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”Old Man: What is your quest?

King Arthur: To seek the Holy Grail!”

Monty Python and the Holy Grail, 1975
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Resumo

Actualmente, com a enorme quantidade de dados com que os analistas de dados precisam de lidar di-

ariamente, estes frequentemente encontram tabelas com dados interessantes e não sabem como estas

tabelas foram geradas a partir de uma base de dados. Deste modo, há uma necessidade crescente de

sistemas capazes de resolver o problema de Engenharia Reversa de Consultas (ERC, Query Reverse

Engineering da literatura inglesa). Dada uma base de dados D e uma tabela de saı́da Q(D), estes

sistemas precisam encontrar uma consulta Q, de modo que, ao executar Q em D, o resultado é igual a

Q(D). ERC pertence à área de Sı́ntese de Programas.

O objetivo da área de Sı́ntese de Programas é gerar automaticamente programas que atendem a

uma determinada especificação de alto nı́vel. Desde os anos 60, Sı́ntese de Programas é um problema

bem estudado e tem sido considerado o Santo Graal da Ciência da Computação. Até agora, os sinteti-

zadores de programas usavam uma única árvore para representar programas. Neste trabalho propomos

um novo sintetizador de SQL baseado em enumeração, SQUARES, que usa uma nova representação

por linhas na qual cada linha do programa é representada pela sua própria subárvore.

Resultados experimentais na sı́ntese de consultas SQL mostram que a codificação proposta baseada

em linhas permite uma enumeração mais rápida de programas quando comparada à codificação usual

baseada em árvore. Adicionalmente, embora a codificação baseada em árvore não ultrapasse um pe-

queno número de operações, a nova codificação baseada em linhas permite encontrar programas com

uma sequência maior de operações. Resultados experimentais na sı́ntese de consultas SQL da Out-

Systems mostram que o SQUARES supera o Scythe, um sintetizador de SQL de última geração.

Palavras-chave: Sı́ntese de Programas, Engenharia Reversa de Consultas (ERC), Teorias

de módulos de satisfação (TMS), Sı́ntese de programas com base em enumeração, SQL
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Abstract

Nowadays, with the massive amount of data that data analysts have to deal with, they frequently find

tables with interesting data and they do not know how these tables were generated from a database.

Hence, there is an increasing need for systems capable of solving the problem of Query Reverse Engi-

neering (QRE). Given a database D and an output table Q(D), these systems have to find a query Q,

such that, when running Q on D, the result is equal to Q(D). QRE is a subfield of Program Synthesis.

The goal of Program Synthesis is to automatically generate programs that satisfy a given high-level

specification. Since the 60’s, Program Synthesis is a well-studied problem, and has been considered the

Holy Grail of Computer Science. Until now, program synthesizers have been using a single tree repre-

sentation to represent programs. We propose a novel enumeration-based SQL synthesizer SQUARES,

that uses a new line representation where we represent each program line with its own subtree.

Experimental results on the synthesis of SQL queries, show that the proposed line-based encoding

allows a faster enumeration of programs when compared to the usual tree-based encoding. Moreover,

while the tree-based encoding does not scale beyond a small number of operations, the new line-based

encoding allows finding programs with a larger sequence of operations. Experimental results on the

synthesis of SQL queries from OutSystems show that SQUARES outperforms Scythe, a state-of-the-art

SQL synthesizer.

Keywords: Program Synthesis, Query Reverse Engineering, Satisfiability Modulo Theories

(SMT), Enumeration-Based Program Synthesis, SQL
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Chapter 1

Introduction

The goal of Program Synthesis is to automatically generate programs that satisfy a given high-level

specification [42]. A theme of research since the 60’s, Program Synthesis is not only a well-studied

problem, but it has even been considered the Holy Grail of Computer Science [29, 37]. Once considered

a utopian dream, the recent advances in Program Synthesis are making this approach more practical

and have shown that it can be useful to both end-users and programmers.

According to Manna and Waldinger [41], winners of the 2016 Herbrand Award: ”It is often easier to

describe what a computation does than it is to define it explicitly. That is, we may be able to write down

the relation between the input and the output variables easily, even when it is difficult to construct a pro-

gram to satisfy that relation”. Nowadays, this use of input-output examples as specifications is a common

solution [29]. Even though these specifications are incomplete (i.e., a program may satisfy the specifica-

tion but may not be the program that the user desires), these are easy to create and can be used to solve

many real-world applications. This subfield of Program Synthesis is known as Programming By Example

(PBE) and it has received more attention in the last decade. PBE has been used to automate tedious

tasks in a plethora of applications, such as string manipulations in spreadsheets [25, 64], list transfor-

mations [4, 22], table reshaping [19], code completion [57], helping programmers to use libraries [20],

and SQL queries [75, 79, 81].

Even though there are many approaches to Program Synthesis [29], one of the most commonly used

solutions is to perform an enumerative search over the space of programs that satisfy the specifica-

tion [19, 21, 44]. Fig. 1.1 shows the high-level architecture of enumeration-based program synthesizers.

They take as input the specification that describes the intention of the user (e.g., input-output examples)

and a domain-specific language (DSL) that defines the search space. Program synthesizers typically

enumerate programs in increasing order of the number of DSL components. For each candidate pro-

gram P, they check if P satisfies the specification. If this is the case, then a program consistent with

the specification has been found. Otherwise, the program synthesizer learns a reason for failure and

enumerates the next candidate program.

Recent approaches combine enumerative search with deduction. The goal is to perform early prun-

ing of infeasible programs [19], or to learn from past failed candidate programs in order to prune all

equivalent infeasible programs [21].

1



Enumerator Decider

Candidate Program

Reason of Failure

Specs + DSL Desired Program

Figure 1.1: Enumeration-based Program Synthesis

Program synthesis is not merely an academic research topic since it is also transitioning into industry.

Microsoft’s FlashFill [25] is the most successful application of Program Synthesis by Microsoft for string

manipulation and it is integrated into Microsoft Excel. Other companies are also starting to look for

applications of Program Synthesis to their products (e.g. OutSystems [50] and Query Synthesis).

Since the beginning of the 21st century, with the Big Data revolution, several companies started

having trouble with the management of their databases, concerning the massive amount of data that

suddenly appeared. According to Zhang and Sun [81], there is a growing population of non-expert

database end-users that have limited programming knowledge and do not always know how to query a

relational database. Although most users know how to make a description of what they want, or what

the task should do, sometimes they do not know how to express it in a query language, such as SQL.

On that account, more and more systems started to appear in order to help end-users query a relational

database [39, 70, 71, 81]. This subfield of Program Synthesis became known as Query Synthesis,

where the goal is to find the query desired by the user [70].

Over the past few years, the two most studied approaches to allow the user to give specifications

about the desired query in Query Synthesis are input-output examples [71, 80] and natural language

descriptions [38, 79]. In both approaches, the user provides an input database. In the first approach the

user also provides the desired query’s output table, while in the second the user gives a description in

natural language of what he wishes to query.

This thesis is concerned with the problem of Query Synthesis from input-output examples, most

commonly known as Query Reverse Engineering (QRE) which is a subfield of Programming By Example.

Given a database D, and an output table Q(D), the goal is to synthesize a query Q, such that, when

running Q on D the result is Q(D) [70]. We focus on a new system, SQUARES, whose objective is to

solve QRE for a subset of SQL.

In addition to the previous motivation for Query Synthesis, there are more examples where QRE may

be helpful. Suppose that a data analyst finds a table with promising data, but she does not know which

SQL query generated that specific table. She only knows the database where the data came from and

when it was queried. Then, having a copy of the database from that time, the data analyst could use

a QRE system to discover what was the query used to obtain such interesting data. Nowadays, not

knowing which SQL query generated some table can easily happen, due to changes in the software

used to manage the databases or just by changing the data analyst. Furthermore, consider that a data

analyst wrote a query in SQL, but she is unaware whether there exists a similar query that produces

the same result, but with lower complexity regarding the number of table joins and conditions. If a QRE

system searches for a query in a growing number of table joins and conditions, it can return the query

2



Table 1.1: Table parts, supplier and an output table. The output table is the result of selecting the pnames
after joining parts and supplier.

parts supplier output

id pname id sname pname

1 Tire 1 Michelin Tire

2 Suspension

that is consistent with the output table and has the lowest complexity possible [80]. Currently, optimizing

queries is an important area of research [61].

As mentioned earlier, QRE can be used in other query languages. For instance, SPARQL is a query

language that has received a lot of attention from the QRE community in the past few years [1, 2, 17].

1.1 Motivating Example

Suppose that a user wants to synthesize an SQL query using examples. In particular, given tables

parts and supplier, in Table 1.1, with the schema “parts(id: integer, pname: string)” and

“supplier(id: integer, sname: string)”, the user wants to find the names of parts, pnames, for which there

is some supplier 1. This can be represented by the output table presented in Table 1.1. Therefore if the

user provides these three tables, supplier and parts as input tables and the output table, to a program

synthesizer, it would return the following SQL query:

SELECT pname

FROM parts , supplier

WHERE parts.id = supplier.id

To enumerate the space of programs that satisfy the specifications, program synthesizers must first

construct an underlying representation of the feasible space. Figure 1.2 shows the typical tree repre-

sentation used by program synthesizers [10, 19, 21], for the above query example. Each node can be a

library component or a terminal symbol. Program synthesizers can then traverse the space of possible

candidates by enumerating all possible trees of a given depth. However, for approaches that rely on

logical deduction, the space of feasible programs is encoded a priori by using either a Boolean Satisfi-

ability (SAT) or a Satisfiability Modulo Theory (SMT) formula [19, 21]. A common approach to encode

all feasible programs is to represent them using a k-tree, where each node has exactly k children and

k is the largest number of parameters of the functions in our library of components. Figure 1.2 shows

an example of a 3-tree where each node has 3 children. A complete program corresponds to assigning

a label to each node. Components that may have less than 3 parameters (e.g., SELECT), will have the

empty label ε assigned to their unused children.

A large downside of a k-tree representation is the exponential growth of the size of the tree with

respect to its depth. For instance, Figure 1.2 would need 40 nodes to represent the search space for 3

1This corresponds to exercise 5.2.1 from a classic textbook on databases [56].
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SELECT

FROM

WHERE

= parts.id supplier.id

parts

ε ε ε

supplier

ε ε ε

pname

ε ε

. . .

ε

ε

ε ε

. . .

ε

Figure 1.2: Tree-based representation of the search space

L3 : SELECT

L2 pname ε

L2 : FROM

L1 parts supplier

L1 : WHERE

= parts.id supplier.id

Figure 1.3: Line-based representation of the search space

lines of code with k = 3. If we consider programs with 10 lines of code with k = 4, then we would need

to build a tree with 1,398,101 nodes. Since the encoding’s complexity depends on the number of nodes,

this makes it intractable to enumerate the search space of candidate programs using an SMT encoding.

1.2 Contributions

In this thesis, we propose a new line representation illustrated in Figure 1.3, where we represent each

program line with its own subtree and add additional constraints to connect the multiple subtrees. For

the above SQL query, we would only need 12 nodes using a line-based representation instead of the

3-tree representation’s 40 nodes. When considering programs with 10 lines of code and k = 4, the line-

based representation only needs 50 nodes instead of the 1,398,101 nodes required by the tree-based

representation.

We also present a novel program synthesizer, SQUARES, that uses Enumeration-based Program

Synthesis. SQUARES was developed on top of a state-of-the-art synthesis framework Trinity [44]. Trinity

uses the traditional tree-based representation of a program, while SQUARES incorporates our new line

representation illustrated in Figure 1.3.

SQUARES’ goal is to synthesize SQL queries from input-output examples (tables), i.e., solve the

problem of Query Reverse Engineering. We gathered SQL instances previously used by well-known

SQL synthesizers [19, 75, 81] and some query examples used in OutSystems’ Engineering Database

[50]. We evaluate our system with these instances and compare its performance against Scythe [75],

a state-of-the-art synthesizer presented at PLDI’17, whose goal is also to solve the problem of Query

Reverse Engineering.
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Part of our work was published at the 25th International Conference on Principles and Practice of

Constraint Programming (CP’19) [49]. CP is classified as an A conference in the CORE ranking 2.

To summarize, this thesis makes the following contributions:

• We formalize how to encode the traditional tree-based representation of a program into SMT which

has an exponential growth with respect to the number of lines of a program [49].

• We propose a new compact SMT encoding based on a line representation of programs that grows

linearly with the number of lines of a program [49].

• We propose a new enumeration-based program synthesizer whose goal is to solve the problem of

Query Reverse Engineering.

• We integrate the line-based encoding into SQUARES, and empirically evaluate our approach

using several SQL instances. Experimental results show that the line-based encoding significantly

outperforms the tree-based encoding and allows program synthesizers to more effectively enumer-

ate the search space and to synthesize larger programs [49].

• We compare SQUARES against Scythe [75]. We compare both systems in terms of performance

and SQL generation quality, using instances from a classic database textbook [56] and examples

from the real world provided by OutSystems [50].

1.3 Organization

This document is organized as follows. Chapter 2 presents the basic definitions and notation used in the

following chapters.

Afterwards, Chapter 3 provides some background on Program Synthesis: the main challenges

(section 3.1), the subfield of Programming by Example (section 3.2), as well as, the tree-based encoding

used in Enumeration-Based Program Synthesis (section 3.3). Finally, Section 3.4 presents the subfield

of Query Synthesis and covers the most relevant related work regarding the problem of Query Reverse

Engineering: TALOS (section 3.4.1), SQLSynthesizer (section 3.4.2), QFE (section 3.4.3) and Scythe

(section 3.4.4).

Chapter 4 provides the description of SQUARES, our enumeration-based QRE system.

Sections 4.1 and 4.2 explain the overall architecture of our framework. In Section 4.3, our new encoding

for Enumeration-Based Program Synthesis is presented.

Experimental results are presented and discussed in Chapter 5. Section 5.1, presents the evaluation

between the classic encoding for Enumeration-Based Program Synthesis using the tree-based repre-

sentation and our line-based representation. Next, Section 5.2 evaluates our heuristics to cut the search

space in order to speed up the search for programs. Lastly, Section 5.3, compares SQUARES against

the state-of-the-art QRE system Scythe [75], using instances from a classic database textbook [56] and

examples from the real world used in OutSystems [50].

2http://portal.core.edu.au/conf-ranks/1175/
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Finally, Chapter 6 presents the main conclusions about our work and discusses directions for possible

future work.
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Chapter 2

Preliminaries

This chapter provides some definitions and notation that will be used throughout the document. The

following definitions are inspired by Feng et al. [19, 21] and Tran et al. [70].

Definition 1 (Propositional Literal). A propositional literal is a Boolean variable x (positive literal) or its

negation ¬x (negative literal).

Definition 2 (Clause). The disjunction of literals (e.g. x ∨ y) is called a clause.

Definition 3 (Formula). A propositional formula φ in the conjunctive normal form (CNF) is a conjunction

of disjunctions of literals, i.e., a conjunction of clauses (e.g. φ = (x ∨ y) ∧ (x ∨ z)).

Definition 4 (Interpretation). Let c be a clause, L be the set of c’s literals and m be an interpretation,

such that, ∀l ∈ L,m : l → {0, 1}. The clause c is satisfied by m if and only if at least one literal in L is

satisfied by m. A formula φ is satisfied by an interpretation m′ if and only if all of φ’s clauses are satisfied

by m′.

Definition 5 (Boolean Satisfiability Problem (SAT)). SAT is the decision problem for propositional

logic, i.e. to decide if a given propositional formula φ has a satisfying interpretation or prove that such

an interpretation does not exist [6].

