int2,int1,int0 = 0;

2 scanf("%d", &int1);

3

4 for(int2 = int1; int2 >= 0; int2--)

5 {

6 int0 = int2 + int0;

7 }

8 printf("%d\n", int0);

Hence, the set of invariants of both cycles (for and while) is the same: {int1 > 0; int0 ≥ 0;

0 ≤ int2 ≤ int1}.

In this work, we use DAIKON [59] to compute dynamically-generated likely invariants observed across

multiple program executions for each student submission, employing a predefined set of input-output

tests for each programming assignment. DAIKON’s default format for program invariants combines Java

and mathematical logic, aiming to convey meaning concisely to programmers.

To adapt DAIKON for small imperative C programs, we initially apply a method for variable renaming

to all student submissions. Next, we inject empty functions into each scope and pass the variables of

the respective scope as parameters. A scope is defined as each block of statements without branching,

and in cases of nested scopes, we include all variables available in the parent scopes as parameters

as well. We adhere to conventional methods of modeling control flows, such as, computing invariants

before a loop, before a loop guard, inside a loop guard, inside the loop, and after the loop.

Finally, DAIKON is executed using all input tests for each programming assignment. The dynamically-

generated invariants produced by DAIKON are stored for each program’s structure or scope (e.g., if

statements, loops, blocks). We do not specifically ask DAIKON to generate any type of invariant.

The only type of invariants we turned off is the OneOf invariants (e.g., x is OneOf {1,2}) that may cause
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overfitting to the test suite. Example 8 presents the two programs, previously presented in Example 7,

after being injected with empty functions in each program scope.

Example 8. For Daikon [59] to work on small imperative programs, we have to call empty functions at

the beginning of each scope and pass all the visible variables, in that scope, as parameters.

Consider again the programs presented in Example 7, after renaming all the variables based on

their usage. These programs, after being injected with empty functions, would look like the following

programs:
1 scope_1();

2 int int1, int0 = 0, int2;

3 scanf("%d", &int1);

4 int2 = 0;

5 while(int2 < int1,

6 while_1(int0, int1, int2)){

7 scope_2(int0, int1, int2);

8 int2++;

9 int0 = int0 + int2;

10 }

11 scope_3(int0, int1, int2);

12 printf("%d\n",int0);

1 scope_1();

2 int int2, int1, int0 = 0;

3 scanf("%d", &int1);

4

5 for(int2 = int1; int2 >= 0,

6 for_1(int0, int1, int2); int2--)

7 {

8 scope_2(int0, int1, int2);

9 int0 = int2 + int0;

10 }

11 scope_3(int0, int1, int2);

12 printf("%d\n", int0);

5.4 Program Representations

As the primary objective of this work is to cluster programs based on semantic and syntactic features,

each program is represented as a feature vector. In particular, we propose to use a bag of words (BoW)

model (see Definition 16). Using BoW models, we generate vector representations for each student

submission based on several features. These features may include the Abstract Syntax Tree (AST), set

of invariants, or even the program code. It is also possible to combine several of these features. Next,

all the vector representations used in this work are described.

5.4.1 Syntax Vectors

The syntax vector program representation is the simplest to compute since it is based solely on

the program syntax (code). In the interest of comparing the syntax of programs independently of the

variables’ names, first, all the programming solutions are renamed using the method described in Sec-

tion 5.3. Next, all the student submissions are tokenized, and a vocabulary with all the available tokens

is obtained. Then, vectors for each student submission are created, where the ith entry is the number

of times the ith word of the vocabulary appears in the program. Finally, the numbers of occurrences in

these vectors are normalized.
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5.4.2 Anonymized Abstract Syntax Tree Vectors

An alternative representation is to compute a bag of words using the strings of the abstract syntax

trees (ASTs) of all submissions for a given programming assignment. This representation has already

been used in program clustering [10, 137]. However, we represent each AST as a string and remove

all names of variables and functions, keeping only their respective types in the AST. Thus, for each sub-

mission, we have an anonymized abstract syntax tree ( AAST) (see Definition 22). With these AASTS,

we keep the information about a program’s structure, ignoring the name of its variables. The infor-

mation about a program’s structure is kept since an AAST contains all the non-terminal symbols of

the language’s grammar. Next, a vocabulary is built with the tokens present in all submissions, and a

normalized vector representation for each AAST is computed.

5.4.3 Invariant Vectors

Another approach is to use an invariant-based vector representation. In this case, we apply the bag

of words model to the set of invariants of the programs. We gather all program invariants as described

in Section 5.3. Previous work on the use of invariants to detect semantic similarity between possible

patches to a program [180] showed that using string distance measure between invariant sets had similar

results and was more efficient than computing the logical similarity between their corresponding sets of

program invariants. Therefore, we represent our invariants in the form of strings. However, instead

of using a string distance measure between invariant sets (e.g., Levenshtein edit distance [184]), we

create a bag of words model with those sets of invariants.

5.4.4 Combination of Program Features

Finally, observe that these vector representations (Syntax, AAST, Invariants) can be combined, thus

taking advantage of using several types of features. For example, we use a bag of words in our work

using the program’s AST and the sets of invariants. In this case, first, we build two BoW representations

independently, one based on AASTs and another one based on invariants. Then, we concatenate,

for each submission, the submission’s vector representations using the two BoWs, achieving a vector

representation based on the program’s AAST and set of invariants. Both vectors, from the Invariants

BoW and the AAST BoW, are normalized before concatenating. Therefore, the invariants and the

AASTS have an equal contribution to the AAST + Invariants BoW. The program syntax was not included

in this last representation since the BoW based on syntax has a large vocabulary that generates vectors

that are too sparse.

5.5 Implementation

This section presents the implementation of our program clustering technique. We implemented the

proposed approach in the tool INVAASTCLUSTER (Invariants and AAST Program Clustering). INV-
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Figure 5.2: The high-level overview of INVAASTCLUSTER.

AASTCLUSTER is publicly available on GitHub at https://github.com/pmorvalho/InvAASTCluster. Fig-

ure 5.2 shows the overall architecture of INVAASTCLUSTER. Given a set of N correct submissions and

a test suite, INVAASTCLUSTER computes K clusters of programs (N ≥ K) and returns the set of K

clusters’ representatives, i.e., the set of correct programs that are closest to the center of each one of

the K clusters. INVAASTCLUSTER is divided into six main modules: variable renamer, invariants de-

tector, AASTs processor, bag of words (BoW) maker, clustering procedure, and the selection of each

cluster representative.

Variable Renamer. In this module, INVAASTCLUSTER renames all variables of each one of the N

given correct submissions. All variables are renamed based on their usage in each program, as ex-

plained in Section 5.3. INVAASTCLUSTER uses pycparser1 to find all variables in a program. Then,

when a variable is first used in the program (e.g., assignment) that variable receives a new name con-

sidering the variable’s type.

Invariants Detector. INVAASTCLUSTER uses DAIKON [59] to compute dynamically-generated invari-

ants for a given test suite (see Section 5.3). After all the variables have been renamed, this module

produces a set of invariants for each program’s scope using the provided test suite. All these sets of

invariants are then sent to the BoW maker module.

AAST Processor. In this step, INVAASTCLUSTER also uses pycparser to compute a program’s ab-

stract syntax tree (AST). Additionally, INVAASTCLUSTER removes all the variables’ and functions’ iden-

tifiers from the AST to transform the program’s AST into an anonymized abstract syntax tree (AAST),

conserving only the program’s structure.

Bag of Words (BoW) Maker. This module receives three sets as input: (1) the set of correct program

submissions with all their variables renamed from the Variable Renamer module; (2) all the program’s

AASTs from the AAST processor, and (3) the set of the programs’ dynamically-generated invariants.

1https://github.com/eliben/pycparser
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The BoW Maker computes the bag of words (BoW) model (see Definition 16) that is going to be used to

generate vector representations for each program.

Depending on this module’s parameterization, the BoW maker can compute four different bags of

words: (1) based on the programs’ code (syntax), (2) based on the programs’ AASTs (structure), (3)

using the set of programs’ invariants (semantics) and (4) joining the programs’ AASTs and their sets of

invariants (structure + semantics). To compute these BoW models, INVAASTCLUSTER uses scikit-learn

package, feature_extraction2.

INVAASTCLUSTER tokenizes the input strings into tokens of size n (n-grams) to build a vocabulary

with all the submissions’ information, i.e., invariants, syntax, or AASTs. In our case, we define n = 3

(3-grams) for this parameter of the BoW maker. Afterward, once a vocabulary has been collected, INV-

AASTCLUSTER computes a vector representation for each program by counting the number of times

each token appears in the program’s information string (invariants, syntax, or AASTs) normalizing the

vector by the length of the BoW’s vocabulary.

Clustering. The main goal of INVAASTCLUSTER is to reduce the vast number of correct submissions,

N , into a significantly smaller number of program representatives, K, to help program repair frameworks

to become more scalable (if N � K). Therefore, INVAASTCLUSTER accepts as parameter the num-

ber of desired clusters K, which is by default 10% of N . The BoW maker module passes the set of

vector representations for each one of the N correct submissions to the clustering procedure. Then,

INVAASTCLUSTER uses the KMeans algorithm to cluster these submissions into K different clusters.

The KMeans algorithm receives as a parameter the number of clusters it should return (K). The KMeans

algorithm divides the set of observations, in our case, students’ programs, into K clusters, where each

program is assigned to the cluster with the nearest mean [185]. INVAASTCLUSTER uses KMeans but

other clustering algorithms can be applied. INVAASTCLUSTER provides users with the option to select

from various clustering algorithms offered in scikit-learn 3: Affinity Propagation, MeanShift, MiniBatch

KMeans, Agglomerative Clustering, Ward, Spectral Clustering, DBSCAN, OPTICS, BIRCH, and Gaus-

sian Mixture.

Clusters’ representatives selection. In this last module, INVAASTCLUSTER chooses a program rep-

resentative for each cluster. For each one of the K clusters, INVAASTCLUSTER computes the program

closest to the center of the cluster using the Euclidean distance. Afterward, INVAASTCLUSTER returns

a set of K clusters’ representatives.

Easy upgradability. INVAASTCLUSTER was designed with modularity in mind. On that account, one

can easily remove, add or modify any module of INVAASTCLUSTER. For example, one can use other

models instead of the bag of words model, only needing to replace that specific procedure.

2sklearn.feature_extraction.text.TfidfVectorizer
3https://scikit-learn.org/stable/modules/clustering.html
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Figure 5.3: Finding the closest correct program, i.e., the closest correct program representative to the
incorrect submission vector representation. This approach passes only one program to the repair tool
instead of K programs.

Several repair tools [9, 11, 121] are implementation-based program repair tools, i.e., they receive a

single correct program to act as a reference implementation for repairing any given incorrect program.

Hence, these frameworks are not designed to take advantage of a vast number of semantically different

correct submissions. These frameworks can be run in parallel. However, they typically do not have a

procedure to choose which among several possible repairs is the best (minimal). These tools compute

the set of repairs based on the reference implementation. INVAASTCLUSTER cannot be used on these

frameworks since its output is a set of K clusters’ representatives. Consequently, in order to allow these

non-clustering-based frameworks to take advantage of INVAASTCLUSTER, we developed an additional

module that finds the closest correct program representative to an incorrect program. Our motivation is

that with the closest correct submission from previous years, these tools can provide the student with a

minimal set of repairs.

Closest correct program finder. The overall idea of this module is presented in Figure 5.3. Given

a student’s incorrect submission, INVAASTCLUSTER finds which of the K clusters’ representatives, re-

turned by INVAASTCLUSTER’s selection module, is the closest program to the incorrect submission.

This is done by identifying the smallest Euclidean distance between the vector representation of each

one of the clusters’ representatives and the incorrect submission. Hence, we can identify one correct

program that is most likely the reference implementation to use for repairing a specific student’s pro-

gram. In the example of Figure 5.3, INVAASTCLUSTER would return only the program C to the repair

framework since it is the closest program to the incorrect submission.

5.6 Introductory Programming Assignments (IPAS) Datasets

C-PACK-IPAS. In order to evaluate the program representations described in Section 5.4, we used

C-PACK-IPAS described in Chapter 4.

Since this work focuses only on program semantics, only submissions that compile without any

errors were selected. The set of submissions was split into two sets: correct submissions and incorrect

submissions. The students’ submissions that satisfied a set of input-output test cases for each IPA
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Table 5.1: Description of our dataset of IPAS.

Labs #IPAs #Correct
Submissions

#Incorrect
Submissions

#IPAs
(CLARA)

#Correct
Submissions

(CLARA)

#Incorrect
Submissions

(CLARA)
Lab02 10 789 486 10 738 118
Lab03 7 363 699 5 244 35
Lab04 8 468 246 5 159 43
Total 25 1620 1431 20 1141 196

Table 5.2: Description of ITSP [8] dataset. Correct programs that our approach and CLARA do not
support were removed.

ITSP
Dataset #IPAs #Correct

Submissions
#Incorrect

Submissions
Lab3 4 45 63
Lab4 6 74 75
Lab5 7 64 62
Lab6 6 19 24
Total 23 202 224

were considered correct and selected as benchmark instances. The submissions that failed at least one

input-output test were considered incorrect.

Table 5.1 presents the number of submissions gathered for C-PACK-IPAS [186]. For 25 different

programming exercises, this dataset contains 1620 different correct and 1431 incorrect submissions.

CLARA’s clustering method does not support all the features present in the correct submissions collected.

Hence, as shown in Table 5.1, after removing the set of exercises and programs that CLARA does not

support, we achieved a final set of 1141 correct submissions and 196 incorrect submissions for 20 IPAS.

ITSP. The ITSP dataset has been used by other automated program analysis tools [8, 9, 174]. This

dataset is also a collection of C programs although it is well balanced, i.e., the number of correct sub-

missions is closer to the number of incorrect submissions in this dataset. Table 5.2 presents the number

of programs in the ITSP dataset after we removed the programs that CLARA and our variable renamer

module do not support.

5.7 Experiments

The experimental results presented in this section aim to support our claims that the proposed novel

program representation based on a program’s AAST and its set of program invariants help (1) to effi-

ciently cluster semantically equivalent small imperative programs submitted in IPAS, and (2) to repair

faster and significantly more IPAS’ incorrect submissions in current state-of-the-art clustering-based

program repair tools, such as CLARA [2].

The goal of our experiments was to answer the following research questions:

RQ1. How does invariant-based program clustering compare against AAST and syntax-based cluster-

ing on a set of correct submissions? (Section 5.7.1)
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Table 5.3: The values for the cluster accuracy using four different clustering algorithms on each program
representation after ten different runs, each run using a different seed.

Clustering Algorithm Program Representation Average Median Variance Standard deviation

KMEANS

AAST+Invariants 81.44% 80.65% 0.02% 1.35%
AAST 73.63% 73.70% 0.03% 1.69%
Invariants 78.69% 78.73% 0.01% 0.88%
Syntax 58.05% 58.15% 0.01% 1.22%

MiniBatch KMEANS

AAST+Invariants 79.09% 79.63% 0.05% 2.23%
AAST 72.33% 72.96% 0.10% 3.12%
Invariants 75.83% 76.23% 0.03% 1.68%
Syntax 58.46% 58.21% 0.03% 1.81%

Birch

AAST+Invariants 80.10% 80.09% 0.00% 0.51%
AAST 73.92% 73.55% 0.08% 2.81%
Invariants 77.99% 77.90% 0.01% 0.86%
Syntax 59.05% 58.98% 0.01% 0.94%

Gaussian Mixture

AAST+Invariants 78.89% 79.60% 0.05% 2.26%
AAST 70.97% 71.70% 0.09% 2.92%
Invariants 75.59% 74.81% 0.07% 2.63%
Syntax 57.70% 57.35% 0.02% 1.58%

RQ2. Does CLARA repair more programs using INVAASTCLUSTER’s closest correct submission or its

set of KMEANS clusters’ representatives? (Section 5.7.2)

To answer these research questions, we evaluate INVAASTCLUSTER in two different use cases:

(1) clustering IPAS (Section 5.7.1), and (2) repairing IPAS (Section 5.7.2). For this evaluation, we

have gathered a set of IPAS, previously described in Section 5.6, developed during an introductory

programming university course in C language. Section 5.7.1 presents the first use case where we

perform clustering on the students’ submissions for different IPAS and evaluate its accuracy on different

program representations. Afterward, Section 5.7.2 shows the second use case where we integrate

our program representations into a state-of-the-art program repair tool, CLARA [2], to evaluate if our

clustering technique is able to outperform CLARA’s clustering method, which is the only current publicly

available state-of-the-art clustering method for repairing IPAS. We are going to give our program clusters

for each IPA to CLARA and use CLARA’s repairing process. The idea is to evaluate our clustering

approach being integrated into a clustering-based program repair tool. Program repair is only one of the

several possible applications for our program clustering method.

All of the experiments were conducted on an Intel(R) Xeon(R) Silver computer with 4210R CPUs @

2.40GHz, using a memory limit of 64GB.

5.7.1 Use Case 1: Clustering IPAS

A study was performed to evaluate different program representations by applying program clustering

to the set of correct programs described in Table 5.1. The main idea of this experiment was to evaluate

if program invariants help identify different IPAS’ submissions.

INVAASTCLUSTER was used to cluster the 1620 correct submissions, to different IPAS, into 25 dis-

tinct clusters since our dataset has 25 different programming exercises. Other works [34] that perform

program clustering on IPAS perform an equivalent study on clustering submissions for different exer-

cises. The main reason to cluster programs from 25 different exercises is that we know the ground truth
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Figure 5.4: Comparison between the ground truth (on the right) and the clusters and cluster accuracy
obtained using the KMEANS algorithm (on the left) for each type of program representation.

label for each program since we know for which specific IPA the students submit their assignments.

Otherwise, we would have to manually choose semantically different implementations for the same IPA

and assign labels, which might be subjective.

INVAASTCLUSTER, as explained in Section 5.5, starts by renaming all the variables in the student

submissions. Then uses DAIKON [59] to collect the student submissions’ dynamically generated invari-

ants sets as described in Section 5.3. Lastly, it uses the python library, pycparser4, to compute all the

anonymized abstract syntax trees (AAST) (see Section 5.4.2). Using all these program features, we

computed four different bags of words models. One model for each program representation (syntax,

AAST, and invariants) and one additional model using a combination of a program’s AAST and its invari-

ants set. The program syntax is not included in this last representation since the bag of words based on

program syntax has a large vocabulary that generates vectors that are too sparse.

The following clustering algorithms available in scikit-learn5 were applied to each program represen-

tation: KMEANS, MiniBatch KMEANS, BIRCH and Gaussian Mixture. The KMeans algorithm divides the

set of observations, in our case students’ programs, into n clusters where each program is assigned to

the cluster with the nearest mean. We used the Euclidean distance as the similarity measurement for

KMEANS. MiniBatch KMEANS is similar to KMeans, but instead of using the entire dataset to update

the cluster centers at each iteration, this algorithm uses randomly selected subsets. On the other hand,

BIRCH is a hierarchical clustering algorithm that builds a tree structure to represent the data. It incre-

mentally clusters data points by recursively splitting clusters into subclusters. Finally, a Gaussian Mixture

Model is a weighted sum of n component Gaussian densities where n is the number of clusters [187].

Our discussion centers around these clustering algorithms, as they yielded the most favorable outcomes

in our experiments.

4https://github.com/eliben/pycparser
5https://scikit-learn.org/stable/modules/clustering.html
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Figure 5.5: The values for cluster accuracy using the KMEANS algorithm on each program representation
after ten different runs, each run using a different seed.

Since our dataset of IPAS has 25 different programming exercises, the ground truth has 25 different

clusters. Each student program is a submission to a specific programming exercise (label) that we know.

Consequently, the cluster accuracy metric can be used to evaluate the obtained clusters. With this

metric, each cluster is assigned the label (exercise) which is most frequent in the cluster. Afterward,

the accuracy of this assignment is measured by counting the number of correctly assigned student

submissions and dividing by the number of total submissions. This metric is also known as purity [188].

Table 5.3 presents the average, median, variance, and standard deviation values for the cluster

accuracy for each clustering algorithm on four different program representations after ten different runs.

Each run uses a different seed. Entries highlighted in bold correspond to the highest average/median

accuracy values for each different program representation for all clustering algorithms. One can see that

the AAST + Invariants representation has the best performance considering all the clustering algorithms.

The Invariants BoW has the second highest accuracy, followed by the AAST BoW. Lastly, the Syntax

BoW presents the poorest performance of all. From now on, we focus the discussion on the KMEANS

results since this clustering algorithm achieved the best results (see Table 5.3).

The KMEANS clustering algorithm divides the set of observations, in our case, students’ programs,

into n clusters where each program is assigned to the cluster with the nearest mean [185]. The KMEANS

algorithm receives as a parameter the number of clusters it should return, i.e., it always returns 25

different clusters of programs. Figure 5.5 shows a matrix with the different cluster accuracy values using

the KMEANS algorithm on each program representation for ten different seeds. Each entry is highlighted

accordingly to its value. The lowest value is highlighted in black, and the highest is highlighted in white.

Intermediate values are highlighted in different shades of grey, depending on how far they are from the

lowest value. Matrices with values of the cluster accuracy for the other clustering algorithms can be

found in Appendix B.1.1.

Furthermore, Figure 5.4 presents the results of applying the KMEANS model to each one of the four

program representations being analyzed. To present these results graphically, we used a method for

visualizing high-dimensional data in a 2−dimension map, called T-SNE [189]. Each subfigure corre-

sponds to a different type of representation. The left side of each subfigure shows the clustering results

and the value of the cluster accuracy (right-bottom corner). The right side presents the real clusters

of each programming exercise, i.e., the ground truth represented using each program representation.

Figure 5.4a shows the results after clustering all the student submissions using a syntax representa-
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tion, which resulted in a cluster accuracy of almost 57%. The AAST representation achieved a cluster

accuracy of 74.3% as presented in Figure 5.4b.

Regarding the use of program invariants, Figure 5.4c and Table 5.3 support the idea that program

invariants improve program clustering since this representation obtained a cluster accuracy of 77.3%.

Lastly, Figure 5.4d presents the representation that uses the combination AASTs and invariants sets,

which also shows an improvement compared to the invariant-based representation. This representation

outperforms all the other representations with an accuracy of 83.6%. Furthermore, Table 5.3 shows that

this representation based on AAST and invariants achieved the best cluster accuracy for all clustering al-

gorithms. Another advantage of this representation is that it best separates all the students’ submissions

in different regions of the space, i.e., the majority of the clusters are visibly separated from each other.

Other evaluation metrics for the KMEANS algorithm can be found in Appendix B.1.2 for the interested

reader’s convenience. Clustering metrics such as the Rand index, the adjusted Rand index, the normal-

ized mutual information, the adjusted mutual information, the FowlkesMallows index, the completeness

score, the homogeneity score, and the V measure.

5.7.2 Use Case 2: Repairing IPAS

This section presents the results of integrating INVAASTCLUSTER as the clustering approach for

CLARA [2], a publicly available state-of-the-art clustering-based program repair tool. Since our set of

IPAS, described in Table 5.1, has a small number of incorrect submissions, only 196, for this evaluation,

we have also considered the ITSP dataset [8] described in Section 5.6. Thus, overall we have a total

of 420 incorrect submissions (196 from our dataset plus 224 from the ITSP dataset) and 1343 correct

submissions (1141 from our dataset plus 202 from the ITSP dataset) for 43 different IPAS (20 from our

dataset plus 23 from the ITSP dataset). To fully evaluate our clustering technique for repairing IPAS,

we are going to compare INVAASTCLUSTER’s results against CLARA’s in terms of: (1) the number of

student submissions repaired; (2) the number of clusters produced by each clustering approach for each

IPA; and (3) the time spent to repair each incorrect submission.

We would like to point out that in this experiment, we are not trying to improve CLARA’s repair process.

Instead, we are comparing the performance of CLARA’s repair process when using its own or INVAAST-

CLUSTER’s clusters of programs.

Different procedures for program clustering using INVAASTCLUSTER (see Table 5.4) are evaluated:

• KMEANS - BoW : Uses KMEANS and four different bag of words (BoW) based on AAST, syntax,

and invariants (lines 2–5 in Table 5.4);

• Closest Program ( KMEANS) - AAST + Invs: Uses the closest program (see Section 5.5) using the

AAST + Invs BoW, from a set of clusters’ representatives using KMEANS (line 6);

Table 5.4 presents the overall repair evaluation on 319 incorrect submissions since CLARA’s repair al-

gorithm does not support the C implementation of 101 incorrect submissions (24.05% of the instances).

Entries in bold correspond to the highest rate of submissions repaired, the lowest percentage of struc-
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Table 5.4: This table presents the percentage of submissions repaired (success), structural mismatch
errors, and timeouts (failure) for each clustering approach. The total number of submissions is 319.

%Success %Failure

Clustering Method %Submissions
Repaired

%Structural
Mismatch

%Timeouts
(600s)

1 CLARA 71.79% 7.52% 20.69%
2 KMEANS - Invs 82.45% 11.91% 5.64%
3 KMEANS - Syntax 84.01% 10.97% 5.02%
4 KMEANS - AAST 84.64% 9.72% 5.64%
5 KMEANS - AAST + Invs 84.95% 10.03% 5.02%

6 Closest Program (KMEANS)
- AAST + Invs 84.33% 10.66% 5.02%

tural mismatch errors, or the lowest rate of timeouts, i.e., executions that did not repair a program using

a timeout of 10 minutes (600s).

One can see in line 1 (Table 5.4) that CLARA, using its own clusters, can only repair 229 (around 72%)

of the incorrect submissions and shows the largest percentage of instances that were not repaired due to

timeout (20.69%). Secondly, the configuration using INVAASTCLUSTER’s KMEANS and the BoW based

on AAST and Invariants achieved the highest score, repairing 84.95% of the incorrect submissions.

Furthermore, the BoW based only on invariants has the highest percentage of structural mismatch

(11.91%), which may be explained by CLARA’s inability to use a program with a different control flow

in the repair process. Using only invariants on a vector representation helps clustering programs with

similar semantics, although it does not take into account the programs’ structure (control flow). Hence,

a higher rate of structural mismatch is observed.

Since the BoW based on AASTS and program invariants achieved the best results both in the pro-

gram clustering experiment (see Section 5.7.1) as well as when repairing submissions (lines 2-5 in Ta-

ble 5.4), we opted to use only this BoW when finding the closest correct program (line 6, Table 5.4).

Regarding the use of just one correct solution to fix an incorrect submission, the Closest Program

( KMEANS) approach did not achieve better results than using the set of clusters’ representatives.

We have also analyzed the closest program technique using all submissions, i.e., use the closest

program among all submissions (no clustering step). This approach, the Closest Program (All Submis-

sions), was able to repair 86.5% of the submissions. The number of timeouts in this approach and using

KMEANS was similar. Once again, this high rate of repaired programs (86.5%) may be explained by CLA-

RA’s strict requirements for both programs, the program being repaired and the correct program used by

the repair process, to have the same control flow. Therefore, when INVAASTCLUSTER finds the closest

program among all submissions instead of using clusters, INVAASTCLUSTER has a more diverse col-

lection of programs’ structures. Consequentially, the Closest Program (All Submissions) approach also

achieved the lowest score of structural mismatch errors (only 9.4%). Although we would like to draw the

reader’s attention to the difference between the number of submissions repaired using KMEANS (85%)

or using the closest correct program (86.5%), which is less than 2%. Furthermore, the computation to

find the closest correct program among all correct submissions can only be done online since it requires

the student’s incorrect program. On the other hand, the computation of the KMEANS clusters can be
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Figure 5.6: Cactus plot - The number of clusters generated by each clustering technique for 43 different
IPAS.

done offline since it only requires past students’ correct submissions. In this evaluation, this is not a

concern since each IPA has at most a hundred correct submissions. However, in a large-scale MOOC

with thousands of correct submissions per exercise, the process of finding the closest correct program

among all of the submissions may become impractical to compute in a short period of time.

