
RepairingBoolean regulatorynetworks
usingAnswerSetProgramming

Alexandre Lemos1, Pedro T. Monteiro1, Inês Lynce1
1INESC-ID/Instituto Superior Técnico, Universidade de Lisboa, Portugal

Introduction
Models of biological regulatory networks are increasingly used to formally describe and understand complex biological processes. Such models are often
repaired whenever new observations become available, because the model cannot generate behaviors consistent with the new observations. However, the
model repair procedure is often a manual process and therefore prone to errors.

Network Consistency
A biological regulatory networks is described using Boolean logical formalism [1], where:

• nodes denote biological components (e.g. node(xa));

• edges denote regulatory interactions between components (e.g. edge(xa,xb));

• each component is associated with a Boolean variable representing its activity level
(e.g. obsvlabel(p,xa,1)));

• the evolution of each variable is defined by a Boolean logical function (e.g. funcAnd(1,xb))
depending on the values of its regulators (e.g. regulator(1,xa) and regulator(1,xc)).

funcAnd(1,xb). node(xb). node(temp(xa)).
regulator(1,xa). node(xa). obsvlabel(p,xa,1).
regulator(1,xc). node(xc). obsvlabel(p,xc,1).
funcOr(2,xc). edge(xa,xb). obsvlabel(p,xb,0).
regulator(2,xb). edge(xc,xb). exp(p).
regulator(2,temp(xa)). edge(xb,xc).
funcNot(3,temp(xa)). edge(temp(xa),xc).
regulator(3,xa). edge(xa,temp(xa)).

Figure 1: Model inconsistent with the experimental profile on a steady state and the respective ASP
encoding.

A model is consistent with a experimental profile if the functions associated with a node can explain
the node’s value.

ASP
Answer Set Programming (ASP) [2] is a form
of declarative programming, similar to Prolog,
that uses logic semantics to solve search prob-
lems. ASP has already been successfully ap-
plied to model biological networks [3, 4]. The
proposed method was implemented using ASP.
The complete encoding is available at http://
web.ist.utl.pt/~alexandre.lemos/rbnasp/.

Repair Operations
Four basic types of repairs to the logical func-
tions, which can then be further combined to
produce more detailed revisions:

1. Repair g - Change a Boolean function
(AND to OR, NOT to ID);

2. Repair n - Negates a Boolean function;

3. Repair e - Removes a regulator (never
removes the last regulator, i.e., component
cannot become an input);

4. Repair i - Negates a regulator (not pre-
viously negated).

Example
The model in Figure 1, can be repaired by applying two repairs of type
n, i.e. first negating the function funcAnd(1,xb) and then the function
funcOr(2,xc).
It is also possible, for example, to negate regulators: regulator(2,xb),
regulator(1,xc), regulator(1,xa) and removing regulator(2,temp(xc))
as shown in Figure 2.

Figure 2: Model after negating regulators xb, xc, xa and removing temp(xc).

Function Coverage
The number of possible Boolean functions that can be used to repair a function will increase with
the number of regulators influencing a given component, following the expression 22

n

, where n is the
number of arguments of the function.
When considering a function with two arguments, by combining repairs e, i and g, one can achieve
a total of twelve of the sixteen functions. The functions XOR (exclusive OR), Xnor (equivalence),
true and false are not achievable by any combination of these repairs.

A ∧B A ∧ ¬B ¬A ∧ ¬B ¬A ∨B A ∨B A ∨ ¬B ¬A ∨ ¬B B A ¬B ¬A
repair g g,i i g g g, i g, i e e,g e,i e

Table 1: Possible repairs for the function ¬ A ∧ B and which repairs are used to achieve them.

Method Validation
The implementation was tested using two regu-
latory networks with the following size:

Nodes
(input)

Not
Func

Other
Func

E-coli 1915 (34) 1327 1881
Candida 6410 (71) 10774 6339

Table 2: Size of the networks used for testing.

Conclusion
The proposed ASP-based method to repair
Boolean networks is capable of repairing func-
tions with any number of regulators. The repair
operations are able to find a feasible solution to
all real biological networks tested.
Repair n finds always a cardinality minimal solu-
tion. Repair e exceeds memory limits for bigger
networks.

References
[1] R. Thomas, “Boolean formalization of genetic control circuits,” Journal of Theoretical Biology, vol. 42, no. 3, pp.

563 – 585, 1973.

[2] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, “Answer set solving in practice,” ser. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, 2012.

[3] M. Gebser, C. Guziolowski, M. Ivanchev, T. Schaub, A. Siegel, S. Thiele, and P. Veber, “Repair and prediction
(under inconsistency) in large biological networks with answer set programming.” in Principles of Knowledge
Representation and Reasoning: Proceedings of the Twelfth International Conference, KR 2010, Toronto, Ontario,
Canada, May 9-13, 2010.

[4] N. Mobilia, A. Rocca, S. Chorlton, E. Fanchon, and L. Trilling, “Logical modeling and analysis of regulatory genetic
networks in a nonmonotonic framework,” in IWBBIO, ser. LNCS, vol. 9043, 2015, pp. 599–612.

Acknowledgements
This work was partially supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013. Alexandre Lemos was supported
by FCT project grant EXCL/EEI-ESS/0257/2012. Pedro T. Monteiro was supported by FCT grant IF/01333/2013.

http://web.ist.utl.pt/~alexandre.lemos/rbnasp/
http://web.ist.utl.pt/~alexandre.lemos/rbnasp/