SAT was the first problem proven to be NP-Complete in 1971 by Cook [14]. There are innumerous

problems that can be modeled as a propositional formula. The satisfiability of such formulas is checked

by logical engines called solvers.

Definition 6 (Solver). A Solver is a logic engine capable of deciding if a given propositional formula, φ,

is satisfiable. In this case, the solver produces an interpretation (attribution) of φ such that φ evaluates

to true. Otherwise, the solver returns that φ is unsatisfiable [43].

Example 1. Let φ1 = (x1 ∨ ¬x2) ∧ (x1 ∨ x2) be a propositional logic formula and {x1, x2} be the set of

φ1’s variables. A SAT solver would produce one of two possible interpretations of φ1: {(x1, 1), (x2, 0)} or

{(x1, 1), (x2, 1)}.
Consider another propositional logic formula φ2 = (x1 ∨ ¬x2) ∧ ¬x1 ∧ x2. There is no possible

interpretation that makes φ2 satisfiable. Hence, a SAT solver would return ”unsatisfiable” for this formula.
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Figure 2.1: Schema graph of a small database with four tables: Order, OrderDetail, Product, Category.

Definition 7 (Satisfiability Modulo Theories (SMT)). The Satisfiability Modulo Theories (SMT) prob-

lem is a generalization of the SAT problem. Given a decidable first-order theory T , a T -atom is a ground

atomic formula in T . A T -literal is either a T -atom t or its complement ¬t. A T -formula is similar to a

propositional formula, but a T -formula is composed of T -literals instead of propositional literals. Given

a T -formula φ, the SMT problem consists of deciding if there exists a complete assignment over the

variables of φ such that φ is satisfied. Depending on the theory T , the variables can be of type integer,

real, Boolean, among others [49].

Example 2. Let φ1 = (x1 ≥ 0) ∧ (x1 ≤ 4) ∧ (x2 ≤ 2) ∧ (x1 + x2 = 5) be an SMT formula where T
is the Linear Integer Arithmetic (LIA) theory. Clearly, φ1 is satisfiable and a possible solution would be

x1 = 4, x2 = 1.

Let φ2 = (x1 ≥ 0)∧ (x1 ≤ 3)∧ (x2 ≤ 1)∧ (x1 + x2 = 5) be an SMT formula also in the LIA theory. In this

case, φ2 is unsatisfiable since there is no assignment to the problem variables such that φ2 is evaluated

to true.

Definition 8 (Table). A Table Γ is a 3-tuple (C,R, τ). The number of columns is denoted by C, and the

numbers of rows by R. Γc1,r1 is the element in the column c1 and row r1. The list τ represents the types

of every column in Γ. Let τi represent the type of column i, τ is the collection of every τi. A column of a

table Γ is normally called an attribute of Γ [19].

Definition 9 (Schema Graph). A database D is represented by its schema graph GS = (NS , ES). NS
is the set of nodes and ES denotes the set of edges. Each node in NS corresponds to a distinct table Γ

in D. Each edge between two distinct tables Γ1 and Γ2 is in ES if a join is possible between these two

tables, i.e. if both tables share an attribute [36].

Example 3. Consider the schema graph GS of a small database presented in Fig. 2.1. This database

has four tables (Order, OrderDetail, Product, Category). The collection of GS ’s nodes is equal to the

collection of tables, so NS = {Order,OrderDetail, Product, Category}. Regarding the edges present in

GS , ES = {(OrderDetail, Order), (OrderDetail, Product), (Product, Category)}. An edge exists if two

tables share a common attribute (e.g. OrderDetail and Order share the OrderId attribute).
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table → select from(cols, table) | join(table, table) | parts | supplier
cols → column(col) | columns(col, cols)
col → pname | sname | id | color | address | ∗
empty → empty

Figure 2.2: The grammar of a simple DSL for query synthesis; in this grammar, table is the start symbol.
All joins are natural joins (“,”) between columns with the same name. Given as input the tables supplier
and parts, with the schema “supplier(id: integer, sname: string)” and “parts(id: integer, pname: string)”.

Definition 10 (Context-free Grammar (CFG)). A context-free grammar G is a 4-tuple (V,Σ, R, S),

where V is the set of non-terminals symbols, Σ is the set of terminal symbols, R is the set of rules

and S is the start symbol. A CFG describes all the strings permitted in a certain formal language [31].

Definition 11 (Domain-Specific Language (DSL)). A Domain-specific Language (DSL) is a tuple

(G, Ops), where G is a context-free grammar (G = (V,Σ, R, S)) and Ops is the semantics of DSL op-

erators. The CFG G has the rules to generate all the programs in the DSL. The semantics of DSL

operators is necessary to analyze conflicts and make deductions [21].

Each symbol σ ∈ Σ corresponds to built-in DSL constructs (e.g., SELECT, WHERE, FROM), constants,

variables or inputs of the system. Each production rule p ∈ R has the form p = (A → σ(A1, . . . , Am)),

where σ ∈ Σ is a DSL construct and A1, . . . , Am ∈ Σ are symbols for the arguments of σ.

Example 4. Consider the DSLD in Fig. 2.2, and suppose that a user wants to solve the query presented

in Chapter 1, i.e. she wants to find all the names of parts for which there is some supplier. The desired

query from D is the following select from(column(pname), join(parts, supplier)). This query is obtained

using three production rules p1 = select from, p2 = column and p3 = join.

Definition 12 (Program Space). Program space is the space with all possibilities for program can-

didates syntactically correct in a certain programming language. The program space typically grows

exponentially with the size of the desired program [29].

A program synthesizer is, according to Manna and Waldinger [41], ”a system that takes such a

relational description (e.g. input-output examples) and tries to produce a program that is guaranteed

to satisfy the relationship”. Program synthesizers search the space of programs described by a given

domain-specific language (DSL).

Definition 13 (Synthesis Problem). Given (S,G, Ops), being S a program’s specification (e.g. input-

output examples), G a CFG and Ops the semantics for a particular DSL, the goal of synthesis is to infer

a program P such that (1) the program is produced by G, (2) the program is correct with respect to Ops

and (3) P is consistent with S [19].

(S,G, Ops) � P
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Definition 14 (Programming By Example (PBE)). Given (E ,G, Ops), being E = (Ein, Eout) a set of

input-output examples, G a grammar and Ops the semantics for a particular DSL, the goal of Program-

ming by Example is to infer a program P such that (1) the program is consistent with G, (2) the program

is consistent with Ops and (3) P(Ein) = Eout [19].

(E ,G, Ops) � P

PBE is a special case of Program Synthesis, where the specification is described by a set of input-

output examples.

Definition 15 (Query Reverse Engineering (QRE)). Let D be a database with schema graph GS and

let Q(D) be an output table, which is the result of running some unknown query Q on D. The goal of

QRE is to produce a query Q whose result is Q(D), given (GS ,Q(D)) [70].

(GS ,Q(D)) � Q
QRE is a special case of PBE, where the examples are constructed from database tables.

Definition 16 (PSPACE). The class of problems that are decidable in polynomial space on a determin-

istic Turing machine [3].

Sarma et al. [59] proved that QRE is a PSPACE-hard problem, i.e., QRE is at least as hard as any

problem in PSPACE. Hence, if we can solve QRE, then we can solve any other problem in PSPACE.

Therefore, a brute-force approach such as enumerating all possible queries and testing all of them is

intractable [81].
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Chapter 3

Background

This chapter provides some background on Program Synthesis and Programming By Example. After-

wards, the problem of Query Reverse Engineering is presented.

3.1 Program Synthesis

To the best of our knowledge, the first references to Program Synthesis date back to the 60’s [13,

74]. Since then a large body of research has been conducted regarding the problem of synthesizing

programs automatically, in different communities such as artificial intelligence [24, 40, 58], automata

theory [5], machine learning [46, 63, 73] and programming languages [19, 55, 79]. The problem of

Program Synthesis has three fundamental characteristics [29]: program space, user intent and search

technique.

Challenges For Turing-complete programming languages, the problem of Program Synthesis is

undecidable [29]. There are two main challenges in Program Synthesis: the extensive program space

and the variety of user intent.

3.1.1 Program Space

The number of program candidates in the program space grows exponentially with the size of the desired

program. Early applications for Program Synthesis were based on searches in an exponentially growing

tree. Modern approaches use heuristics for cutting the tree, thereby reducing the search space [35]. As

a result of the technological revolution of the 21st century, many constraint-based synthesis applications

were created [37, 65], as well as several stochastic approaches [47, 52, 60] and deductive top-down

search [25, 55]. The program space is also called search space.
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3.1.2 User Intent

The second main issue of Program Synthesis is to completely understand the user’s desire, given the

specification provided by the user. Several approaches allow a user to provide specifications in the

form of: natural-language descriptions [16, 28, 79], a few input-output examples [21, 25, 46], partial

programs [37, 65] or related programs [61, 70]. Other types of specifications, like formal specifications,

are usually too complex for real-life problems. Such descriptions can be almost as large as the desired

program. Hence, approaches based on formal specifications are not usually adopted because they

would require too much effort from the user.

Users who are not programmers may be more comfortable giving input-output examples instead of

partial/related programs. Examples can be used to handle ambiguity through interaction with the user.

One approach is to ask the user to select from a collection of new input-output examples, generated by

the system, which of them are valid for the desired program [26, 39, 45, 75]. Section 3.2.2 presents two

methods for dealing with ambiguity.

3.1.3 Search Techniques

There exist four main search techniques for Program Synthesis: constraint solving, deductive, enumer-

ative and statistical [29]. However, it is possible to use a combination of these techniques [21].

Constraint Solving. This approach can be divided into two parts: generation and resolution of con-

straints. The generation of constraints is the part where a logical formula is built such that its solution

corresponds to a program that satisfies the program specification.

There are three methods for generating the logical formula: input-based [37], invariant-based [66]

and path-based [67]. The constraints’ resolution is the part where the formula previously generated is

solved using a constraint solver (e.g. SAT or SMT solver) [19, 21, 44].

Deductive. This technique follows a top-down search based on the divide-and-conquer method. The

divide-and-conquer method consists in a search algorithm that recursively breaks down the problem into

subproblems that are easier to solve, then the algorithm just combines all the results of the subproblems

in order to build a solution for the original problem.

Given a grammar, deductive search finds a sequence of DSL production rules that represent a pro-

gram. This sequence starts in a production rule whose type is equal to the DSL’s output type and finishes

in a production rule that uses at least one symbol of the input type. Therefore, the divide-and-conquer

method makes a backward traversal from the outputs to the input data [55].

Enumerative. The enumerative search consists in the enumeration of programs that are in the search

space [19, 21]. First, this search sorts the program candidates according to some ranking heuristic.

Second, following that ranking, the system tries every candidate searching for one that satisfies the

specification provided by the user.
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Given a grammar, this search finds a sequence like the deductive approach. The difference is that

this sequence is built bottom-up, connecting inputs to outputs, the opposite of the deductive approach.

Enumerative search should be used wisely, otherwise, it does not scale. Hence, some pruning or a

good ranking system is important in order to generate first the more likely programs.

Statistical. There are four main statistical techniques used in Program Synthesis: genetic program-

ming, machine learning, Markov Chain Monte Carlo (MCMC) sampling and probabilistic inference [29].

Genetic programming is a technique where programs are seen as genes which are evolved using

evolutionary algorithms. Through random changes (mutations) and sharing pieces of code (crossover),

new programs are created and evaluated using a fitness function. This technique has been used to fix

bugs in programs [77].

Machine learning is normally used to guide other search approaches, by providing likelihoods of

several options at a level where a choice is needed. The likelihood can be a function of the input-output

examples provided by the user, and these functions are learned from training data [4, 46, 73].

MCMC sampling is used in some systems, with STOKE [60] representing a well-known example.

This system uses a Markov Chain Monte Carlo sampler to search the space of all possible programs.

Starting from a given candidate and by making local changes, this technique obtains a program that is

a local optimization of the initial candidate [48].

Probabilistic inference has been used to evolve a given program by making local changes [29]. This

technique models a program as a graph of instructions and states, connected by constraint nodes. Then

through belief propagation the intermediate program states are inferred as well as the instructions used

in the program [27, 34].

3.2 Programming by Example (PBE)

One subfield of Program Synthesis is Programming by Example, in which the system learns the user’s

intent through the input-output examples provided by the user [29]. The input-output examples specify

the expected behaviour for the desired program, i.e., given an input, what is the expected output, as we

can see in Example 5:

Example 5. Let an example be defined as a pair (input, output). The following set of examples can be

used to describe the function x+ 2 : N 7→ N:

{(1, 3), (2, 4), (4, 6), (6, 8)}

3.2.1 Properties

Programming by Example is a well-studied subfield of Program Synthesis because of the distinctive

properties of the input-output examples. These two distinctive properties are ambiguity and

ease of use [29].
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Example 6. The following input-output example, is a subset of examples that can help describe the

function x+ 2 : N 7→ N as well as the function x2 : N 7→ N:

{(2, 4)}

Ambiguity. In most cases, for a given set of input-output examples, there is more than one possible

candidate that is consistent with the examples. This can be seen in Example 6. For this reason, input-

output examples are an under-specification of the desired program. Therefore, the system does not

simply have to find a program that is consistent with the set of examples, it has to choose one to give to

the user from a collection of possible candidates.

Ease of use. As explained in section 3.1.2, examples are a good way to express the user’s intent,

because they are simple to specify, explain and check. For users who are not programmers or use appli-

cations where programming is not an option, examples are usually the easiest method of specification.

3.2.2 Ambiguity Resolution

As exposed in Example 6, the problem with using input-output examples as specifications is that multiple

programs with different semantics may satisfy the examples provided by the user. This can be solved

just by asking for more examples. At a certain point, with sufficient examples, only the program desired

by the user, or similar programs, are consistent with the examples. Obviously, it is not practical to

require from the user a vast number of examples. For this reason, there exist two procedures to reduce

ambiguity in PBE [29]: active learning and ranking.

Active Learning. A typical approach for disambiguation when the system has more than one program

consistent with the input-output examples is to apply an interactive loop with the user [45]. The loop’s

objective is to ask for more examples or to select between several possibilities. This approach is called

active learning, and there are various methods to interact with the user.

The most common way to disambiguate between programs consistent with the examples is to gen-

erate an input that produces different outputs on those programs. This approach is called distin-

guishing inputs [33]. Once those inputs are generated there are two ways to get the correct outputs.

One can ask the user to introduce the expected output given the distinguishing inputs [33]. Another

possibility is to generate the correspondent output for all the program candidates. Next, the input

and all the outputs are presented to the user that then chooses the correct output. This approach

was implemented in Scythe [75].

Generating examples that achieve different outputs can be a difficult task so several systems choose

other forms of learning. By listing all possible programs consistent with the input-output examples, the

user can select the one he wants [28]. Instead of listing the program themselves, another possibility is

to list the programs descriptions in natural language and let the user choose the one he desires [29].
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Ranking. The concept of ranking programs has origins in ranking documents in the

area of information retrieval [9, 23, 32].

Given a set of input-output examples, the objective of ranking is to prioritize programs more likely to

satisfy the true user intent, in order to have the desired program in the highest scores.

Although many approaches until now designed these functions manually [30, 53], there are several

systems that use machine learning techniques to learn ranking functions [18, 63]. The main reason

for this change is the amount of time that takes designing such functions manually. Moreover, in some

applications, like FlashFill [25], these machine learning techniques already produced results better than

manually constructed functions [29].