5.7.2.1 Number of Clusters

Figure 5.6 illustrates a cactus plot detailing the number of clusters generated by each clustering

technique for each of the 43 different IPAS used. One can see that CLARA generates an enormous

quantity of clusters, almost half of the correct submissions of each IPA. This large number of clusters

is explained by CLARA’s strict clustering method, which does not allow two programs to be in the same

cluster if there is no exact match between both programs’ control flows. Furthermore, even if two pro-

grams are semantically equivalent and share the same control flow but one of them uses a for-loop and

the other uses a while-loop, then CLARA assigns these two programs to different clusters.

INVAASTCLUSTER produces K clusters, which in this experiment is always set to 10% of the number

of correct submissions of each exercise. The technique that uses the closest correct program has only

a single cluster which is the closest correct program. This evaluation of the number of clusters used

by each approach allows us to observe that CLARA produces a large number of clusters, resulting in

a detriment of performance. In contrast, our approach can generate fewer clusters resulting in a more

effective repairing process.

Example 9. The following two programs are correct implementations for the IPA where students are

asked to print the maximum value among three given numbers. These programs are clustered together

using INVAASTCLUSTER (AASTS + Invariants) because their AASTS are quite similar, and their sets of

program invariants are identical. In contrast, CLARA assigns these two programs to different clusters be-

cause they have a different number of variables. Therefore, because CLARA is highly strict in comparing
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Figure 5.7: Cactus plot - Time Performance (timeout=600s).

programs, it generates an excessive number of program clusters.

1 int main(){

2 int n1, n2, n3, max;

3 scanf("%d%d%d", &n1, &n2, &n3);

4 max = n1;

5 if(n2 > max){

6 max = n2;

7 }

8 if(n3 > max){

9 max = n3;

10 }

11

12 printf("%d\n", max);

13 return 0;

14 }

1 int main(){

2 int res,b,c;

3 scanf("%d%d%d", &res, &b, &c);

4

5 if (b > res){

6 res = b;

7 }

8 if (c > res){

9 res = c;

10 }

11

12 printf("%d\n", res);

13 return 0;

14 }

5.7.2.2 CPU time

Regarding the time performance of each clustering technique, Figure 5.7 shows a a cactus plot

that presents the CPU time spent on repairing each program (x-axis) against the number of repaired

programs (y-axis) using different clustering techniques. The legend in this plot is not sorted.

One can clearly see a gap between CLARA’s time performance and INVAASTCLUSTER’s (consider-

ing any clustering approach). For example, after 100 seconds CLARA using its own clusters, can only

repair around 200 programs while using our clusters, it can repair around 230/250 programs. Further-

more, Figure 5.8 presents a scatter plot comparing the CPU time spent using CLARA’s clusters against

the KMEANS AAST + Invariants clusters. Each point in this plot represents a program where the x-

value (resp. y-value) is the CPU time spent to repair the program using the KMEANS AAST + Invariants

Clusters (resp. CLARA’s clusters). If a point is above the diagonal, then it means that our clusters out-

performed CLARA’s clusters since using our clusters CLARA is able to repair each program above the
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Figure 5.8: Scatter plot - Time Performance (timeout=600s) - CLARA VS INVAASTCLUSTER (KMEANS
w/ AAST + Invariants)

diagonal faster than using its own clusters. Thus, if we consider the programs repaired by both clustering

methods, using our clusters is always faster than using CLARA’s.

There are two main reasons for CLARA’s time performance. Firstly, CLARA generates a significantly

larger number of clusters compared to INVAASTCLUSTER (see Figure 5.6). Consequently, CLARA needs

to compute a set of repairs for each cluster’s representative, resulting in more time spent in the repair

process due to the larger number of clusters. Secondly, as explained in Section 5.2, CLARA maintains

a json file containing data (e.g., expressions) of all the programs belonging to the cluster. During its

repair algorithm, CLARA takes advantage of all this data to repair a given submission, leading to more

time spent on the repair process.

The main goal of educational program repair frameworks is to provide real-time feedback to students

on how they should repair their submissions. In this evaluation, we used a timeout of 10 minutes. How-

ever, a student expects a faster result. Therefore, Figure 5.9 shows another cactus plot that shows the

time performance of the clustering approaches, although with a timeout of 10 seconds. One can see that

after 10 seconds, CLARA using its own clusters, can only repair around 150 submissions (47%). On the

other hand, using INVAASTCLUSTER, CLARA can repair around 200 submissions (63%). Furthermore,

one can also verify that after 2 seconds CLARA can only repair around 75 programs using its own cluster

while using our clusters CLARA is able to repair around 150 programs.

5.7.2.3 Program invariants of incorrect submissions

We have also tried the method Closest Program ( KMEANS) with INVAASTCLUSTER not taking into

account incorrect submissions’ invariants to check if incorrect submissions’ sets of invariants had a neg-

ative impact on program representations. First, INVAASTCLUSTER clustered all the correct programs

considering their AASTS and their sets of invariants. Secondly, to find the closest correct program to an

incorrect submission INVAASTCLUSTER used only the AAST BoW. However, this combined approach
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Figure 5.9: Cactus plot - Time Performance (timeout=10s).

of clustering with one BoW (AASTS + invariants) and calculating the programs’ distances with another

(AASTS only) was only able to repair 269 submissions (84%). Thus, according to this experiment, incor-

rect submissions’ sets of program invariants do not cause negative effects on program representations.

To summarize, in Section 5.7.1, we used INVAASTCLUSTER to cluster different IPAS correct stu-

dents’ submissions. The obtained results support that this work’s novel program representation based

on a program’s AAST and invariants performs better when compared to representations solely based

on a program’s code, AST, or set of program invariants.

Furthermore, in Section 5.7.2, we integrated INVAASTCLUSTER into CLARA to evaluate our tool’s

performance when integrated into a clustering-based framework for repairing IPAS. This study shows

that INVAASTCLUSTER significantly increases the performance of the state-of-the-art clustering tech-

nique by allowing CLARA to repair more student submissions and doing so notably faster.

5.7.3 Threats to Validity

This work relies on DAIKON to compute dynamically-generated likely invariants. Employing a different

tool for invariant detection could yield different results. Moreover, the quality of dynamically-generated

invariants are highly dependent on the input-output test suite used for each programming exercise. Thus,

using a different test suite may lead to alternative sets of invariants across student submissions.

Our evaluation of INVAASTCLUSTER is limited to small imperative programs typically found in IPAS.

While we defer evaluation on more complex programs to future work, we do not foresee major scalability

issues when applying INVAASTCLUSTER to larger datasets or more sophisticated code. The number of

clusters produced by INVAASTCLUSTER tends to scale with the diversity of both semantic and syntactic

implementations in each IPA. Although greater implementation diversity is expected with more complex

exercises, the scalability of INVAASTCLUSTER should remain unaffected, as it does not impose limits

on the number of supported IPAS.
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Although our experiments exclusively considered C programs, the underlying clustering methodol-

ogy of INVAASTCLUSTER is language-agnostic. Supporting other languages would primarily involve

adapting (1) the variable renaming module and (2) the invariant detection componentreplacing DAIKON

with a suitable alternative for the target language.

Similarly, employing a different program repair tool could lead to different outcomes. For instance,

alternative tools might support C features that CLARA does not handle, or vice versa.

INVAASTCLUSTER also has potential applications beyond repair, such as detecting similarities or

possible plagiarism among student submissions via AASTS and program invariants. However, realizing

this would require adapting existing plagiarism detection tools. Notably, popular tools like MOSS are not

open-source, which presents an additional limitation.

In this chapter, we compared INVAASTCLUSTER against CLARA’s clustering approach, as CLA-

RA is, to our knowledge, the only publicly available state-of-the-art clustering-based repair tool for IPAS.

Evaluating INVAASTCLUSTER in conjunction with other recent tools would be worthwhile. Unfortunately,

we could not find publicly available implementations or datasets for other relevant tools [10, 34, 120, 133],

aside from the ITSP dataset [8].

5.8 INVAASTCLUSTER vs SEMCLUSTER

Similar to INVAASTCLUSTER, SEMCLUSTER, described in Section 3.3.2.2, uses the KMEANS clus-

tering algorithm. However, unlike INVAASTCLUSTER, which uses each program’s AAST, SEMCLUSTER

does not account for any syntactic features. Furthermore, SEMCLUSTER tries to capture the semantics

of a program by counting the number of different values each variable takes. On the other hand, INV-

AASTCLUSTER considers the program’s set of invariants which can be more robust and independent

of the test suite used. CODEBERT [190], CODE2SEQ [191] and other deep learning models [192] build

vector representations of programs by training machine learning models using the programs’ code and

ASTs. However, unlike INVAASTCLUSTER, these techniques only consider the programs’ syntax, not

their semantics. Some research has been conducted regarding the use of invariants to promote patch

diversity or to help with patch selection on a search-based program repair [180–182].

5.9 Conclusions

In the context of introductory programming assignments (IPAS) in university courses or MOOCs, it

is possible to collect a large number of correct implementations for the proposed IPAS. Hence, when

a student submits an incorrect program, one can take advantage of previously correct submissions to

automatically suggest repairs that help the student. However, it is not feasible to analyze all possible pre-

vious correct submissions to find an appropriate reference implementation for the repair tool. Therefore,

clustering is often used to identify similar program implementations. Afterward, the automated repair

tool analyses a single reference program from each cluster to find the most suitable correction to the

student’s incorrect submission.
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This chapter proposes INVAASTCLUSTER, a novel approach for program clustering based on their

semantic and syntactic features. INVAASTCLUSTER uses AASTS and invariant-based program repre-

sentations to distinguish small imperative programs according to their semantics (invariants) and struc-

ture (AAST). Results show that the proposed AASTS and invariant-based representation improve upon

syntax-based representations when performing program clustering on several correct student submis-

sions for different programming exercises. Additionally, given an incorrect student submission and a set

of correct students’ submissions, INVAASTCLUSTER can also find the closest correct submission to the

faulty program using INVAASTCLUSTER’s program vector representations.

Furthermore, INVAASTCLUSTER has also been integrated into a state-of-the-art clustering-based

program repair framework to evaluate the proposed clustering techniques for repairing IPAS. This eval-

uation showed that INVAASTCLUSTER outperforms the current state-of-the-art clustering method used

in clustering-based program repair. Using INVAASTCLUSTER, the automated repair tool CLARA can

repair significantly more IPAS, around 13%, with a better time performance and with a smaller number

of program clusters.

To conclude, INVAASTCLUSTER is a program clustering tool based on programs’ invariants and

AASTS. INVAASTCLUSTER can be used: (1) to cluster semantically equivalent implementations for

programming exercises; (2) by any clustering-based program repair tool; and (3) by any program repair

framework that requires a single correct implementation (INVAASTCLUSTER’s closest correct program).

In Chapter 10, INVAASTCLUSTER is integrated into a Large Language Model (LLM)-driven program

repair tool to assess the impact of INVAASTCLUSTER in assisting the repair process of LLMS.
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6
MULTIPAS: Applying Program

Transformations to Introductory

Programming Assignments for Data

Augmentation

“A computer program can modify itself but it cannot violate its own instructions it can at best change

some parts of itself by obeying its own instructions.”

– Douglas R. Hofstadter. Gödel, Escher, Bach: an Eternal Golden Braid [1]. 1979.
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Datasets of IPAS publicly available tend to be small and with no valuable annotations about the de-

fects of each program. Small datasets are not very useful for program repair tools that rely on machine

learning models. Furthermore, a large diversity of correct implementations allows computing a smaller

set of repairs to fix a given incorrect program rather than always using the same set of correct imple-

mentations for a given IPA. For these reasons, there has been an increasing demand for the task of

augmenting IPAS benchmarks.

This chapter presents MULTIPAS, a program transformation tool that can augment IPAS bench-

marks by: (1) applying six syntactic mutations that conserve the program’s semantics and (2) apply-

ing three semantic mutilations that introduce faults in the IPAS. Moreover, this chapter demonstrates

the usefulness of MULTIPAS by augmenting with millions of programs two publicly available bench-

marks of programs written in the C language, and also by generating an extensive benchmark of

semantically incorrect programs.

This chapter has been published as a conference paper at the 30th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering,

ESEC/FSE 2022 [174].

6.1 Introduction

An increasing body of research has focused on applying machine learning (ML) models to automated

program repair [3, 13, 15, 42, 172, 193–198]. These ML-based tools depend greatly on the existence

of many correct/incorrect programs to train their repair models. However, in most cases, the publicly

available benchmark sets [171, 176] of students’ submissions for IPAS are small, i.e., only hundreds

of submissions. Hence, these benchmarks might not be sufficient to effectively train an ML model.

Additionally, another problem with some real-world IPAS datasets is that sometimes there is no knowl-

edge about the number and types of defects present in each incorrect student program, which can also

negatively impact the training of ML-based program repair tools.

Hence, there is an increasing demand for data augmentation of program benchmarks to (1) achieve

minimal sets of program patches by having a more diverse collection of syntactically different correct

solutions and (2) have a more representative dataset of programs to train ML-based program repair tools

with labelled incorrect programs. This data augmentation task aims to enlarge the real-world datasets

of students’ programs with more semantically correct implementations for each IPA by syntactically

mutating existent correct students’ submissions and to create a labelled dataset of incorrect programs

with the information about the number and the type of the bugs present in each incorrect program.

Thus, this chapter presents MULTIPAS, a tool that performs data augmentation by syntactically mu-

tating and/or semantically mutilating IPAS written in the C programming language. The main goal of

MULTIPAS is to augment IPAS benchmarks with: (1) more semantically correct implementations by ap-

plying six different syntactic mutations to pre-existent correct implementations and (2) new semantically

incorrect programs by mutilating pre-existent correct implementations. MULTIPAS stores the variable

mapping between the original correct implementation and the new mutated/mutilated program. More-
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over, for the newly generated set of incorrect programs, MULTIPAS also stores the information about the

bugs in these programs. Later, these bug(s) annotations can be used to train ML models.

Experimental results show that MULTIPAS can augment small-sized publicly available benchmarks

of IPAS, ITSP [8] and C-PACK-IPAS [186], generating millions of mutated/mutilated programs. To sum-

marize, this chapter makes the following contributions:

• It presents MULTIPAS, a program transformation framework capable of augmenting small imper-

ative program benchmarks by performing six different syntactic program mutations and three se-

mantic program mutilations;

• MULTIPAS is publicly available on GitHub: https://github.com/pmorvalho/MultIPAs, with a demo

video at https://arsr.inesc-id.pt/ pmorvalho/MultIPAs-demo.html.

• MULTIPAS keeps the information about the types and the number of bugs present in each gener-

ated incorrect program, which can be used to train ML-based program repair frameworks;

• MULTIPAS produces a variable mapping between the original program given as input and the

mutated/mutilated program.

6.2 MULTIPAS

This section presents MULTIPAS, a new tool capable of augmenting IPAS benchmark sets by apply-

ing syntactic mutations and semantic mutilations to C programs. MULTIPAS is divided into two modules:

program mutator and program mutilator. The C programs are parsed and the changes (program muta-

tions and mutilations) happen at the AST level. Section 6.2.1 presents the six different syntactic program

mutations that MULTIPAS can perform to change a program syntax while preserving its semantics. Af-

terwards, Section 6.2.2 explains three different semantic program mutilations that introduce semantic

bugs in an IPA. Finally, Section 6.2.3 explains briefly the variable mappings produced by MULTIPAS.

MULTIPAS is publicly available on GitHub: https://github.com/pmorvalho/MultIPAs and there is also a

demonstration video available at https://arsr.inesc-id.pt/ pmorvalho/MultIPAs-demo.html.

6.2.1 Program Mutator

The goal of automated program repair when applied to IPAS is to achieve the best possible set of

repairs (i.e., program patches) to fix a given student’s incorrect submission for a programming exercise.

The best repair is usually described as a minimal set of fixes required to make the student’s program

compliant with the test suite that describes the desired semantic behaviour for that specific IPA. To this

end, many program repair tools, such as Verifix [2, 9], try to align the student’s submission’s control

flow graph with another correct submission’s control flow graph. Next, these frameworks propose a

set of syntactic patches to fix the incorrect program. Hence, applying program mutations to an IPAS

benchmark increases the number of different syntactic structures and allows program repair tools to

achieve smaller sets of repairs. For that reason, MULTIPAS can perform syntactic mutations to a program
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such that it preserves the program semantics, i.e., both programs, the original and the mutated, have

the same behaviour.

The six syntactic program mutations available on MULTIPAS are:

• M1 - Comparison Expression Mirroring (CEM): MULTIPAS mirrors one or several comparison ex-

pressions e.g., a ≥ b becomes b ≤ a;

• M2 - If-else-statements Swapping (IES): MULTIPAS swaps the if-branch and the else-branch and

negates the if-condition. This operation is done only for simple if-else-statements, i.e., there are

no additional if-statements inside the else-branch;

• M3 - Increment/Decrement Operators Mirroring (IOM): MULTIPAS mirrors the two increment (and

decrement) operators in the C programming language (e.g., c++ and ++c), only when the return

value of the expression that contains the increment/decrement operator is discarded, e.g., the

increment step of a for-loop;

• M4 - Variable Declarations Reordering (VDR): MULTIPAS reorders the variables’ declarations

present in each code block. For this, MULTIPAS takes into account the dependencies between

the variables’ declarations, i.e. if a variable declaration depends on other variables, this is done by

computing all possible topological orders of the variables’ declarations;

• M5 - For-2-While Translation (F2W): MULTIPAS translates for-loops into while-loops. Just in cases

of for-loops that do not contain any continue instructions;

• M6 - Variable Addition (VA): MULTIPAS introduces a new dummy variable declaration in the pro-

gram. The mutated program does not have the same set of variables as the original program.

Example 10. Consider the two programs in Listings 6.1 and 6.2 in the C programming language. Both

programs are semantically equivalent since both programs sum all the natural numbers from 1 to n

and print the current accumulated value in each iteration. The program in Listing 6.2, the mutated

program, is the result of applying all the program mutations available on MULTIPAS to the program in

Listing 6.1, the original program. Note that the comparison expression in the for-loop condition was

mirrored (mutation (1)). Mutation (2) is not applicable since there is no if-else-statement. Regarding

mutation (3), one can see that the increment step of the for-loop was also mirrored, line 6 (resp. 9) in the

original (resp. mutated) program. Furthermore, the mutated program has a different variable declaration

order than the original program (mutation (4)). Moreover, the for-loop was translated into a similar while-

loop corresponding to mutation (5). Lastly, a dummy variable y was introduced in line 3 of the mutated

program (mutation (6)).
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Listing 6.1: Original program.

1 int main(){

2 int n;

3 int i, s;

4 scanf("%d", &n);

5 s=0;

6 for(i=1; i<=n; i++){

7 s = s+i;

8 printf("%d\n",s);

9 }

10

11 printf("%d\n",s);

12 return 0;

13 }

Listing 6.2: Mutated program.

1 int main(){

2 int n, s, i, y;

3 scanf("%d", &n);

4 s=0;

5 i = 1;

6 while(n>=i){

7 s = s+i;

8 printf("%d\n",s);

9 ++i;

10 }

11 printf("%d\n",s);

12 return 0;

13 }

6.2.2 Program Mutilator

In the development of program repair tools, there are two main concerns on using incorrect programs

of IPAS datasets: (1) usually, there is no knowledge of how many errors are present in each buggy

student program; and (2) since the number of semantic errors on each program is unknown, repair

framework’s developers cannot divide the set of the incorrect programs into subsets of programs with

a specific number of semantic errors (e.g., a subset for programs with one semantic error, another

subset for programs with two semantic errors, etc.). Furthermore, dividing the dataset of incorrect IPAS

into subsets of different numbers or types of bugs can be important to train ML-based program repair

tools [193–196]. Therefore, having a program mutilator that creates a dataset of programs with a specific

number of semantic bugs and only certain kinds of bugs becomes crucial. This way, developers of

program repair tools’ can evaluate the scalability of their frameworks in terms of the number of semantic

errors present in each program and train their tools to repair specific families of bugs.

Thus MULTIPAS also contains a program mutilator module. This program mutilator takes a set of

students’ submissions for a given IPA and alters each program to introduce n errors, n being passed as

a parameter by the user. The errors introduced by MULTIPAS are semantic mutilation which modifies

the programs’ semantics. The following three program mutilations (bugs) are available on MULTIPAS:

• B1 - Wrong Comparison Operator (WCO): MULTIPAS swaps an expression’s comparison operators

for some syntactically similar operator. For example, swaps the operator < for <=. MULTIPAS can

also swap > for >=, <= for <, >= for >, == for =, and != for ==;

• B2 - Variable Misuse (VM): MULTIPAS swaps a variable in the program by another variable of

the same type. The resulting mutilated program can be compiled successfully since MULTIPAS

ensures that both variables are of the same type;

• B3 - Assignment Deletion (AD): MULTIPAS deletes an assignment expression in the program.
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Listing 6.3: Original program.

1 int main(){

2 int n;

3 int i, s;

4 scanf("%d", &n);

5 s=0;

6 for(i=1; i<=n; i++){

7 s = s+i;

8 printf("%d\n",s);

9 }

10

11 printf("%d\n",s);

12 return 0;

13 }

Listing 6.4: Mutilated program.

1 int main(){

2 int n;

3 int i, s;

4 scanf("%d", &n);

5

6 for(i=1; i<n; i++){

7 s = s+i;

8 printf("%d\n",i);

9 }

10

11 printf("%d\n",s);

12 return 0;

13 }

Example 11. Consider the two programs in Listings 6.3 and 6.4 written in the C programming language.

The program in Listing 6.3, hereafter the original program, has been already presented in Listing 6.1.

The program in Listing 6.4, hereafter the mutilated program, is the result of applying all the program

mutilations available in MULTIPAS. The first mutilation is located in line 6 of the mutilated program

where the operator <= was swapped by the operator <. Furthermore, the variable misuse mutilation was

performed in line 8. Lastly, MULTIPAS removed the assignment of value zero to variable s (line 5).

The first class of bugs, wrong comparison operator, is common among novice programmers [176]

and has been used to evaluate ML-based program repair tools [194, 197]. The second family of bugs,

variable misuse, is also common among students as well as among experienced programmers [199,

200]. This specific task has received a lot of attention from the ML research community [192–195].

Lastly, the assignment deletion bug is also common among students [176]. In the previous example, it

is likely for a novice student to forget to initialize variable s.

Bug mapping. For each mutilated program generated, MULTIPAS stores the information about the

location and the types of the bugs introduced in the program. This information can help train ML-based

program repair frameworks.

6.2.3 Variable Mapping

Typically, semantic program repair tools [2, 9] repair an incorrect program using a correct implemen-

tation for the same IPA. In order to compare two programs, it is required a relation between both sets of

variables. For example, consider the programs presented in Listings 6.3 and 6.4. In this case, having a

mapping between both programs’ variables lets the repair framework reason about which program mod-

ifications it should perform to fix the faulty program. Program modifications include the same variable

being used in a different comparison expression, the variable being initialized in one program but not

in the other one, etc. Moreover, the variable mapping can also be helpful for the task of code adaption
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Table 6.1: Number of programs that can be generated by MULTIPAS using each different mutation or
mutilation for two different small datasets of IPAS: ITSP [8] and C-PACK-IPAS [186].

Mutations Mutilations (Bugs)
ITSP

Dataset [8] #IPAs #Correct
Submissions M1 (CEM) M2 (IES) M3 (IOM) M4 (VDR) M5 (F2W) M6 (VA) All

Mutations B1 (WCO) B2 (VM) B3 (AD) All
Bugs

Lab3 4 67 1.25E+03 9.90E+01 6.70E+01 4.74E+05 6.70E+01 1.34E+02 6.03E+06 1.86E+02 4.51E+03 1.51E+02 4.71E+04
Lab4 8 125 3.99E+04 2.22E+02 3.15E+02 8.02E+05 2.41E+02 2.30E+02 1.90E+11 9.93E+02 1.20E+04 4.16E+02 7.12E+05
Lab5 8 90 1.06E+04 1.59E+02 5.13E+02 3.78E+05 4.45E+02 1.80E+02 3.07E+12 5.24E+02 4.43E+03 3.78E+02 1.52E+05
Lab6 8 87 1.94E+04 1.29E+02 5.36E+03 1.12E+06 1.45E+03 1.74E+02 9.75E+13 5.52E+02 6.32E+03 5.70E+02 4.02E+05
Total 28 369 7.12E+04 6.09E+02 6.25E+03 2.77E+06 2.20E+03 7.18E+02 1.01E+14 2.26E+03 2.73E+04 1.52E+03 1.31E+06

Cx-Pack-IPAs
Dataset [186] #IPAs #Correct

Submissions M1 (CEM) M2 (IES) M3 (IOM) M4 (VDR) M5 (F2W) M6 (VA) All
Mutations B1 (WCO) B2 (VM) B3 (AD) All

Bugs
Lab02 10 316 1.04E+04 4.49E+02 4.88E+02 3.64E+06 4.07E+02 6.32E+02 1.72E+07 9.68E+02 9.71E+03 1.11E+03 2.93E+05
Lab03 7 145 3.21E+05 3.20E+02 1.09E+03 4.93E+04 6.07E+02 2.90E+02 1.48E+10 1.02E+03 4.94E+03 8.07E+02 3.94E+05
Lab04 8 192 2.83E+04 2.85E+02 1.97E+03 8.72E+03 1.28E+03 3.80E+02 1.93E+11 1.07E+03 5.58E+03 1.08E+03 2.39E+05
Total 25 653 3.59E+05 1.05E+03 3.54E+03 3.70E+06 2.29E+03 1.30E+03 2.08E+11 3.06E+03 2.02E+04 2.99E+03 9.26E+05

where the repair framework tries to adapt all the variable names in a pasted snippet of code, copied from

another program or a Stack Overflow post to the surrounding preexisting code [196].

Thus, every time MULTIPAS mutates or mutilates a program, a mapping between the original pro-

gram’s set of variables and the mutated/mutilated program’s sets of variables is generated. This variable

mapping can help a program repair framework [2, 196] to find a minimal repair.

Example 12. MULTIPAS would produce the following variable mapping between the set of variables of

the programs in Listings 6.1 and 6.2: {int i: int i; int n : int n; int s : int s; int y :

UNK_VAR}. Moreover, for the program in Listings 6.3 and 6.4 the variable mapping would be: {int i:

int i; int n : int n; int s : int s}.

6.3 Evaluation

The experimental results presented in this Section show the evaluation of MULTIPAS on two publicly

available small-sized datasets of IPAS: ITSP [8] and C-PACK-IPAS [186]. The evaluation consists of us-

ing MULTIPAS to augment both benchmark sets by mutating or mutilating all correct programs. Table 6.1

shows the overall results of our evaluation. The first two columns in Table 6.1 show, for each dataset and

for each lab class, the number of IPAS (#IPAs column) and the number of correct students’ submissions

(#Correct Submissions column). All of the experiments were conducted on an Intel(R) Xeon(R) Silver

computer with 4210R CPUs @ 2.40GHz, using a memory limit of 64GB.

Mutating Programs. Table 6.1 shows the number of programs that can be generated by MULTIPAS

when applying each individual mutation described in Section 6.2.1. One can see that all the program mu-

tations are able to augment at least 100% of both benchmarks. Furthermore, both mutations M1 (CEM),

comparison expression mirroring, and M4 (VDR), variable declarations reordering, are able to augment

both benchmarks with thousands of programs. These program mutations produce so many programs

since the IPAS in both benchmarks use more than one variable, and in several IPAS, the students need

to compare the values of different variables (comparison expressions). Hence, MULTIPAS computes all

possible mirroring combinations of the comparison expressions and all possible re-orderings of the vari-

able declarations that are valid. Lastly, if the user asks MULTIPAS to perform all six program mutations

on both benchmarks, the number of mutated programs reaches several billions of programs.
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Mutilating Programs. Regarding the program mutilations, the right-hand side of Table 6.1 shows the

number of programs MULTIPAS can generate using each different mutilation described in Section 6.2.2,

or all of them together. All the program mutilations are able to generate a dataset with several thousands

of incorrect programs. Mutilation B2 (VM), variable misuse, is the mutilation that is able to generate more

incorrect programs since typically there are many possibilities when MULTIPAS is changing a variable

occurrence for another variable.

User Configuration. The number of programs that can be generated by MULTIPAS can reach several

million. Therefore, MULTIPAS has three flags available related to the total number of programs that can

be generated. By default, MULTIPAS generates only 20% of those programs. The user can choose

a different percentage of programs to be generated using the flag -p | –percentage_total_progs.

Instead of generating all the programs, MULTIPAS chooses a sample of size p. The user can ask MUL-

TIPAS, with flag -info, to print the total number of mutated/mutilated programs for a given configuration

of program mutations/mutilations. MULTIPAS only outputs the number of programs without generating

them. If the user desires all the programs and has the time and memory to generate all the possible

mutated/mutilated programs, this can be done using the flag -ea | –enumerate_all.

6.4 Related Work

In the last few years, there has been a growing interest in data augmentation by program transforma-

tion. Yu et al. [201] proposed to apply several program transformations for big code data augmentation

based on a pre-defined set of syntax-based rules to mutate programs written in Java. Liu and Zhong

[202] proposed to extract Java code samples from Stack Overflow, and mine repair patterns from the

extracted code samples. DEEPBUGS [197] also uses rule-based mutations to build, and not to augment,

a dataset of programs from scratch to train its ML-based program repair tool. BUGLAB [194] is a Python

program repair framework that learns how to detect and fix minor bugs. In order to train BUGLAB, Allama-

nis et al. [194] applied four program mutations and four program mutilations, different than MULTIPAS’s

program mutations and mutilations, in order to augment their benchmark of Python programs.

6.5 Conclusion

This chapter introduces MULTIPAS, an open-source framework for augmenting benchmarks of intro-

ductory programming assignments (IPAS). MULTIPAS can generate semantically equivalent programs

by applying up to six different syntax mutations to a given program. Furthermore, MULTIPAS can also

produce semantically incorrect programs using three semantic program mutilations. Moreover, MULTI-

PAS saves the variable mappings between the original program and the mutated/mutilated one and the

information about the bugs introduced in each program. Experiments on two publicly available datasets

of IPAS show that MULTIPAS can augment with millions of programs small-sized benchmarks of IPAS.
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In Chapter 7, MULTIPAS is used to augment C-PACK-IPAS (see Chapter 4) and to generate training

data for Graph Neural Networks (GNNS).
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7
Graph Neural Networks For Mapping

Variables Between Programs

“One of the essential skills in computer programming is to perceive when two processes are the same

in this extended sense, for that leads to modularization- the breaking-up of a task into natural subtasks.”

– Douglas R. Hofstadter. Gödel, Escher, Bach: an Eternal Golden Braid [1]. 1979.
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Typically, in order to compare two programs, a relation between both programs’ sets of variables

is required. Thus, mapping variables between two programs is useful for a panoply of tasks such as

program equivalence, program analysis, program repair, and clone detection. In this work, we propose

using graph neural networks (GNNS) to map the set of variables between two programs based on both

programs’ abstract syntax trees (ASTS). To demonstrate the strength of variable mappings, we present

three use-cases of these mappings on the task of program repair to fix well-studied and recurrent bugs

among novice programmers in introductory programming assignments (IPAS). Experimental results on

a dataset of 4166 pairs of incorrect/correct programs show that our approach correctly maps 83% of the

evaluation dataset. Moreover, our experiments show that the current state-of-the-art on program repair,

greatly dependent on the programs’ structure, can only repair about 72% of the incorrect programs. In

contrast, our approach, which is solely based on variable mappings, can repair around 88.5%.

This chapter has been published as a conference paper at the 26th European Conference on Artificial

Intelligence, ECAI 2023 [173].

7.1 Introduction

The problem of program equivalence, i.e., deciding if two programs are equivalent, is undecid-

able [36, 37]. On that account, the problem of repairing an incorrect program based on a correct im-

plementation is very challenging. In order to compare both programs, i.e., the correct and the faulty

implementation, program repair tools first need to find a relation between both programs’ sets of vari-

ables. Besides program repair [9], the task of mapping variables between programs is also important

for program analysis [203], program equivalence [132], program clustering [42, 204], program synthe-

sis [74], clone detection [137], and plagiarism detection [183].

Due to a large number of student enrollments every year in programming courses, providing feed-

back to novice students in introductory programming assignments (IPAS) requires substantial time and

effort by the faculty [3]. Hence, there is an increasing need for systems capable of providing automated,

comprehensive, and personalized feedback to students in programming assignments [2, 9, 13, 15]. Se-

mantic program repair has become crucial to provide feedback to each novice programmer by checking

their IPAS submissions using a pre-defined test suite. Semantic program repair frameworks use a cor-

rect implementation, provided by the lecturer or submitted by a previously enrolled student, to repair

a new incorrect student’s submission. However, the current state-of-the-art tools on semantic program

repair [2, 9] for IPAS have two main drawbacks: (1) require a perfect match between the control flow

graphs (loops, functions) of both programs, the correct and the incorrect one; and (2) require a bijective

relation between both programs’ sets of variables. Hence, if one of these requirements is not satisfied,

then, these tools cannot fix the incorrect program with the correct one.

For example, consider the two programs presented in Figure 7.1. These programs are students’

submissions for the IPA of printing all the natural numbers from 1 to a given number n. The program

in Listing 7.1 is a semantically correct implementation that uses a for-loop to iterate all the natural num-

bers until n. The program in Listing 7.2 uses a while-loop and an auxiliary function. This program is
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Listing 7.1: A semantically correct student’s
implementation.

1 int main(){
2 int n, i;
3 scanf("%d", &n);
4 for(i = 1; i <= n; i++){
5 printf("%d\n", i);
6 }
7 return 0;
8 }

Listing 7.2: A semantically incorrect student’s
implementation since the variable j in the main
function is not initialized.

1 void loop(int j, int l){
2 while (l >= j){
3 printf("%d\n", j);
4 ++j;
5 }
6 }
7 int main(){
8 int j, l;
9 scanf("%d", &l);

10 loop(j, l);
11 return 0;
12 }

Figure 7.1: Two implementations for the IPA of printing all the natural numbers from 1 to a given number
n. The program in Listing 7.2 is semantically incorrect since the variable j, which is the variable being
used to iterate over all the natural numbers until the number l, is not being initialized, i.e., the program
has a bug of missing expression. The mapping between these programs’ sets of variables is {n : l; i :
j}.

semantically incorrect since the student forgot to initialize the variable j, a frequent bug among novice

programmers called missing expression/assignment [176]. However, in this case, state-of-the-art pro-

gram repair tools [2, 9] cannot fix the buggy program, since the control flow graphs do not match either

due to using different loops (for-loop vs. while-loop) or due to the use of an auxiliary function. Thus,

these program repair tools cannot leverage on the correct implementation in Listing 7.1 to repair the

faulty program in Listing 7.2.

To overcome these limitations, in this chapter, we propose a novel graph program representation

based on the structural information of the abstract syntax trees ( ASTS) of imperative programs to learn

how to map the set of variables between two programs using graph neural networks ( GNNS). Addition-

ally, we present use-cases of program repair where these variable mappings can be applied to repair

common bugs in incorrect students’ programs that previous tools are not always capable of handling.

For example, consider again the two programs presented in Figure 7.1. Note that having a mapping

between both programs’ variables (e.g., {n : l; i : j}) lets us reason about, on the level of expressions,

which program fixes one can perform on the faulty program in Listing 7.2. In this case, when comparing

variable i with variable j one would find the missing assignment i.e., j = 1.

Another useful application for mapping variables between different programs is fault localization.

There is a body of research on fault localization [205–208], that requires the usage of assertions in

order to verify programs. Variable mappings can be helpful in sharing these assertions among different

programs. Additionally, several program repair techniques (e.g., SEARCHREPAIR [6], CLARA [2]) enumer-

ate all possible mappings between two programs’ variables during the search for possible fixes, using

a correct program [2] or code snippets from a database [6]. Thus, variable mappings can drastically

reduce the search space, by pruning all the other solutions that use a different mapping.

In programming courses, unlike in production code, typically, there is a reference implementation for

each programming exercise. This comes with the challenge of comparing different names and structures

between the reference implementation and a student’s program. To deal with this challenging task,
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we propose to map variables between programs using GNNS. Therefore, we explore three tasks to

illustrate the advantages of using variable mappings to repair some frequent bugs without considering

the incorrect/correct programs’ control flow graphs. Hence, we propose to use our variable mappings

to fix bugs of: wrong comparison operator, variable misuse, and missing expression. These bugs are

recurrent among novice programmers [176] and have been studied by prior work in the field of automated

program repair [193–195, 197].

Experiments on 4166 pairs of incorrect/correct programs show that our GNN model correctly maps

83% of the evaluation dataset. Furthermore, we also show that previous approaches can only repair

about 72% of the dataset, mainly due to control flow mismatches. On the other hand, our approach,

solely based on variable mappings, can fix 88.5%.

The main contributions of this work are:

• A novel graph program representation that is agnostic to the names of the variables and for each

variable in the program contains a representative variable node that is connected to all the vari-

able’s occurrences;

• We propose to use GNNS for mapping variables between programs based on our program repre-

sentation, ignoring the variables’ identifiers;

• Our GNN model and the dataset used for this work’s training and evaluation, are open-source

and publicly available on GitHub: https://github.com/pmorvalho/ecai23-GNNs-for-mapping-varia-

bles-between-programs.

The structure of the remainder of this chapter is as follows. First, Section 7.2 presents our graph

program representations. Next, Section 7.3 describes the GNNS used in this work. Section 7.4 intro-

duces typical program repair tasks, as well as our program repair approach using variable mappings.

Section 7.5 presents the experimental evaluation where we show the effectiveness of using GNNS to

produce correct variable mappings between programs. Additionally, we compare our program repair

approach based on the variable mappings generated by the GNN with state-of-the-art program repair

tools. Finally, Section 7.6 describes related work, and the chapter concludes in Section 7.7.

7.2 Program Representations

We represent programs as directed graphs so the information can propagate in both directions in the

GNN. These graphs are based on the programs’ abstract syntax trees (ASTS). An AST is described

by a set of nodes that correspond to non-terminal symbols in the programming language’s grammar

and a set of tokens that correspond to terminal symbols [46]. An AST depicts a program’s grammatical

structure [60]. Figure 7.2a shows the AST for the small code snippet presented in Listing 7.3.

Regarding our graph program representation, firstly, we create a unique node in the AST for each

distinct variable in the program and connect all the variable occurrences in the program to the same

unique node. Figure 7.2b shows our graph representation for the small code snippet presented in List-

ing 7.3. Observe that our representation uses a single node for each variable in the program, the green
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Listing 7.3: Small example of a C code
block with an expression.

1 { // a and b are ints
2 a = a - b;
3 }

block

assign

ID a expr

ID a op − ID b

(a) Part of the AST representation of Listing 7.3.

block

assign

ID
expr

a

ID − ID

b

AST

Types of
edges:

Sibling
Write
Read

Chrono-
logical

Variable
Node

(b) Our program representation for the snippet pre-
sented in Listing 7.3.

Figure 7.2: AST and our graph representation for the small code snippet presented in Listing 7.3.

nodes a and b. Moreover, we consider five types of edges in our representation: child, sibling, read,

write, and chronological edges. Child edges correspond to the typical edges in the AST representation

that connect each parent node to its children. Child edges are bidirectional in our representation. In

Figure 7.2b, the black edges correspond to child edges. Sibling edges connect each child to its sibling

successor. These edges denote the order of the arguments for a given node and have been used in other

program representations [193]. Sibling edges allow the program representation to differentiate between

different arguments when the order of the arguments is important (e.g. binary operation such as ≤). For

example, consider the node that corresponds to the operation σ(A1, A2, . . . , Am). The parent node σ is

connected to each one of its children by a child edge e.g. σ ↔ A1, σ ↔ A2, . . . , σ ↔ Am. Additionally,

each child its connected to its successor by a sibling edge e.g. A1 → A2, A2 → A3, . . . , Am−1 → Am. In

Figure 7.2b, the red dashed edges correspond to sibling edges.

Regarding the write and read edges, these edges connect the ID nodes with the unique nodes

corresponding to some variable. Write edges are connections between an ID node and its variable node.

This edge indicates that the variable is being written. Read edges are also connections between an ID

node and its variable node, although these edges indicate that the variable is being read. In Figure 7.2b,

the blue dashed edge corresponds to a write edge while the green dashed edges correspond to read

edges. Lastly, chronological edges establish an order between all the ID nodes connected to some

variable. These edges denote the order of the ID nodes for a given variable node. For example, in

Figure 7.2b, the yellow dashed edge corresponds to a chronological edge between the ID nodes of

the variable a. Besides the siblings and the chronological edges, all the other edges are bidirectional

in our representation.

The novelty of our graph representation is that we create a unique variable node for each variable in

the program and connect each variable’s occurrence to its unique node. This lets us map two variables

in two programs, even if their number of occurrences is different in each program. Furthermore, the
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variable’s identifier is suppressed after we connect all the variable’s occurrences to its unique node. This

way, all the variables’ identifiers are anonymized. Prior work on representing programs as graphs [193–

195] use different nodes for each variable occurrence and take into consideration the variable identifier

in the program representation. Furthermore, to the best of our knowledge, combining all five types of

edges (sibling, write, read, chronological, and AST) is also novel. Section 7.5 presents an ablation study

on the set of edges to analyze the impact of each type of edge.

7.3 Graph Neural Networks (GNNS)

Graph Neural Networks (GNNS) are a subclass of neural networks designed to operate on graph-

structured data [209], which may be citation networks [210], mathematical logic [211] or representations

of computer code [193]. Here, we use graph representations of a pair of ASTS, representing two pro-

grams for which we want to match variables, as the input. The main operative mechanism is to perform

message passing between the nodes, so that information about the global problem can be passed be-

tween the local constituents. The content of these messages and the final representation of the nodes

is parameterized by neural network operations (matrix multiplications composed with a non-linear func-

tion). For the variable matching task, we do the following to train the parameters of the network. After

several message passing rounds through the edges defined by the program representations above, we

obtain numerical vectors corresponding to each variable node in the two programs. We compute scalar

products between each possible combination of variable nodes in the two programs, followed by a soft-

max function. Since the program samples are obtained by program mutation, the correct mapping of

variables is known. Hence, we can compute a cross-entropy loss and minimize it so that the network

output corresponds to the labeled variable matching. Note that the network has no information on the

name of any object, which means that the task must be solved purely based on the structure of the

graph representation. Therefore, our method is invariant to the consistent renaming of variables.

Architecture Details. The specific GNN architecture used in this work is the relational graph convolu-

tional neural network (RGCN), which can handle multiple edges or relation types within one graph [212].

The numerical representation of nodes in the graph is updated in the message passing step according

to the following equation:

x′
i = Θroot · xi +

∑
r∈R

∑
j∈Nr(i)

1
|Nr(i)|Θr · xj ,

where Θ are the trainable parameters, R stands for the different edge types that occur in the graph, and

Nr the neighbouring nodes of the current node i that are connected with the edge type r [213]. After each

step, we apply Layer Normalization [214] followed by a Rectified Linear Unit (ReLU) non-linear function.

We use two separate sets of parameters for the message passing phase for the program with the

bug and the correct program. Five message passing steps are used in this work. After the message
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passing phase, we obtain numerical vectors representing every node in both graphs. We then calculate

dot products ~a ·~b between the vectors representing variable nodes in the buggy program graph a ∈ A

and the variable nodes from the correct graph b ∈ B, where A and B are the sets of variable node

vectors. A score matrix S with dimensions |A| × |B| is obtained, to which we apply the softmax function

on each row to obtain the matrix P. The values in each row of P can now be interpreted as representing

the probability that variable ai maps to each of the variables bi.

7.4 Use-Cases: Program Repair

In this section, we propose a few use-cases on how to use variable mappings for program repair.

More specifically, to repair bugs of: wrong comparison operator, variable misuse, and missing expres-

sion. These bugs are common among novice programmers [176] and have been studied by prior work

in the field of automated program repair [193–195, 197]. The current state-of-the-art on semantic pro-

gram repair tools focused on repairing IPAS, such as CLARA [2] and VERIFIX [9], are only able to fix

these bugs if the correct expression in the correct program is located in a similar program structure

as the incorrect expression in the incorrect implementation. For example, consider again the two pro-

grams presented in Figure 7.1. If the loop condition was incorrect in the faulty program, CLARA and

VERIFIX could not fix it, since the control flow graphs do not match. Thus, these tools would fail

due to structural mismatch.

The following sections present three program repair tasks that take advantage of variable mappings

to repair an incorrect program using a correct implementation for the same IPA without considering the

programs’ structures. Our main goal is to show the usefulness of variable mappings. We claim that

variable mappings are informative enough to repair these three realistic types of bugs. Given a buggy

program, we search for and try to repair all three types of bugs. Whenever we find a possible fix, we

check if the program is correct using the IPA’s test suite.

Bug #1: Wrong Comparison Operator (WCO). Our first use-case are faulty programs with the bug

of wrong comparison operator (WCO). This is a recurrent bug in students’ submissions to IPAS since

novice programmers frequently use the wrong operator, e.g., i <= n instead of i < n.

We propose tackling this problem solely based on the variable mapping between the faulty and

correct programs, ignoring the programs’ structure. First, we rename all the variables in the incorrect

program based on the variable mapping by changing all the variables’ identifiers in the incorrect program

with the corresponding variables’ identifiers in the correct implementation. Second, we count the num-

ber of times each comparison operation appears with a specific pair of variables/expressions in each

program. Then, for each comparison operation in the correct program, we compute the mirrored expres-

sion, i.e., swapping the operator by its mirrored operator, and swapping the left-side and right-side of the

operation. This way, if the incorrect program has the same correct mirrored expression, we can match it

with an expression in the correct program. For example, in the programs shown in Figure 7.1, both loop

conditions would match even if they are mirrored expressions, i.e., i <= n and n >= i.
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Table 7.1: Validation mappings fully correct after 20 training epochs.

Buggy Programs
WCO Bug VM Bug ME Bug All Bugs

Accuracy 93.7% 95.8% 93.4% 96.49%

Afterwards, we iterate over all the pairs of variables/expressions that appear in comparison opera-

tions of the correct program (plus the mirrored expressions) and compare if the same pair of variables/-

expressions appear the same number of times in the incorrect program, using the same comparison

operator. If this is not the case, we try to fix the program using the correct implementation’s operator in

each operation of the incorrect program with the same pair of variables/expressions. Once the program

is fixed, we rename all the variables based on the reverse variable mapping.

Bug #2: Variable Misuse (VM). Our second program repair task are buggy programs with variables

being misused, i.e., the student uses the wrong variable in some program location. The wrong variable

is of the same type as the correct variable that should be used. Hence, this bug does not produce any

compilation errors. This type of bug is common among students and experienced programmers [199,

200]. The task of detecting this specific bug has received much attention from the Machine Learning

(ML) research community [192, 193, 195].

Once again, we propose to tackle this problem based on the variable mapping between the faulty

program and the correct one, ignoring the programs’ structure. We start by renaming all the variables in

the incorrect program based on the variable mapping. Then we count the number of times each variable

appears in both programs. If a variable, x, appears more times in the incorrect program than in the

correct implementation, and if another variable y appears more times in the correct program, then we try

to replace each occurrence of x in the incorrect program with y. Once the program is fixed, we rename

all the variables based on the reverse variable mapping.

Bug #3: Missing Expression (ME). The last use-case we will focus on is to repair the bug of missing

expressions/assignments. This bug is also recurrent in students’ implementations of IPAS [176]. Fre-

quently, students forget to initialize some variable or to increment a variable of some loop, resulting in

a bug of missing expression. However, unlike the previously mentioned bugs, this one has not received

much attention from the ML community since it is more complex to repair this program fault. To search

for a possible fix, we start by renaming all the variables in the incorrect program based on the variable

mapping. Next, we count the number of times each expression appears in both programs. Expressions

that appear more frequently in the correct implementation are considered possible repairs. Then, we try

to inject these expressions, one at a time, into the incorrect implementation’s code blocks and check the

program’s correctness. Once the program is fixed, we rename all variables based on the reverse variable

mapping. This task is solely based on the variable mapping between the faulty and the correct programs.
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Table 7.2: The number of correct variable mappings generated by our GNN on the evaluation dataset
and the average overlap coefficients between the real mappings and our GNN’s variable mappings.

Buggy Programs
Evaluation Metric WCO Bug VM Bug ME Bug All Bugs

# Correct Mappings 87.38% 81.87% 79.95% 82.77%
Avg Overlap Coefficient 96.99% 94.28% 94.51% 95.05%

# Programs 1078 1936 1152 4166

7.5 Experiments

Experimental Setup. We trained the Graph Neural Networks on an Intel(R) Xeon(R) Gold 6140 CPU

@ 2.30GHz server with 72 CPUs and 692GB RAM. Networks were trained using NVIDIA GEFORCE

GTX 1080 graphics cards with 12GB of memory. All the experiments related to our program repair tasks

were conducted on an Intel(R) Xeon(R) Silver computer with 4210R CPUs @ 2.40GHz, using a memory

limit of 64GB and a timeout of 60 seconds.

7.5.1 IPAS Dataset

To evaluate our work, we used C-PACK-IPAS [186], a benchmark of student programs developed dur-

ing an introductory programming course in the C programming language for ten different IPAS (lab02),

described in Chapter 4.

First, we selected a set of correct submissions, i.e., programs that compiled without any error and

satisfied a set of input-output test cases for each IPA. We gathered 238 correct students’ submissions

from the first year and 78 submissions from the second year. We used the students’ submissions from

the first year for training and for validating our GNN and the submissions from the second year for

evaluating our work.

Since we need to know the real variable mappings between programs (ground truth) to evaluate our

representation, we generated a dataset of pairs of correct/incorrect programs to train and evaluate our

work with specific bugs. This is a common procedure to evaluate machine learning models in the field

of program repair [172, 192–195]. To generate this dataset, we used MULTIPAS [174] (see Chapter 6),

a program modifier capable of mutating C programs syntactically, generating semantically equivalent

programs, i.e., changing the program’s structure but keeping its semantics. There are several program

mutations available in MULTIPAS: mirroring comparison expressions, swapping the if’s then-block with

the else-block and negating the test condition, increment/decrement operators mirroring, variable dec-

larations reordering, translating for-loops into equivalent while-loops, and all possible combinations of

these program mutations. Hence, MULTIPAS has thirty-one different configurations for mutating a pro-

gram. All these program mutations generate semantically equivalent programs. Afterwards, we also

used MULTIPAS, to introduce bugs into the programs, such as wrong comparison operator (WCO), vari-

able misuse (VM), missing expression (ME). Hence, we gathered a dataset of pairs of programs and

the mappings between their sets of variables (see Appendix C). Each pair corresponds to a real cor-

rect student’s implementation, and the second program is the student’s program after being mutated
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Table 7.3: Percentage of variable mappings fully correct on the validation set for different sets of edges
used. Each type of edge is represented by an index using the mapping: {0: AST; 1: sibling; 2: write; 3:
read; 4: chronological}.

Edges Used All (1,2,3,4) (0,2,3,4) (0,1,3,4) (0,1,2,4) (0,1,2,3) (0,1)

Accuracy 96.49% 52.53% 73.76% 95.45% 94.87% 96.06% 94.74%

and with some bug introduced. Thus, this IPA dataset is generated, although based on real programs.

The dataset is divided into three different sets: training set, validation set, and evaluation set. The

programs generated from first year submissions are divided into a training and validation set based on

which students’ submissions they derive from. 80% of the students supply the training data, while 20%

supply validation data. The evaluation set, which is not used during the machine learning optimiza-

tion, is chronologically separate: it consists only of second year submissions, to simulate the real-world

scenario of new, incoming students. The training set is composed of 3372, 5170, and 2908 pairs of

programs from the first academic year for the WCO, VM, and ME bugs, respectively. The validation

set, which was used during development to check the generalization of the prediction to unseen data,

comprises 1457, 1457, and 1023 pairs of programs from the first year. Note that we subsample from

the full spectrum of possible mutations, to keep the training data size small enough to train the network

with reasonable time constraints. From each of the 31 combinations of mutations, we use one randomly

created sample for each student per exercise. We found that this already introduced enough variation in

the training dataset to generalize to unseen data. Finally, the evaluation set is composed of 4166 pairs

of programs from the second year (see 3rd row, Table 7.2). This dataset will be publicly available for

reproducibility reasons.

7.5.2 Training

At training time, since the incorrect program is generated, the mapping between the variables of

both programs is known. The network is trained by minimizing the cross entropy loss between the

labels (which are categorical integer values indicating the correct mapping) and the values in each

corresponding row of the matrix P. As an optimizer, we used the Adam algorithm with its default settings

in PyTorch [215]. The batch size was 1. As there are many different programs generated by the mutation

procedures, we took one sample from each mutation for each student. Each network was trained for 20

full passes (epochs) over this dataset while shuffling the order of the training data before each pass. For

validation purposes, data corresponding to 20% of the students from the first year of the dataset was

kept separate and not trained on.

Table 7.1 shows the percentage of validation data mappings that were exactly correct (accuracy) after

20 epochs of training, using four different GNN models. Each GNN model was trained on programs with

the bugs of wrong comparison operator (WCO), variable misuse (VM), missing expression (ME) or all of

them (All). Furthermore, each GNN model has its own validation set with programs with a specific type

of bug. The GNN model trained on All Bugs was validated using a mix of problems from each bug type.

In the following sections, we focus only on this last GNN model (All Bugs).
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Table 7.4: The number of programs repaired by each different repair technique: VERIFIX, CLARA, and
our repair approach based on our GNN’s variable mappings. The first row shows the results of repairing
the programs using variable mappings generated based on uniform distributions (baseline).

Buggy Programs Not Succeeded
Repair Method WCO Bug VM Bug ME Bug All Bugs % Failed % Timeouts (60s)

Baseline 618 (57.33%) 1187 (61.31%) 287 (24.91%) 2092 (50.22%) 0 (0.0%) 2074 (49.78%)
VERIFIX 555 (51.48%) 1292 (66.74%) 741 (64.32%) 2588 (62.12%) 1471 (35.31%) 107 (2.57%)
CLARA 722 (66.98%) 1517 (78.36%) 764 (66.32%) 3003 (72.08%) 1153 (27.68%) 10 (0.24%)
GNN 992 (92.02%) 1714 (88.53%) 981 (85.16%) 3687 (88.5%) 0 (0.0%) 479 (11.5%)

7.5.3 Evaluation

Our GNN model was trained on programs with bugs of wrong comparison operator (WCO), variable

misuse (VM), and missing expression (ME). We used two evaluation metrics to evaluate the variable

mappings produced by the GNN. First, we counted the number of totally correct mappings our GNN

was able to generate. We consider a mapping totally correct if it correctly maps all the variables between

two programs. Secondly, we computed the overlap coefficient between the original variable mappings

and the mappings generated by our GNN. The overlap coefficient is a similarity metric given by the

intersection between the two mappings divided by the length of the variable mapping (see Appendix C).