3.3 Enumeration-Based Program Synthesis

Even though there are many approaches to Program Synthesis (see section 3.1.3), one of the most com-

mon solutions is to perform an enumerative search over the space of programs that satisfy the specifica-

tion. This section presents the idea behind several state-of-the-art synthesizers that use enumeration-

based Program Synthesis (e.g. Morpheus [19], Neo [21], Trinity [44]). Since these synthesizers [19, 21,

44] rely on logical deduction, the space of feasible programs must be encoded a priori by using either a

Boolean Satisfiability (SAT) or a Satisfiability Modulo Theory (SMT) encoding.

As illustrated in Fig. 3.1, these systems take as input a set of input-output examples and a set of

library components (DSL) that define the search space and enumerate programs, typically in increasing

order of number of components.

The synthesis process (Fig. 3.1), can be divided into two main components: enumerator and decider.

The enumerator is responsible for enumerating all possible programs accepted by the DSL provided as

input. For each program P, the decider checks if P satisfies the specification provided by the user. In the

case of PBE frameworks, this is done by executing P on the input examples and checking if the output

matches the expected one. Recent approaches combine enumerative search with deduction with the

goal of performing early pruning of infeasible programs [19], or to learn from past failed candidate pro-

grams in order to prune all equivalent programs that are not consistent with the input-output examples,

referred to as infeasible programs [21] (Reason of Failure).

For example, if we are synthesizing programs (with just one line) that use lists and we know that

the output list is the same length as the input list, then, we know that such operations as pop, concat,

remove, that alter the list’s length, will not be used.

3.3.1 Tree-based Encoding

This section describes the tree-based encoding used on several state-of-the-art synthesizers [19, 21,

44] to perform program enumeration [49]. Given a DSL, Program Synthesis frameworks search for a

program that is consistent with the input-output examples provided by the user. For the search process

to be complete, these frameworks use a structure capable of representing every possible program up
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Figure 3.1: Enumeration-based Program Synthesis.
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Figure 3.2: K-tree representation of the query presented in Example 4.

to some given depth n. Let k be the greatest arity among DSL constructs. For programs with n − 1

production rules, synthesizers adopt a tree structure of depth n, referred to as k-tree, where each node

has exactly k children. For example, Fig. 3.2 illustrates a 2-tree of depth 3.

In order to perform program enumeration using the tree representation, program synthesizers can

encode the tree as an SMT formula such that a model of the SMT formula encodes a concrete program

by assigning a symbol to each node.

Example 7. Consider the query select from(column(pname), join(parts, supplier)), from Example 4. A

2-tree of depth 3 can be used to represent this program, as shown in Fig. 3.2. When a node is not

assigned to any production or symbol then it is assigned by default to ε, i.e., the empty value (e.g.

v5, v8, v9, ...v15).

A detailed description of the SMT formula follows. First, the encoding variables are introduced. Next,

the constraints of the SMT formula are presented.

3.3.2 Encoding Variables

Let s be the size of the DSL’s set of symbols, s = |Σ|. Let id : Σ → N0 be a function that maps each

symbol to an unique non-negative integer in a one-to-one mapping. As a result, this function provides a
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unique identifier (integer value between 0 and s) to each symbol in Σ. In our encoding, we assume that

the empty production symbol (ε) is mapped to 0 (i.e. id(ε) = 0).

Consider the encoding for a program with a k-tree of depth n. Assume each node in the k-tree is

assigned an unique index. Let N be the set of all k-tree nodes indexes such that N = I ∪ L where I

denotes the set of internal node indexes and L denotes the set of leaf node indexes. Let C(i) denote

the set of child indexes of node i ∈ N . Clearly, if i is a leaf node (i ∈ L), then C(i) = ∅.
In our encoding we define the following variables:

• V = {vi : 1 ≤ i ≤ |N |} : each variable vi denotes the symbol identifier in node i of the k-tree;

• B = {bi : 1 ≤ i ≤ |N |} : each variable bi is a Boolean variable that denotes if node i is associated

to a production symbol (true) or a terminal symbol (false);

3.3.3 Constraints

Let D be a DSL, Prod(D) denotes the set of production rules in D and Term(D) the set of terminal

symbols in D. Furthermore, let Types(D) denotes the set of types used in D and Type(s) the type of

symbol s ∈ Prod(D) ∪ Term(D). If s ∈ Prod(D), then Type(s) denotes the return type of production

rule s.

To ensure that every enumerated program is well-typed the following constraints must be satisfied:

Leaf Nodes. The leaf nodes can only be assigned to terminal symbols because they have no children.

Therefore, we define the following constraint:

∀i ∈ L :
∨

p∈Term(D)

vi = id(p) (3.1)

Example 8. Given the DSL D from Fig. 2.2, the set of terminal symbols is Term(D) = {parts, supplier,
pname, sname, id, ∗, ε} and the set of leaves is L = {8, 9, . . . , 14, 15}, assuming a depth of 3. Each

leaf node in L must be assigned to a symbol in Term(D). Hence, each leaf i ∈ L must satisfy:

vi = id(parts) ∨ vi = id(supplier) ∨ vi = id(pname) ∨ vi = id(sname) ∨ vi = id(id) ∨
vi = id(∗) ∨ vi = id(ε).

Internal Nodes. If a production rule p is assigned to an internal node, then the type of its children nodes

must match the types of parameters of p. Let Type(p, j) denote the type of parameter j of production

rule p ∈ Prod(D). If j > arity(p), then Type(p, j) = empty. If p is a terminal symbol, p ∈ Term(D), then

for every j, Type(p, j) = empty.

Let Σ(Type(p, j)) represent the subset of symbols in Σ of type Type(p, j).

∀i ∈ I, j ∈ C(i), p ∈ Σ : vi = id(p)⇒
∨

t∈Σ(Type(p,j))

vj = id(t) (3.2)
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With constraint (3.2), all the programs generated will be well-typed since each node is only assigned

to a production rule if its children have the correct type.

Example 9. Consider again the query in Example 4. If the production select from is assigned to the

program’s root, v1, then Σ(Type(select from, 1)) = {column, columns} and Σ(Type(select from, 2)) =

{select from, join, parts, supplier}. The following constraints must be satisfied: v1 = id(select from)⇒(
v2 = id(column) ∨ v2 = id(columns)

)
and v1 = id(select from) ⇒

(
v3 = id(select from)∨

v3 = id(join) ∨ v3 = id(parts) ∨ v3 = id(supplier)
)
.

Output. Let t be the output type. Furthermore, consider that the program root identifier is 1. Then, v1,

must be assigned to a symbol that is consistent with the output type t. Hence, the following constraint

must be satisfied. ∨
s∈Σ(t)

v1 = id(s) (3.3)

Example 10. Given the DSL D from Fig. 2.2 the set of symbols whose type is equal to the output type is

{select from, join, parts, supplier}. Therefore, the program’s root v1 must be assigned to the identifier

of one of these symbols. v1 = id(select from) ∨ v1 = id(join) ∨ v1 = id(parts) ∨ v1 = id(supplier).

Input. Let IN be the set of symbols provided by the user as input. In order to guarantee that all

generated programs use all the inputs provided by the user, the following constraint is added:

∀p ∈ IN :
∨
i∈N

vi = id(p) (3.4)

Note that this is not required for the encoding’s correction. Nevertheless, we are only interested in

enumerating programs that use all inputs provided by the user. Since we consider that the user only

provides input tables that are required in the desired program.

Example 11. Consider the DSLD from Fig. 2.2 and the program from Example 4. Since we have two ta-

bles in the input, IN = {parts, supplier}, at least one of the nodes must be assigned to id(parts) and to

id(supplier): v2 = id(parts) ∨ v3 = id(parts) ∨ . . . ∨ v15 = id(parts) and

v2 = id(supplier) ∨ v3 = id(supplier) ∨ . . . ∨ v15 = id(supplier).

Exactly n−1 production rules. Finally, we are interested in enumerating programs using exactly n−1

production rules. Hence, the following constraints are added:

∀i ∈ N : bi = 1⇐⇒
∨

p∈Prod(D)

vi = id(p) (3.5)

(∑
i∈N

bi

)
= n− 1 (3.6)

With constraints (3.5) and (3.6), we guarantee that given a k-tree of depth n, each enumerated

program will have exactly n−1 production rules. State-of-the-art program synthesizers iteratively search
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for programs in increasing depth. Thus, constraint (3.6) allows to prune the search space, in order to

avoid enumerating repeated programs in future iterations of depth greater than n.

3.3.4 Encoding Complexity

Let k be the greatest arity between DSL constructs and let n denote the number of productions (lines of

code) in a program.

In terms of nodes complexity, we can observe that in tree-based enumeration, the number of nodes

increases exponentially with the number of productions, as follows:

kn+1 − 1

k − 1
(3.7)

In terms of variables complexity, for each node in the k-tree, the tree-based encoding uses two

variables, v and b. Therefore, the number of variables increases with the number of nodes, as follows:

2× kn+1 − 1

k − 1
(3.8)

In terms of constraints complexity, for each leaf, we add one constraint. Therefore, we add kn

constraints, kn is the number of leaves in a k-tree. The number of internal nodes is equal to number of

nodes minus number of leaves. Equation (3.2) adds a constraint for each: internal node, child (k) and

symbol of the DSL, |Prod(D)|+ |Term(D)|, as follows:

(kn+1 − 1

k − 1
− kn

)
× k ×

(
|Prod(D)|+ |Term(D)|

)
(3.9)

Furthermore, we add one constraint for each input-output example: one for the output node, equa-

tion (3.3), and one constraint for each input example, i ∈ IN , equation (3.4). Equation (3.5) adds a

constraint for each node in the k-tree, equation (3.7). Finally, we add one constraint using equation

(3.6). Hence, in the worst case, the number of constraints used by the tree-based encoding increases

exponentially, as follows:

O
(
kn ×

(
|Prod(D)|+ |Term(D)|

)
+ |IN |

)
(3.10)

3.4 Query Synthesis

Query Synthesis is a subfield of Program Synthesis. Given a database D and a query specification

(e.g. input-output examples, natural language descriptions), the goal is to find the desired query.

In Query Synthesis, like in Program Synthesis, the two most studied types of specifications are input-

output examples [71, 82] and natural language descriptions [38, 79].

Query Reverse Engineering (QRE). As defined in Chapter 2, QRE is a special case of Programming

By Example.
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Let D be a database with schema graph GS and let Q(D) be an output table, which is the result of

running some unknown query Q on D. Given (GS ,Q(D)), the goal of QRE is to produce the query Q
whose result is Q(D).

The QRE problem first appeared in 1975 in the work of Zloof [82]. Zloof introduced a new language

called ”Query By Example” (QBE) [82, 83, 84] so the users who did not know how to program with SQL

could query databases without having to comprehend SQL, just needing to learn QBE [82]. QRE has

numerous applications [71] like database usability, data analysis and data security.

The last decade witnessed several systems for solving QRE: TALOS [70, 71], VDP [59], SQLSynthe-

sizer [81], QFE [39], STAR [80], REGAL [68], FastQRE [36], REGAL+ [69], PALEO [51], Morpheus [19],

Neo [21], Scythe [75, 76] and Trinity [44].

Ambiguity Resolution. Quite a few solutions have been proposed in the last decade regarding the

system’s capability to solve ambiguity, i.e. when the system can not choose between more than one

query candidate. Systems like SQLSynthesizer [81], use a ranking system (see section 3.2.2), to order

the query candidates by preference. Instead of choosing between the query candidates, other systems

show the user a top with k queries, where these k queries are the ones most likely to satisfy the user’s

true intent [51].

As explained in section 3.2.2, some systems do active learning using distinguishing inputs in order

to disambiguate between different programs. Some QRE systems like Scythe [75] and QFE [39] use

this technique, asking the user to choose the correct output given some distinguishing input.

3.4.1 TALOS

One of the most important systems in QRE is TALOS [70]. Created by Tran et al. [70] in 2009 to solve the

problem of ”Query by Output”, its main goal is to derive select-project-join instance-equivalent queries

(SPJ-IEQs, see Definitions 17 and 18) from a query Q, a database D and the query’s result Q(D).

Later, in 2014, Tran et al. [71] proposed an extension of TALOS with three different characteristics:

the initial query Q is unknown, more expressive queries than SPJ queries can be derived and D can

have multiple versions.

This work will only focus on the most recent version of TALOS [71], regarding the derivation of SPJ

queries being the query unknown. The next definitions are inspired by TALOS [71] and will be used in

the remainder of the chapter.

Definition 17 (SPJ Query). A Select-Project-Join (SPJ) query Q, is a SQL query containing only three

clauses: select, from and where-clause. The select-clause is where the desired attributes to project are

specified, the from-clause specifies the tables from which those attributes come from and the where-

clause is where the predicates for selecting those attributes are.

Definition 18 (Instance-Equivalent Queries (IEQs)). Let Q and Q′ be queries, Q and Q′ are instance-

equivalent queries if both produce the same output w.r.t some database D, i.e., Q ≡D Q′.
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Algorithm 3.1: TALOS(D, T ), algorithm for dealing with unknown input query, from TALOS [71]. T
denotes the output table of Q, Q(D).

1 Let C1, . . . , Ck be the columns in T
2 Let Q′s denote the set of IEQs of Q
3 foreach column Ci in T do
4 Si ← {R.A is an attribute in D | R.A covers Ci}
5 end
6 if all Si’s are non-empty then
7 foreach Ri1 .Aj1 ∈ S1, . . . , Rik .Ajk ∈ Sk do
8 R ← {Ri1 , . . . , Rik}
9 Q′s = Q′s

⋃
TALOS(R,D,Q(D)) . see Algorithm 3.2

10 end
11 end
12 return Q′s

Definition 19 (Projection). Let α be a list of attributes from a table T . πα(T ), or just πα, is the projection

of α, i.e., α is the list of attributes contained in the output table.

Definition 20 (proj(Q)). Given a query Q, let proj(Q) denote the collection of projected attributes of Q.

proj(Q) can be found in the select-clause of a SQL query.

Definition 21 (rel(Q)). Given a query Q, let rel(Q) denote the collection of relations of Q. rel(Q) can be

found in the from-clause of a SQL query.

Definition 22 (sel(Q)). Given a query Q, let sel(Q) denote the collection of selection predicates of Q.

sel(Q) can be found in the where-clause of a SQL query.

Definition 23 (Covering Attribute). Let T1 and T2 be two distinct tables and α1 (resp. α2) be an attribute

of T1 (resp. T2). It follows that α1 covers α2 if πα2
⊆ πα1

, i.e., πα1
− πα2

6= ∅.

Definition 24 (Core relations). Let T and R be tables of a database D and αi (resp. αj) be an attribute

of T (resp. R). Given a query Q, S ⊆ rel(Q) is a set of core relations of Q if S is a minimal set of

relations such that for every attribute αi ∈ proj(Q), (1) αi ∈ S, or (2) αi = αj s.t. αj ∈ S.

Description. Let D be a database and GS its schema graph, Q an unknown query, Q′ an IEQ of Q and

Q(D) the result of Q on D. In order to generate all SPJ-IEQs of Q, TALOS needs to determine three

components for each IEQ Q′: proj(Q′), rel(Q′) and sel(Q′) (Definitions 20, 21 and 22).

TALOS starts by executing Algorithm 3.1 discovering the set of schema attributes Si that covers

each column Ci in Q(D) (Definition 23). If all generated Si are non-empty then TALOS enumerates

every possible set of core relations (see Definition 24) from every Si generated. For each generated set

of core relations Ri, TALOS calls its main algorithm (Algorithm 3.2) to generate all possibles IEQs from

Q.