The first row in Table 7.2 shows the number of totally correct variable mappings computed by our

GNN model. One can see that the GNN maps correctly around 83% of the evaluation dataset. We

have also looked into the number of variables in the mappings we were not getting entirely correct. The

results showed that programs with more variables (e.g., six or seven variables) are the most difficult for

our GNN to map their variables correctly (see Appendix C). For this reason, we have also computed the

overlap coefficient between the GNN’s variables mappings and the original mappings (ground truth).

The second row in Table 7.2 shows the average of the overlap coefficients between the original variable

mappings and the mappings generated by our GNN model. The overlap coefficient [216] measures the

intersection (overlap) between two mappings. If the coefficient is 100%, both sets are equal. One set

cannot be a subset of the other since both sets have the same number of variables in our case. The

opposite is 0% overlap, meaning there is no intersection between the two mappings. The GNN achieved

at least 94% of overlap coefficients, i.e., even if the mappings are not always fully correct, almost 94%

of the variables are correctly mapped by the GNN.

Ablation Study. To study the effect of each type of edge in our program representation, we have

performed an ablation study on the set of edges. Prior works have done similar ablation studies [193].

Table 7.3 presents the accuracy of our GNN (i.e., number of correct mappings) on the evaluation dataset

after 20 epochs. We can see that the accuracy of our GNN drops from 96% to 53% if we remove the

AST edges (index 0), which was expected since these edges provide syntactic information about the

program. Removing the sibling edges (index 1) also causes a great impact on the GNN’s performance,

dropping to 74%. The other edges are also important, and if we remove them, there is a negative impact

on the GNN’s performance. Lastly, since the AST and sibling edges caused the greatest impact, we

evaluated using only these edges on our GNN and got an accuracy of 94.7%. However, the model

using all the proposed edges has the highest accuracy of 96.49%.
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7.5.4 Program Repair

This section presents the results of using variable mappings on the three use-cases described in

Section 7.4, i.e., the tasks of repairing bugs of: wrong comparison operator (WCO), variable misuse

(VM) and missing expression (ME). For this evaluation, we have also used the two current publicly

available program repair tools for fixing introductory programming assignments (IPAS): CLARA [2] and

VERIFIX [9]. Furthermore, we have tried to fix each pair of incorrect/correct programs in the evaluation

dataset by passing each one of these pairs of programs to every repair method: VERIFIX, CLARA, and

our repair approach based on the GNN’s variable mappings.

If our repair procedure cannot fix the incorrect program using the most likely variable mapping ac-

cording to the GNN model, then it generates the next most likely mapping based on the variables’

distributions computed by the GNN. Therefore, the repair method iterates over all variable mappings

based on the GNN’s predictions. Lastly, we have also run the repair approach using as baseline vari-

able mappings generated based on uniform distributions. This case simulates most repair techniques

that compute all possible mappings between both programs’ variables (e.g., SEARCHREPAIR [6]).

Table 7.4 presents the number of programs repaired by each different repair method. The first row

presents the results for the baseline, which was only able to fix around 50% of the evaluation dataset. In

the second row, the interested reader can see that VERIFIX can only repair about 62% of all programs.

CLARA, presented in the third row, outperforms VERIFIX, being able to repair around 72% of the whole

dataset. The last row presents the GNN model. This model is the best one repairing 88.5%.

The number of executions that resulted in a timeout (60 seconds) is relatively small for VERIFIX

and CLARA. Regarding our repair procedure, it either fixes the incorrect program or iterates over all

variable mappings until it finds one that fixes the program. Thus, the baseline and the GNN present no

failed executions and considerably high rates of executions that end up in timeouts, almost 50% for the

baseline and 11.5% in the case of the GNN model. Additionally, Table 7.4 also presents the failure rate

of each technique, i.e., all the computations that ended within 60 seconds and did not succeed in fixing

the given incorrect program. VERIFIX has the highest failure rate, around 35% of the entire evaluation

set. CLARA also presents a significant failure rate, about 28%. As explained previously, this is the main

drawback of these tools. Hence, these results support our claim that it is possible to repair these three

realistic bugs solely based on the variable mappings’ information without matching the structure of the

incorrect/correct programs.

Furthermore, considering all executions, the average number of variable mappings used within 60

seconds is 1.24 variable mappings for the GNN model and 5.6 variable mappings when considering the

baseline. The minimum number of mappings generated by both approaches is 1, i.e., both techniques

were able to fix at least one incorrect program using the first generated variable mapping. The maximum

number of variable mappings generated was 32 (resp. 48) for the GNN (resp. baseline). The maximum

number of variable mappings used is high because the repair procedure iterates over all the variable

mappings until the program is fixed or the time runs out. Moreover, even if we would only consider using

the first variable mapping generated by the GNN model to repair the incorrect programs, we would be

able to fix 3377 programs in 60 seconds, corresponding to 81% of the evaluation dataset.
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Figure 7.3: Cactus plot - The time spent by each method repairing each program of the evaluation
dataset, using a timeout of 60 seconds.

Regarding the time performance of each technique, Figure 7.3 shows a cactus plot that presents

the CPU time spent, in seconds, on repairing each program (y-axis) against the number of repaired

programs (x-axis) using different repairing techniques. One can clearly see a gap between the different

repair methods’ time performances. For example, in 10 seconds, the baseline can only repair around

1150 programs, VERIFIX repairs around 2300, CLARA repairs around 2850 programs while using the

GNN’s variable mappings, we can repair around 3350 programs, i.e., around 17% more. We are con-

sidering the time the GNN takes to generate the variable mappings and the time spent on the repair

procedure. However, the time spent by the GNN to generate one variable mapping is almost insignifi-

cant. The average time the GNN takes to produce a variable mapping is 0.025 seconds. The minimum

(resp. maximum) time spent by the GNN, considering all the executions is 0.015s (resp. 0.183s).

7.6 Related Work

Mapping variables can also be helpful for the task of code adaption, where the repair framework tries

to adapt all the variable names in a pasted snippet of code, copied from another program or a Stack

Overflow post to the surrounding preexisting code [196]. ADAPTIVEPASTE [196] focused on a similar

task to variable misuse (VM) repair, it uses a sequence-to-sequence with multi-decoder transformer

training to learn programming language semantics to adapt variables in the pasted snippet of code.

Recently, several systems were proposed to tackle the VM bug with ML models [193, 198, 203]. These

tools classify the variable locations as faulty or correct and then replace the faulty ones through an

enumerative prediction of each buggy location [193]. However, none of these methods takes program

semantics into account, especially the long-range dependencies of variable usages [196].
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7.7 Conclusions

This chapter tackles the highly challenging problem of mapping variables between programs. We

propose the usage of graph neural networks (GNNS) to map the set of variables between two pro-

grams using our novel graph representation that is based on both programs’ abstract syntax trees.

In a dataset of 4166 pairs of incorrect/correct programs, experiments show that our GNN correctly

maps 83% of the evaluation dataset. Furthermore, we leverage the variable mappings to perform au-

tomatic program repair. While the current state-of-the-art on program repair can only repair about 72%

of the evaluation dataset due to structural mismatch errors, our approach, based on variable mappings,

is able to fix 88.5%.

In Chapter 10, we integrate our variable mappings into a Large Language Model (LLM)-driven pro-

gram repair tool to evaluate the impact of these mappings in assisting the repair process of LLMS.
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8
CFAULTS: Model-Based Diagnosis for

Fault Localization in C with Multiple

Test Cases

“If debugging is the process of removing software bugs, then programming must be the process of

putting them in.”

– Edsger Dijkstra.
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Debugging is one of the most time-consuming and expensive tasks in software development. Several

formula-based fault localization (FBFL) methods have been proposed (see Section 3.2.2), but they fail

to guarantee a set of diagnoses across all failing tests or may produce redundant diagnoses that are not

subset-minimal, particularly for programs with multiple faults.

This chapter introduces a novel fault localization approach for C programs with multiple faults. CFAULTS

leverages Model-Based Diagnosis (MBD) with multiple observations and aggregates all failing test cases

into a unified MaxSAT formula. Consequently, our method guarantees consistency across observations

and simplifies the fault localization procedure. Experimental results on two benchmark sets of C pro-

grams, TCAS and C-PACK-IPAS, show that CFAULTS is faster than other FBFL approaches like BUGAS-

SIST and SNIPER. Moreover, CFAULTS only generates subset-minimal diagnoses of faulty statements,

whereas the other approaches tend to enumerate redundant diagnoses.

This chapter has been published as a conference paper at the 26th International Symposium on

Formal Methods, FM 2024 [16].

8.1 Introduction

Given a faulty program and a test suite with failing test cases, current formula-based fault localiza-

tion (FBFL) methods encode the localization problem into several optimization problems to identify a

minimal set of faulty statements (diagnoses) within a program. Typically, these methods find a minimal

diagnosis considering each failing test case individually rather than simultaneously with all failing test

cases. Moreover, these FBFL methods enumerate all Minimal Correction Subsets (MCSes) [53] to cover

all diagnoses.

For instance, BUGASSIST [62, 100], a prominent FBFL tool, implements a ranking mechanism for

bug locations. For each failing test, BUGASSIST enumerates all diagnoses of a Maximum Satisfiability

(MaxSAT) formula corresponding to bug locations. Subsequently, BUGASSIST ranks diagnoses based

on their frequency of appearance in each failing test. Other FBFL tools, like SNIPER [101], also enu-

merate all diagnoses for each failing test. However, the set of SNIPER’s diagnoses is obtained by

taking the Cartesian product of the diagnoses gathered using each failing test. As a result, while FBFL

methods can determine minimal diagnoses per failing test, BUGASSIST cannot guarantee a minimal

diagnosis considering all failing tests, and SNIPER may enumerate a significant number of redundant

diagnoses that are not minimal [54]. These limitations may pose challenges for programs with multiple

faulty statements, as shown in Example 13.

Example 13 (Motivation). Consider the program presented in Listing 8.1, which aims to determine the

maximum among three given numbers. However, based on the test suite shown in Table 8.1, the program

is faulty, as its output differs from the expected. The set of minimally faulty lines in this program is {5, 8,

11}, as all three if-conditions are incorrect according to the test suite. Fixing any subset of these lines

would be insufficient to repair the program. One possible fix is to replace all these conditions with the

suggested fixes in lines {6, 9, 12}.
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Listing 8.1: Faulty program example. Faulty
lines: {5,8,11}.

1 int main(){
2 // finds maximum of 3 numbers
3 int f,s,t;
4 scanf("%d%d%d",&f,&s,&t);
5 if (f < s && f >= t)
6 // fix: f >= s
7 printf("%d",f);
8 if (f > s && s <= t)
9 // fix: f < s and s >= t

10 printf("%d",s);
11 if (f > t && s > t)
12 // fix: f < t and s < t
13 printf("%d",t);
14

15 return 0;
16 }

Input Output
t0 1 2 3 3
t1 6 2 1 6
t2 -1 3 1 3

Table 8.1: Test-suite.
BUGASSIST SNIPER

#Diagnoses t0 8 8
#Diagnoses t1 21 21
#Diagnoses t2 9 9

#Total
Unique Diagnoses 32 1297

Final Diagnosis {4,13} {5,8,11}

Table 8.2: Number of diagnoses (faulty statements)
generated by BUGASSIST [100] and SNIPER [101]
per test.

In a typical FBFL approach, the minimal set of statements identified as faulty might include, for

example, lines 4 and 5. Removing the scanf statement and an if-statement would allow an FBFL tool

to assign any value to the input variables in order to always produce the expected output. However,

considering an approach that prioritizes identifying faulty statements within the program’s logic before

evaluating issues in the input/output statements (such as scanf and printf), one might identify lines {5,

8, 11} as the faulty statements. When applying BUGASSIST’s and SNIPER’s approach on the program

in Listing 8.1 with the described optimization criterion and utilizing the inputs/outputs detailed in Table 8.1

as specification, distinct sets of faults are identified for each failing test. Table 8.2 presents the diagnosis

(set of faulty lines) produced by each tool, along with the number of diagnoses enumerated for each

failing test case and the total number of unique diagnoses after aggregating the diagnoses from all

tests, using each tool’s respective method.

In the case of BUGASSIST, diagnoses are prioritized based on their occurrence frequency. Conse-

quently, BUGASSIST yields 32 unique diagnoses and selects {4, 13} since this diagnosis is identified in

every failing test. In contrast, SNIPER computes the Cartesian product of all diagnoses, resulting in

1297 unique diagnoses. Note that BUGASSIST’s diagnoses may not adequately identify all faulty pro-

gram statements. Conversely, SNIPER’s diagnosis {5, 8, 11} is minimal, even though it enumerates an

additional 1296 diagnoses. Hence, existing FBFL methods do not ensure a minimal diagnosis across all

failing tests (e.g., BUGASSIST) or may produce an overwhelming number of redundant sets of diagnoses

(e.g., SNIPER), especially for programs with multiple faults.

This chapter tackles this challenge by formulating the FL problem as a single optimization problem

in Section 8.2. Our MaxSAT-based Model-Based Diagnosis (MBD) with multiple observations approach

allows us to generate only minimal diagnoses to identify all faulty program components within a C pro-

gram. Furthermore, we have implemented the MBD problem with multiple test cases in CFAULTS, a fault

localization tool for ANSI-C programs, presented in Section 8.3. CFAULTS begins by unrolling and in-

strumentalizing C programs at the code-level, ensuring independence from the bounded model checker.

Next, CFAULTS utilizes CBMC [57], a well-known bounded model checker for C, to generate a trace

formula of the program. Finally, CFAULTS encodes the problem into MaxSAT to identify the minimal set
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of diagnoses corresponding to the buggy statements.

Experimental results presented in Section 8.4 on two benchmarks of C programs, TCAS [178] (indus-

trial), and C-PACK-IPAS [171] (programming exercises), show that CFAULTS effectively detects minimal

sets of diagnoses. In contrast, SNIPER and BUGASSIST either generate an overwhelming number of

redundant diagnoses or fail to produce a minimal set required to fix each program.

To summarize, the contributions of this work are: (1) we tackle the fault localization problem in C

programs using a Model-Based Diagnosis (MBD) approach considering multiple failing test cases, and

formulating it as a unified optimization problem; (2) we implement this MBD approach in a publicly

available tool called CFAULTS [217] 1 that unrolls and instrumentalizes C programs at the code level,

making it independent of the bounded model checker used; (3) CFAULTS allows refinement of localized

faults to pinpoint the bug’s location more precisely; (4) we evaluate CFAULTS on two sets of C programs

(TCAS and C-PACK-IPAS), showing that CFAULTS is fast and only produces subset-minimal diagnoses,

unlike other state-of-the-art formula-based fault localization tools.

8.2 Model-Based Diagnosis with Multiple Test Cases

This chapter encodes the fault localization problem as a Model-Based Diagnosis (MBD) with multiple

observations using a single optimization problem. We simultaneously integrate all failing test cases

(observations) in a single MaxSAT formula. This approach allows us to generate only minimal diagnoses

capable of identifying all faulty components within the system, in our case, a C program. The interested

reader is referred to Section 3.2.2 for a description of the MBD theory with a single observation.

Given m observations, O = {o1, . . . , om}, a distinct replica of the system, denoted as Pi, is required

for each observation oi. The hard clauses, φh, in our MaxSAT formulation correspond to each observa-

tion’s encoding (oi) and m system replicas, one for each observation, Pi. Hence, φh =
∧

oi∈O (Pi ∧ oi).

Additionally, we aim to maximize the set of healthy components. Therefore, the soft clauses are formu-

lated as: φs =
∧

c∈C h(c). Thus, given the MaxSAT solution of (φh, φs), the set of unhealthy components

(h(c) = 0), corresponds to a subset-minimal aggregated diagnosis, which also represents the smallest

minimal diagnosis. This diagnosis is a subset-minimal of components that, when declared unhealthy

(deactivated), make the system consistent with all observations, as follows:

∧
oi∈O

(Pi ∧ oi) ∧
∧

c∈C\∆
h(c) ∧

∧
c∈∆
¬h(c) 2 ⊥ (8.1)

We assume that the system remains unchanged given different observations, where the components

are replicated for each observation, but the healthy variables are shared. This is necessary because we

analyze all observations jointly, which can affect the component’s behaviour. In our work, the observa-

tions consist of a test suite containing failing test cases.

The HSD [54] algorithm was proposed to localize single faults in circuits given multiple observations.

The HSD algorithm is based on hitting set dualization (HSD). For each observation oi, this algorithm

1https://github.com/pmorvalho/CFaults
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computes minimal unsatisfiable subsets (MUSes) of the MaxSAT formula encoded by (3.5). Next, the

HSD algorithm computes a minimum hitting set H on the MUSes, and checks if H makes the system

consistent with each observation individually. Hence, to compute all subset-minimal aggregated diag-

noses of a faulty system P, the algorithm performs at most m oracle calls for each minimum hitting set

computed, where m is the number of observations. Each oracle call uses a different system replica (3.5).

Our approach encodes the problem into a single MaxSAT formula, while HSD [54] divides the prob-

lem into m MaxSAT formulas, one for each observation. Additionally, for each minimal hitting set com-

puted in HSD, m oracle calls are needed to check if a diagnosis is consistent with all observations.

However, in our case, we just need to perform a single MaxSAT call that returns a cardinality minimal

diagnosis, which is, by definition, consistent with all observations since all observations are encoded

into the formula. Furthermore, the HSD algorithm was solely evaluated using single faults in circuits

given multiple observations, and it was not implemented to work with programs. A potential drawback

is that our MaxSAT formula grows with the number of observations. This could result in a large for-

mula and affect the performance of the MaxSAT solver. However, this scenario was not observed in our

experimental results (see Section 8.4).

8.3 CFAULTS: Model-Based Diagnosis with Multiple Observations

for C

CFAULTS is a new model-based diagnosis (MBD) tool for fault localization in C programs with mul-

tiple test cases. Unlike previous works, CFAULTS uses the approach proposed in Section 8.2, and C

programs are relaxed at the code level, enabling users to leverage other bounded model checkers effec-

tively. Figure 8.1 provides an overview of CFAULTS consisting of six main steps: program unrolling, pro-

gram instrumentalization, bounded model checking (CBMC), encoding to MaxSAT, an Oracle (MaxSAT

solver), and a refinement step. Hence, CFAULTS formulates the MBD problem with multiple test cases

as the 3-tuple 〈P, C,O〉, where the observations O consist of failing test cases (inputs and assertions),

the components C represent the set of program statements, and the system description P is a trace

formula of the unrolled and instrumentalized program. The program is instrumented at the code level

with relaxation variables corresponding to our healthy variables.

8.3.1 Program unrolling

CFAULTS starts the unrolling process by expanding the faulty program using the set of failed tests

from the test suite. In this context, an unrolled program signifies the original program expanded m

times (m program scopes), where m denotes the number of failed test cases. An unrolled program

encodes the execution of all failing tests within the program, along with their corresponding inputs and

specifications (assertions).

The unrolling process encompasses three primary steps. Initially, CFAULTS generates fresh variables

and functions for each of the m program scopes, ensuring each scope possesses unique variables and
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Figure 8.1: Overview of CFAULTS.

functions. Subsequently, CFAULTS establishes variables representing the inputs and outputs for each

program scope corresponding to the failing tests. Input operations, such as scanf, undergo translation

into read accesses to arrays corresponding to the inputs, while output operations, such as printf,

are replaced by write operations into arrays representing the program’s output. Every exit point of the

program (e.g., a return statement in the main function) is replaced with a goto statement directing

the program flow to the next failing test’s scope. Lastly, at the end of the unrolled program, CFAULTS

embeds an assertion capturing all the specifications of the failing tests. Consequently, the unrolled

program encapsulates the execution of all failing tests within a single program.

Listing 8.2 exhibits a program segment generated through the unrolling process applied to Listing 8.1.

CFAULTS establishes global variables to represent the inputs and outputs of each failing test (lines 1–3,

Listing 8.2). For the sake of simplicity, the depicted listing illustrates solely the initial scope corresponding

to test 0 from the test suite outlined in Table 8.1. Distinct variables are introduced for each failing test.

Furthermore, the scanf function call is substituted with input array operations (lines 8–10), while the

printf calls are replaced with CFAULTS’ print functions, akin to sprintf functions, which direct output

to a buffer. Lastly, the unrolled program concludes with an assertion representing the disjunction of the

negation of all failing test assertions. For instance, suppose there are m failing tests, where Ai denotes

the assertion of test ti. In this scenario, CFAULTS injects the following assertion into the program:

¬A1 ∨ · · · ∨ ¬Am.

8.3.2 Program Intrumentalization

After integrating all possible executions and assertions from failing tests during the unrolling step,

CFAULTS proceeds to instrumentalize the unrolled C program by introducing relaxation variables for

each program component (statement/instruction). Each relaxation variable activates (or deactivates) the

program component being relaxed when assigned to true (or false) respectively. CFAULTS ensures that

there are no conflicts between the names of the relaxation variables and the names of the program’s

original variables. For this step, CFAULTS needs to receive a maximum number of iterations that the

program should be unwound.

The relaxation process introduces relaxation variables that deactivate or activate program compo-
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Listing 8.2: The program from Listing 8.1 after being subjected to CFAULTS’ unrolling process, using
the test suite presented in Table 8.1. For simplicity, only the initial scope corresponding to test t0 is
displayed. The scopes scope_1 and scope_2 associated with failing tests t1 and t2 are omitted.

1 float _input_f0[3] = {1, 2, 3};
2 char _out_0[2] = "3";
3 int _ioff_f0 = 0, _ooff_0 = 0;
4 // ... inputs and outputs for the other tests
5 int main(){
6 scope_0:{
7 int f_0, s_0, t_0;
8 f_0 = _input_f0[_ioff_f0++];
9 s_0 = _input_f0[_ioff_f0++];

10 t_0 = _input_f0[_ioff_f0++];
11 if ((f_0 < s_0) && (f_0 >= t_0))
12 _ooff_0 = printInt(_out_0, _ooff_0, f_0);
13 if ((f_0 > s_0) && (s_0 <= t_0))
14 _ooff_0 = printInt(_out_0, _ooff_0, s_0);
15 if ((f_0 > t_0) && (s_0 > t_0))
16 _ooff_0 = printInt(_out_0, _ooff_0, t_0);
17 goto scope_1;
18 }
19 // ... scope_1 and scope_2
20 final_step:
21 assert(strcmp(_out_0, "3") != 0 || /* other assertions */ );
22 }

nents. This process involves four distinct relaxation rules for: (1) conditions of if-statements, (2) ex-

pression lists (e.g., an expression list executed at the beginning of a for-loop), (3) loop conditions, and

(4) other program statements.

Example 14. Listings 8.3 shows a code snippet that sums all the numbers between 1 and n. Listings 8.4

depicts the same program statements after undergoing relaxation by CFAULTS. For the sake of simplicity,

all relaxation variables’ and offsets’ names were simplified.

In more detail, the rule for relaxing a general program statement is to envelop the statement with

an if-statement, whose condition is a relaxation variable. For example, consider lines 5 and 6 in the

program on Listings 8.3. These lines are relaxed by CFAULTS using relaxation variables _rv1 and _rv2

respectively, appearing as lines 11 and 12 on Listings 8.4.

Furthermore, when relaxing if-statements, the statements inside the then and else blocks adhere

to the previously explained relaxation rule. However, the conditions of if-statements are relaxed using

a ternary operator, as shown in line 14 of Listings 8.4. Note that if the relaxation variable is assigned

true, then the original if condition is executed. Otherwise, a different relaxation variable (e.g., _ev4 in

Listings 8.4) determines whether the program execution enters the then-block or the else-block (if one

exists). These relaxation variables (else’s relaxation variables) are local to each failing test scope and

enable different tests to determine whether to enter the then or else-block.

When handling expression lists, CFAULTS adopts a comparable strategy to that of generic program

statements, enclosing each expression within a ternary operator instead of an if-statement. If the

program component is deactivated, the expression is replaced by 1. For example, the initialization of

variable i in line 11 of Listings 8.3 is relaxed into the ternary operation in line 17 of Listings 8.4.

Lastly, all relaxation variables inside a loop are Boolean vectors to relax statements within a loop.

Each entry of these vectors relaxes the loop’s statements for a given iteration. The maximum number
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Listing 8.3: Program statements.

1 int i;
2 int n;
3 int s;
4

5 s = 0;
6 n = _input_f0[_ioff_f0++];
7

8 if (n == 0)
9 return 0;

10

11 for (i=1; i < n; i++){
12 s = s + i;
13 }

Listing 8.4: Program statements relaxed.

1 //main scope
2 bool _rv1, _rv2, _rv3, _rv5;
3 bool _rv6[UNWIND],..., _rv8[UNWIND] ;
4 int _los ; // loop1 offset
5

6 //test scope
7 bool _ev4;
8 int i,n,s;
9 _los=1;

10

11 if (_rv1) s = 0;
12 if (_rv2) n = _input_f0[_ioff_f0++];
13

14 if ( _rv3 ? (n == 0) : _ev4)
15 return 0;
16

17 for (_rv5 ? (i = 1) : 1;
18 !_rv6[_los] || (i<n);
19 _rv8[_los] ? i++ : 1, _los++ ){
20 if (_rv7[_los] ) s = s + i;
21 }

of iterations of the loops is defined by the CFAULTS user. CFAULTS follows a similar approach for inner

loops, creating arrays of arrays. Thus, for simple program statements within a loop, CFAULTS encapsu-

lates them with if-statements, with the relaxation variables indexed to the iteration number. Line 20 of

Listings 8.4 illustrates a relaxed statement inside a loop. The loop’s condition is relaxed by implication of

the relaxation variable, as demonstrated in line 18 of Listings 8.4. Furthermore, each loop has its own

offsets to index relaxation variables. These offsets are initialized just before the loop and incremented

at the end of each iteration (e.g., line 19 in Listing 8.4).

When handling auxiliary functions, CFAULTS declares the relaxation variables needed in the main

scope of the program and passes these variables as parameters. Hence, CFAULTS ensures that the

same variables are used throughout the auxiliary functions’ calls.

Listing 8.5 depicts the program resulting from the instrumentalization process of Listing 8.2 per-

formed by CFAULTS. The same program components (statements/instructions) across different failing

test scopes are assigned the same relaxation variable declared in the main scope. Consequently, if a

relaxation variable is set to 0, the corresponding program component is deactivated across all test ex-

ecutions. Additionally, the relaxation variables are left uninitialized, allowing CFAULTS to determine the

minimal number of faulty components requiring deactivation. Note that relaxation variables are not de-

clared as global variables but as local variables within the main scope. This is to prevent the C compiler

from automatically initializing all these variables to 0.

8.3.3 CBMC

After unrolling and instrumentalizing the C program, CFAULTS invokes CBMC, a bounded model

checker for C [57]. CBMC initially transforms the unrolled and relaxed program into Static Single

Assignment (SSA) form, an intermediate representation ensuring that variables are assigned values

only once and are defined before use [218]. SSA achieves this by converting existing variables into

multiple versions, each uniquely representing an assignment. Next, CBMC translates the SSA rep-
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Listing 8.5: Instrumentalized program.