Concerning TALOS’ main algorithm, Algorithm 3.2, it receives from Algorithm 3.1 the set of Q′ core

relations (rel(Q′)), easily proj(Q′) can be derived from rel(Q′). It is not necessary that rel(Q) ⊆ rel(Q′),
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Algorithm 3.2: TALOS’ main algorithm, from TALOS [71].

1 Function TALOS(R,D,Q(D)):
2 Let R be the set of core relation of Q
3 Let S be the set of IEQs of Q initialized to be empty
4 foreach schema subgraph G that contains R do
5 Let J be the join of the relations in G
6 Enumerate a set of decision trees for J
7 foreach decision tree DT for J do
8 Derive IEQ Q′ corresponding to DT
9 Add Q′ into S

10 end
11 end
12 return S

13 End Function

since Q can contain relations that are not in core relations. TALOS explores different possibilities for

rel(Q′) in order to find interesting alternative characterizations of Q(D). Regarding the sel(Q′) genera-

tion, it must be succinct and insightful, and has to minimize the difference between Q(D) and Q′(D). For

this reason, the system deals with the problem of finding the selection predicates as a data classification

problem.

Let J be the result table of joining all the tables in rel(Q′), based on the foreign keys joins represented

in GS , and let L be an ordered list of proj(Q′), s.t., the schema of πL (see Definition 19) and Q(D) are

equivalent. The tuples of J can be divided into two subsets Jin and Jout, s.t., πL(Jin) ⊆ Q(D) and

πL(Jout) 6⊆ Q(D).

In Table 3.1, the first table corresponds to an input table and the second table is an output table. In

this example, Jin = {t2, t3, t6} and in Jout are all the other tuples. Therefore, TALOS enumerates a set

of decision trees for J and derives an IEQ of Q for each tree. The tree decides if a row belongs or not

in the output table. Finally, TALOS returns the collection of IEQs of Q.

Regarding the classification problem, a naive approach is to put all tuples in Jin as positive. The

problem with this technique is that it is too extreme and can overconstrain the classification problem,

limiting its effectiveness. Multiple tuples in Jin can be projected to the same tuple in πL(Jin), for example

the tuples t2 and t3 in Table 3.1. Hence, it is possible to only label a subset (J +
in) of Jin and the rest of

the tuples in J can be labeled negative without compromising πL(J +
in) = πL(Jin). Tran et al. [71] tested

various approaches to label as positive the tuples in Jin, the most important one was the at-least-one

semantics.

If πL(Jin) = {t1, . . . , tn}, then Jin can be divided into i subsets, Pi with 1 ≤ i ≤ n, where each set

Pi is the subset of Jin with the tuples that project the same tuple, ti, in πL(Jin). Therefore, J +
in can be

defined to be made of at least one tuple from each subset Pi of Jin, being πL(J +
in) = πL(Jin). Hence,

the tuples in J +
in are labeled as positive and the rest of the tuples in Jin as negative.
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pID Name Country Weight Bats Throws
t1 P1 A USA 85 L R Name
t2 P2 B USA 72 R R B
t3 P3 B Spain 84 R R E
t4 P4 C USA 80 R L
t5 P5 D Germany 72 L R
t6 P6 E Japan 72 R R

Table 3.1: TALOS [71]: Example of running a query that selects from the first table the names of the
players that have bats and throws equal to ”R”. The second table, ”Name”, is the query’s result.

Tran et al. [71] created two different classes to classify the tuples in J : bound tuples and free tuples.

The bound tuples are the ones that are from the start bounded to a value, i.e., if a tuple belongs to Jout
then it is labeled as negative and if a tuple is the only one in a subset Pi of Jin then it has to be labeled

as positive. Regarding the free tuples, when a subset Pi of Jin has more than one tuple then each

tuple can be labeled as positive or as negative, but at least one must be labeled as positive. On account

of this characteristic, this technique is called at-least-one semantics and thus the name TALOS, which

stands for Tree-based classifier with At Least One Semantics.

In Table 3.1, Jin can be divided in two subsets, P1 = {t2, t3} and P2 = {t6}. All tuples in Jout are

bound tuples labeled as negatives. The only tuple in P2 is a bound tuple labeled as positive. Regarding

the tuples in P1, they are free tuples.

The main difference between this technique and the usual classification problems is that in TALOS

there is some flexibility with the labeling of tuples in contrast to the other problems where the labels are

explicitly assigned.

Drawbacks. TALOS has three main disadvantages: (1) can be a bottleneck, (2) cannot derive queries

with arithmetic expressions and (3) does not select between IEQs simply returns all of them. The table of

pre-computed join indices [72] TALOS uses may be a bottleneck with industrial databases. In respect to

the arithmetic operations, if TALOS was able to derive more complex IEQs it could generate a vast query

space that would be useful in more applications. Finally, in contrast with recent approaches [51, 81],

TALOS does not have a ranking system or a top-k selection. It simply returns all the IEQs computed,

QRE users usually prefer a unique query that generates the given result.

3.4.2 SQLSynthesizer

SQLSynthesizer, introduced by Zhang and Sun [81] in 2013, was developed for two purposes: to be

fully automated, in contrast with Query-by-Example [83], and to be capable of generating more complex

queries with aggregates (like MAX, MIN, SUM) and the GROUP BY, ORDER BY and HAVING clauses, which

was not possible with TALOS [70].

23



Input-Output 
Examples

Skeleton
Creation

SQLSynthesizer

Ranked
Queries

User

Query
Skeletons

Query
Completion

Candidate
Ranking

Candidate
Queries

Provide More Examples select expected
query

Figure 3.3: SQLSynthesizer’s work flow.

Definition 25 (Query Skeleton). Query skeletons are incomplete queries with a defined structure that

needs to be completed, such as the following query:

SELECT a

FROM x, y

WHERE ??

Description. Given some input tables from a database D and an output table Q(D), SQLSynthesizer

tries to discover a query Q, whose result on D is Q(D). The overall architecture consists in three main

steps (see Fig. 3.3): Skeleton Creation, Query Completion and Candidate Ranking.

Skeleton Creation is the process of creating a skeleton (see Definition 25), which is an incomplete

query where the specific parts (proj(Q′), rel(Q′) and sel(Q′)) are missing and have to be discovered

searching the space of possible candidates. SQLSynthesizer searches through these candidates guided

by three heuristics to determine: rel(Q′), sel(Q′) and proj(Q′).
In order to determine the query’s tables, rel(Q′), SQLSynthesizer uses a heuristic to estimate it. If

a column from a table in D appears more than once in Q(D) with a different attribute name, then it is

likely that this table will be used often. Hence, being N the number of times that the column appeared

in Q(D), SQLSynthesizer creates N copies of this table in the set of possible tables.

Regarding the determination of join conditions, sel(Q′), instead of enumerating all possible ways to

join the tables, SQLSynthesizer has two rules to join two different tables. The first one is to join tables on

columns with the same name and same data type. The second rule is used for tables that do not share

columns’ names but share columns’ data types. In this case, SQLSynthesizer creates one skeleton for

every possible join between these columns.

Finally, the determination of which columns are projected, proj(Q′), is done by scanning each column

of Q(D). If there exists a column in D with the same name, the first one matched is chosen. Otherwise,

the column being scanned must be the result of some aggregate.

Query Completion is where the system completes the skeletons created in the previous step and pro-

duces the list of IEQs (see Definition 18) consistent with Q(D). This step is divided into three substeps:
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Table 3.2: Example of Aggregation and Comparison Features, SQLSynthesizer [81].

An input table Comparison Features
C1 C2 C1 = C2 C1 <C2 C1 >C2
2 4 0 1 0
2 1 0 0 1
2 1 0 0 1
1 1 1 0 0

GROUP BY C1

COUNT (C2) COUNT
(DISTINCT C2) MIN (C2) MAX (C2) SUM (C2) AVG (C2)

3 2 1 4 6 2
3 2 1 4 6 2
3 2 1 4 6 2
1 1 1 1 6 1

GROUP BY C2

COUNT (C1) COUNT
(DISTINCT C1) MIN (C1) MAX (C1) SUM (C1) AVG (C1)

1 1 2 2 2 2
3 2 1 2 5 5/3
3 2 1 2 5 5/3
3 2 1 2 5 5/3

inferring query conditions, searching for aggregates and searching for the ORDER BY clause.

The inference of query conditions is a classification problem, as in TALOS. Tuples from the joined

table (join of all tables in rel(Q′)) are divided into positive and negative tuples, being the positive ones

those who belong to Q(D), while all the other tuples are in the negative part.

The problem of simply using a decision tree where the tuples’ values are features, is that the de-

cision tree fails to infer conditions using aggregates or comparisons between two columns. Therefore,

SQLSynthesizer creates two additional features per tuple and uses these features along with the value

of the tuple for learning. These two additional features are aggregation and comparison features.

For aggregation features, for each column of the joined table (result from the joins of the tables

discovered in the previous step), the system groups all tuples by value and applies every possible ag-

gregate to the other columns and stores the corresponding result. Regarding the comparison features,

the system compares, for each tuple the values between two type-compatible columns and stores the

logical value of each comparison.

For better understanding, an example from SQLSynthesizer [81] is presented in Table 3.2. SQLSyn-

thesizer computes two tables, one stores the comparison features and the other stores the aggregation

features. Considering the two columns C1 and C2 in Table 3.2, in the table named Comparison Fea-

tures are stored the Boolean values for each comparison between every tuple in the two columns, in this

case, the comparisons are =, < and >. The Aggregation Features are stored in multiple tables. In this

example, we have the two tables Group by C1 and Group by C2. Each of these tables stores the val-

ues of applying the several aggregates to some column when grouped by the other column. Therefore,

the first table, Group by C1, shows the values after applying the aggregates COUNT, COUNT DISTINCT,

MIN, MAX, SUM, AVG to C2, after grouping by C1. Mutatis mutandis, the second table is computed.
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Regarding the search for aggregates, for every column inQ(D) whose name does not match with any

column in D, the system will try every possible aggregate of every column in D and checks if the result

is equal to the column in Q(D). To prune this extensive search, SQLSynthesizer uses two heuristics:

only applies aggregates if a column A in D is type-compatible with the one in Q(D) and check if every

value in Q(D)’s unknown column exists in column A.

Verifying if the resulting query should have a ORDER BY clause is easy. If some column in Q(D) is

sorted then SQLSynthesizer appends its name to the ORDER BY clause.

Candidate Ranking is done using the Occam’s razor principle, which states that the simplest expla-

nation tends to be the correct one. Therefore, if two queries satisfy the same input-output examples, the

complex one is more likely to overfit than the simpler one. SQLSynthesizer gives a score to each query,

and prefers the one with the lowest score. A query has a lower score if uses fewer query conditions or

simpler aggregates.

Drawbacks. After testing the framework, four limitations of SQLSynthesizer were discovered [81]:

(1) limitation in queries’ complexity, (2) examples must be noise-free, (3) offer weak guidance to the user

and (4) users must have complete knowledge about the database.

A vast number of queries can not be generated by SQLSynthesizer because the system’s DSL is a

subset of SQL. Hence there are some unsupported features. SQLSynthesizer can not proceed in the

presence of a typo, so the examples given by the user must be noise-free. Additionally, SQLSynthesizer

does not explain if the user should give more examples or if simply the system can not generate the

desired query. Finally, if the user does not know the database’s schema very well, SQLSynthesizer may

not be very helpful.

3.4.3 Query From Examples (QFE)

Query From Examples (QFE) is a framework developed in 2015 by Li et al. [39]. The novelty of this

framework is in the interactive loop used to receive feedback from the user. The main objective of this

loop is to minimize the number of questions the user needs to answer and, at the same time, the system

tries to present the user with new examples similar to the initial input-output examples. This similarity

is important in order to minimize the user’s effort to determine if the new example is consistent with the

desired query. QFE was the first system to be concerned about the user’s effort since previous QRE

systems did not.

Description. Given a pair (D, R), being D a database and R the result of the query Q desired by the

user, QFE tries to produce Q. QFE can be divided into four steps (see Fig. 3.4): Query Generator,

Database Generator, Result Feedback and User Interaction.

Query Generator. This step is based on TALOS [70, 71]. This step takes the pair (D, R) and generates

a set of IEQs of Q (see Definition 18), QC = {Q1,Q2, . . . ,Qn} such that, the result of each query in QC
is R.
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Figure 3.4: Overall Architecture of QFE [39].

In order to disambiguate between these n queries inQC, QFE applies a divide-and-conquer strategy

(see section 3.1.3) at each iteration of the sequence of steps 3, 4, 5 and 6 (see Fig. 3.4).

Database Generator. This step takes as input (D, R) and a set of queries QC ′. The purpose of this

step is to generate a new database D′, which is used to distinguish the queries in QC ′ based on their

results when running on D′. Therefore, QC ′ is divided in k (k > 1) subsets, where each QC ′i ⊂ QC ′,
1 ≤ i ≤ k, contains the queries of QC ′ that produce equal result, Ri, on D′.

Result Feedback. This step deals with the pruning of the search space. Presenting the new database

D′ and the k distinguishing outputs (R’s) generated in the previous step, the user chooses which output

i, 1 ≤ i ≤ k, would be the correct one when running Q on D′ (User Interaction). Thus, the system can

discard all of the other subsets of QC ′, whose index is different from i.

Afterwards, QFE can start a new iteration, passing to the database generator the new QC ′ = {QC ′i},
if the size of QC ′i, |QC ′i|, is greater than 1. Otherwise, QFE achieved a QC ′i with only one candidate

query, supposedly the desired one.

Instead of presenting the user the wholeD′ and the whole newR’s, QFE only presents the differences

between the initial pair (D, R) and the new pairs {(D′, R1), . . . , (D′, Rk)}, in order to reduce the user’s

effort since the user is familiar with the initial pair. This difference is denoted by ∆(D, R).

If none of the R’s is chosen by the user, then Q is not in QC ′, hence it is not in QC. In this event, the

system should generate the IEQs again exploiting the information gathered from the user.

The main objective of QFE is to reduce the user’s effort, therefore the system tries to do this by

reducing:

1. k, the number of distinguishing outputs in each iteration.

2. The difference between D and D′.

3. The difference between R and
k

∀
i=1

Ri.
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Although reducing k may increase the number of iterations, which may be a problem.

The cost model that quantifies user’s effort and how to do the difference between the original

database and the modified one at each iteration are beyond the scope of this work. The interested

reader is referred to the literature [39] for more details.

Drawbacks. The limitations of this approach are similar to TALOS’ limitations since the QFE’s synthe-

sis is based on TALOS [70]. For this reason, the main limitation of QFE is the complexity of queries that

can be generated. QFE can only generate SPJ (select-project-join) queries. Additionally, QFE has the

overhead of generating distinguishing inputs and new databases at each step.

3.4.4 Scythe

Wang et al. [75, 76] proposed Scythe at PLDI’17, a novel query-by-example synthesizer. Scythe can

synthesize expressive SQL queries and is considered one of the best state-of-the-art synthesizers re-

garding SQL generation.

The architecture of Scythe is presented in Fig. 3.5. This framework can be divided into two major

steps: synthesis and disambiguation. The synthesizer is the step responsible for generating a set of

queries that are consistent with the specifications provided by the user. Afterwards, the synthesizer ranks

all the generated queries (based on simplicity and naturalness) and passes them to the disambiguation

module. Next in order, we have the disambiguation module which is the step responsible for choosing

between the n queries provided by the previous step (synthesizer) which one is desired by the user.

This disambiguation is done interacting with the user (active learning). In the disambiguation module,

we have the example generator responsible for producing distinguishing inputs (see Section 3.2.2), a

small input on which the n queries generate different outputs.

Regarding the synthesis process, Scythe decomposes this problem into two main parts: (1) synthesis

of skeletons (see Definition 25) and (2) synthesis of filter predicates.
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Scythe starts by enumerating all possible query skeletons that can be obtained considering the

schema graph (see Definition 9) provided by the user. Secondly, Scythe removes all skeletons whose

schema graph does not correspond to the output example, i.e., skeletons that do not contain the output

table are removed since it is not possible to produce the output table with these skeletons.

Afterwards, all candidates use the input examples and their schema graph contain (generalize) the

output table, hence, the system just needs to find which predicates are going to be used. This search

for predicates can be huge. Therefore, Wang et al. [75] proposed two optimizations: locally grouping

candidate predicates and encoding tables using bit-vectors. The local grouping of candidate predicates

is done by constructing equivalence classes of predicates. Each class contains predicates that behave

the same on a given skeleton (e.g. consider an integer attribute id that does not contain the value 0

(zero), so "id > 0" and "id >= 0" are equivalent predicates). Therefore, the system only needs to

check if each class is consistent with the output. If this is not the case Scythe can simply remove all

predicates of that class. With these optimizations the synthesis process is considerably accelerated,

which allow the synthesis of a wider range of SQL operators.

Drawbacks. Scythe encodes the tables’ data into constraints. Hence, its memory usage increases

with the size of the tables provided by the user as input-output examples. Therefore, memory usage is

the main disadvantage of Scythe.

3.5 Summary

In this chapter, we presented some background on Program Synthesis, focusing on techniques and tools

that use Programming By Example. Moreover, the problem of Query Reverse Engineering was also

presented. Finally, we described the most relevant systems in the area of Query Reverse Engineering:

TALOS [71], SQLSynthesizer [81], QFE [39] and Scythe [75]. These frameworks have some drawbacks:

• TALOS has three main disadvantages: (1) can be a bottleneck, (2) cannot derive queries with

arithmetic expressions and (3) does not select between IEQs simply returns all of them.

• SQLSynthesizer has four main drawbacks: (1) limitation in queries’ complexity, (2) examples must

be noise-free, (3) offer weak guidance to the user and (4) users must have complete knowledge

about the database.

• QFE has two main weaknesses: (1) QFE can only generate SPJ (select-project-join) queries and

(2) QFE has the overhead of generating distinguishing inputs and new databases at each step.

• Scythe’s downside is its memory usage, it depends on the size of the tables used as input-output

examples.

Therefore, in the next chapter, we propose a new QRE system that tries to overcome some of these

difficulties. Since Scythe [75] is considered one of the best state-of-the-art SQL synthesizers, in Chapter

5, we compare our framework against Scythe, in terms of SQL generation.

29



In section 3.1, we explained the general idea and encoding used by enumeration-based program

synthesizers such as Morpheus [19], Neo [21] and Trinity [44]. However, we did not explain in detail their

architecture since our framework, presented in the next chapter, is built on top of these synthesizers.

Hence, the architecture and flow of these synthesizers are similar to the ones used by our framework.
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Chapter 4

SQUARES

This chapter describes SQUARES, A SQL Synthesizer Using Query Reverse Engineering, an

enumeration-based PBE system developed on top of a state-of-the-art synthesis framework Trinity [44].

SQUARES’ goal is to synthesize SQL queries from input-output examples (tables).

SQUARES, like Trinity, receives as input a set of input-output examples, a DSL and an interpreter.

Fig. 4.1 illustrates the architecture of SQUARES’ synthesizer that can be divided into two main compo-

nents: enumerator and decider. The enumerator is responsible for enumerating all possible programs

for the DSL, D, provided as input. For each program P, the interpreter runs P on the input examples

and the decider compares if the output matches the expected one. If the output of P does not match, the

decider produces a reason of failure which is used by the enumerator to prune all equivalent infeasible

programs from the search space, like in Neo [21], afterwards, the next candidate program is enumer-

ated. Otherwise, if the output of P matches the expected one, the synthesizer translates P to SQL and

returns it.

Trinity [44] by default uses tree-based encoding to search for programs. As discussed in section

3.3.1, the number of nodes used by Trinity’s encoding grows exponentially with the number of production

rules in a program. Therefore, we developed a new encoding, line-based encoding described in section

4.3, that scales better than the tree-based approach.

In the next two sections, 4.1 and 4.2, the input-output examples, DSL and interpreter used by our

framework will be explained. SQUARES, like Trinity [44], starts by searching for programs with one pro-

duction rule and iteratively increases this bound until a program that satisfies all input-output examples

is found. In order to cut undesired programs, we created several predicates (explained in section 4.4)

that encode the user’s domain knowledge to the system. This knowledge is useful to guide the search

through the program space and to block undesired programs.
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Figure 4.1: SQUARES’ Overview.

4.1 Input-Output Examples

SQUARES, like most of the PBE state-of-the-art SQL synthesizers [19, 21, 44], takes as input a DSL, a

set of examples, and any constants or aggregate functions (e.g., sum, mean) that the query may need.

Our framework receives as input a file with all the information provided by the user, except the DSL.

The user can provide five types of information: input-output examples, constants, aggregates functions,

attributes and how many lines of code (loc) the program will have. The following paragraphs contain

brief descriptions of these types of information.

Input-Output Examples. In the first line of the input file, the user specifies the path to the input tables

that will be used by the synthesizer as input. In the second line, the user puts the path to the output

table. The input and output examples are mandatory.

Constants. The user can also provide constants that will be used in the program. SQUARES will only

enumerate programs that contain these constants provided by the user. Therefore, these constants help

to reduce the vast search space.

Aggregates. In the fourth line of the input file, the user can provide the name of aggregate functions

that appear in the desired program. Aggregates function like: max, min, count (n), mean, like.

Attributes. When the user specifies a constant or an aggregate, she needs to specify which attribute

is supposed to be compared against the constant or used in the aggregate function. This way, the

synthesizer can generate valid conditions that use the constants and aggregates provided by the user.

Lines of Code (loc). In order to search for a program with exactly n production rules, the user can

specify this number in the input file. Therefore, the framework can start searching from programs with n

production rules instead of searching for programs with 1 production rule and iteratively increasing this

bound.
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table → input | inner join(table, table) | inner join3(table, table, table) |
inner join4(table, table, table, table) | filter(table, filterCondition) |
filters(table, filterCondition, filterCondition, op)) |
summariseGrouped(table, summariseCondition, Cols) |
anti join(table, table) | left join(table, table) | bind rows(table, table) |
intersect(table, table)

tableSelect → select(table, selectCols, distinct)
op → Or | And
distinct → true | false
empty → empty

Figure 4.2: SQUARES’ DSL.

The following example, Example 12, shows one possible case how these hints provided by the user

can be easily provided.

Example 12. After an exam, a professor wants to count how many students have grades better than

9.5, 0.0 <= grade <= 20.0. She does this every year and wants to find a query that can do this for

her, automatically. Therefore, she provides information from the previous year to SQUARES. A table

containing all the students’ numbers and respective grades (input example) and a table containing the

students’ numbers of students with grades greater than 9.5 (output example). When preparing the input

file she clearly can think of one constant (9.5), one aggregate (count), two attributes (student number

to be counted and grade to be used in the filter) and the user can also guess that the desired query will

have at least 3 lines of code (operators): filter, count, select.

4.2 Domain-Specific Language (DSL)

This section describes the Domain-Specific Language (DSL) and interpreter we use in SQUARES and

from which we generate SQL. Since constructing a SQL grammar is very complex, we opted for creating

a DSL inspired by the R language1. Having a query in R, we can easily translate it to SQL as explained

in the end of this section.

Fig. 4.2 presents our DSL with five distinct types: table, tableSelect, op, distinct and empty. The

input’s type is table and the output’s type is tableSelect. Regarding the variety of production rules,

we use the basic operations offered by R’s dplyr 2 library (e.g. inner join, filter, summarise,

left join). The terminals belonging to filterCondition, summariseCondition, Cols, selectCols (Fig. 4.2),

are computed on the fly, because they depend on the input-output examples, as well as, the number of

input tables. In Example 13, we show how these terminals can be computed.

Example 13. Consider the following four tables: Student(snum: integer, sname: string, major: string,

level: string, age: integer), Class(name: string, meets at: string, room: string, fid: integer),

Enrolled(snum: integer, cname: string), Faculty(fid: integer, fname: string, deptid: integer). A user wants

to find the names of all Juniors (level = ”JR”) who are enrolled in a class taught by Professor I. Teach

1https://www.r-project.org
2https://cran.r-project.org/web/packages/dplyr/vignettes/dplyr.html
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Table 4.1: Translating from our DSL to R.

Our DSL R

select(x, a, True) select(x, a) %>% distinct()

filters(x, a==1, a==2, Or) filter(x, a == 1 | a==2)

summariseGrouped(x, maxa = max(a), a) group by(x, a) %>% summarise(maxa = max(a))

inner join3(w, x, y) inner join(w, x) %>% inner join(y)

inner join4(w, x, y, z) inner join(w, x) %>% inner join(y) %>% inner join(z)

(fname=”I. Teach”) 3. In our DSL, this query can be represented by three production rules originating

the following query:

select(filters(inner_join4(Student ,Class ,Enrolled ,Faculty),

fname == "I.Teach", level == "JR", And), Sname , distinct)

In this case, the user specifies the constants ”I. Teach” and ”JR”, and their respective attributes. Then,

the enumerator generates all possible filterConditions, with the two operators that can appear in the

comparison of strings (==, !=). In this case, the set of possible filter conditions is {fname == ”I. Teach”,

fname != ”I. Teach”, level == ”JR”, level != ”JR”}.

Using our DSL, a program is valid if it corresponds to a sequence of DSL production rules, like in

Enumerative Search (see Section 3.1.3). As represented in equation (4.1), a program in our framework

is a sequence, that starts in a production rule that uses at least one symbol of type table, the input type.

This sequence ends with a production rule of type tableSelect, the DSL’s output type. Therefore, our

framework uses enumerative search connecting inputs to output.

program Squares(table∗) → tableSelect (4.1)

From R to SQL. Each production rule present in our DSL, Fig. 4.2, has a direct translation (interpre-

tation) to R. Table 4.1 shows part of our interpreter. Only the non-trivial translations of our production

rules to R are presented. All the other production rules of our DSL are equivalent in R.

Each production rule in R (e.g. anti join, summarise) can be easily translated into several opera-

tors in SQL4 (e.g. anti join → SELECT . . . FROM. . . WHERE NOT EXISTS . . . ). Table 4.2 shows these

direct translations. Therefore, we can generate programs with more SQL productions rules if we use a

DSL for R and then translate the desired program to SQL, instead of generating a program directly from

a SQL grammar. R’s library dbplyr 5 has a built-in function, show query, that receives a query in R and

translates it automatically to SQL. On that account and for the sake of simplicity, we use this function to

obtain SQL from our DSL.
3This corresponds to exercise 5.1.1 from a classic textbook on databases [56].
4https://dbplyr.tidyverse.org/articles/sql-translation.html
5https://cran.r-project.org/web/packages/dbplyr/vignettes/dbplyr.html
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Table 4.2: From R to SQL.

R SQL

select(x, a)
SELECT x.a

FROM x

filter(x, a == 1)

SELECT *

FROM x

WHERE (x.a = 1)

summarise(group by(x, a), maxa = max(a))

SELECT MAX(x.a) as maxa

FROM x

GROUP BY x.a

inner join(x, y)

SELECT *

FROM x JOIN y

ON x.a = y.a

left join(x, y)

SELECT *

FROM x LEFT JOIN y

ON x.a = y.a

anti join(x, y)

SELECT *

FROM x

WHERE NOT EXISTS

(SELECT 1

FROM y

WHERE x.a = y.a)

intersect(x, y)

SELECT *

FROM x

INTERSECT

SELECT *

FROM y

bind rows(x, y)

SELECT *

FROM x

UNION ALL

SELECT *

FROM y
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L1 : ret1 ← column(pname)

L2 : ret2 ← join(parts, supplier)

L3 : ret3 ← select from(ret1, ret2)

Figure 4.3: The query select from(column(pname), join(parts, supplier)), from Example 4, divided into
three lines.

op1 column

a1,1 pname a1,2 ε

op2 join

a2,1 parts a2,2 supplier

op3 select from

a3,1 ret1 a3,2 ret2

Figure 4.4: Each tree represents a production rule. The first tree represents line 1, the second tree
represents line 2 and the third tree represents line 3. ret1 (resp. ret2) denotes the value returned in line
1 (resp. line 2).

Finally, Example 14 presents the steps taken by our system to translate a query from R to SQL.

Example 14. Using our interpreter to translate Example 13’s query from our DSL to R, the R translation

would be the following query:

inner_join(Student ,Class) %>% inner_join(Enrolled) %>% inner_join(Faculty)

%>% filter(fname == "I.Teach", level == "JR") %>%

select(sname) %>% distinct ()

Having the desired program in R, we can now call function show query to get the following SQL

query:

SELECT DISTINCT S.Sname

FROM Student S, Class C, Enrolled E, Faculty F

WHERE S.snum = E.snum AND E.cname = C.name AND C.fid = F.fid AND

F.fname = "I.Teach" AND S.level = "JR"

4.3 Line-based Encoding

In this section we propose a new encoding to represent symbolic programs. Our goal is to represent a

program as a sequence of lines where each line represents an operation in the DSL. Instead of using a

single k-tree to represent a program, each line is represented as a tree with depth of 1.

Consider the program in Fig. 4.3. One can represent this program as three trees of depth 1 as shown

in Fig. 4.4. Note that the result of the program is the value returned by the third tree. Observe that reti

is a new symbol that represents the return value of line i.
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4.3.1 Encoding Variables

Recall that D denotes a DSL, Prod(D) the set of production rules in D and Term(D) the set of terminal

symbols in D. Furthermore, Types(D) denotes the set of types used in D and Type(s) the type of

symbol s ∈ Prod(D) ∪ Term(D). If s ∈ Prod(D), then Type(s) denotes the return type of production

rule s.

Besides the production rules Prod(D) and terminal symbols Term(D), we define one return symbol

for each line in the program. Let Ret = {reti : 1 ≤ i ≤ n} denote the set of return symbols in the

program.

In our encoding, we define a different non-negative identifier for each symbol. Here, we extend the

id function to also consider the symbols that represent the return value of each line. Let Symbols =

Prod(D)∪ Term(D)∪Ret define the set of all symbols used in the program. Finally, let id : Symbols→
N0 and tid : Types(D) → N0 be one-to-one mappings of symbols and types, respectively, to non-

negative integer values.

Consider the encoding for a program with n lines where the maximum arity of the operators is k, then

we have the following integer variables:

• O = {opi : 1 ≤ i ≤ n} : each variable opi denotes the production rule used in line i;

• T = {ti : 1 ≤ i ≤ n} : each variable ti denotes the return type of line i;

• A = {aij : 1 ≤ i ≤ n, 1 ≤ j ≤ k} : each variable aij denotes the symbol corresponding to argument

j in line i.

4.3.2 Constraints

Operations. First, the operations in each line must be production rules. Hence, we have the following

set of constraints:

∀1 ≤ i ≤ n :
∨

p∈Prod(D)

(opi = id(p)) (4.2)

The operation symbol used in each line implies the line’s return type.