1 //global vars
2 int main(){
3 bool _rv1, _rv2, ..., _rv12;
4 scope_0:{
5 bool _ev5, _ev8, _ev11;
6 int f_0, s_0, t_0;
7 if (_rv1) f_0 = _input_f0[_ioff_f0++];
8 if (_rv2) s_0 = _input_f0[_ioff_f0++];
9 if (_rv3) t_0 = _input_f0[_ioff_f0++];

10 if (_rv4 ? ((f_0 < s_0) && (f_0 >= t_0)) : _ev5 ){
11 if (_rv6) _ooff_0 = printInt(_out_0, _ooff_0, f_0);
12 }
13 if (_rv7 ? ((f_0 > s_0) && (s_0 <= t_0)) : _ev8 ){
14 if (_rv9) _ooff_0 = printInt(_out_0, _ooff_0, s_0);
15 }
16 if (_rv10? ((f_0 > t_0) && (s_0 > t_0)) : _ev11 ){
17 if (_rv12) _ooff_0 = printInt(_out_0, _ooff_0, t_0);
18 }
19 goto scope_1;
20 }
21 // scope_1 and scope_2
22 final_step:
23 assert(strcmp(_out_0, "3") != 0 || /* ... other assertions */ );
24 }

resentation into a CNF formula, which represents the trace formula of the program. During the CNF

formula generation, CBMC negates the program’s assertion (¬(¬A1∨· · ·∨¬Am)) to compute a counter-

example. Moreover, the CNF formula, φ, encodes each failing test’s input (Ii), assertion (Ai), and all

execution paths of the unrolled and relaxed incorrect program encoded by the trace formula (P ), i.e.,

φ = (I1 ∧ . . . ∧ Im) ∧ P ∧ (A1 ∧ · · · ∧Am). Thus, if φ is SAT , an assignment exists that activates or

deactivates each relaxation variable and makes all failing test assertions true. Hence, each satisfiable

assignment is a diagnosis of the C program, considering all failing tests.

8.3.4 MaxSAT Encoder

Let φ denote the CNF formula generated by CBMC in the previous step. Next, CFAULTS generates

a weighted partial MaxSAT formula (H,S) to maximize the satisfaction of relaxation variables in the

program, aiming to minimize the necessary code alterations. The set of hard clauses is defined by

CBMC’s CNF formula (i.e., H = φ), while the soft clauses consist of unit clauses representing relaxation

variables used to instrument the C program, expressed as S =
∧

c∈C (rvc). Additionally, we assign

a hierarchical weight to each relaxation variable based on the height of its sub-AST (Abstract Syntax

Tree). For instance, in the case of an if-statement without an else-block, the relaxation variable for its

condition will be assigned a weight equal to the sum of the weights of the relaxation variables within the

then-block. Furthermore, to prioritize the identification of faulty statements within the program’s logic

over evaluating issues in the input/output, these statements (such as scanf and printf) are assigned a

significantly higher cost compared to other program statements. Moreover, due to the use of hierarchical

weights in the relaxation variables, CFAULTS enumerates all MaxSAT solutions to identify all subset-

minimal diagnoses with the smallest weight, since there can be more than one MaxSAT solution (with

the same cost) that differ in the number of relaxed program statements.
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8.3.5 Oracle

CFAULTS invokes a MaxSAT solver to determine the program’s diagnoses with minimum weight. Note

that all these diagnoses are also subset-minimal, aligning with the principles of Model-Based Diagnosis

(MBD) theory. By consolidating all failing tests into a unified, unrolled, and instrumentalized program, the

MaxSAT solution identifies the minimum subset of statements requiring removal to fulfil the assertions

of all failing tests.

8.3.6 Refinement

The standard Model-Based Diagnosis (MBD) theory focuses on faulty components (program state-

ments) whose removal can rectify the system (program’s assertions). However, addressing program

faults in software may necessitate introducing, relocating, or replacing statements. Hence, CFAULTS

incorporates a refinement step that introduces nondeterminism into the program, enabling the Oracle

to simulate actions such as introducing, reallocating or replacing existing program statements. During

the first iteration of CFAULTS, the refinement step is invoked to introduce non-determinism, with the aim

of minimizing the number of faulty statements. This step can improve fault localization by conducting a

more detailed analysis of previously identified faulty statements. For example, in the scenario outlined

in Example 13, refining line 5 into

if ((_rv1 ? (f < s) : nondet_bool() ) && (_rv2 ? (f >= t) : nondet_bool() ))

enables CFAULTS to determine that only the left part of the binary operation (f < s) is faulty, while the

right part remains unaffected. This fine-grained approach allows for more precise detection of program

faults. When the refinement step is triggered, CFAULTS instrumentalizes the program again, introducing

nondeterminism exclusively to the statements previously identified as faulty during the initial Oracle call.

Through this process, CFAULTS aims to reduce the set of faulty program components by executing

them or assigning them to nondeterministic functions. All remaining program components are executed,

meaning their relaxation variables are activated during this step.

8.4 Experimental Results

All of the experiments were conducted on an Intel(R) Xeon(R) Silver computer with 4210R CPUs @

2.40GHz running Linux Debian 10.2, using a memory limit of 32 GB and a timeout of 3600s, for each

program. CFAULTS has been evaluated using two distinct benchmarks of C programs: TCAS [178] and

C-PACK-IPAS [186]. TCAS stands out as a well-known program benchmark extensively utilized in the

fault localization literature [62, 101]. This benchmark comprises a C program from Siemens and 41

versions with intentionally introduced faults, with known positions and types of these faults. Conversely,

C-PACK-IPAS is a set of student programs collected during an introductory programming course. For

this evaluation, we used the first lab class of C-PACK-IPAS, which consists of ten programming assign-

ments, comprising 486 faulty programs and 799 correct implementations. C-PACK-IPAS has proven
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Benchmark: TCAS
Valid

Diagnosis Memouts Timeouts

BugAssist 41 (100.0%) 0 (0.0%) 0 (0.0%)
SNIPER 7 (17.07%) 34 (82.93%) 0 (0.0%)
CFaults 41 (100.0%) 0 (0.0%) 0 (0.0%)

CFaults-Refined 41 (100.0%) 0 (0.0%) 0 (0.0%)

Benchmark: C-Pack-IPAs
Valid

Diagnosis Memouts Timeouts

BugAssist 454 (93.42%) 0 (0.0%) 32 (6.58%)
SNIPER 446 (91.77%) 4 (0.82%) 36 (7.41%)
CFaults 483 (99.38%) 1 (0.21%) 2 (0.41%)

CFaults-Refined 482 (99.18%) 1 (0.21%) 3 (0.62%)

Table 8.3: BUGASSIST, SNIPER and CFAULTS fault localization results.

successful in evaluating various works across program analysis [173], program transformation [174],

and clustering [42].

CFAULTS uses pycparser [219] for unrolling and instrumentalizing C programs. Additionally, CBMC

version 5.11 is used to encode C programs into CNF formulas. Furthermore, since the source code

of BUGASSIST and SNIPER is either unavailable or no longer maintained (resulting in compilation and

linking issues), prototypes of their algorithms were implemented. It is worth noting that the original ver-

sion of SNIPER could only analyze programs that utilized a subset of ANSI-C, lacked support for loops

and recursion, and could only partially handle global variables, arrays, and pointers. In this work, both

SNIPER and BUGASSIST handle ANSI-C programs, as their algorithms are built on top of CFAULTS’s

unroller and instrumentalizer modules. For the MaxSAT oracle, RC2Stratified [220] from the PySAT

toolkit [221] (v. 0.1.7.dev19) was used.

Furthermore, all three FBFL algorithms evaluated (CFAULTS, BUGASSIST, and SNIPER) consis-

tently generate diagnoses that are consistent with (8.1), indicating that all proposed diagnoses undergo

validation by CBMC once the algorithm provides a diagnosis. However, this validation primarily serves

to verify diagnoses generated by BUGASSIST, as it has the capability to produce diagnoses that may

not align with all failing test cases. In contrast, CFAULTS’ MaxSAT solution, by definition, aligns with all

observations, and SNIPER’s aggregation method (Cartesian product) produces only valid diagnoses,

although they may not always be subset-minimal. When considering BUGASSIST, we iterate through

all computed diagnoses based on BUGASSIST’s voting score, until we identify one diagnosis that is

consistent with all observations, i.e., conforms to (8.1).

Table 8.3 provides an overview of the results obtained using SNIPER, BUGASSIST, and CFAULTS

on the two benchmarks of C programs. The TCAS program comprises approximately 180 lines of

code and has a maximum of 131 failing tests for each program. This leads SNIPER to reach the

memory limit of 32GB for almost 83% of the programs when aggregating the sets of MCSes computed

for each failing test. Additionally, a higher rate of timeouts is observed for SNIPER and BUGASSIST

than for CFAULTS. Figures 8.2a and 8.2b depict cactus plots that present the CPU time spent on

fault localization in each program (y-axis) versus the number of programs with all faults successfully

localized (x-axis) using BUGASSIST, SNIPER, and CFAULTS (with and without refinement) on TCAS

and C-PACK-IPAS, respectively. Notably, CFAULTS generally exhibits faster performance compared to

BUGASSIST and SNIPER across both benchmarks. In Figure 8.2a, SNIPER’s performance is due to

its memout rate on TCAS.

In TCAS, CFAULTS, whether invoking the refinement step or not, identifies faults in the entire dataset.

However, in C-PACK-IPAS, CFAULTS localizes faults in one additional program when the refinement step

is not called. Even if the refinement step reaches the time limit, CFAULTS still possesses a subset-
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Figure 8.2: Comparison between BUGASSIST’s, SNIPER’s and CFAULTS’ diagnoses.

minimal diagnosis from the preceding step that has not undergone refinement. The refinement step

slightly slows down CFAULTS, as shown in Figures 8.2a and 8.2b. Nonetheless, Figure 8.2c illustrates

a scatter plot comparing the optimum costs (MaxSAT solution’s cost) achieved by CFAULTS with and

without calling the refinement step on C-PACK-IPAS. Each point on this plot represents a faulty pro-

gram, where the x-value (resp. y-value) represents the optimum cost of CFAULTS’ with refinement (resp.

without refinement) diagnosis. If a point lies above the diagonal, it indicates that a non-refined diagnosis

has a higher cost than a refined diagnosis for the same program. Therefore, while the refinement step

may marginally slow down CFAULTS, it enables CFAULTS to identify smaller diagnoses at a reduced

cost in approximately 16% of C-PACK-IPAS’s programs. Moreover, this observation was not noted in

the TCAS dataset, as each program contains a maximum of two faults, and the refinement step did not

yield improved outcomes in this particular dataset.

Additionally, Figure 8.2d illustrates a scatter plot comparing the diagnoses’ costs achieved by CFAULTS

(x-axis) against BUGASSIST (y-axis) on C-PACK-IPAS. BUGASSIST fails to provide an optimal diagnosis

in almost 6% of cases. In the TCAS benchmark, although BUGASSIST manages to localize faults in all

programs, it yields a non-optimal diagnosis in 10% of the programs. Furthermore, Figure 8.2e depicts

a scatter plot comparing the number of diagnoses generated by CFAULTS (x-axis) against SNIPER (y-

axis). While CFAULTS needs to enumerate all MaxSAT solutions due to the weighted MaxSAT formula,

it is evident that SNIPER generates significantly more diagnoses than CFAULTS. This discrepancy sug-
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gests that SNIPER overlooks the possibility of redundant diagnoses being computed. The number of

such redundant diagnoses is much larger than the number of diagnoses generated by CFAULTS. Fig-

ure 8.2e illustrates that in some instances, SNIPER may enumerate up to 100K diagnoses, whereas

CFAULTS generates less than 10.

As a validation step for our implementation, we analyzed all three fault localization methods on

the collection of 799 correct programs in C-PACK-IPAS. This was done to ensure that all methods

yielded zero faults for all correct implementations of each programming exercise. Moreover, we con-

ducted a comparison between CFAULTS and the HSD algorithm [54] (see Section 8.2) on the ISCAS85

dataset [222], which is a widely studied collection of single-fault circuits. It is worth noting that HSD’s

implementation currently only supports fault localization in circuits. We encountered no performance

issues during this comparison, and both approaches successfully localized all faults within each circuit.

8.5 Conclusion

This chapter introduces a novel formula-based fault localization technique for C programs capable of

addressing any number of faults. Leveraging Model-Based Diagnosis (MBD) with multiple observations,

CFAULTS consolidates all failing test cases into a unified MaxSAT formula, ensuring consistency in the

fault localization process. Experimental evaluations on TCAS and C-PACK-IPAS, show that CFAULTS is

faster than other FBFL approaches like BUGASSIST and SNIPER. Furthermore, CFAULTS only gener-

ates minimal diagnoses of faulty statements, while other methods tend to produce redundant diagnoses.

In fact, leveraging on the usage of MaxSAT, CFAULTS only generates minimal diagnoses that minimize

the total weight of the unhealthy components.

Next, in Chapter 9 CFAULTS is evaluated in a classroom setting. Furthermore, in Chapter 10,

CFAULTS is integrated into a Large Language Model (LLM)-driven program repair tool to assess the

impact of using formula-based fault localization (FBFL) to guide the repair process of LLMS.
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9
GITSEED: A Git-backed Automated

Assessment Tool for Software

Engineering and Programming

Education

“Everybody should learn to program a computer, because it teaches you how to think.”

– Steve Jobs.
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Due to the substantial number of enrollments in programming courses, a key challenge is delivering

personalized feedback to students. The nature of this feedback varies significantly, contingent on the

subject and the chosen evaluation method. However, tailoring current Automated Assessment Tools

(AATs) to integrate other program analysis tools is not straightforward. Moreover, AATs usually support

only specific programming languages, providing feedback exclusively through dedicated websites based

on test suites.

This chapter introduces GITSEED, a language-agnostic automated assessment tool designed for

Programming Education and Software Engineering (SE) and backed by GITLAB. The students inter-

act with GITSEED through GITLAB. Using GITSEED, students in Computer Science (CS) and SE

can master the fundamentals of git while receiving personalized feedback on their programming assign-

ments and projects. Furthermore, faculty members can easily tailor GITSEED’s pipeline by integrating

various code evaluation tools (e.g., memory leak detection, fault localization, program repair, etc.) to

offer personalized feedback that aligns with the needs of each CS/SE course. Our experiments assess

GITSEED’s efficacy via comprehensive user evaluation, examining the impact of feedback mechanisms

and features on student learning outcomes. Findings reveal positive correlations between GITSEED

usage and student engagement.

This chapter has been published as a conference paper at the 1st ACM Virtual Global Computing

Education Conference, SIGCSE Virtual 2024 [223].

9.1 Introduction

Providing feedback to CS students on their programming assignments and software projects de-

mands considerable time and effort from the faculty. Hence, there is a rising demand for systems, such

as Automated Assessment Tools (AATs), that can deliver automated, comprehensive, and personalized

feedback to students. When compared to non-automated evaluators, such as teaching assistants, AATs

exhibit the ability to evaluate several assignments or code submissions efficiently and quickly. Hence,

AATs facilitate the learning process since students get their feedback much faster. Moreover, AATs offer

objectivity and consistency, adhering to some evaluation metric (e.g., a test suite).

The interest and development of AATs dates back to the 1960s [142, 224]. Over the past two

decades, there has been a surge in the growth and adoption of AATs [144–149, 153]. However, de-

spite the remarkable growth in the development and usage of AATs, certain drawbacks have become

increasingly apparent. Primarily, a majority of AATs [144, 149] merely display the outcomes of a set of

input/output tests used for the student’s evaluation and lack other kinds of feedback. Secondly, ATTs

tend to be specific to one programming language or a limited set of languages. AATs that are language-

agnostic are scarce [145, 147]. Thirdly, AATs typically offer feedback solely through dedicated websites,

necessitating students to familiarize themselves with new GUI interfaces. Finally, it is either challenging

or impractical to adapt most AATs to integrate other program analysis tools, which might be essential to

provide more personalized feedback in some CS/SE courses.

This chapter introduces GITSEED, a new tool that overcomes the aforementioned limitations of previ-
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Figure 9.1: The overview of GITSEED.

ous AATs. GITSEED is a novel Git-backed AAT for Software Engineering and Programming Education.

Figure 9.1 presents the overview of GITSEED. As Figure 9.1 shows, the students interact with GIT-

SEED through GITLAB. This way, CS/SE students can learn the fundamentals of git while receiving

personalized feedback on their programming assignments and projects. Afterwards, using GITLAB’s

runners, GITSEED is notified whenever there is a new submission from group X. GITSEED evaluates

this new submission against a test suite and using program analysis tools defined by the faculty. Finally,

the resulting evaluation report is pushed into X’s git repository (repo) so that the students have access

to personalized feedback right away.

Furthermore, GITSEED is language agnostic, i.e., it can be used for any CS/SE course no matter the

programming language(s) used. Moreover, most CS/SE students are familiar or will be familiar through-

out their courses, with several git web interfaces (e.g., GITLAB, GITHUB, GITEA). Therefore, GITSEED

eliminates the necessity for students to acquaint themselves with an unfamiliar GUI interface, which

happens frequently in several universities where different CS/SE courses use different GUI interfaces

for automated assessment of programming tasks [142, 144–146, 149].

GITSEED has two different categories of assessments: labs and projects. Either one is optional, and

it is possible to have an unlimited number of projects depending on the chosen configuration. Faculty can

choose which assessment model aligns best with their courses. Moreover, faculty members can easily

tailor the pipeline of GITSEED, enhancing the quality of feedback provided to the students aligned with

the needs of each CS/SE course. For example, code evaluation tools can be integrated into GITSEED,

such as memory leak detection [225], fault localization [226, 227], program repair [2, 9, 173], plagiarism

detection [183], code coverage, among others.

The chapter is organized as follows. Section 9.2 presents the implementation and possible configu-

rations of GITSEED in more detail. GITSEED has already proven successful in two separate courses,

a first-year programming course and a CS graduate course. Section 9.3 discusses our experiments and

evaluates the effectiveness of GITSEED in enhancing programming education. Through the analysis of

feedback from students enrolled in a first-year undergraduate course, we explore the role of GITSEED’s

features, including dashboards and feedback mechanisms, in facilitating learning and improving stu-

dent performance. Finally, Section 9.4 briefly compares GITSEED with GITHUB CLASSROOM, and this

chapter concludes in Section 9.5.
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Figure 9.2: Workflow of GITSEED for processing a new project submission from group X in CS101.

To summarize, this chapter makes the following contributions:

• We present GITSEED, an open-source language-agnostic automated assessment tool designed

for Software Engineering (SE) and Programming Education and backed by GITLAB;

• GITSEED is integrated into GITLAB’s continuous integration (CI) workflow, which adopts educa-

tional assessment within a professional version control platform rather than a dedicated website,

like so many other AATs;

• Students interact with GITSEED through GITLAB, learning this way the fundamentals of git while

receiving personalized feedback on their assignments;

• Faculty members can easily adapt GITSEED by integrating other code analysis tools to offer per-

sonalized feedback that aligns with the needs of each CS/SE course.

• GITSEED is publicly available on GitLab [228] and on ZENODO [229].

9.2 GITSEED

This section presents the internals of GITSEED and configuration options. Section 9.2.1 describes

the GITLAB features required by GITSEED. Next, Section 9.2.2 focuses on the back-end of GITSEED

and its workflow, and Section 9.2.3 details the measures taken in order to ensure that all stages of the

GITSEED pipeline are safe. Finally, Section 9.2.4 explains our implementation of GITSEED.
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9.2.1 GITLAB

Figure 9.2 illustrates the complete workflow of GITSEED, where GITLAB plays the role of an inter-

mediary between the students and GITSEED. Notice that students only interact with GITLAB, and then

GITLAB triggers the processing of submissions in GITSEED. Furthermore, GITSEED was designed to

work with other git web interfaces. Modern, widely-used programming editors/environments (e.g., VS

CODE) already feature user-friendly interfaces for managing git repos. Hence, the submission process

and getting feedback can be easily done within the student’s programming environment, eliminating the

need to exit their coding workspace. Alternatively, students can also use GITLAB’s web interface.

9.2.1.1 GitLab Group, Subgroups and Course Repo

GITSEED expects the following structure of groups in GITLAB: a main GITLAB group with all the

students (e.g., CS101), a subgroup for each distinct evaluation element (e.g., labs, project, etc.), an

additional subgroup for feedback, and a git repo for the entire course (CS101, in Figure 9.2) that contains

all the course’s information and dashboards for each evaluation element.

GITSEED has different repos for labs and projects. The rationale behind this choice is that while labs

remain open throughout the semester, projects have distinct deadlines and may involve different groups

of students. Furthermore, the feedback can also be pushed directly to the same git repos used by

students for code submissions. However, having two different repos, one for code submissions and one

for getting feedback, is the best approach for first-year students. This approach mitigates the chances of

merging conflicts or git conflicts between students and GITSEED. Hence, GITSEED uses different repos

to simplify the students’ repos synchronization. This way, students manage their code development

repos, and GITSEED only submits to the feedback repo.

In GITLAB, each project member is assigned a role that determines which actions they can take in

the git repo 1. In GITSEED, students assume the role of “Developers” for their own repos (e.g., projects,

labs), granting them read and write access. However, students assume the role of “Reporters” for their

feedback git repos and in the course global project, granting them viewing but not editing privileges.

Note that the group of students can only see their own feedback repo and not those of other groups.

Finally, faculty members hold the roles of “Maintainers” or “Owners” for all repos, depending on the

chosen configuration.

9.2.1.2 Continuous Integration (CI)

GITSEED takes advantage of the CI pipeline2 available on GITLAB. The CI pipeline, essential for

testing and deploying software projects, operates through a .gitlab-ci.yml script outlining all testing

and deployment actions. It utilizes “runners”, agents executing these actions, such as tests, as defined

in the script.

1https://docs.gitlab.com/ee/user/permissions.html
2https://docs.gitlab.com/ee/ci/
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GitLab Runner GITSEED requires a GITLAB runner to be installed and self-hosted in the machine

where GITSEED is running (e.g., a Linux virtual machine (VM)). In this machine, the runner runs the

job described in the .gitlab-ci.yml. The runner’s job is to add information to GITSEED’s queue that

student X made a new submission to project Y. The faculty needs to adapt the .gitlab-ci.yml based

on the programming language(s) being evaluated in the course. Distinct students can use different

programming languages for the same programming task.

9.2.2 GITSEED’s Back-end

Next, we detail the stages of the GITSEED workflow from Figure 9.2.

9.2.2.1 GITLAB Manager

The GITLAB manager interacts with GITLAB and creates/modifies/clones all the necessary sub-

groups and repos and assigns the students and faculty to their own repos. GITSEED works for single-

student groups and for groups with several students. Using the GITLAB manager, the faculty can eas-

ily manage students’ access to their git repos. The students’ accesses can be removed, for exam-

ple, after a project deadline or if the students modified something in the git repo that were not sup-

posed to (e.g., .gitlab-ci.yml).

9.2.2.2 Assessments

GITSEED has two categories of assessments: labs and projects. Either one is optional, and it is

possible to have an unlimited number of projects depending on the chosen configuration. Each type of

assessment has its own evaluation script.

Labs GITSEED allows faculty members to publish each different lab’s exercises in the student’s repos.

Each lab corresponds to a practical class. Additionally, with GITSEED, students who do not finish all

the lab exercises during the class can still conclude and automatically check their programs afterwards.

Projects GITSEED allows the publication of the projects’ descriptions and related data in the stu-

dents’ repos. Moreover, after a project’s deadline, faculty members can remove the students’ access to

write into their repos and then reevaluate all the projects one last time. This last reevaluation might be

necessary in case there was any submission that was not assessed due to the cool-down period (see

description of cool-down periods next).

9.2.2.3 Commits Database

GITSEED maintains a database containing all students’ commits timestamps for every evaluation

element. The goal is to have a cool-down period for each different evaluation element, ensuring that

only the submissions respecting their previous cool-down period are evaluated. This measure is imple-

mented to prevent overloading GITSEED’s machine. Note that some CS/SE courses have thousands of
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students, who tend to submit multiple times, especially near project deadlines. Moreover, a cool-down

period forces students to think more thoroughly about their program before making new submissions, as

no new feedback will be provided for commits made during this time. The default cool-down period is set

at 1 minute for lab exercises and 10 minutes for project assignments. Nevertheless, these periods can

be easily modified (see Section 9.2.2.8). Furthermore, the feedback report (README) lets the students

know when their current cool-down period is over.

9.2.2.4 Dashboard

GITSEED keeps a dashboard/leaderboard for each distinct evaluation element. These dashboards

are automatically posted by GITSEED in the course’s central git repo so all students can monitor their

progress with regard to their colleagues. The dashboards keep track of each student/group’s number of

successful/unsuccessful tests, their number of submissions, and the number of days since the beginning

of the project/lab assignment.

9.2.2.5 GITLAB-Runner

The GITLAB runner described in Section 9.2.1.2 needs to be installed in the same machine where

GITSEED is running and needs to have write access to the folder that keeps track of new submissions.

9.2.2.6 Incrontab

The machine where GITSEED is installed has an incrontab daemon that is triggered by the GITLAB

runner. The GITLAB runner adds the information that a new commit was performed on a given repo, and

that triggers the evaluation procedure.

9.2.2.7 Evaluation

During the evaluation process, GITSEED first checks if the students modified the .gitlab-ci.yml

script. If this is the case, students lose their rights to push/modify the git repo and are asked to reach

out to faculty members. Otherwise, GITSEED checks if the cool-down period was respected. If not,

the student’s new submission is not evaluated. Otherwise, if the cool-down period was respected, then

GITSEED proceeds to the next evaluation step.

safeexec To run the students’ code safely, GITSEED uses safeexec 3 which is a lightweight sandbox

for executing user programs. Alongside safeexec, other program analysis tools can be run on the

students’ code. After completing the evaluation, GITSEED submits the evaluation report (README)

and a tar file containing the evaluated code (e.g., a programming assignment’s implementation) to the

respective feedback repo. Finally, GITSEED updates the respective dashboard in the course’s central

git repo with the student’s performance.

3https://github.com/ochko/safeexec
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9.2.2.8 Configurations

GITSEED has several predefined configurations that can be easily modified in the configuration file:

• Cool-down Period (default: 1 min): Amount of time students need to wait between their own sub-

missions;

• Output Visible (default: false): GITSEED shows (or does not) the output of all tests to the students;

• Only First Wrong Output Visible (default: true): GITSEED only shows students their first incorrect

output. This option is only used if the previous option is set to true;

• CPU Time Limit (default: 5 sec): GITSEED runs the students’ code with this CPU time limit for

each test case;

• Memory Limit (default: 8 GB): GITSEED runs the students’ code with this memory limit for each

test case.

Easily Tailored GITSEED’s current methods for evaluation are fully language agnostic. The evalu-

ation scripts can be easily tailored to evaluate different programming languages. Furthermore, faculty

members can quickly adapt the GITSEED pipeline by integrating or replacing various code evaluation

tools (e.g., memory leak detection, fault localization, program repair, plagiarism checks, solution check-

ers) to offer personalized feedback that aligns with the needs of each CS/SE course. Lastly, GITSEED

was designed with modularity in mind. On that account, one can easily remove, add, or modify any

component of GITSEED without compromising it.

9.2.3 Safety Measures

Several measures must be ensured for GITSEED to operate safely. Firstly, the GITLAB runner user

needs to be granted write access to GITSEED’s folder for new submissions. However, this user should

not have access to any other folders, as the GITLAB runner executes code from the .gitlab-ci.yml

script, which may be tampered with by students. By limiting access to only that folder, the GITLAB

runner cannot alter or read anything else from GITSEED. Furthermore, GITSEED runs the students’

code using safeexec, which simulates a sandbox controlling read/write accesses. Note that GITSEED is

not dependent on safeexec. Due to GITSEED modularity, safeexec can be quickly replaced with some

other sandbox application. Lastly, given the crucial role of .gitlab-ci.yml in GITSEED’s functionality,

this script is added to the gitignore file and students’ READMEs explicitly instruct them not to edit

this yml script. Nevertheless, GITSEED checks for any tampering with this script before evaluating

the student’s code. If detected, GITSEED restricts the student’s access to the repo until the faculty

checks the situation.
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9.2.4 Implementation

For this chapter, we used a GITLAB instance self-hosted at Instituto Superior Técnico. The GIT-

SEED system was deployed on a dedicated virtual machine running Linux (Debian 4.19) on a AMD

Opteron(TM) Processor 6276 with 16GB of RAM. Additionally, the virtual machine hosted the gitlab-

runner package, version 15.9.1. GITSEED is implemented using bash and python3 (version 3.9.16).

GITSEED uses bash to execute and evaluate the students’ code. On the other hand, GITSEED relies

on python3 and curl to communicate with GITLAB, through its API (v3.15.0). Furthermore, GITSEED

utilizes python3 and sqlite3 for the maintenance of the course’s dashboards and the database contain-

ing the commit history.

9.3 Impact Discussion

This section discusses our experiments with GITSEED, between Spring 2023 and Spring 2024, in

two distinct academic courses at Instituto Superior Técnico, a first-year undergraduate and a graduate

course. GITSEED offers both formative and summative assessments. Formative assignments, such

as lab classes, remain accessible throughout the semester, allowing students to revise until correct.

Summative assignments, such as projects, also permit unlimited attempts but come with strict dead-

lines. Students were briefed that formative assignments serve as learning aids, encouraging exploration

without fear of repercussions for errors. The aim is for students to utilize GITSEED until mastery is

achieved. Conversely, summative assignments serve as assessments of acquired knowledge and skill,

showcasing proficiency in the subject. Since these summative assignments require more computation

time and memory, higher cool-down periods were established between each group’s submissions, to

prevent overloading GITSEED’s machine.

9.3.1 Courses Setup

9.3.1.1 Undergraduate Course (Spring 2023)

GITSEED was initially used in Spring 2023 in a first-year undergraduate course, Introduction to Al-

gorithms and Data Structures, where students learn how to program in C, with a total of 528 enrolled

students. GITSEED was used to assess this course’s labs (formative assignments) and projects (sum-

mative assignments).

Assignments For formative assignments, GITSEED created individual git repos for the lab classes.

Configuration settings included a one-minute cool-down period, a five-second CPU time limit, and an

8GB memory limit for each programming assignment across eight labs. Throughout these eight labs,

students made a total of 10338 code contributions to their repos. Regarding the summative assign-

ments, this course had two different programming projects, each configured for single-student groups.

Configuration settings included a five-second CPU time limit per test case, a 16GB memory limit, and a
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10-minute cool-down period for project evaluations. Students made a total of 15061 code contributions

to their repos, 7916 to the first project and 7145 to the second one.

Program Analysis Tools For projects evaluation, GITSEED was tailored to: (1) identify forbidden li-

braries in student projects, and (2) run VALGRIND [225] to detect memory leaks in their code. Providing

feedback on memory leaks proved beneficial, particularly for first-year students unfamiliar with these tools.

Opportunities for improvement Throughout the course, we noticed that some students forgot to pull

the feedback from GITLAB to their local repos before pushing new modifications, resulting in git-merge

issues. Consequently, GITLAB’s CI would ignore these commits. This happened because students use

GITLAB web interface to get their feedback while coding in their local git repos. To address this issue,

GITSEED now publishes feedback in separate repositories, with students’ READMEs containing links

for easy synchronization, especially for first-year students.

9.3.1.2 Graduate Course (Fall 2023)

In Fall 2023, GITSEED was also used in a graduate course on Automated Reasoning with 38 stu-

dents. The project consisted of solving an NP-Hard optimization problem through a Boolean logic solver

using Python. There were 21 groups, each consisting of a maximum of two students. Configuration

settings included a one-minute CPU time limit, a 16GB memory limit, and a 20-minute cool-down period

for project evaluations. Throughout the project, students made a total of 269 contributions to their repos.

Once again, we customized GITSEED, in this case, to incorporate both private and public test cases for

evaluating students’ code. Moreover, we also inserted additional software into the GITSEED pipeline

that gave students feedback about the satisfiability and optimality of their projects’ solutions.

9.3.1.3 Undergraduate Course (Spring 2024)

In Spring 2024, GITSEED once again played a pivotal role by supporting the first-year undergraduate

course, Introduction to Algorithms and Data Structures, which had a total of 509 students. GITSEED

served as the platform for assessing labs and projects in the course, employing configurations similar to

those outlined in Section 9.3.1.1. However, notable adjustments were made for this course iteration.

Feedback Feedback was provided in separate repositories based on the insights gained from the

previous year.

Program Analysis Tools A significant enhancement was the integration of four additional program

analysis tools into GITSEED: CFAULTS, CPPCHECK, CLANG-TIDY, and Lizard. Lizard [230] is a cy-

clomatic complexity analyzer for various programming languages, aiding in evaluating code length and

complexity. The fault localization tool pinpointed faulty statements within the programs using a test suite.

Additionally, CPPCHECK [231] and CLANG-TIDY [232] are static analyzers used to detect uninitialized

variables and various errors, such as division by zero. Finally, CFAULTS [16] is a formula-based fault
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localization tool, described in Chapter 8, that pinpoints bug locations within the programs. The insights

generated by these tools were compiled into feedback reports and appended alongside test-suite evalua-

tion outcomes in the students’ feedback repositories. The results from both the fault localization tool and

the static analyzers were presented to students as “Hints”, strategically guiding them towards potential

problematic statements within their programs. This approach aimed to provide students with targeted

assistance in identifying and rectifying programming errors. Moreover, GITSEED was configured to

display only the first incorrect output to students, fostering a focused learning environment.

9.3.2 User Study

In Spring 2024, we conducted a comprehensive user study with students to gather valuable feedback

on their experience with GITSEED, particularly focusing on its dashboards and the various types of feed-

back provided by analysis tools, namely valgrind, lizard, and “hints” (generated by fault localization

and static analyzers). Throughout the course, we noticed that incorporating motivational elements, such

as the dashboards available within GITSEED, effectively encouraged student engagement and facili-

tated their progress. Approximately 20% of the students who were enrolled in the course for the entire

semester took part in the questionnaire. They were asked anonymously to evaluate the usefulness of

the different feedback mechanisms and features of GITSEED they encountered during the semester

(see [223]). The findings revealed that students perceived the following aspects as beneficial:

GITSEED: 91.8% of students found GITSEED to be a valuable resource. Its role in providing a cen-

tralized platform for assignment submission, feedback reception, and revision evidently streamlined the

learning process and enhanced overall comprehension. Dashboards: 82.2% of students acknowledged

the significance of dashboards in tracking their progress and monitoring their performance relative to

course objectives. Hints: Despite being less prevalent than other feedback mechanisms, 68.5% of stu-

dents recognized the utility of hints generated by fault localization and static analyzers. These hints acted

as invaluable pointers, directing students towards potential errors in their code and fostering a deeper

understanding of programming concepts through self-correction. Valgrind: 90.4% of students found

the feedback from valgrind to be beneficial. This tool’s ability to detect memory management issues

and provide detailed diagnostics undoubtedly aided students in debugging their programs and writing

more robust code. Lizard: 75.3% of students appreciated the insights offered by lizard, particularly its

analysis of code complexity and length. By highlighting areas of code that might require simplification

or restructuring, lizard contributed to the optimization of students’ coding practices and the cultiva-

tion of clearer, more efficient programming habits. In addition to evaluating the specific components

of GITSEED, students were given the opportunity to provide general feedback through short-answer

responses. These open-ended questions allowed students to express their thoughts, suggestions, and

concerns regarding their overall experience with GITSEED. Overall, the user study underscored the

positive impact of GITSEED’s features and feedback mechanisms on students’ learning experiences,

reaffirming its value as a comprehensive educational tool for programming courses.
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9.4 GITSEED VS GITHUB CLASSROOM

As previously mentioned in Section 3.4, GITHUB CLASSROOM [154] is an AAT tool available on

GITHUB that allows faculty to create and manage digital classrooms and assignments. GITHUB CLASS-

ROOM uses the same mechanism of a CI runner (GitHub Actions) to process student code and report

on quality aspects. GITHUB CLASSROOM shares several benefits with GITSEED, is language agnostic,

and enables students to learn the fundamentals of git while receiving feedback on their assignments.

However, GITHUB CLASSROOM operates on a third-party platform. There may be regulatory or insti-

tutional policies that restrict the use of cloud-based services for certain types of data. On the other

hand, GITLAB is open-source and can be self-hosted by educational institutes. Additionally, GITHUB

CLASSROOM may not seamlessly integrate with existing learning management systems (LMS) used by

educational institutions. This lack of integration can result in administrative challenges, such as main-

taining separate platforms for course materials, grades, and communication. While GITSEED can be

easily integrated with this kind of systems. Finally, while GITHUB CLASSROOM is free to use, some

advanced features or integrations may require paid GITHUB plans. For example, the number of minutes

available for GitHub Actions (CI) is limited per month. Instructors may need to consider the cost of pro-

viding GITHUB accounts or repositories for students, especially in cases where institutional resources

are limited. In contrast, educational institutions can use the premium version of GITLAB for free, and both

GITLAB and GITSEED are open-source projects. Finally, it is worth noting that there is no equivalent to

GITHUB CLASSROOM on GITLAB, highlighting an opportunity for GITSEED to fill this gap.

9.5 Conclusion

This chapter presents GITSEED, an open-source, language-agnostic automated assessment tool

(AAT) seamlessly integrated with GITLAB. Students benefit from personalized feedback on programming

assignments and projects, mastering Git fundamentals simultaneously. Notably, GITSEED eliminates

the need for students to navigate new GUI interfaces. Integrated into GITLAB’s continuous integration

(CI) workflow, GITSEED brings educational assessment into a professional version control platform

rather than a dedicated web-based platform. Furthermore, faculty can easily customize GITSEED’s

pipeline with various code evaluation tools. Our experiments showcased GITSEED’s success in both

undergraduate and graduate courses, affirming its efficacy in programming education. It enhances stu-

dent engagement and learning outcomes. Positive student feedback highlights GITSEED contribution

to active learning and a supportive educational environment.
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10
Counterexample Guided Program

Repair Using Zero-Shot Learning and

MaxSAT-based Fault Localization

“By harnessing the precision of formula-based fault localization, we can transform LLM-driven program

repair from guesswork into a targeted, intelligent process, where each fix is guided by logic and clarity,

unlocking the true potential of AI in debugging.”

– Chat-GPT 4.0.
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Symbolic semantic program repair approaches, which rely on Formal Methods (FM), check a pro-

gram’s execution against a test suite or reference solution, are effective but limited. These tools excel at

identifying buggy parts but can only fix programs if the correct implementation and the faulty one share

the same control flow graph. Conversely, Large Language Models (LLMS) are used for program repair

but often make extensive rewrites instead of minimal adjustments. This tends to lead to more invasive

fixes, making it harder for students to learn from their mistakes. In summary, LLMS excel at completing

strings, while FM-based fault localization excels at identifying buggy parts of a program.

In this chapter, we propose a novel approach that combines the strengths of both FM-based fault

localization and LLMS, via zero-shot learning, to enhance automated program repair (APR) for intro-

ductory programming assignments (IPAS). Our method uses MaxSAT-based fault localization to identify

buggy parts of a program, then presents the LLM with a program sketch devoid of these buggy state-

ments. This hybrid approach follows a Counterexample Guided Inductive Synthesis (CEGIS) loop to

iteratively refine the program (see Definition 32). We ask the LLM to synthesize the missing parts,

which are then checked against a test suite. If the suggested program is incorrect, a counterexample

from the test suite is fed back to the LLM for revised synthesis. Our experiments on 1,431 incorrect stu-

dent programs show that our counterexample guided approach, using MaxSAT-based bug-free program

sketches (see Definition 23), significantly improves the repair capabilities of all six evaluated LLMS. This

method allows LLMS to repair more programs and produce smaller fixes, outperforming other configu-

rations and state-of-the-art symbolic program repair tools.

This chapter has been published as a conference paper at the 39th Annual AAAI Conference on

Artificial Intelligence, AAAI 2025 [233].

10.1 Introduction

Traditional semantic APR techniques based on Formal Methods (FM), while providing high-quality

fixes, are often slow and may struggle when the correct implementation diverges significantly from the

erroneous one [135]. These APR approaches do not guarantee minimal repairs, as they align an incor-

rect submission with a correct implementation for the same IPA. If the alignment is not possible, these

tools return a structural mismatch error, leaving the program unrepaired. In the past decade, there has

been a surge in Machine Learning (ML) techniques for APR [3, 12–15, 18, 19]. ML-based approaches

require multiple correct implementations to generate high-quality repairs, and need considerable time

and resources to train on correct programs. While trained ML-based approaches generate repairs more

quickly, they often produce imprecise and non-minimal fixes [10].

More recently, Large Language Models (LLMS) trained on code (LLMCS) have shown great potential

in generating program fixes [20–23, 38–41]. LLM-based APR can be performed using zero-shot learn-

ing [234], few-shot learning [20] or fine-tuned models [23]. Fine-tuned models are the most commonly

used, where the model is trained for a specific task. Conversely, zero-shot learning refers to the ability of

a model to correctly perform a task without having seen any examples of that task during training. Few-

shot learning refers to the LLMS’s ability to perform tasks correctly with only a small number of examples
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provided. Furthermore, the ability to generalize using zero or few-shot learning enables LLMS to handle

a wide range of tasks without the need for costly retraining or fine-tuning. Nonetheless, few-shot learning

can lead to larger fixes than necessary, as it is based on a limited number of examples. LLMS do not

guarantee minimal repairs and typically rewrite most of the student’s implementation to fix it, rather than

making minimal adjustments, making their fixes less efficient and harder for students to learn from.

In this chapter, we propose a novel approach that combines the strengths of both FM and LLMS to

enhance APR of IPAS via zero-shot learning. Our method involves using MaxSAT-based fault localiza-

tion to identify the set of minimal buggy parts of a program and then presenting an off-the-self LLM with

a program sketch devoid of these buggy statements. This hybrid approach follows a Counterexample

Guided Inductive Synthesis (CEGIS) loop [70] to iteratively refine the program. We provide the LLM

with a bug-free program sketch and ask it to synthesize the missing parts. After each iteration, the syn-

thesized program is checked against a test suite. If the program is incorrect, a counterexample from the

test suite is fed back to the LLM, prompting a revised synthesis.

Our experiments with 1431 incorrect student programs reveal that our counterexample guided ap-

proach, utilizing MaxSAT-based bug-free program sketches, significantly boosts the repair capabilities of

all six evaluated LLMS. This method enables LLMS to repair more programs and produce superior fixes

with smaller patches, outperforming both other configurations and state-of-the-art symbolic program

repair tools [2, 9].

In summary, this chapter makes the following contributions:

• We tackle the Automated Program Repair (APR) problem using an LLM-Driven Counterexample

Guided Inductive Synthesis (CEGIS) approach;

• We employ MaxSAT-based Fault Localization to guide and minimize LLMS’ patches to incorrect

programs by feeding them bug-free program sketches;

• Experiments show that our approach enables all six evaluated LLMS to fix more programs and

produce smaller patches than other configurations and symbolic tools;

• Our code will be made publicly available on GitHub and Zenodo.

10.2 Motivation

Consider the program presented in Listing 10.1, which aims to determine the maximum among three

given numbers. However, based on the test suite shown in Table 10.1, the program is buggy as its output

differs from the expected results. The set of minimal faulty lines in this program includes lines 5 and 10,

as these two if conditions are incorrect according to the test suite. A good way to provide personalized

feedback to students on their IPAS is to highlight these two buggy lines. However, it is essential to check

these faults by fixing the program and evaluating it against the test suite.

Using traditional Automated Program Repair (APR) tools for IPAS based on Formal Methods, such

as CLARA [2] or VERIFIX [9], the program in Listing 10.1 cannot be fixed within 90 seconds. CLARA takes

too long to compute a ‘minimal’ repair by considering several correct implementations for the same IPA,
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Listing 10.1: Semantically incorrect program.
Faulty lines: {5,10}.

1 // finds maximum of 3 numbers
2 int main(){
3 int f,s,t;
4 scanf("%d%d%d",&f,&s,&t);
5 if (f < s && f >= t)
6 //fix: f >= s
7 printf("%d",f);
8 else if (s > f && s >= t)
9 printf("%d",s);

10 else if (t < f && t < s)
11 //fix: t > f and t > s
12 printf("%d",t);
13

14 return 0;
15 }

Listing 10.2: Reference implementation.

1 int main() {
2 int m1,m2,m3,m;
3 scanf("%d%d%d",&m1,&m2,&m3);
4 m = m1 > m2 ? m1 : m2;
5 m = m3 > m ? m3 : m;
6 printf("%d\n", m);
7

8 return 0;
9 }

Listing 10.3: Program sketch with holes.

1 int main(){
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 @ HOLE 1 @
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 @ HOLE 2 @
9 printf("%d",t);

10

11 return 0;
12 }

Listing 10.4: GRANITE’s fix using the program
sketch.

1 int main(){
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f >= s && f >= t)
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 else
9 printf("%d",t);

10

11 return 0;
12 }

Input Output
t0 1 2 3 3
t1 6 2 1 6
t2 -1 3 1 3

Table 10.1: Test-suite.

while VERIFIX returns a compilation error. Conversely, using state-of-the-art LLMS trained for coding

tasks (LLMCS), GRANITE [235] or CODEGEMMA [236], would involve providing the description of the

programming assignment and some examples of input-output tests. Even with these features, neither

LLM could fix the buggy program in Listing 10.1 within 90 seconds when repeatedly testing and refining

their fixes. If the lecturer’s reference implementation shown in Listing 10.2 is suggested as a reference

in the prompt, both LLMS simply copy the correct program, ignoring instructions not to do so.

Hence, symbolic approaches demand an excessive amount of time to produce an answer, and LLMS,

while fast, often produce incorrect fixes. A promising strategy to provide feedback to students on IPAS is

to combine the strengths of both approaches. MaxSAT-based Fault localization [54, 100] can rigorously

identify buggy statements, which can then be highlighted in the LLM prompt to focus on the specific parts

of the program that need fixing. Listing 10.3 shows an example of a program sketch, which is a partially

incomplete program where each buggy statement from the original incorrect program in Listing 10.1 is

replaced with a @ HOLE @. Instructing the LLMS to complete this incomplete program allows both GRA-

NITE and CODEGEMMA to fix the program in a single interaction, returning the program in Listing 10.4.
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Figure 10.1: Counterexample Guided Automated Repair.

10.3 Counterexample Guided Automated Repair

Our approach combines the strengths of both Formal Methods (FM) and LLMS to enhance Auto-

mated Program Repair (APR). Firstly, we employ MaxSAT-based fault localization techniques to rigor-

ously identify the minimal set of buggy parts of a program [16, 54]. Afterwards, we leverage LLMS to

quickly synthesize the missing parts in the program sketch. Finally, we use a counterexample from the

test suite to guide LLMS in generating patches that make the synthesized program compliant with the

entire test suite, thus completing the repair. The rationale of our approach follows a Counterexample

Guided Inductive Synthesis (CEGIS) [130] loop to iteratively refine the program. Figure 10.1 provides

an overview of our APR approach. The input is a buggy program and the specifications for an introduc-

tory programming assignment (IPA), including a test suite, a description of the IPA, and the lecturer’s

reference implementation. We start by using MaxSAT-based fault localization techniques to identify the

program’s minimal set of faulty statements. Next, the prompt generator builds a prompt based on the

specifications of the IPA and a bug-free program sketch reflecting the localized faults, then feeds this

information to the LLM. The LLM generates a program based on the provided prompt. After each it-

eration, the Decider module evaluates the synthesised program against a test suite. If the program is

incorrect, a counterexample chosen from the test suite is sent back to the prompt generator, which then

provides this counterexample to the LLM to prompt a revised synthesis.

Prompts. The prompts fed to LLMS can contain various types of information related to the IPA. The

typical information available in every programming course includes the description of the IPA, the test

suite to check the students’ submissions corresponding to the IPA’s specifications, and the lecturer’s

reference implementation.

The syntax used in our prompts is similar to that in other works on LLM-driven program repair [21].

We have evaluated several types of prompts. Basic prompts are the simplest prompts that can be fed to

an LLM without additional computation, including all the programming assignment’s basic information.

An example of such a prompt is the following:

135



Fix all semantic bugs in the buggy program below. Modify the code as little as possible.

Do not provide any explanation.

### Problem Description ###

Write a program that determines and prints the largest of three integers given by the user.

### Test Suite

#input:

6 2 1

#output:

6

// The other input-output tests

# Reference Implementation (Do not copy this program) <c> #

```c

int main(){

// Reference Implementation

}

```

### Buggy Program <c> ###

```c

int main(){

// Buggy program from Listing 1

}

```

### Fixed Program <c> ###

```c

In order to incorporate information about the faults localized in the program using MaxSAT-based

fault localization, we utilized two different types of prompts: (1) FIXME annotations and (2) program

sketches. FIXME annotated prompts are prompts where each buggy line identified by the fault localization

tool is marked with a /* FIXME */ comment. These prompts are quite similar to the basic prompt

described previously, with the primary differences being the annotations in the buggy program and the

first command given to the LLMS, which is modified as follows:

Fix all buggy lines with '/* FIXME */' comments in the buggy program below.

In the second type of prompt, to address program repair as a string completion problem, we eval-

uated the use of prompts where the buggy program is replaced by an incomplete program (program

sketch), with each line identified as buggy by our fault localization module replaced by a hole. The

command given to the LLMS is now to complete the incomplete program. Consequently, the sections
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‘Buggy Program’ and ‘Fixed Program’ are replaced by ‘Incomplete Program’ and ‘Complete Program’,

respectively, as follows:

Complete all the '@ HOLES N @' in the incomplete program below.

// ...

### Incomplete Program <c> ###

// ...

### Complete Program <c> ###

```c

Feedback. If the candidate program generated by the LLM is not compliant with the test suite, this

feedback is provided to the LLM in a new message through iterative querying. This new prompt indi-

cates that the LLM’s previous suggestion to fix the buggy program was incorrect and provides a coun-

terexample (i.e., an IO test) where the suggested fixed program produces an incorrect output. Hence,

we provide the LLM with a feedback prompt similar to:

### Feedback ###

Your previous suggestion was incorrect! Try again. Code only. Provide no explanation.

### Counterexample ###

#input:

6 2 1

#output:

6

### Fixed Program <c> ###

```c

10.4 Experimental Results

The goal of our evaluation is to answer the following research questions:

RQ1. How effective are state-of-the-art (SOTA) LLMS in repairing introductory programming assign-

ments (IPAS) compared to different SOTA semantic repair approaches?

RQ2. How do different prompt configurations impact the performance of LLMS?

RQ3. How does FM-based fault localization impact LLM-driven APR?

RQ4. How helpful is it to provide a reference implementation for the same IPA to the LLMS?

RQ5. How helpful is it to provide LLMS with a variable mapping between the buggy program and a

reference implementation of the same IPA?

RQ6. What is the performance impact of using a Counterexample Guided approach in LLM-driven

APR?
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Experimental Setup. All LLMS were run using NVIDIA RTX A4000 graphics cards with 16GB of mem-

ory on an Intel(R) Xeon(R) Silver 4130 CPU @ 2.10GHz with 48 CPUs and 128GB RAM. All the exper-

iments related to the program repair tasks were conducted on an Intel(R) Xeon(R) Silver computer with

4210R CPUs @ 2.40GHz, using a memory limit of 10GB and a timeout of 90 seconds.

Evaluation Benchmark. To evaluate our work, we used C-PACK-IPAS [171], which is a set of stu-

dent programs developed during an introductory programming course in the C programming language.

These programs were collected over three distinct lab classes for 25 different programming assignments

throughout three academic years. Each lab class focuses on a different topic of the C programming lan-

guage. The first class deals with integers and input-output operations. Secondly, the second class

focuses on loops and chars. Lastly, in the third lab class, students learn to use vectors and strings.

Since this work focuses only on semantic program repair, only submissions that compile without any

errors were selected. The set of submissions was split into two sets: correct submissions and incorrect

submissions. The students’ submissions that satisfied a set of input-output test cases for each IPA were

considered correct. The submissions that failed at least one input-output test were considered incorrect.

C-PACK-IPAS contains 1431 semantically incorrect programs submitted for 25 different IPAS.

10.4.1 Large Language Models (LLMS)

In our experiments, we used only open-access LLMS available on Hugging Face [237] with approxi-

mately 7 billion parameters for three primary reasons. Firstly, closed-access models like Chat-GPT are

cost-prohibitive and raise concerns over student data privacy. Secondly, models with a very large num-

ber of parameters (e.g., 70B) need significant computational resources, such as GPUs with higher RAM

capacities, and take longer to generate responses, which is unsuitable for a classroom setting. Thirdly,

we used these off-the-shelf LLMS to evaluate the publicly available versions without fine-tuning them.

This approach ensures that the LLMS used in this chapter are available to anyone without investing

time and resources into fine-tuning these models. Thus, we evaluated six different LLMS for this study

through iterative querying. Three of these models are LLMCS, i.e., LLMS fine-tuned for coding tasks:

IBM’s GRANITE [235], Google’s CODEGEMMA [236] and Meta’s CODELLAMA [238]. The other three

models are general-purpose LLMS not specifically tailored for coding tasks: Google’s GEMMA [239],

Meta’s LLAMA3 (latest version of the LLAMA family [240]) and Microsoft’s PHI3 [241].

We selected specific variants of each model to optimize their performance for our program repair

tasks. For Meta’s LLAMA3, we utilized the 8B-parameter instruction-tuned variant. This model is de-

signed to follow instructions more accurately, making it suitable for a range of tasks, including program

repair. For CODELLAMA, we used the 7B-parameter instruct-tuned version, which is specifically designed

for general code synthesis and understanding, making it highly effective for coding tasks. We employed

GRANITE model with 8B-parameters, fine-tuned to respond to coding-related instructions. For PHI3, we

opted for the mini version, which has 3.8B-parameters and a context length of 128K. This smaller model

is efficient yet capable of handling extensive context, making it practical for educational settings. For

GEMMA, we used the 7B-parameter instruction-tuned version, optimized to follow detailed instructions.
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Lastly, for CODEGEMMA, we selected the 7B-parameter instruction-tuned variant, designed specifically

for code chat and instruction, enhancing its capability in handling programming-related queries and

tasks. To fit all LLMS into 16GB GPUs, we used model quantization of 4bit. Moreover, all LLMS were

run using Hugging Face’s Pipeline architecture. By using these different LLMS, we aimed to balance

computational efficiency with the ability to effectively generate and refine code, facilitating a practical

APR approach in an educational environment.

10.4.2 Fault Localization

We used CFAULTS [16] which is a formula-based fault localization (FL) tool, that pinpoints bug lo-

cations within the programs. It aggregates all failing test cases into a unified MaxSAT formula (see

Chapter 8). This FL tool can be easily replaced by other FL tools (e.g., spectrum-based).

10.4.3 Evaluation

To assess the effectiveness of the program fixes generated by the LLMS under different prompt con-

figurations, we used two key metrics: the number of programs successfully repaired and the quality of

the repairs. For assessing the patches quality, we use the Tree Edit Distance (TED) [134, 242] to com-

pute the distance between the student’s buggy program and the fixed program returned by the LLMS.

TED computes the structural differences between two Abstract Abstract Syntax Trees (AASTS) by cal-

culating the minimum number of edit operations (i.e., insertions, deletions, and substitutions) needed to

transform one AST into another. Based on this metric for measuring program distances, we computed

the distance score, defined by Equation 10.1. This score aims to identify and penalize LLMS that re-

place the buggy program with the reference implementation rather than fixing it. The distance score is

zero when the TED of the original buggy program (To) to the program suggested by the LLM (Tf ) is the

same as the TED of the reference implementation (Tr) to To. Otherwise, it penalizes larger fixes than

necessary to align the program with the correct implementation.

ds(Tf , To, Tr) = max
(

0, 1− TED(Tf , To)
TED(Tr, To)

)
(10.1)

Baseline. We used two state-of-the-art symbolic semantic program repair tools for IPAS as baselines:

VERIFIX [9] and CLARA [2]. VERIFIX employs MaxSMT to align a buggy program with a reference so-

lution provided by the lecturer, while CLARA clusters multiple correct implementations and selects the

one that produces the smallest fix when aligned with the buggy program. Both tools require an exact

match between the control flow graphs (e.g., branches, loops) and a bijective relationship between the

variables; otherwise, they return a structural mismatch error. VERIFIX was provided with each buggy

program, the reference implementation, and a test suite. CLARA was given all correct programs from

different academic years to generate clusters for each IPA. With a time limit of 90 seconds, VERIFIX can

only repair 6.3% of the benchmark due to structural and unsupported errors, while CLARA repairs 34.6%.
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Prompt Configurations
LLMS CE De De-TS De-TS-CE FIXME

CodeGemma 451 (31.5%) 564 (39.4%) 597 (41.7%) 606 (42.3%) 413 (28.9%)
CodeLlama 447 (31.2%) 472 (33.0%) 492 (34.4%) 500 (34.9%) 403 (28.2%)

Gemma 379 (26.5%) 462 (32.3%) 496 (34.7%) 492 (34.4%) 328 (22.9%)
Granite 529 (37.0%) 584 (40.8%) 626 (43.7%) 624 (43.6%) 459 (32.1%)
Llama3 496 (34.7%) 533 (37.2%) 564 (39.4%) 590 (41.2%) 400 (28.0%)

Phi3 367 (25.6%) 462 (32.3%) 494 (34.5%) 489 (34.2%) 313 (21.9%)

Portfolio
(All LLMS) 732 (51.2%) 821 (57.4%) 842 (58.8%) 846 (59.1%) 655 (45.8%)

LLMS FIXME_De-CE FIXME_De-TS FIXME_De-TS-CE Sk Sk_De-CE
CodeGemma 563 (39.3%) 592 (41.4%) 601 (42.0%) 484 (33.8%) 615 (43.0%)
CodeLlama 485 (33.9%) 481 (33.6%) 463 (32.4%) 467 (32.6%) 547 (38.2%)

Gemma 443 (31.0%) 446 (31.2%) 444 (31.0%) 367 (25.6%) 524 (36.6%)
Granite 574 (40.1%) 566 (39.6%) 583 (40.7%) 550 (38.4%) 653 (45.6%)
Llama3 531 (37.1%) 535 (37.4%) 557 (38.9%) 434 (30.3%) 565 (39.5%)

Phi3 448 (31.3%) 460 (32.1%) 474 (33.1%) 367 (25.6%) 506 (35.4%)

Portfolio
(All LLMS) 806 (56.3%) 796 (55.6%) 820 (57.3%) 717 (50.1%) 890 (62.2%)

LLMS Sk_De-TS Sk_De-TS-CE TS Portfolio
(All Configurations)

CodeGemma 682 (47.7%) 688 (48.1%) 511 (35.7%) 850 (59.4%)
CodeLlama 573 (40.0%) 561 (39.2%) 466 (32.6%) 748 (52.3%)

Gemma 532 (37.2%) 534 (37.3%) 404 (28.2%) 780 (54.5%)
Granite 691 (48.3%) 681 (47.6%) 577 (40.3%) 887 (62.0%)
Llama3 578 (40.4%) 591 (41.3%) 505 (35.3%) 929 (64.9%)

Phi3 547 (38.2%) 535 (37.4%) 400 (28.0%) 759 (53.0%)

Portfolio
(All LLMS) 900 (62.9%) 907 (63.4%) 767 (53.6%) 1050 (73.4%)

Verifix [9] 90 (6.3%)
Clara [2] 495 (34.6%)

Table 10.2: The number of programs fixed by each LLM under various configurations. Row Portfo-
lio (All LLMS), shows the best results across all LLMS for each configuration. Column Portfolio (All
Configurations) shows the best results for each LLM across all configurations. Mapping abbreviations
to configuration names: CE - Counterexample, De - IPA Description, FIXME - FIXME Annotations,
SK - Sketches, TS - Test Suite.

Table 10.2 presents the number of programs repaired by each LLM under various configurations.

The row labeled Portfolio represents the best possible outcomes by selecting the optimal configu-

ration for each program across all LLMS. Meanwhile, Portfolio column highlights the best results

achieved by a particular LLM across all tested configurations. Entries highlighted in bold correspond to

the highest success rates for each LLM. The configurations yielding the highest success rates for the six

evaluated LLMS involve incorporating a reference implementation of the IPA into the prompt. However,

rather than genuinely fixing the buggy program, the LLMS often replace it with the reference imple-

mentation. For instance, GRANITE repairs 876 programs using a configuration that includes bug-free

program sketches (Sk), an IPA description, counterexamples, a test suite, and the reference implemen-

tation (Sk_De-TS-CE-RI). Notably, 442 of these repaired programs exhibit a TED value of zero between

the reference implementation and the fixed program, indicating that GRANITE is replicating the reference

implementation. To address this, we separately analyzed configurations that include and exclude ac-

cess to a reference implementation. When no reference implementation is provided (top of Table 10.2),

GRANITE still leads among the LLMS, fixing up to 59.1% of the programs across all configurations and

48.3% when using sketches (SK), the IPA description, and a test suite (SK_De-TS). CODEGEMMA also
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Prompt configurations with access to Reference Implementations
LLMS CPA CPIA De-TS-CE-CPA De-TS-CE-RI FIXME_De-TS-CE-CPA

CodeGemma 505 (35.3%) 447 (31.2%) 578 (40.4%) 576 (40.3%) 637 (44.5%)
CodeLlama 532 (37.2%) 517 (36.1%) 528 (36.9%) 525 (36.7%) 565 (39.5%)

Gemma 633 (44.2%) 364 (25.4%) 595 (41.6%) 607 (42.4%) 563 (39.3%)
Granite 758 (53.0%) 516 (36.1%) 773 (54.0%) 828 (57.9%) 794 (55.5%)
Llama3 595 (41.6%) 464 (32.4%) 685 (47.9%) 691 (48.3%) 657 (45.9%)

Phi3 465 (32.5%) 367 (25.6%) 552 (38.6%) 444 (31.0%) 545 (38.1%)

Portfolio
(All LLMS) 1021 (71.3%) 726 (50.7%) 1033 (72.2%) 1046 (73.1%) 1011 (70.6%)

LLMS FIXME_De-TS-CE-RI FIXME_De-TS-CPA FIXME_De-TS-RI RI Sk_De-TS-CE-CPA
CodeGemma 638 (44.6%) 647 (45.2%) 640 (44.7%) 445 (31.1%) 725 (50.7%)
CodeLlama 609 (42.6%) 604 (42.2%) 611 (42.7%) 455 (31.8%) 633 (44.2%)

Gemma 616 (43.0%) 580 (40.5%) 655 (45.8%) 582 (40.7%) 664 (46.4%)
Granite 857 (59.9%) 838 (58.6%) 882 (61.6%) 775 (54.2%) 838 (58.6%)
Llama3 681 (47.6%) 662 (46.3%) 661 (46.2%) 555 (38.8%) 725 (50.7%)

Phi3 492 (34.4%) 572 (40.0%) 508 (35.5%) 358 (25.0%) 639 (44.7%)

Portfolio
(All LLMS) 1056 (73.8%) 1036 (72.4%) 1082 (75.6%) 1039 (72.6%) 1050 (73.4%)

LLMS Sk_De-TS-CE-RI Sk_De-TS-CPA Sk_De-TS-RI Portfolio
(All Configurations)

CodeGemma 739 (51.6%) 744 (52.0%) 729 (50.9%) 950 (66.4%)
CodeLlama 675 (47.2%) 673 (47.0%) 677 (47.3%) 959 (67.0%)

Gemma 732 (51.2%) 681 (47.6%) 720 (50.3%) 1025 (71.6%)
Granite 876 (61.2%) 881 (61.6%) 921 (64.4%) 1169 (81.7%)
Llama3 730 (51.0%) 783 (54.7%) 706 (49.3%) 1073 (75.0%)

Phi3 647 (45.2%) 661 (46.2%) 653 (45.6%) 959 (67.0%)

Portfolio
(All LLMS) 1077 (75.3%) 1080 (75.5%) 1089 (76.1%) 1218 (85.1%)

Table 10.3: The number of programs fixed by each LLM under various configurations with access
to a reference implementation of each IPA. Row Portfolio (All LLMS), shows the best results across
all LLMS for each configuration. Column Portfolio (All Configurations) shows the best results for each
LLM across all configurations. Mapping abbreviations to configuration names: CE - Counterexample,
CPA - Closest Program using AASTS, CPIA - Closest Program using Invariants + AASTS, De - IPA
Description, FIXME - FIXME Annotations, RI - Reference Implementation, SK - Sketches, TS - Test
Suite. Entries highlighted in bold correspond to the highest success rates for each LLM.

performs well, achieving up to 57.5% success in a portfolio approach and showing particular strength in

configurations involving sketches (SK). For instance, CODEGEMMA can repair 48.1% of the evaluation

benchmark using bug-free sketches, IPA description, test suite, and counterexample (SK_De-TS-CE).

Configurations incorporating sketches (SK) and FIXME annotations generally yield better results. In-

cluding counterexamples (CE), IPA descriptions, and test suites (De-TS) further boosts the success

rate across different LLMS. The portfolio approach, which combines the strengths of all LLMS and

configurations without using reference implementation, achieves the highest overall success rate, fix-

ing 70.8% of the programs. This demonstrates that leveraging multiple LLMS together can significantly

enhance repair success.

10.4.3.1 Correct Implementations

Furthermore, Table 10.3 provides the results of LLMS with a correct implementation for the same

programming assignment. The correct implementation can be either the lecturer’s implementation for

the same IPA, the closest correct program based on the programs’ Anonymous Abstract Syntax Trees

(AASTS), or the closest correct program based on the programs’ AASTS and their sets of invariants

(CPIA) from a previously submitted student program, determined by INVAASTCLUSTER [42] (see Chap-

ter 5). The intent was to allow the model to reuse correct code snippets to generate repairs. Results
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Metric: sum(Distance Score)
Prompt Configurations

LLMS FIXME_De-TS FIXME_De-TS-CE FIXME_De-TS-CE-CPA FIXME_De-TS-CE-RI FIXME_De-TS-CPA
CodeGemma 469.6 479.3 249.2 426.3 250.6
CodeLlama 413.5 403.9 240.4 409.2 258.3

Gemma 284.3 282.2 142.2 264.0 144.1
Granite 463.1 470.6 171.2 298.8 160.4
Llama3 353.4 353.6 175.9 392.7 176.0

Phi3 276.0 291.9 96.8 223.8 96.8

LLMS FIXME_De-TS-RI RI Sk Sk_De-CE Sk_De-TS
CodeGemma 435.7 373.5 421.8 473.8 524.4
CodeLlama 417.3 332.3 421.6 464.8 477.9

Gemma 272.5 227.2 280.1 328.6 338.8
Granite 282.7 93.8 479.4 506.2 539.8
Llama3 390.6 409.8 354.6 383.1 379.8

Phi3 232.6 203.2 265.1 299.5 326.5

LLMS Sk_De-TS-CE Sk_De-TS-CE-CPA Sk_De-TS-CE-RI Sk_De-TS-CPA Sk_De-TS-RI
CodeGemma 529.5 249.8 497.3 268.8 484.3
CodeLlama 464.5 251.3 459.0 270.8 452.1

Gemma 340.3 156.4 316.2 153.9 307.2
Granite 533.6 172.3 334.5 175.4 349.4
Llama3 384.5 172.7 423.0 196.4 407.3

Phi3 321.4 98.2 253.4 97.2 256.6

Table 10.4: The cumulative distance scores for each program successfully repaired by each LLM across
various configurations. Entries highlighted in bold correspond to the highest score for each LLM.
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(b) Closest Program using AASTS.

Figure 10.2: Comparison of tree edit distances (TED) for GRANITE’s repairs when using (x-axis) versus
not using (y-axis) correct implementations with configuration Sk_De-TS-CE.

show that including a reference implementation allows for better repair results. However, as mentioned

earlier, the LLMS often simply copy the provided reference implementation.

Table 10.4 presents the sum of the distance scores (see Equation 10.1) for the top-performing LLMS

from Tables 10.2 and 10.3 across different configurations. This summation aims to penalize LLMS that

either copy the provided reference implementation or generate unnecessarily large repairs. For example,

GRANITE using configuration Sk_De-TS-CE-RI can repair 876 programs but yields a total distance score

of 334.5, whereas using the same configuration without a correct implementation repairs 681 programs

resulting in a higher distance score of 533.6.

Figure 10.2a shows a scatter plot that compares the tree edit distance (TED) of the buggy program to

the program fixed by GRANITE with and without a reference implementation, using configuration Sk_De-
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Prompt configurations with access to Reference Implementations and Variable Mappings
LLMS CPA-VM CPIA-VM De-TS-CE-CPA-VM De-TS-CE-RI-VM FIXME_De-TS-CE-CPA-VM

CodeGemma 597 (41.7%) 579 (40.5%) 651 (45.5%) 624 (43.6%) 700 (48.9%)
CodeLlama 660 (46.1%) 699 (48.8%) 589 (41.2%) 568 (39.7%) 614 (42.9%)

Gemma 738 (51.6%) 700 (48.9%) 675 (47.2%) 680 (47.5%) 656 (45.8%)
Granite 827 (57.8%) 721 (50.4%) 821 (57.4%) 869 (60.7%) 846 (59.1%)
Llama3 591 (41.3%) 565 (39.5%) 729 (50.9%) 711 (49.7%) 689 (48.1%)

Phi3 552 (38.6%) 516 (36.1%) 598 (41.8%) 555 (38.8%) 601 (42.0%)

Portfolio
(All LLMS) 1036 (72.4%) 991 (69.3%) 1042 (72.8%) 1070 (74.8%) 1033 (72.2%)

LLMS FIXME_De-TS-CE-RI-VM RI-VM Sk_De-TS-CE-CPA-VM Sk_De-TS-CE-RI-VM Portfolio
(All Configurations)

CodeGemma 705 (49.3%) 526 (36.8%) 782 (54.6%) 780 (54.5%) 959 (67.0%)
CodeLlama 618 (43.2%) 543 (37.9%) 681 (47.6%) 677 (47.3%) 984 (68.8%)

Gemma 650 (45.4%) 639 (44.7%) 756 (52.8%) 766 (53.5%) 1082 (75.6%)
Granite 882 (61.6%) 832 (58.1%) 901 (63.0%) 921 (64.4%) 1167 (81.6%)
Llama3 669 (46.8%) 559 (39.1%) 792 (55.3%) 720 (50.3%) 1060 (74.1%)

Phi3 531 (37.1%) 519 (36.3%) 691 (48.3%) 691 (48.3%) 988 (69.0%)

Portfolio
(All LLMS) 1075 (75.1%) 1082 (75.6%) 1078 (75.3%) 1093 (76.4%) 1210 (84.6%)

Table 10.5: The number of programs fixed by each LLM under various configurations with access to
variable mappings. Row Portfolio (All LLMS), shows the best results across all LLMS for each configura-
tion. Column Portfolio (All Configurations) shows the best results for each LLM across all configurations.
Mapping abbreviations to configuration names: CE - Counterexample, CPA - Closest Program using
AASTS, CPIA - Closest Program using Invariants + AASTS, De - IPA Description, FIXME - FIXME
Annotations, RI - Reference Implementation, SK - Sketches, TS - Test Suite, VM - Variable Mapping.

TS-CE. Each point represents a faulty program, where the x-value (resp. y-value) represents the TED

cost of GRANITE’ with access to a reference implementation (resp. without it). Points below the diagonal

indicate that fixing a program with access to a correct implementation incurs a higher TED cost than

fixing it without access. This suggests that while access to a reference implementation enables GRANI-

TE and other LLMS to repair more programs, it often results in larger changes to the student’s program

than when no correct implementation is given.

Similarly, Figure 10.2b shows a scatter plot that compares the TED cost between the buggy program

and the program fixed by GRANITE using the closest correct implementation determined by AASTS

(CPA) and without using this implementation. This plot shows that while having a correct implementation

helps GRANITE repair more programs, it generally results in fewer modifications to the student’s code

when the CPA is used instead of the lecturer’s reference implementation.

We did not run the same prompt configuration using the closest correct program considering both

AASTS and invariants (CPIA) because, as shown in Table 10.3, this approach did not contribute posi-

tively to the repair process of the LLMS.

10.4.3.2 Variable Mappings

Comparing two programs is a highly challenging task due to the undecidability of the program equiva-

lence problem. Consequently, mapping variables between two programs is essential for various applica-

tions, such as program repair [173, 243]. In this context, we have evaluated the impact of incorporating

variable mappings between the buggy program and a given correct implementation into the prompts

used by LLMS. We compute these variable mappings using Graph Neural Networks (GNNS)[173],

which map the set of variables between each correct program and the incorrect submission based on
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Metric: sum(Distance Score)
Prompt Configurations

LLMS CPA-VM CPIA-VM De-TS-CE-CPA-VM De-TS-CE-RI-VM FIXME_De-TS-CE-CPA-VM
CodeGemma 268.6 382.2 257.6 470.5 275.5
CodeLlama 217.3 351.6 253.9 426.8 231.0

Gemma 137.2 185.3 156.5 243.4 166.1
Granite 78.1 109.4 148.1 283.5 141.8
Llama3 249.9 316.3 199.2 426.0 189.1

Phi3 134.2 182.1 76.4 214.2 75.3

LLMS FIXME_De-TS-CE-RI-VM RI-VM Sk_De-TS-CE-CPA-VM Sk_De-TS-CE-RI-VM
CodeGemma 475.3 410.1 286.9 509.5
CodeLlama 424.4 372.7 250.0 455.2

Gemma 263.3 195.7 171.5 306.4
Granite 281.3 114.8 165.7 330.9
Llama3 407.0 429.8 196.1 432.1

Phi3 213.0 252.4 78.2 247.5

Table 10.6: The cumulative distance scores for each program successfully repaired by each LLM across
various configurations considering variable mappings. Entries highlighted in bold correspond to the
highest score for each LLM.

both programs’ ASTS (see Chapter 7). These GNNS [173] were trained on the first lab class of C-

PACK-IPAS (see Chapter 4), with MULTIPAS [174] augmenting C-PACK-IPAS by generating pairs of

buggy/correct programs (see Chapter 6).

Table 10.5 shows the results for LLMS when provided with a correct implementation for the same

IPA and a variable mapping between the buggy and correct implementation. The correct implementation

can either be the lecturer’s solution for the same IPA, the closest correct program based on the AASTS

(CPA), or the closest correct program based on the AASTS and their invariants (CPIA). As indicated in

Table 10.5, all LLMS, except for GRANITE, are able to repair more programs when they have access

to variable mappings between the buggy and correct programs. For instance, CODEGEMMA, using the

prompt configuration Sk_De-TS-CE-CPA without variable mappings, fixes 725 programs, while the same

configuration plus variable mappings fixes 782 programs, representing an improvement of nearly 4%.

Table 10.6 presents the sum of the distance scores (see Equation 10.1) for the LLMS from Table 10.5

across different prompt configurations. Notably, only LLAMA3’s score improves compared to Table 10.4,

increasing from a distance score of 423 to 432.1 in Table 10.6. This suggests that while access to

variable mappings aids LLMS in repairing more programs, it does not significantly enhance the LLMS’

distance score in 80% of the evaluated models.

10.4.4 Discussion

To answer our research questions: For RQ1, all six LLMS using different prompt configurations repair

more programs than traditional repair tools. For RQ2, prompt configurations with FL-based Sketches,

IPA description and test suite yield the most successful repair outcomes. Moreover, for RQ3, it is clear

that incorporating FL-based Sketches (or even FIXME annotations) allows the LLMS to repair more

programs than only providing the buggy program. For RQ4, including a reference implementation allows

for more repaired programs but with potentially less efficient fixes. For RQ5, incorporating a variable

mapping alongside the reference implementation enables even more programs to be repaired, though it

may similarly lead to less efficient fixes. Finally, for RQ6, employing a Counterexample guided approach

significantly improves the accuracy of LLM-driven APR across various configurations.
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10.5 Conclusion

Large Language Models (LLMS) excel at completing strings, while MaxSAT-based fault localiza-

tion (FL) excels at identifying buggy parts of a program. We proposed a novel approach combining

MaxSAT-based FL and LLMS via zero-shot learning to enhance Automated Program Repair (APR) for

introductory programming assignments (IPAS). Experiments show that our bug-free program sketches,

significantly improves the repair capabilities of all six evaluated LLMS, enabling them to repair more

programs and produce smaller patches compared to other configurations and state-of-the-art symbolic

program repair tools. Therefore, this interaction between Formal Methods and LLMS yields more accu-

rate and efficient program fixes, enhancing feedback mechanisms in programming education.
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11
Conclusion

“This is what happens when a project ends reasonably well: once you understand the main conclusion,

it seems it was always obvious.”

– Daniel Kahneman, Thinking Fast and Slow [244].
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Automated Program Repair (APR) for introductory programming assignments (IPAS) is driven by the

growing number of students enrolling in programming courses each year. Providing personalized feed-

back on these assignments requires significant time and effort from faculty, making automated feedback

essential. One common approach is to suggest potential repairs to students’ incorrect programs.

Given the large volume of student enrollments, courses can gather numerous correct implemen-

tations for the IPAS. When a student submits a faulty program, these correct submissions can be

leveraged to automatically propose repairs, offering valuable guidance and improving the learning expe-

rience. However, in order to repair a faulty student’s submission current state-of-the-art program repair

frameworks require the existence of correct implementations for the introductory programming assign-

ment (IPA) with the same control flow graph (CFG).

To address these limitations, we propose MENTOR, a clustering-based program repair tool designed

to provide Automated Feedback for Introductory Programming Exercises. MENTOR was designed to

overcome the current state-of-the-art program repair tools’ drawbacks listed in Chapter 3. MENTOR’s

four primary objectives are: (1) to advance the current state of program clustering and program repair;

(2) to enhance MaxSAT-based fault localization techniques; (3) to enable the repair of buggy programs

using correct implementations without the necessity for matching control-flow graphs; and (4) to deliver

automated, personalized, and sound feedback to students.

MENTOR operates by accepting an incorrect submission for a specific IPA, a test suite, and a set

of N correct submissions for that same assignment. The tool is structured into several modules: (1)

program clustering, (2) variable alignment, (3) fault localization, and (4) program fixing. All modules of

MENTOR have been evaluated using C-PACK-IPAS [171], our pack of IPAS detailed in Chapter 4.

Chapter 5 introduced INVAASTCLUSTER [42], MENTOR’s novel clustering approach that leverages

dynamically generated program invariants and anonymized abstract syntax trees (AASTS) to accurately

cluster semantically equivalent programs. Experimental results show that INVAASTCLUSTER signifi-

cantly outperforms syntax-based clustering techniques and boosts the repair rate of CLARA, a state-of-

the-art clustering-based program repair tool, by approximately 13%. Moreover, INVAASTCLUSTER also

reduces the time required by CLARA to repair incorrect student submissions, highlighting its efficiency

and positive impact on APR performance.

Next, MENTOR’s variable aligner module is presented in Chapter 7. This novel approach for variable

mapping utilizes graph neural networks (GNNS) to leverage programs’ abstract syntax trees (ASTS) in

mapping variable sets between two programs [173]. Experiments show the effectiveness of these map-

pings across various program repair scenarios, successfully mapping 83% of 4,166 evaluated program

pairs generated by our program transformation tool, MULTIPAS [174], described in Chapter 6. Further-

more, incorporating variable mappings significantly enhances repair performance, allowing our approach

to repair 88.5% of the evaluation benchmark, compared to 72% achieved by structure-based methods.

Regarding MENTOR’s novel fault localization technique, Chapter 8 proposed CFAULTS [16], a cutting-

edge fault localization technique for C programs with multiple faults that employs Model-Based Diagno-

sis (MBD) and a unified MaxSAT formula to ensure consistency across failing test cases. Experimental

results on TCAS and C-PACK-IPAS demonstrate that CFAULTS outperforms state-of-the-art formula-