∀1 ≤ i ≤ n, p ∈ Prod(D) : (opi = id(p))⇒ (ti = tid(Type(p))) (4.3)

Given a sequence of operations, the arguments of operation i must either be terminal symbols or

return symbols from previous operations. Hence, we have:

∀1 ≤ i ≤ n, 1 ≤ j ≤ k :
∨

s∈Term(D)∪{retr:r<i}

(aij = id(s)) (4.4)

Arguments. The arguments for a given operation i must have the same types as the parameters of

the production rule used in the operation. Let Type(p, j) denote the type of parameter j of production

rule p ∈ Prod(D). If j > arity(p), then Type(p, j) = empty. Hence, we have the following constraints
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when a return symbol is used as argument of an operation:

∀1 ≤ i ≤ n, p ∈ Prod(D), 1 ≤ j ≤ arity(p), 1 ≤ r < i :

((opi = id(p)) ∧ (aij = id(retr)))⇒ (tr = tid(Type(p, j)))
(4.5)

A given terminal symbol t ∈ Term(D) cannot be used as argument j of an operation i if it does not

have the correct type:

∀1 ≤ i ≤ n, p ∈ Prod(D), 1 ≤ j ≤ arity(p),

s ∈ {t ∈ Term(D) : Type(t) 6= Type(p, j)} :

(opi = id(p))⇒ ¬(aij = id(s))

(4.6)

Since the arity of a given operation i can be smaller than k, we must also have that the arguments

above the production’s arity must be assigned to the empty symbol:

∀1 ≤ i ≤ n, p ∈ Prod(D), arity(p) < j ≤ k :

(opi = id(p))⇒ (aij = id(empty))
(4.7)

Output. Let Type(output) denote the type of the program’s output and let PO ⊆ Prod(D) be the

subset of production rules with return type equal to Type(output), i.e., PO = {p ∈ Prod(D) : Type(p) =

Type(output)}. The following constraint ensures that the program’s output (last line, nth) has the desired

type.

∨
p∈PO

(opn = id(p)) (4.8)

Input. Let IN be the set of symbols provided by the user as input. In order to guarantee that all

generated programs use all the inputs, the following constraint is used:

∀s ∈ IN :
∨

1≤i≤n

∨
1≤j≤k

(aij = id(s)) (4.9)

Lines used exactly once. A feature of this new encoding is that the result of a given operation can be

used more than once. Notice that in the tree-based encoding, one would have to reproduce the same

operations in a different branch of the tree. In order to compare the two types of enumeration, tree-based

and line-based, we can add a set of constraints restricting the usage of each operation’s result to only

one usage. Clearly, the following constraints are not necessary to the encoding’s correction.

∀retr ∈ Ret(D) :

 ∑
r<i≤n,1≤j≤k

(aij = id(retr))

 = 1 (4.10)
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4.3.3 Encoding Complexity

Let k be the greatest arity between DSL constructs and let n denote the number of productions (lines

of code) in a program. In terms of nodes complexity, we can observe a drastic difference between both

types of enumeration, tree-based and line-based. In tree-based enumeration, the number of nodes

increases exponentially with the number of productions, (3.7). In contrast, equation (4.11) gives the

number of nodes used by line-based enumeration for a given number of productions n.

(k + 1)× n (4.11)

The number of nodes used by line-based enumeration increases linearly because the enumerator

uses n trees, with k+ 1 nodes each, to represent a program with n production rules. On the other hand,

tree-based enumeration uses a k-tree of depth n+ 1 to represent programs with n lines of code.

In terms of variables complexity, for each program line, the line-based encoding uses one operation

(op), k arguments (a) and a type variables (t). Therefore, the number of variables increases as follows:

(k + 2)× n (4.12)

In terms of constraints complexity, from equation (4.2), we add one constraint for each operation, n.

Secondly, using equation (4.3), we add one constraint for each operation, n, and for each production

rule of the DSL, |Prod(D)|. Therefore, we add n× |Prod(D)| constraints.

Furthermore, using equation (4.4), we add one constraint for each operation, n, and for each op-

eration’s argument, k. Hence, we add n × k constraints in the worst case. In addition, using equa-

tion (4.5), we add a constraint for each operation (n), operation’s argument (k), production rule of

the DSL (|Prod(D)|) and for each previous operation (n). Therefore, in the worst case, we add

n× k × |Prod(D)| × n constraints.

Moreover, from equation (4.6), we add one constraint for each operation, operation’s argument, pro-

duction rule and terminal symbol of the DSL. As a results, in the worst case, we add

n × k × |Prod(D)| × |Term(D)| constraints. Using equation (4.7), we add one constraint for each

operation, operation’s argument and production rule of the DSL. As a results, in the worst case, we add

n× k × |Prod(D)| constraints.

Regarding the input-output examples, we add one constraint for the output node, equation (4.8), and

one constraint for each input example, i ∈ IN , equation (4.9). Lastly, we add one constraint for each

return symbol, equation (4.10). Hence, we add n constraint because there are n return symbols.

Therefore, in the worst case, the number of constraints used by line-based encoding increases

quadratically, with the number of production rules (n), as follows:

O
(
n× k × |Prod(D)| ×

(
|Term(D)|+ n

)
+ |IN |

)
(4.13)
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L1 : ret1 ← column(pname)

L2 : ret2 ← join(parts, supplier)

L3 : ret3 ← select from(ret1, ret2)

L1 : ret1 ← join(parts, supplier)

L2 : ret2 ← column(pname)

L3 : ret3 ← select from(ret2, ret1)

Figure 4.5: Two different ways of representing the program from Example 4 into three lines.

4.3.4 Symmetric Programs

In line-based encoding, the number of models of the SMT formula is larger than the number of models

in the corresponding tree-based encoding. There are two main reasons for this difference: (1) in the

line-based encoding, the output of some line of code can be used more than once, and (2) the same

program can have more than one representation, i.e. symmetric programs.

Regarding reason (1), with constraint (4.10), we guarantee that the return value of each line is used

exactly once. Concerning reason (2), in the line-based encoding, some programs can be represented

with different sequences of lines. However, in the tree-based encoding, as a result of the single tree

representation, the arguments of each production rule will always come from the same branch.

Example 15. Consider the DSL in Fig. 2.2 and the program select from(column(pname),

join(parts, supplier)) from Example 4. In tree-based encoding this program has a single repre-

sentation shown in Fig. 3.2. However, for the same program, line-based encoding has two possible

representations shown in Fig. 4.5.

In order for the line-based process to enumerate the same number of models than the tree-based

enumeration, it is necessary to find the symmetries in the line-based encoding and block them. Other-

wise, symmetric programs as the one in Fig. 4.5 will be enumerated and the synthesizer will have to

check both programs. Therefore, if we have a model α of a line-based SMT formula and the synthesizer

verifies that the corresponding program is not consistent with the input-output examples, then all models

that encode programs symmetric to the one encoded by α can be blocked.

A simple way to find these symmetries is through a Directed Acyclic Graph (DAG) of dependencies.

Let G = (V, E) denote a DAG, V is the set of vertices of G and E is the set of edges of G. A vertex is

defined for each program line, and edges correspond to the line dependencies in the program. Let vi

and vj denote the vertexes in the graph, vi, vj ∈ V, corresponding to lines i and j with i < j. If the return

value of line i is used as argument in line j, then a directed edge (vi, vj) must be added to the graph,

(vi, vj) ∈ E. After building the graph, one can enumerate all possible topological orders of vertexes in

the dependency graph. Each topological ordering corresponds to a different symmetric program. Next,

each symmetric program associated with a topological order is blocked in the SMT formula.

Example 16. Consider the program from Example 15. Line 3 (L3) depends on line 1 (L1) and line 2 (L2).

Therefore, lines 1 and 2 must occur before line 3. However, the order of lines 1 and 2 can be changed.

Hence, two models would be blocked corresponding to permutations L1 − L2 − L3 and L2 − L1 − L3 of

the program.
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Breaking Offline vs Online. The calculation of all possible permutations of lines in a program can be

done offline, since these permutations change only with the number of lines in a program.

Therefore, to check if our implementation of symmetry breaking on the fly has a significant impact on

our performance, we computed offline all programs’ representations up to seven lines of code. Hence,

we generated all Directed Acyclic Graphs (DAGs) that represent programs, for a given program’s depth.

Then, we compared both approaches, computing these permutations on the fly (online) and offline. The

results of such comparison will be presented and discussed in section 5.1.2.

Regarding the offline computation of all possible permutations, first, we computed all possible DAGs,

for a given number of lines of code. Secondly, for each graph we calculated all possible permutations.

Then, we stored these permutations in order to use them on the fly. Therefore, for each program α

blocked by our enumerator, all programs symmetric to α can be easily found and blocked. The enumer-

ator just needs to check the file computed offline to find out all permutations of α.

4.4 Predicates

In order to cut some invalid or undesired programs from the search space we developed some predi-

cates: is not parent, happens before, constant occurs and distinct inputs. When constructing the DSL

a user can make use of these predicates to provide the system with some domain knowledge. In this

section these predicates are presented using the terminology explained in section 4.3. The enumerator

translates these predicates into constraints and adds them to the solver in order to block some classes

of programs not desired by the user.

Is Not Parent. Given two production rules, P1 and P2, the predicate is not parent(P1,P2) (4.14) guar-

antees that if P1 is assigned to a line i then i will not use a previous line (j < i) whose production is

P2. In the tree-based encoding this means that if a node is assigned to P1 then its children will not be

assigned to P2. This predicate is encoded as follows:

∀1 ≤ i ≤ n, 1 ≤ j ≤ k, 1 ≤ r < i :

(opi = id(P1) ∧ aij = id(retr)) =⇒ ¬(opr = id(P2))
(4.14)

This predicate is useful to block some combinations that are not possible for a given DSL. For ex-

ample, if the user provides the predicate is not parent(FROM, FROM) and a DSL for SQL, then the

enumerator will block every program where the production rule FROM is followed by the same production

rule FROM. This pattern is not valid in SQL but since the enumerator is using our DSL instead of a SQL

grammar, then all these patterns are enumerated unless the user specifies otherwise employing this

predicate. This predicate is used by other systems that use a tree-based encoding [12, 44].
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Happens Before. This predicate, happens before(pos,pre), (4.15), ensures that constant pos appears

in a program after constant pre, i.e., if pos is assigned to a leaf of line 3 then pre must be assigned to a

leaf of line 1 or 2. This predicate is encoded as follows:

∀1 ≤ i ≤ n, 1 ≤ j ≤ k :

(aij = id(pos)) =⇒
∨

1≤r<i,1≤m≤k

(arm = id(pre))
(4.15)

This predicate (4.15) is very useful when we want to use a variable generated previously in a program

(e.g. MAX) in a condition (e.g. WHERE). For example, if we want to select the students in a class whose

grade is equal to the maximum grade, we need to calculate the maximum, max. Then, filter the students

whose grade is equal to max. Therefore, to only generate programs where the filter using max appears

only after the calculation of max, we need to express it in the DSL using happens before(grade ==

max, max = max(grade)).

Constant Occurs. In our system, like in most PBE systems, the user can provide constants that will

be used in the program, as explained in section 4.1. Therefore, we assume that if the user provides

a constant c then c must appear in the program. Hence, we created the predicate constant occurs(c),

(4.16), that receives a constant c and guarantees that at least one leaf in the n trees of the program (n

lines) will be assigned to c. This predicate is encoded as follows:

∨
1≤i≤n,1≤j≤k

(aij = id(c)) (4.16)

Distinct Inputs. The goal of distinct input predicate is to cut some redundant programs from the

search space. For example, the program SELECT a FROM x WHERE x.a == 1 AND x.a == 1 is redun-

dant since it returns the same result when comparing to the program SELECT a FROM x WHERE x.a == 1

because the conditions being used are equivalent. Therefore, some production rules, like WHERE and

INNER JOIN, should not receive the same parameter more than once. Hence, this predicate, (4.17),

guarantees exactly that, i.e., that all the inputs for a given production rule are distinct. This predicate is

encoded as follows:

∀1 ≤ i ≤ n, 1 ≤ j ≤ k, 1 ≤ m ≤ k, j 6= m :

(opi = id(P ))⇒ ¬(aij = aim)
(4.17)
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Chapter 5

Experimental Results

SQUARES is implemented in Python and uses the Z3 SMT solver [15] with the theory of Linear Integer

Arithmetic to check the satisfiability of formulas generated by our enumerator. We developed SQUARES

on top of the Trinity [44] synthesis framework.

All of the experiments presented in this chapter were conducted on an Intel(R) Xeon(R) computer

with E5-2630 v2 2.60GHz CPUs, using a memory limit of 64GB and a time limit of 3,600 seconds. The

goal of our evaluation was to answer the following questions:

Q1. How does line-based enumeration compare against tree-based enumeration in terms of encoding

complexity? (Section 5.1)

Q2. How does line-based enumeration compare against tree-based enumeration in terms of perfor-

mance? (Section 5.1.1)

Q3. How does line-based enumeration compare against tree-based enumeration for programs with more

than three lines of code? (Section 5.1.1)

Q4. What is the performance impact of breaking symmetries in line-based enumeration? (Section 5.1.2)

Q5. What is the performance impact of breaking symmetries online vs offline? (Section 5.1.2)

Q6. What is the performance impact of using predicates? (Section 5.2)

Q7. What is the performance of SQUARES, in terms of SQL generation, on instances from a SQL Text-

book? (Section 5.3.1)

Q8. How does SQUARES’ SQL generation compare against Scythe on the instances from a SQL Text-

book? (Section 5.3.1)

Q9. What is the performance of SQUARES, in terms of SQL generation, on instances from industry

(OutSystems)? (Section 5.3.2)

Q10. How does SQUARES’ SQL generation compare against Scythe on the instances from industry

(OutSystems)? (Section 5.3.2)
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Table 5.1: Number of tree nodes, variables and mean number of constraints used by each encoding for
a given program’s size.

Model

Tree-based Line-based

Lines of Code Nodes Variables Constraints (mean) Nodes Variables Constraints (mean)

1 5 10 379 5 6 44

2 21 42 1,703 10 16 118

3 85 170 6,999 15 30 224

4 341 682 28,183 20 48 362

5 1,365 2,730 112,919 25 70 532

6 5,461 10,922 451,863 30 96 734

5.1 Line-based vs Tree-based Encodings

Benchmark. We designed a DSL that can solve classic SQL queries from a database textbook [56].

These instances were previously used by well-known SQL synthesizers [19, 75, 81]. We started with an

initial set of 23 SQL instances (corresponding to Sections 5.1.1 and 5.1.2 of the database textbook [56])

and created variants of these instances resulting in a total of 55 instances.

Since we want to study the performance of each encoding with respect to the size of the synthesized

query, for each of these instances, we generate six different SMT formulas to search for programs that

use exactly n production rules from our DSL, for a total of 330 instances (55 × 6, 1 <= n <= 6). The

SMT formulas differ in the number of productions that their programs must have, and it simulates the

search performed by a program synthesizer until a solution with n production rules is found.

Encoding Complexity. As presented in the previous chapters the number of nodes used by line-based

enumeration increases linearly, as presented in equation (4.11), because the enumerator uses n trees,

with k + 1 nodes each, to represent a program with n production rules. On the other hand, tree-based

enumeration uses a k-tree of depth n + 1 to represent programs with n lines of code. Therefore, in

tree-based enumeration the number of nodes increases exponentially with the number of productions,

as presented in equation (3.7).