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based fault localization (FBFL) tools such as BUGASSIST and SNIPER in terms of both speed and

diagnosis quality, generating only subset-minimal diagnoses without redundant results.

Additionally, Chapter 9 introduced GITSEED [223], a language-agnostic automated assessment tool

integrated with GITLAB to support Programming Education and Software Engineering (SE). GITSEED

allows students to learn git fundamentals while receiving personalized feedback on their code sub-

missions. Notably, CFAULTS was successfully integrated into GITSEED to pinpoint faults in students’

programs, and the feedback from students regarding its usage has been positive. Our evaluation in-

dicates that GITSEED enhances student engagement and learning outcomes, enabling instructors to

customize the tool’s pipeline for course-specific feedback.

Lastly, Chapter 10 presents MENTOR’s program fixer module, a novel approach that combines the

strengths of Formal Methods (FM)-based fault localization and Large Language Models (LLMS) using

zero-shot learning to enhance APR for IPAS. This method leverages MaxSAT-based fault localization

through CFAULTS to identify buggy code segments and generate a program sketch that excludes these

faulty parts. Using a Counterexample Guided Inductive Synthesis (CEGIS) loop, MENTOR iteratively

refines the program by prompting an LLM to synthesize the missing segments, which are validated

against a test suite. Moreover, this chapter incorporates INVAASTCLUSTER’s closest correct program

and our variable mappings into the repair process to further guide the LLMS.

Experimental results on C-PACK-IPAS show that MENTOR’s hybrid repair method, which combines

FM-based fault localization and LLMS, significantly improves repair success rates and results in smaller,

more precise fixes, outperforming other repair strategies and state-of-the-art symbolic tools. For exam-

ple, VERIFIX can only repair 6.3% of C-PACK-IPAS, while CLARA repairs 34.6%. In contrast, MENTOR,

depending on the prompt configuration and the LLM used, achieves repair rates ranging from 37.3% to

64.4% on C-PACK-IPAS.

As future directions, we propose integrating MENTOR into the evaluation pipeline of introductory

programming courses to enable students to benefit from its capabilities, particularly in receiving hints

derived from the program statements that MENTOR has repaired. Additionally, it would be worthwhile

to explore the use of Large Language Models (LLMS) to generate plain-text summaries explaining why

students’ programs were incorrect. This enhancement would provide students with a more detailed

understanding of their programming faults, fostering a deeper learning experience.
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“The saddest aspect of life right now is that science gathers knowledge faster than

society gathers wisdom.”

– Isaac Asimov.
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A
C-PACK-IPAS

A.1 List of Introductory Programming Assignments (IPAS)

A.1.1 Lab02 - Integers and IO operations.

In Lab02, the students learn how to program with integers, floats, IO operations (mainly printf and

scanf), conditionals (if-statements), and simple loops (for and while-loops).

IPA #1: Lab02 - Ex01. Write a program that determines and prints the largest of three integers given

by the user.

IPA #2: Lab02 - Ex02. Write a program that reads two integers ‘N, M‘ and prints the smallest of them

in the first row and the largest in the second.

IPA #3: Lab02 - Ex03. Write a program that reads two positive integers ‘N, M‘ and prints "yes" if ‘M‘ is

a divisor of ‘N‘, otherwise prints "no".

IPA #4: Lab02 - Ex04. Write a program that reads three integers and prints them in order on the same

line. The smallest number must appear first.
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IPA #5: Lab02 - Ex05. Write a program that reads a positive integer ‘N‘ and prints the numbers ‘1..N‘,

one per line.

IPA #6: Lab02 - Ex06. Write a program that determines the largest and smallest number of ‘N‘ real

numbers given by the user. Consider that ‘N‘ is a value requested from the user. The result must be

printed with the command ‘printf("min: %f, max: %fñ", min, max)‘. Hint: initialize the largest and smallest

to the first read value.

IPA #7: Lab02 - Ex07. Write a program that asks the user for a positive integer ‘N‘ and prints the

number of divisors of ‘N‘. Remember that prime numbers have 2 divisors.

IPA #8: Lab02 - Ex08. Write a program that calculates and prints the average of ‘N‘ real numbers

given by user. The program should first ask the user for an integer ‘N‘, representing the number of

numbers to be entered. The real numbers must be represented by float type. The result must be printed

with the command ‘printf("%.2f", avg);‘.

IPA #9: Lab02 - Ex09. Write a program that asks the user for a value ‘N‘ corresponding to a certain

period of time in seconds. The program should output this period of time in the format ‘HH:MM:SS‘. Hint:

use the operator that calculates the remainder of division (‘%‘).

IPA #10: Lab02 - Ex10. Write a program that asks the user for a positive value ‘N‘. The output should

present the number of digits that make up ‘N‘ (on the first line), as well as the sum of the digits of ‘N‘ (on

the second line). For example, the number 12345 has 5 digits and the sum of these digits is 15.

A.1.2 Lab03 - Loops and Chars.

In this lab, the students learn how to program with loops, nested loops, auxilary functions and chars.

IPA #11: Lab03 - Ex01. Write a program that draws a square of numbers like the following using the

function ‘void square(int N);‘. The value of ‘N‘, given by the user, must be greater than or equal to 2. The

tab (character ‘’�’‘) must be used as the separator. The square shown is the example for ‘N = 5‘.

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 9
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IPA #12: Lab03 - Ex02. Write a program that draws a pyramid of numbers using the ‘void pyramid(int

N);‘ function. The value of ‘N‘, given by the user, must be greater than or equal to 2. The space (character

‘’ ’‘) must be used as the separator. The pyramid shown is the example for ‘N = 5‘.

1

1 2 1

1 2 3 2 1

1 2 3 4 3 2 1

1 2 3 4 5 4 3 2 1

IPA #13: Lab03 - Ex03. Write a program that draws a cross on diagonals using the ‘void cross(int N);‘

function. The asterisk (‘’*’‘ character) must be used to draw the cross; hyphen (‘’-’‘ character) must be

used as the separator. The crosses shown are the examples for ‘N = 3‘ and ‘N=8‘.

* - - - - - - *

- * - - - - * -

- - * - - * - -

- - - * * - - -

- - - * * - - -

* - * - - * - - * - -

- * - - * - - - - * -

* - * * - - - - - - *

IPA #14: Lab03 - Ex04. Write a program that reads a sequence of numbers separated by spaces and

newlines, and print the same string, but the numbers in the output should not contain 0 at the beginning,

eg ‘007‘ should print ‘7‘. The exception is the number 0, which should be printed as 0. The string in the

input ends with ‘EOF‘. Warning: Number values may be greater than the maximum value of type ‘int‘ or

any primitive type in C. Hint: the ‘int getchar()‘ function can be used to read a character.

IPA #15: Lab03 - Ex05. Write a program that reads a sequence of messages and prints them out, one

per line. Each message is delimited by quotation marks (character ‘"‘). The message can contain an

"escape sequence" - the character loses special meaning if it is preceded by the character ‘(̀backslash).

For example, the input ‘"af̈oob̃ar"̈‘ matches the message ‘a"foob̃ar"‘. So the backslash allows you to

include quotes in the message just like the backslash itself.

IPA #16: Lab03 - Ex06. Write a program that reads a positive integer from the input (such as a

sequence of characters up to 100 chars) and that decides whether the number read is divisible by 9. If

the number is divisible by 9, the program should print the message ‘yes‘, and should print ‘no‘ otherwise.

Warning: Number values can be greater than the maximum value of type ‘int‘ or any primitive type in C.

Hint: A number is divisible by 9 iff the sum of its digits is divisible by 9. For example, the sum of the digits
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of the number 729 is 18, so it is divisible by 9. The fact can be seen from the following equation: 7 x 100

+ 2 x 10 + 9 = (7 x 99 + 7) + (2 x 9 + 2) + 9.

IPA #17: Lab03 - Ex07. Write a program that takes a sequence of numbers and operators (‘+‘, ‘-‘)

representing an arithmetic expression and returns the result of that arithmetic expression. The string

in the input ends with ‘ñ‘. You can assume that every two numbers are always separated by ‘space,

operator, space‘, i.e., ‘’op’‘, for either of the 2 operators above. Example: Input ‘70 + 22 - 3‘ should

return ‘89‘. Hint: You should start by converting a sequence of digits (characters) to an integer.

A.1.3 Lab04 - Vectors and Strings.

In this lab, the students learn how to program with integers arrays and strings.

IPA #18: Lab04 - Ex01. Write a program that asks the user for a positive integer ‘n < VECMAX‘,

where ‘VECMAX=100‘. Then read ‘n‘ positive integers. At the end the program should write a graphical

representation of the values read as follows. The graph shown is the example for ‘n = 3‘ and values ‘1 3

4‘.

*

***

****

IPA #19: Lab04 - Ex02. Write a program that asks the user for a positive integer ‘n < VECMAX‘,

where ‘VECMAX=100‘. Then read ‘n‘ positive integers. At the end the program should write a graphical

representation of the values read as follows. The graph shown is the example for ‘n = 3‘ and values ‘1 3

4‘.

***

**

**

*

IPA #20: Lab04 - Ex03. Write a program that asks the user for a positive integer ‘n < VECMAX‘,

where ‘VECMAX=100‘. Then read ‘n‘ positive integers. At the end the program should write a graphical

representation of the values read as follows. The graph shown is the example for ‘n = 3‘ and values ‘1 3

4‘.

*

**

**

***
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Consider that in the following IPAS, all strings have a maximum of ‘MAX = 80‘ characters (including

the end-of-string character).

IPA #21: Lab04 - Ex04. Write a program that reads a word from the terminal and checks whether the

word is a palindrome or not. A word is a palindrome if it is spelled the same way from left to right and

vice versa (eg "AMA" is a palindrome). If the word is a palindrome, the program should print the value

‘yes‘, and ‘no‘ if not. Hint: You can use ‘scanf("%s", s)‘ to read a word. Note that the string ‘s‘ does not

ask for ‘&‘ in ‘scanf‘.

IPA #22: Lab04 - Ex05. Write a program that reads characters from the keyboard, character by char-

acter, until it finds the character ‘ñ‘ or EOF and writes the line read to the terminal. Implement the ‘int

leLinha(char s[])‘ function which reads the line into the string ‘s‘ and returns the number of characters

read. Hint: After solving this exercise, try using the ‘fgets‘ command.

IPA #23: Lab04 - Ex06. Write a program that reads a line from the terminal (use the function from the

previous exercise) and writes the same text to the terminal, but with the lowercase letters replaced by

the respective uppercase letters. Implement the ‘void uppercase(char s[])‘ function. Note: Remember

that the string ‘s‘ is changed by the ‘uppercase‘ function.

IPA #24: Lab04 - Ex07. Write a program that reads a line and a character and writes to the terminal

the same line where all occurrences of the character were removed. Implement the ‘void eraseCharac-

ter(char s[], char c)‘ function that erases the character ‘c‘ from the string ‘s‘.

IPA #25: Lab04 - Ex08. Write a program that reads two integers in decimal representation and prints

the larger of those two numbers. You can assume that the two numbers have the same number of digits

and a maximum of 100 characters. Note: The numbers may be too large to be stored in a ‘long long‘

variable, for example ‘998888888888888888887‘ and ‘9988888888888888888888‘.

A.2 Number of submissions

Table A.1 presents the number of semantically correct student submissions received for 25 different

programming assignments over three lab classes for three different years. Next, Table A.2 presents the

set of semantically incorrect submissions, while Table A.3 describes the set of syntactically incorrect

programs.
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Table A.1: The number of semantically correct student submissions received for 25 different program-
ming assignments over three lab classes for three different years.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total

Year 1
Lab02 25 25 25 23 25 23 22 23 24 23 238
Lab03 20 18 16 7 16 17 20 - - - 114
Lab04 22 22 19 22 18 19 21 13 - - 153

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total

Year 2
Lab02 13 8 8 7 8 9 7 6 7 6 79
Lab03 6 5 3 1 4 7 7 - - - 33
Lab04 6 7 6 6 6 5 4 3 - - 43

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total

Year 3
Lab02 52 50 54 44 50 51 44 47 43 47 482
Lab03 40 39 37 10 15 37 26 - - - 204
Lab04 38 34 30 49 36 32 27 23 - - 269

Table A.2: The number of semantically incorrect student submissions received for 25 different program-
ming assignments over three lab classes for three different years.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total

Year 1
Lab02 36 10 7 12 3 5 7 9 21 3 113
Lab03 32 35 20 69 16 17 9 - - - 198
Lab04 5 11 5 6 10 5 14 10 - - 66

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total

Year 2
Lab02 28 2 1 7 2 4 7 2 3 4 60
Lab03 14 10 11 17 15 6 4 - - - 77
Lab04 6 1 1 2 7 1 4 6 - - 28

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total

Year 3
Lab02 51 43 31 33 4 28 22 41 36 24 313
Lab03 58 76 44 121 63 31 31 - - - 424
Lab04 5 17 5 41 19 8 21 36 - - 152

Table A.3: The number of syntactically incorrect student submissions received for 25 different program-
ming assignments over three lab classes for three different years.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total

Year 1
Lab02 6 0 1 5 4 4 4 2 1 2 29
Lab03 6 3 1 6 2 1 2 - - - 21
Lab04 2 1 1 0 5 0 1 2 - - 12

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total

Year 2
Lab02 6 3 0 5 1 5 0 0 0 0 20
Lab03 1 0 0 1 1 1 1 - - - 5
Lab04 0 0 0 1 1 1 4 0 - - 7

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total

Year 3
Lab02 24 17 14 20 10 27 11 31 8 12 174
Lab03 18 8 7 10 15 9 8 - - - 80
Lab04 14 7 4 18 15 10 11 21 - - 100
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B
Program Clustering

B.1 Use Case #1: Clustering IPAS

B.1.1 Clustering Accuracy

Figure B.1 shows a matrix with the different values of the cluster accuracy using the MINIBATCH

KMEANS algorithm on each program representation using ten different seeds. Each entry is highlighted

accordingly to its value. The lowest value is highlighted in black, and the highest is highlighted in white.

Intermediate values are highlighted in different shades of grey, depending on how far they are from the

lowest value.

1 2 3 4 5 6 7 8 9 10

AAST+Invariants

AAST

Invariants

Syntax

0.81 0.79 0.82 0.76 0.81 0.79 0.79 0.80 0.74 0.81

0.74 0.72 0.75 0.71 0.71 0.75 0.76 0.75 0.66 0.70

0.77 0.77 0.74 0.73 0.74 0.76 0.77 0.76 0.79 0.75

0.58 0.58 0.57 0.59 0.61 0.61 0.58 0.60 0.59 0.55

Figure B.1: The values for cluster accuracy using the MINIBATCH KMEANS algorithm on each program
representation after ten different runs, each run using a different seed.
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1 2 3 4 5 6 7 8 9 10

AAST+Invariants

AAST

Invariants

Syntax

0.80 0.81 0.79 0.80 0.80 0.80 0.80 0.80 0.80 0.81

0.79 0.72 0.77 0.74 0.72 0.73 0.76 0.75 0.70 0.71

0.78 0.79 0.77 0.77 0.78 0.78 0.77 0.77 0.79 0.80

0.58 0.59 0.59 0.59 0.59 0.60 0.60 0.60 0.57 0.59

Figure B.2: The values for cluster accuracy using the BIRCH algorithm on each program representation
after ten different runs, each run using a different seed.

1 2 3 4 5 6 7 8 9 10

AAST+Invariants

AAST

Invariants

Syntax

0.74 0.80 0.76 0.81 0.80 0.78 0.80 0.79 0.79 0.81

0.72 0.65 0.67 0.74 0.72 0.72 0.71 0.72 0.71 0.74

0.75 0.78 0.75 0.79 0.74 0.72 0.73 0.76 0.74 0.80

0.58 0.56 0.56 0.60 0.56 0.58 0.60 0.58 0.57 0.57

Figure B.3: The values for cluster accuracy using the GAUSSIAN MIXTURE algorithm on each program
representation after ten different runs, each run using a different seed.

Secondly, Figure B.2 shows a matrix with the different values of the cluster accuracy using the BIRCH

algorithm on each program representation using ten different seeds.

Lastly, Figure B.3 shows a matrix with the different values of the cluster accuracy using the GAUSSIAN

MIXTURE algorithm on each program representation for ten different seeds.

B.1.2 Other Evaluation Metrics

In this section, we present other clustering evaluation metrics for the KMEANS algorithm, such as: the

Rand index, the adjusted Rand index, the normalized mutual information, the adjusted mutual informa-

tion, the FowlkesMallows index, the completeness score, the homogeneity score, and the V measure.

Rand Index. The Rand index measures the similarity of the two assignments, ignoring permuta-

tions [245]. The Rand index is given by the following equation B.1:

RI = TP + TN

TP + FP + FN + TN
(B.1)

Figure B.4 presents the values for the Rand index using the KMEANS algorithm on each program

representation after ten different runs.

Adjusted Rand Index. The adjusted Rand index is the corrected-for-chance version of the Rand in-

dex since the Rand index does not guarantee that random label assignments will get a value close to

zero [246]. The adjusted Rand index is given by equation B.2, where TP is the number of true positives,
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1 2 3 4 5 6 7 8 9 10

AAST+Invariants

AAST

Invariants

Syntax

0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

Figure B.4: The values for the Rand index using the KMEANS algorithm on each program representation
after ten different runs, each run using a different seed.

1 2 3 4 5 6 7 8 9 10

AAST+Invariants

AAST

Invariants

Syntax

0.79 0.76 0.76 0.77 0.77 0.79 0.77 0.77 0.77 0.78

0.68 0.68 0.64 0.68 0.67 0.67 0.68 0.67 0.67 0.66

0.73 0.74 0.73 0.75 0.75 0.75 0.73 0.74 0.74 0.75

0.49 0.49 0.50 0.51 0.51 0.53 0.50 0.50 0.47 0.50

Figure B.5: The values for the adjusted Rand index using the KMEANS algorithm on each program
representation after ten different runs, each run using a different seed.

1 2 3 4 5 6 7 8 9 10

AAST+Invariants

AAST

Invariants

Syntax

0.88 0.87 0.87 0.87 0.87 0.88 0.87 0.87 0.87 0.88

0.83 0.83 0.82 0.84 0.83 0.83 0.83 0.84 0.83 0.83

0.85 0.85 0.86 0.86 0.86 0.86 0.85 0.85 0.85 0.86

0.69 0.70 0.70 0.71 0.70 0.71 0.70 0.71 0.69 0.70

Figure B.6: The values for the normalized mutual information using the KMEANS algorithm on each
program representation after ten different runs, each run using a different seed.

TN is the number of true negatives, FP is the number of false positives, and FN is the number of false

negatives.

ARI = RI − E[RI]
max(RI)− E[RI] (B.2)

Figure B.5 presents the values for the adjusted Rand index using the KMEANS algorithm on each

program representation after ten different runs.

Normalized Mutual Information. The normalized mutual information of two random variables is a

measure of the mutual dependence between the two variables [247]. Figure B.6 shows the values for

the normalized mutual information using the KMEANS algorithm on each program representation after

10 different runs.
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1 2 3 4 5 6 7 8 9 10

AAST+Invariants

AAST

Invariants

Syntax

0.87 0.86 0.86 0.86 0.86 0.87 0.86 0.86 0.86 0.87

0.82 0.82 0.81 0.83 0.82 0.82 0.82 0.82 0.82 0.81

0.84 0.84 0.85 0.85 0.85 0.85 0.83 0.84 0.84 0.85

0.67 0.68 0.68 0.69 0.68 0.69 0.68 0.69 0.67 0.68

Figure B.7: The values for the adjusted mutual information using the KMEANS algorithm on each pro-
gram representation after ten different runs, each run using a different seed.

1 2 3 4 5 6 7 8 9 10

AAST+Invariants

AAST

Invariants

Syntax

0.80 0.77 0.77 0.78 0.78 0.80 0.78 0.78 0.78 0.79

0.69 0.69 0.66 0.69 0.68 0.68 0.70 0.69 0.68 0.67

0.75 0.75 0.74 0.76 0.76 0.76 0.74 0.76 0.75 0.76

0.52 0.51 0.52 0.53 0.53 0.55 0.52 0.52 0.50 0.53

Figure B.8: The values for the FowlkesMallows index using the KMEANS algorithm on each program
representation after ten different runs, each run using a different seed.

Adjusted Mutual Information. The adjusted mutual information corrects the effect of the agreement

solely due to chance between clusterings, similar to the way the adjusted rand index corrects the Rand

index [248]. Figure B.7 presents the values for the adjusted mutual information using the KMEANS

algorithm on each program representation after ten different runs.

FowlkesMallows index. The Fowlkes-Mallows index measures the similarity between two clusters.

A high value for the FowlkesMallows index indicates a great similarity between the clusters and the

benchmark classifications [249]. The Fowlkes-Mallows index can be computed using equation B.3,

where TP is the number of true positives, FP is the number of false positives, and FN is the number of

false negatives. TPR is the true positive rate, also called sensitivity or recall, and PPV is the positive

predictive rate, also known as precision.

FM =
√

PPV · TPR =
√

TP

TP + FP
· TP

TP + FN
(B.3)

Figure B.8 shows the values for the FowlkesMallows index using the KMEANS algorithm on each

program representation after ten different runs.

Completeness score. The completeness score measure if all members of a given class are assigned

to the same cluster [250]. Figure B.9 shows the values for the completeness score using the KMEANS

algorithm on each program representation after ten different runs.
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1 2 3 4 5 6 7 8 9 10

AAST+Invariants

AAST

Invariants

Syntax

0.88 0.87 0.87 0.87 0.87 0.88 0.87 0.87 0.87 0.88

0.84 0.83 0.82 0.84 0.83 0.83 0.83 0.84 0.83 0.83

0.86 0.86 0.86 0.86 0.86 0.86 0.85 0.86 0.85 0.86

0.70 0.71 0.71 0.72 0.70 0.71 0.70 0.71 0.70 0.71

Figure B.9: The values for the completeness score using the KMEANS algorithm on each program
representation after ten different runs, each run using a different seed.

1 2 3 4 5 6 7 8 9 10

AAST+Invariants

AAST

Invariants

Syntax

0.88 0.87 0.87 0.87 0.87 0.88 0.87 0.87 0.87 0.88

0.83 0.83 0.82 0.84 0.83 0.83 0.83 0.83 0.83 0.83

0.85 0.85 0.85 0.85 0.85 0.86 0.84 0.85 0.85 0.85

0.68 0.68 0.69 0.70 0.69 0.70 0.69 0.70 0.68 0.69

Figure B.10: The values for the homogeneity score using the KMEANS algorithm on each program
representation after ten different runs, each run using a different seed.

1 2 3 4 5 6 7 8 9 10

AAST+Invariants

AAST

Invariants

Syntax

0.88 0.87 0.87 0.87 0.87 0.88 0.87 0.87 0.87 0.88

0.83 0.83 0.82 0.84 0.83 0.83 0.83 0.84 0.83 0.83

0.85 0.85 0.86 0.86 0.86 0.86 0.85 0.85 0.85 0.86

0.69 0.70 0.70 0.71 0.70 0.71 0.70 0.71 0.69 0.70

Figure B.11: The values for the V measure using the KMEANS algorithm on each program representation
after ten different runs, each run using a different seed.

Homogeneity score. The homogeneity score checks if each cluster contains only members of a single

class [250]. Figure B.10 presents the values for the homogeneity score using the KMEANS algorithm on

each program representation after ten different runs.

V measure. The V measure is the harmonic mean between the homogeneity and completeness

scores [250]. Figure B.11 shows the values for the V measure using the KMEANS algorithm on each

program representation after ten different runs.

B.2 Use Case #2: Repairing IPAS

Table B.1 presents the number of clusters each clustering method uses for each IPA. This table was

used to generate the cactus plot in Figure 5.6.
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Table B.1: The number of clusters generated using each clustering approach for each IPA.

Exercise #Correct
Submissions

Clara
Clusters

KMeans
AAST

KMeans
AAST+Invs

KMeans
Invs

KMeans
Syntax

Closest Program
(KMeans)

AAST+Invs
lab02/ex01 92 18 9 9 9 9 1
lab02/ex02 84 6 8 8 8 8 1
lab02/ex03 83 4 8 8 7 8 1
lab02/ex04 76 20 7 7 7 7 1
lab02/ex05 80 10 7 7 7 7 1
lab02/ex06 68 25 6 6 6 6 1
lab02/ex07 67 17 6 6 6 6 1
lab02/ex08 49 21 4 4 4 4 1
lab02/ex09 74 12 7 7 7 7 1
lab02/ex10 65 17 6 6 6 6 1
lab03/ex01 70 51 6 6 6 6 1
lab03/ex02 55 49 5 5 5 5 1
lab03/ex03 45 27 4 4 4 4 1
lab03/ex04 28 8 2 2 2 2 1
lab03/ex06 46 8 4 4 4 4 1
lab04/ex01 59 32 5 5 5 5 1
lab04/ex02 47 32 4 4 4 4 1
lab04/ex03 41 33 4 4 4 4 1
lab04/ex08 8 6 1 1 1 1 1
lab05/ex01 4 3 1 1 1 1 1
itsp/lab3/ex2810 17 9 1 1 1 1 1
itsp/lab3/ex2811 7 3 1 1 1 1 1
itsp/lab3/ex2812 17 7 1 1 1 1 1
itsp/lab3/ex2813 4 4 1 1 1 1 1
itsp/lab4/ex2824 15 5 1 1 1 1 1
itsp/lab4/ex2825 10 4 1 1 1 1 1
itsp/lab4/ex2827 6 6 1 1 1 1 1
itsp/lab4/ex2831 7 4 1 1 1 1 1
itsp/lab4/ex2832 17 7 1 1 1 1 1
itsp/lab4/ex2833 19 9 1 1 1 1 1
itsp/lab5/ex2865 7 4 1 1 1 1 1
itsp/lab5/ex2866 11 10 1 1 1 1 1
itsp/lab5/ex2867 7 4 1 1 1 1 1
itsp/lab5/ex2868 8 6 1 1 1 1 1
itsp/lab5/ex2869 7 4 1 1 1 1 1
itsp/lab5/ex2870 9 8 1 1 1 1 1
itsp/lab5/ex2871 15 10 1 1 1 1 1
itsp/lab6/ex2932 3 3 1 1 1 1 1
itsp/lab6/ex2933 1 1 1 1 1 1 1
itsp/lab6/ex2936 5 4 1 1 1 1 1
itsp/lab6/ex2937 2 2 1 1 1 1 1
itsp/lab6/ex2938 6 4 1 1 1 1 1
itsp/lab6/ex2939 2 1 1 1 1 1 1
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C
Variable Mapping

C.1 IPAS Dataset Generation

To evaluate our work, we have generated a dataset of pairs programs based on a benchmark of stu-

dent programs developed during an introductory programming course in the C programming language

for ten different introductory programming assignments (IPAS), over two distinct academic years. We se-

lected only semantically correct submissions i.e., programs that compiled without any error and satisfied

a set of input-output test cases for each IPA.

Afterwards, we generated a dataset of pairs of correct/incorrect programs to train and evaluate our

work with specific bugs. The reason to generate programs is that we need to know the real variable

mappings between two programs (ground truth) to evaluate our representation. As explained in Chap-

ter 7, we used MULTIPAS to generate this dataset. This tool can mutate our programs syntactically,

generating semantically equivalent programs. There are several program mutations available in MUL-

TIPAS such as: mirroring comparison expressions, swapping the if’s then-block with the else-block and

negating the test condition, increment/decrement operators mirroring, variable declarations reordering,

translating for-loops into equivalent while-loops, and all possible combinations of these program muta-

tions. Hence, MULTIPAS has 31 different configurations for mutating a program. Each program mutation

can be applied in more than one place for a given program. Hence, each program mutation can gener-

ate several different mutated programs. For example, using the program mutation that reorders variable
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Figure C.1: IPAS Dataset Generation

declarations, each possible reordering generates a different mutated program.

Regarding the generation of buggy programs, we also used MULTIPAS, for introducing bugs into the

programs, such as wrong comparison operator (WCO), variable misuse (VM) and missing expression

(ME). Each bug can be applied in more than one place for a given program. Thus, one program can

generate several different buggy programs using the same bug. For example, the bug of variable misuse

can be applied in each variable occurrence in the program, each one generates a single buggy program.

Figure C.1 presents the generation of our dataset. Firstly, we applied all the available program

mutations to each correct student’s submission. Then, for each mutated program, we applied all three

types of bugs: WCO, VM and ME. Finally, we gathered a dataset of pairs of programs and the mappings

between their sets of variables. As Figure C.1 shows, each pair of programs, in our generated dataset,

corresponds to a correct student’s implementation and the student’s program after being mutated and

with some bug introduced.

C.2 #Correct/Incorrect Mappings vs #Variables

Figure C.2 shows a histogram with the number of programs, y-axis, whose variables (number of

variables in the x-axis) our GNN models can map totally correct (#Correct Mappings) in green and

programs with at least one variable being mapped incorrectly (#Incorrect Mappings) in red.
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Figure C.2: Histograms showing the number of programs that our GNN, trained on all buggy programs,
mapped all their variables correctly. The results are presented for programs with the bugs of wrong
comparison operator (WCO), variable misuse (VM), missing expression (ME) or all of them (All).

C.3 Overlap Coefficient

The overlap or SzymkiewiczSimpson coefficient measures the overlap between two sets (e.g., map-

pings). This metric can be calculated by dividing the size of the intersection of two sets by the size of

the smaller set, as follows:

overlap(A, B) = |A ∩B|
min(|A|, |B|) (C.1)

An overlap of 100% means that both sets are equal or one of them is a subset of the other. The

opposite, 0% overlap, means there is no intersection between both sets.
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