The number of variables and constraints used by each type of enumeration varies with the number

of nodes. Table 5.1 shows the number of nodes, variables and the mean number of constraints used

by each type of enumeration on the 330 SQL instances. Clearly, we can see that the number of nodes,

variables and constraints used by line-based enumeration increase linearly while in tree-based enumer-

ation these numbers increase exponentially. The number of nodes and variables are always the same

for a given program’s size. The number of constraints varies with the DSL since each instance may use

different constants and aggregate functions.
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Table 5.2: Number of solved instances by each encoding.

Lines of Code 1 2 3 4 5 6 Total % Solved % Solved for LOC >= 4
# Instances 55 55 55 55 55 55 330
Tree-based 55 55 54 34 18 2 218 66.06% 32.73%
Line-based 55 55 54 49 48 39 300 90.91% 82.42%
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(b) Comparison between encodings.

Figure 5.1: Tree-based vs Line-based Enumerators.

5.1.1 Performance

Table 5.2 shows the number of instances solved by each model for a given number of lines in our DSL.

The performance of both encodings is similar for programs with three or fewer lines of code. However,

when the program size increases, the difference between these approaches becomes clear. The last

column of Table 5.2, shows the percentage of solved instances by each approach for instances using

more than three lines of code. The tree-based model only solves around 33% of the instances while

line-based solves around 82%.

In terms of time spent in each instance, Fig. 5.1 shows two plots, a cactus plot in Fig. 5.1a and

a scatter plot in Fig. 5.1b. The cactus plot shows the synthesis time (y-axis) against the number of

instances solved (x-axis). Each point in the cactus plot corresponds to an instance, where the y-axis

is the run time, in seconds, required by the corresponding encoding to solve that instance. Each point

in the scatter plot represents an instance where the x-value (resp. y-value) is the time spent by the

line-based (resp. tree-based) enumerator. Both plots in Fig. 5.1, support the results shown in Table

5.2. Additionally, the plots show that tree-based enumeration is, in general, significantly slower than

line-based enumeration.

These differences in time and number of instances solved, in particular for the instances with more

than 3 lines, can be justified by the exponential number of variables and constraints required by tree-

based enumeration.
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Figure 5.2: Impact of breaking symmetries.

5.1.2 Impact of Breaking Symmetries

We evaluate the impact of symmetry breaking on the performance of line-based enumeration. For every

model α, we find all models symmetric to α and add constraints to block them all. Our experiments

show that symmetry breaking does not improve the performance of line-based enumeration. Fig. 5.2a

and 5.2b show a cactus and scatter plot comparing line-based enumeration with and without symmetry

breaking. Both figures show that symmetry breaking is, in general, significantly slower and solves fewer

instances than not breaking symmetries. We conjecture that this may be due to: (i) the number of

symmetries is only significant for programs with several lines, and (ii) the overhead to find and block all

symmetric models is too large when compared to the time taken by each SMT call.
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Fig. 5.2c shows the total number of symmetric models blocked in each instance. Programs with one

or two lines of code do not have symmetries because they have only one representation. Programs with

three lines of code have at most one symmetry. Therefore, only programs with more than three lines

of code, have a significant number of blocked models, i.e., blocked more than a thousand symmetric

models (117 instances). If we only look at these 117 instances, we observe that not breaking symmetries

solves 87 instances, while breaking symmetries only solves 68 instances.

Since breaking symmetries is ineffective even when a large number of symmetries is present, we

analyzed the current overhead of finding and blocking symmetric models. For each model, we spend

on average 0.091 seconds to find and block all symmetric models. Fig. 5.2d shows, per instance, the

time spent by the line-based enumerator with and without symmetry breaking, ignoring the time spent

searching for and blocking symmetric models. This plot shows that, even if symmetry breaking was

”free”, it does not improve the performance of the line-based enumerator.

We observed that, without symmetry breaking, each SMT call takes on average 0.015 seconds. If we

add symmetry breaking predicates, each SMT call doubles its time to 0.030 seconds, on average. Since

our enumeration relies on solving many easy SMT calls, we concluded that the search space reduction

enabled by symmetry breaking does not compensate the extra effort required to break symmetries.

Breaking Online vs Offline. As explained in section 4.3.4, we also tried to use a symmetry breaking

system that uses symmetries computed offline and not on the fly. Therefore, if a program α is not

consistent with the input-output examples, we block all symmetries that can be generated from α.

Fig. 5.3 shows the comparison between the three studied approaches: line-based, line-based break-

ing symmetries online and offline. From Fig. 5.3a and Fig. 5.3c, we can clearly see that both symmetry

breaking approaches are quite similar. Fig. 5.3a and Fig. 5.3b shows that the basic approach, that does

not break symmetries, solves more instances and is usually faster than any of the other approaches.

Based on the results presented in this section, SQUARES does not use symmetry breaking by de-

fault. Nevertheless, SQUARES can break symmetries of every program enumerated, the user just needs

to provide the appropriate flags.

5.2 Predicates

In this section, we discuss the performance of SQUARES using the predicates presented previously:

is not parent, happens before, constant occurs and distinct inputs. As explained in section 4.4, these

predicates allow the user to provide some domain knowledge which will help to reduce the search space.

Benchmark. In this experiment we also used classic SQL queries from a database textbook [56]. As

explained in the previous section, part of these instances was previously used by well-known SQL syn-

thesizers [19, 75, 81]. In the previous section, we used the first 23 instances presented in the textbook.

In this section, we had already expanded our DSL in order to use examples from OutSystems [50] and

to compare SQUARES with Scythe [75]. Therefore, we were able to use the first 28 SQL instances

(corresponding to Sections 5.1.1 and 5.1.2 and part of 5.1.3 of the database textbook [56]).

47



0 50 100 150 200 250 300
Instances

0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
(s

)

Line-based
Breaking Symmetries Online
Breaking Symmetries Offline

(a) Running times.

10−3 10−2 10−1 100 101 102 103 104

Line-based

10−3

10−2

10−1

100

101

102

103

104

B
re

ak
in

g
Sy

m
m

et
ri

es
O

ffl
in

e

3600 sec. timeout

36
00

se
c.

tim
eo

ut

(b) Comparison between line-based and breaking symmetries of-
fline.

10−3 10−2 10−1 100 101 102 103 104

Breaking Symmetries Online

10−3

10−2

10−1

100

101

102

103

104

B
re

ak
in

g
Sy

m
m

et
ri

es
O

ffl
in

e

3600 sec. timeout

36
00

se
c.

tim
eo

ut

(c) Comparison between breaking symmetries online and offline.

Figure 5.3: Breaking symmetries online vs offline.

Performance and Discussion. We ran six different variants of SQUARES: four using just one of the

four predicates (Is Not Parent, Happens Before, Constant Occurs and Distinct Inputs), another using all

of them together (All) and a final one using no predicate at all (None). Fig. 5.4 shows the performance

of each one of these variants using timeouts of 300 (Fig. 5.4a), 600 (Fig. 5.4b) and 3600 seconds (Fig.

5.4c). The legends in Fig. 5.4 are sorted in decreasing order of number of instances solved.

Looking at Fig. 5.4, we can see that the variant that uses all predicates (All) solves more instances

than the other variants, no matter the timeout used. Furthermore, we can also see that the variant that

uses none of the predicates (None) was always second or third to last which means that normally using

at least one predicate helps to have a better performance.
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Figure 5.4: Cactus plots - performance of each predicate using timeouts of 300, 600 and 3600 seconds.

We gathered results of three distinct timeouts because with 3600s of timeout we could not see a

clear distinction between the variants. Therefore, we also checked the results with timeouts of 300s

and 600s. With only a timeout of 300 seconds, we can see that the variant None solves only fourteen

instances, on the other hand, the variant All solves seventeen.

Additionally, if we look at Fig. 5.4c, we can see that the variant that uses all predicates (All) solves

nineteen instances, while variant (None) only solves sixteen instances and was the second variant to

solve the least number of instances.

Thus, we observed that using predicates can improve the performance of SQUARES. Therefore, the

final version of SQUARES uses all of the four predicates presented and evaluated in this section.
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(b) Scatter plot.

Figure 5.5: Performance of SQUARES and Scythe on 28 instances from a database textbook [56].

5.3 SQL Generation

In this section, we present and discuss the performance of SQUARES concerning SQL generation. To

evaluate the SQL produced by SQUARES we gather two sets of instances: one set from the database

textbook [56] and the other one from OutSystems’ [50] examples. Both sets will be explained in the

following sections.

In the interest of evaluating SQUARES’ SQL, we will compare the performance of SQUARES against

Scythe [75], a state-of-the-art SQL synthesizer presented in Section 3.4.4. Thus, in Section 5.3.1

we use instances from the database textbook [56] and in Section 5.3.2 we use the examples from

OutSystems. In both sections we compare the obtained results with Scythe’s results.

5.3.1 Textbook Benchmark

In this subsection, we are going to present SQUARES’ evaluation with well-known instances used in the

area of QRE [19, 75, 81] from the database textbook [56].

Benchmark. We used the same set of tests described in Section 5.2. The first 28 SQL queries of

the database textbook (corresponding to Sections 5.1.1 and 5.1.2 and part of 5.1.3 of the database

textbook [56]).

Performance and Discussion. Fig. 5.5 shows a cactus (Fig. 5.5a) and a scatter plot (Fig. 5.5b).

The cactus plot shows the synthesis time (y-axis) against the number of instances solved (x-axis).

Each point in the scatter plot represents an instance where the x-value (resp. y-value) is the time

spent by SQUARES (resp. Scythe) on a given instance. These results were obtained considering a

timeout of 3600s.
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Both systems had a similar performance being able to solve 19 instances. However, we can see in

Fig. 5.5a that SQUARES is slightly faster than Scythe. This happens in 5 of the instances solved (almost

26 percent).

Regarding the SQL generation, both systems produce verbose SQL queries. For example, Fig. 5.6

shows the queries returned by both systems for the first instance.

Example 17. The following query would be a possible answer for exercise 5.1.1, in Fig. 5.6, if a human

was writing the SQL query.

SELECT DISTINCT S.S_name

FROM Student S, Class C, Enrolled E, Faculty F

WHERE S.S_key = E.S_key AND E.C_name = C.C_name AND C.F_key = F.F_key

AND F.F_name = "faculty1" AND S.level = "JR"

We observed that normally Scythe produces queries with more inner SELECTs than SQUARES.

Although both systems produce queries with more inner SELECTs than a human would write. In Exam-

ple 17, we show a possible human answer for the same exercise. However, some SQL dialects accept at

most two tables in a JOIN. Therefore, in these cases the number of SELECTs would be higher. Fig. 5.6

is one of those cases.

As shown in Fig. 5.6, SQUARES provides a cleaner presentation of the SQL comparing to Scythe

thanks to sqlparse 1, a python library to parse SQL. With this library, we parse the query and make it

more readable.

In several instances, both systems produce similar queries as shown in Fig. 5.7. The two queries

are quite similar in terms of the number of JOINs and inner SELECTs. However, in other examples,

Scythe produced queries with not quite as much inner SELECTs as SQUARES. In these cases, where

the query returned by SQUARES has more inner SELECTs, one possible reason for this to happen is

that the automatic translation from R to SQL turns every operator in an inner query.

As explained in Chapter 4, SQUARES uses a built-in function offered by R, called show query. In

some cases, the use of show query can have a downside since it is still being developed and there are

some operators in R that do not have direct translations to SQL. Therefore, there are some instances

which SQUARES can only return the solution written in R owing to the fact that the translation is still not

available.

To conclude, in this section we compared SQUARES with Scythe [75], a state-of-the-art SQL syn-

thesizer, on instances used in the area of QRE. We observed that SQUARES solved as many instances

as Scythe. Moreover, regarding the generated SQL, SQUARES produces SQL queries that are easier

to read and understand.

1https://pypi.org/project/sqlparse
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(a) Scythe SQL query.

(b) SQUARES SQL query.

Figure 5.6: Exercise 5.1.1 from a database textbook [56] - Find the names of all Juniors (level = JR) who
are enrolled in faculty1 (F name = faculty1).
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(a) Scythe SQL query.

(b) SQUARES SQL query.

Figure 5.7: Exercise 5.2.1 from a database textbook [56] - Find the P names of parts for which there is
some supplier.

Crash
...

UserFeedback
...

CrashHashHit
...

CrashHash
...

Version
...

Issue
...

Figure 5.8: Tables from Outsystems’ Database used to evaluate our work.

5.3.2 OutSystems Benchmark

This Master Thesis is supported by OutSystems [50] and this work was accomplished during an in-

ternship there. Hence, part of the system’s evaluation was done using examples from OutSystems’

database. Therefore, OutSystems provided a copy of its engineering database. With this copy,

SQUARES can be tested without affecting the main database.

Moreover having a copy of the database DC , stagnated in time, allows us to be sure in the future

that, given an output table of a query Q on DC , the result will always be the same, since the database

will not be modified.
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Figure 5.9: Performance of SQUARES and Scythe on 20 instances from Outsystems.

Benchmark. In collaboration with Outsystems’ engineers and using SQL Server Management Stu-

dio 2, the main database D was tracked in order to collect all the queries that ran on D for seven hours

in five different days.

The six most used tables from the database where chosen. Hence, the examples with other tables

were excluded. This way we could focus on a subgraph of the database’s schema, containing these

tables. Let GS′ denote this subgraph. These tables are: Issue, UserFeedback, Crash, CrashHash,

CrashHashHit, Version. Their schema graph is presented in Fig 5.8.

Each table from GS′ has approximately two million entries, hence it was better to work with subsets of

these tables. Therefore, for efficiency purposes, these tables were reduced to two thousand five hundred

entries, these entries being a representative subset of the full tables.

Once we collected the queries that ran on D on those five days, we had a collection of 458 examples.

Most of of the examples (421) used more tables than the six tables present in GS′ . Moreover, seventeen

of the remaining examples were equivalent between themselves. Therefore, after removing the copies

and choosing only the examples that use the six tables present in GS′ we achieved a set of 20 queries.

Performance and Discussion. Fig. 5.9 presents a cactus and a scatter plot comparing SQUARES

and Scythe on the OutSystems’ examples. We can observe, in Fig. 5.9a, that Scythe only solves two

instances out of twenty (10 percent). On the other hand, SQUARES solved all twenty instances. Fig.

5.9b supports the same results presented in Fig. 5.9a.

The poor performance of Scythe showed in Fig. 5.9 can be explained by its problems with memory

usage. We believe that Scythe encodes the tables’ data into constraints. Each input table, used in the

OutSystems’ examples, has two thousand five hundred entries. Hence, this may be the reason that

Scythe returns, in 90 percent of the instances, an OutOfMemoryError.

2https://docs.microsoft.com/en-us/sql/ssms/sql-server-management-studio-ssms
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Regarding the generated SQL, it is difficult to compare since Scythe only solves two instances. In

these two instances, both systems produce similar queries. If a human was writing the other eighteen

instances, she would produced similar queries when comparing to the ones produced by SQUARES.

The only significant difference is the same presented in Section 5.3.1, the number of inner SELECTs.

However, this is due to the fact that R’s function show query only accepts two tables in each JOIN.

To conclude, this section compares SQUARES and Scythe [75] on real-world examples created by

OutSystems [50]. We observed that SQUARES has a great performance in such examples, solving all

of them. However, Scythe has some problems with memory usage so it can only solve ten percent of the

examples. Regarding the SQL generation, both systems produced similar queries in the two instances

solved by Scythe.
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Chapter 6

Conclusions and Future Work

Program Synthesis has been considered the Holy Grail of Computer Science since the late 60’s [29, 37].

According to Pnueli, 1996 Turing Award winner, ”One of the most central problems in the theory of

programming is the systematic construction of a program from its specification” [54].

In recent years, new platforms for software development, such as OutSystems’ Low-Code Platform 1,

have been made available where users with minor programming skills can create and modify software

applications. These tools are able to hide many aspects of programming, but some coding experience

is still needed for some operations.

In this work, we propose SQUARES, an enumeration-based program synthesizer whose goal is to

solve the problem of SQL Synthesis by Example, also known as, Query Reverse Engineering (QRE).

Since the 70’s, QRE is a well-studied problem [11, 83]. Nowadays, with the massive amount of data

companies have to deal with, a good and scalable QRE system is more important than ever. There

already exist several approaches to deal with this problem. Some of the existent approaches solve QRE

for a superset of the output table through classification [62, 71] or asking the user to select the tuples

that should not be in the output [7, 8, 78]. However, SQUARES produces a query whose result is equal

to the output table provided by the user.

Currently, the most common approach to Program Synthesis is to perform an enumerative search

on the space of programs and find one that satisfies the specifications. Until now, enumeration-based

program synthesizers [19, 21, 44] have been using a tree-based encoding (see Section 3.3.1) to rep-

resent the search space of possible programs. To the best of our knowledge, SQUARES is the first

enumeration-based program synthesizer that uses a new representation of programs, where each pro-

gram is represented as a sequence of lines [49].

Experimental results on the synthesis of SQL queries, show that the proposed line-based encoding

allows a faster enumeration of programs when compared to the usual tree-based encoding. Moreover,

while the tree-based encoding does not scale beyond a small number of operations, the new line-based

encoding allows finding programs with a larger sequence of operations.

1https://www.outsystems.com/p/low-code-platform/
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We compared SQUARES against Scythe [75], a state-of-the-art QRE framework, in order to evalu-

ate SQUARES in terms of SQL generation. We used SQL instances from a database textbook [56] and

instances from OutSystems’ database. Concerning textbook instances, both systems show similar per-

formance and produce similar queries. Regarding the OutSystems’ instances, SQUARES shows great

performance solving all of them. However, Scythe shows a weak performance on these instances which

can be justified by its memory limitations, i.e Scythe does not scale for large amounts of data. Therefore,

SQUARES showed a considerable performance and was able to compete with and even to outperform

a state-of-the-art SQL synthesizer.

6.1 Future Work

As future work, it would be interesting to pursue several topics regarding our line-based encoding and

our Domain-Specific Language (DSL).

With respect to our encoding, firstly, other symmetry breaking techniques should be tested, such as

breaking symmetries through a lexicographic order. For example, consider a program with three lines

of code, if the third line (L3) uses both line 1 (L1) and line 2 (L2) (e.g. L3 : f(L1, L2)) then, we

can enforce that L1 must be used as the first parameter of the function f assigned to L3, and, L2 as

f’s second parameter. Hence, this program L3 : f(L2, L1) would not be acceptable. This type of

symmetry breaking is expected to improve the performance of the proposed line-based encoding.

Moreover, in order to evaluate our encoding in terms of scalability, it would be interesting to evaluate

its performance generating programs with more than six lines of code. It would also be interesting to

encode our representation using a SAT encoding and then compare it in terms of performance with the

current SMT encoding to check if the SAT encoding allows a faster enumeration of the search space.

Furthermore, it would be beneficial to develop a wider collection of predicates that could be used to

prune the search space of possible programs. Finally, our encoding was designed with modularity in

mind. Therefore, it should be integrated into other enumeration-based program synthesizers that are

currently using the tree-based encoding, such as Morpheus [19] or Trinity [44].

With regard to our DSL, it should be extended in order to allow SQUARES to generate queries with

a larger diversity of SQL operators. Lastly, a good way to deal with the problem of inner SELECTs in the

SQL queries generated by SQUARES (see Section 5.3.1), would be to implement our own translator that

would translate directly from our DSL to SQL. This way, we would not be dependent on the R’s libraries

(e.g. show query), consequently, we could generate a higher-quality human-readable SQL.
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[32] K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving highly relevant documents. In

SIGIR 2000: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, July 24-28, 2000, Athens, Greece, pages 41–48, 2000.

[33] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided component-based program syn-

thesis. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering -

Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, pages 215–224, 2010.

[34] V. Jojic, S. Gulwani, and N. Jojic. Probabilistic inference of programs from input/output examples.

Technical report, MSR-TR-2006-103, July, 2006.

[35] R. Joshi, G. Nelson, and Y. Zhou. Denali: A practical algorithm for generating optimal code. ACM

Trans. Program. Lang. Syst., 28(6):967–989, 2006.

61



[36] D. V. Kalashnikov, L. V. S. Lakshmanan, and D. Srivastava. Fastqre: Fast query reverse engi-

neering. In Proceedings of the 2018 International Conference on Management of Data, SIGMOD

Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 337–350, 2018.

[37] A. S. Lezama. Program synthesis by sketching. PhD thesis, UC Berkeley, 2008.

[38] F. Li and H. V. Jagadish. Nalir: an interactive natural language interface for querying relational

databases. In International Conference on Management of Data, SIGMOD 2014, Snowbird, UT,

USA, June 22-27, 2014, pages 709–712, 2014.

[39] H. Li, C. Chan, and D. Maier. Query from examples: An iterative, data-driven approach to query

construction. PVLDB, 8(13):2158–2169, 2015.

[40] Z. Manna and R. Waldinger. A deductive approach to program synthesis. In Proceedings of the

Sixth International Joint Conference on Artificial Intelligence, IJCAI 79, Tokyo, Japan, August 20-23,

1979, 2 Volumes, pages 542–551, 1979.

[41] Z. Manna and R. J. Waldinger. Toward automatic program synthesis. Commun. ACM, 14(3):151–

165, 1971.

[42] Z. Manna and R. J. Waldinger. Knowledge and reasoning in program synthesis. Artif. Intell., 6(2):

175–208, 1975.

[43] R. Martins, S. Joshi, V. M. Manquinho, and I. Lynce. Incremental cardinality constraints for maxsat.

In Principles and Practice of Constraint Programming - 20th International Conference, CP 2014,

Lyon, France, September 8-12, 2014. Proceedings, pages 531–548, 2014.

[44] R. Martins, J. Chen, Y. Chen, Y. Feng, and I. Dillig. Trinity: An extensible synthesis framework for

data science. PVLDB, 12(12):1914–1917, 2019.

[45] M. Mayer, G. Soares, M. Grechkin, V. Le, M. Marron, O. Polozov, R. Singh, B. G. Zorn, and S. Gul-

wani. User interaction models for disambiguation in programming by example. In Proceedings of

the 28th Annual ACM Symposium on User Interface Software & Technology, UIST 2015, Charlotte,

NC, USA, November 8-11, 2015, pages 291–301, 2015.

[46] A. K. Menon, O. Tamuz, S. Gulwani, B. W. Lampson, and A. Kalai. A machine learning framework

for programming by example. In Proceedings of the 30th International Conference on Machine

Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 187–195, 2013.

[47] A. Neelakantan, Q. V. Le, and I. Sutskever. Neural programmer: Inducing latent programs with

gradient descent. In 4th International Conference on Learning Representations, ICLR 2016, San

Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[48] A. V. Nori, S. Ozair, S. K. Rajamani, and D. Vijaykeerthy. Efficient synthesis of probabilistic pro-

grams. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design

and Implementation, Portland, OR, USA, June 15-17, 2015, pages 208–217, 2015.

62



[49] P. Orvalho, M. Terra-Neves, M. Ventura, R. Martins, and V. M. Manquinho. Encodings for

enumeration-based program synthesis. In Principles and Practice of Constraint Programming -

25th International Conference, CP 2019, Stamford, CT, USA, September 30 - October 4, 2019,

Proceedings, pages 583–599, 2019.

[50] OutSystems. . https://www.outsystems.com, 2019. [Online; accessed 1-September-2019].

[51] K. Panev and S. Michel. Reverse engineering top-k database queries with PALEO. In Proceedings

of the 19th International Conference on Extending Database Technology, EDBT 2016, Bordeaux,

France, March 15-16, 2016, Bordeaux, France, March 15-16, 2016., pages 113–124, 2016.

[52] E. Parisotto, A. Mohamed, R. Singh, L. Li, D. Zhou, and P. Kohli. Neuro-symbolic program synthesis.

CoRR, abs/1611.01855, 2016.

[53] D. Perelman, S. Gulwani, T. Ball, and D. Grossman. Type-directed completion of partial expressions.

In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’12,

Beijing, China - June 11 - 16, 2012, pages 275–286, 2012.

[54] A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module. In Automata,

Languages and Programming, 16th International Colloquium, ICALP89, Stresa, Italy, July 11-15,

1989, Proceedings, pages 652–671, 1989.

[55] O. Polozov and S. Gulwani. Flashmeta: a framework for inductive program synthesis. In Pro-

ceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA,

USA, October 25-30, 2015, pages 107–126, 2015.

[56] R. Ramakrishnan and J. Gehrke. Database management systems (3. ed.). McGraw-Hill, 2003.

[57] V. Raychev, M. T. Vechev, and E. Yahav. Code completion with statistical language models. In

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14,

Edinburgh, United Kingdom - June 09 - 11, 2014, pages 419–428, 2014.

[58] M. Raza and S. Gulwani. Disjunctive program synthesis: A robust approach to programming by

example. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),

the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on

Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February

2-7, 2018, pages 1403–1412, 2018.

[59] A. D. Sarma, A. G. Parameswaran, H. Garcia-Molina, and J. Widom. Synthesizing view definitions

from data. In Database Theory - ICDT 2010, 13th International Conference, Lausanne, Switzerland,

March 23-25, 2010, Proceedings, pages 89–103, 2010.

[60] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superoptimization. In Architectural Support for

Programming Languages and Operating Systems, ASPLOS ’13, Houston, TX, USA - March 16 -

20, 2013, pages 305–316, 2013.

63

https://www.outsystems.com


[61] M. Schlaipfer, K. Rajan, A. Lal, and M. Samak. Optimizing big-data queries using program syn-

thesis. In Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, China,

October 28-31, 2017, pages 631–646, 2017.

[62] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and L. Novik. Discovering queries based on ex-

ample tuples. In International Conference on Management of Data, SIGMOD 2014, Snowbird, UT,

USA, June 22-27, 2014, pages 493–504, 2014.

[63] R. Singh and S. Gulwani. Predicting a correct program in programming by example. In Computer

Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24,

2015, Proceedings, Part I, pages 398–414, 2015.

[64] R. Singh and S. Gulwani. Transforming spreadsheet data types using examples. In Proceedings

of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 343–356, 2016.

[65] A. Solar-Lezama. The sketching approach to program synthesis. In Programming Languages and

Systems, 7th Asian Symposium, APLAS 2009, Seoul, Korea, December 14-16, 2009. Proceedings,

pages 4–13, 2009.

[66] S. Srivastava, S. Gulwani, and J. S. Foster. From program verification to program synthesis. In

Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL 2010, Madrid, Spain, January 17-23, 2010, pages 313–326, 2010.

[67] S. Srivastava, S. Gulwani, S. Chaudhuri, and J. S. Foster. Path-based inductive synthesis for pro-

gram inversion. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 492–503,

2011.

[68] W. C. Tan, M. Zhang, H. Elmeleegy, and D. Srivastava. Reverse engineering aggregation queries.

PVLDB, 10(11):1394–1405, 2017.

[69] W. C. Tan, M. Zhang, H. Elmeleegy, and D. Srivastava. REGAL+: reverse engineering SPJA

queries. PVLDB, 11(12):1982–1985, 2018.

[70] Q. T. Tran, C. Chan, and S. Parthasarathy. Query by output. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, SIGMOD 2009, Providence, Rhode Island, USA,

June 29 - July 2, 2009, pages 535–548, 2009.

[71] Q. T. Tran, C. Y. Chan, and S. Parthasarathy. Query reverse engineering. VLDB J., 23(5):721–746,

2014.

[72] P. Valduriez. Join indices. ACM Trans. Database Syst., 12(2):218–246, 1987.

[73] A. J. Vijayakumar, A. Mohta, O. Polozov, D. Batra, P. Jain, and S. Gulwani. Neural-guided deductive

search for real-time program synthesis from examples. CoRR, abs/1804.01186, 2018.

64



[74] R. J. Waldinger and R. C. T. Lee. PROW: A step toward automatic program writing. In Proceedings

of the 1st International Joint Conference on Artificial Intelligence, Washington, DC, USA, May 7-9,

1969, pages 241–252, 1969.

[75] C. Wang, A. Cheung, and R. Bodı́k. Synthesizing highly expressive SQL queries from input-output

examples. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 452–466,

2017.

[76] C. Wang, A. Cheung, and R. Bodı́k. Interactive query synthesis from input-output examples. In Pro-

ceedings of the 2017 ACM International Conference on Management of Data, SIGMOD Conference

2017, Chicago, IL, USA, May 14-19, 2017, pages 1631–1634, 2017.

[77] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding patches using genetic

programming. In 31st International Conference on Software Engineering, ICSE 2009, May 16-24,

2009, Vancouver, Canada, Proceedings, pages 364–374, 2009.

[78] Y. Y. Weiss and S. Cohen. Reverse engineering spj-queries from examples. In Proceedings of the

36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017,

Chicago, IL, USA, May 14-19, 2017, pages 151–166, 2017.

[79] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig. Sqlizer: query synthesis from natural language.

PACMPL, 1(OOPSLA):63:1–63:26, 2017.

[80] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and D. Srivastava. Reverse engineering complex join

queries. In Proceedings of the ACM SIGMOD International Conference on Management of Data,

SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 809–820, 2013.

[81] S. Zhang and Y. Sun. Automatically synthesizing SQL queries from input-output examples. In 2013

28th IEEE/ACM International Conference on Automated Software Engineering, ASE 2013, Silicon

Valley, CA, USA, November 11-15, 2013, pages 224–234, 2013.

[82] M. M. Zloof. Query by example. In American Federation of Information Processing Societies: 1975

National Computer Conference, 19-22 May 1975, Anaheim, CA, USA, pages 431–438, 1975.

[83] M. M. Zloof. Query-by-example: the invocation and definition of tables and forms. In Proceedings

of the International Conference on Very Large Data Bases, September 22-24, 1975, Framingham,

Massachusetts, USA., pages 1–24, 1975.

[84] M. M. Zloof. QBE/OBE: A language for office and business automation. IEEE Computer, 14(5):

13–22, 1981.

65


	Acknowledgments
	Resumo
	Abstract
	List of Algorithms
	List of Figures
	List of Tables
	Introduction
	Motivating Example
	Contributions
	Organization

	Preliminaries
	Background
	Program Synthesis
	Program Space
	User Intent
	Search Techniques

	Programming by Example (PBE)
	Properties
	Ambiguity Resolution

	Enumeration-Based Program Synthesis
	Tree-based Encoding
	Encoding Variables
	Constraints
	Encoding Complexity

	Query Synthesis
	TALOS
	SQLSynthesizer
	Query From Examples (QFE)
	Scythe

	Summary

	SQUARES
	Input-Output Examples
	Domain-Specific Language (DSL)
	Line-based Encoding
	Encoding Variables
	Constraints
	Encoding Complexity
	Symmetric Programs

	Predicates

	Experimental Results
	Line-based vs Tree-based Encodings
	Performance
	Impact of Breaking Symmetries

	Predicates
	SQL Generation
	Textbook Benchmark
	OutSystems Benchmark


	Conclusions and Future Work
	Future Work

	Bibliography

