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Chi conosce la geometria, può comprendere tutto in questo mondo.† 

 

Galileo Galilei, 1564-1642 

 

 
†Who knows geometry can understand anything in this world. 
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Resumo 
 

Nesta tese, desenvolveram-se metodologias de análise de geometria e detecção de 

contato para o estudo de sistemas de corpos múltiplos com contato não rígido. A 

geometria dos sistemas considerados consiste na discretização das zonas de potencial 

contacto de estruturas cinemáticas em que superfícies convexas suaves são acoplados 

aos corpos rígidos. Tais geometrias são adequadas para modelar sistemas mecânicos 

onde é mais eficiente representar a geometria de contacto usando superfícies convexas 

suaves do que malhas triangulares ou superfícies livres. Para este efeito, é desenvolvida 

uma metodologia para modelar a superfície assim como para análisar a forma dos 

contornos dos corpos onde potencialmente poderá ocorrer contacto. Relativamente à 

dinâmica dos sistemas em estudo, esta depende das formas das superfície de contacto 

assim como da relação constitutiva que relaciona as força de contacto com a distância 

relativa entre superfícies. Para este efeito, é proposta uma metodologia de detecção de 

contacto para calcular os pontos mais próximos entre superfícies convexas suaves, em 

que a formulação do problema de distância mínima é baseada no conceito da normal 

comum, sendo os vectores tangentes calculados analiticamente com uma transformação 

Householder. Os ensaios computacionais efectuados e os exemplos numéricos 

apresentados revelam que as metodologias desenvolvidas têm aplicação em várias 

disciplinas computacionais. Em particular, são apresentadas aplicações biomecânicas, 

nomeadamente, superfícies convexas suaves são usadas para identificar formas ovoides 

em juntas esferoidais e para simular a interacção pé-chão durante a marcha humana. 

 

Palavras-Chave 
 

Superfícies suavemente convexas, ortogonalização de vectores, transformação de 

Householder, ajuste de superfícies, cálculo de distância mínima, detecção de contacto, 

conceito de normal comum, contacto não rígido, biomecânica musculo-esquelética, 

dinâmica directa. 
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Abstract 
 

In this thesis, shape analysis and contact detection methodologies were developed to 

study multibody systems with compliant contact interactions. The geometry of the 

considered multibody systems consists of a kinematic structure of rigid bodies adorned 

with smooth convex surfaces that discretize the areas of potential contact. For this 

purpose, a methodology is developed for surface modeling and shape analysis of body 

outlines that are encoded more efficiently using smooth convex surfaces rather than 

triangular meshes or freeform surfaces. As for the dynamics of multibody systems with 

compliant contact, it depends on the surface shapes and on how contact forces relate to 

the distance between the outlines of the interacting bodies. For this purpose, a contact 

detection methodology is proposed to calculate the closest points between smooth 

convex surfaces, being the closest distance formulation based on the common normal 

concept where tangent vectors are calculated analytically with a Householder 

transformation. The performed computational experiments and numerical examples 

reveal that the developed methodologies find useful applications in various 

computational disciplines. In particular, computational biomechanics applications are 

presented, where smooth convex surfaces are used to identify ovoidal shapes from 

spheroidal joint data and to accurately simulate foot-ground contact during human gait. 

 

Keywords 
 

Smooth convex surfaces, vector orthogonalization, Householder transformation, surface 

fitting, minimum distance calculation, contact detection, common normal concept, 

compliant contact, musculoskeletal biomechanics, forward dynamics. 
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1. Introduction 
 

1.1 Motivation 

 

Macroscopic mechanical systems are governed by the physical principles known as 

Newton’s laws of motion. Ever since their enunciation in the 17th century, these 

principles have been mathematically represented by several equivalent formalisms (e.g., 

Newtonian, Lagragian, Hamiltonian, Kanian), which systematize mechanical concepts 

and relations into well defined mathematical objects, expressions and methods. The 

kernels to any classical mechanics formalism are the equations that represent the 

system’s motion and these can be written either in a differential, mixed algebraic-

differential or integral format. According to the complexity of the mechanical 

components and their interactions, a mechanical system presents either an analytical or 

numerical solution for the equations of motion that describe its kinematic and kinetic 

behavior. For systems that carry an analytical nature, in particular highly simplified 

mechanical systems, closed-form and exact solutions to these equations can be found, 

where the corresponding analytical expressions are valid for any permissible values of 

input (Corben and Stehle 1977; Nikravesh 1988; Yamaguchi 2006).  

 

For the majority of mechanical systems it is proven to be either difficult or 

impossible to find analytical solutions. In such cases, Computational Engineering 

models and methods arise as a way to estimate a solution that, with great accuracy, 

represents their overall and intricate mechanical features. These computational models 

and methods, by estimating quantities that are difficult or impracticable to measure 

experimentally and, by being able to test different physical parameters and conditions, 

are alternative to or serve to complement more traditional scientific approaches of 

experimental mechanics and to widen the scope of theoretical mechanics, as new and 

refined research questions emerge from computational indagations (Stein et al. 2004).  

 

In order to do so, computer models demand the simplification of a mechanical 

system to capture its essential features and to understand more clearly its behavior. On 
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the other hand, computer methods also demand simplification, in this case, the eventual 

linearization of non-linearities that arise naturally from the equations of motion or 

typical geometric conditions that describe contact phenomenon. Simplification is 

therefore a crucial step in computational mechanics as it makes a theoretic or 

experimental problem solvable to a tractable level and filters out any irrelevant or 

insignificant aspect of reality. Once the simplifying assumptions are clearly established, 

computational tools can deliver qualitative and quantitative predictions of a mechanical 

system but only after the system is submitted to an iterative cycle of analysis (i.e., 

simulating the mechanical behavior) and design (i.e., tuning geometric, topologic or 

material parameters) (Nikravesh 1988). 

 

Although the modeling paradigms presented in Computational Engineering are 

numerous they can be divided in two major classes: rigid mechanics or deformable 

mechanics. This classification is based on the degree of body deformation and the 

amplitude of the range of movement between bodies. While finite element methods are 

typical approaches in deformable mechanics, multibody dynamics is tailored made to 

study mechanical systems composed by body parts that present large displacements. 

Multibody methods are also better suited for applications that involve sensitivity studies 

and optimization processes, both very useful for any computer-aided analysis and 

design system, as they are computationally efficient for predicting motion of articulated 

systems (Nikravesh 1988; Stein et al. 2004). 

 

As the name reveals, the main assumption of rigid multibody dynamics consists of 

representing a mechanical system as a set of interconnected non-deformable 

components, i.e., the relative distance between material particles of a body is invariant 

under any spatial-temporal configuration or applied loads. A collection of concentrated 

forces and moments are punctually distributed on the system components, acting as 

excitations to move a minimal set of degrees of freedom that establish the kinematic 

response (i.e., position and orientation) of each body. The major limitation of this 

computational paradigm is the inability to compute deformation-based quantities such 

as stresses, strains, and internal displacements due to the founding assumption of body 

rigidity (Nikravesh 1988; Stein et al. 2004). 
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Within the scope of rigid body dynamics, both manmade mechanisms and biological 

systems can be mathematically represented and computationally implemented under a 

multibody formalism. Biological systems belong to the scope of Computational 

Biomechanics, a discipline concerned with modeling and simulating natural systems, 

from the macromolecular level to the human body scale, with great realism and 

computational efficiency. For the macroscopic level, these models describe correlations 

and cause-and-effect relationships among motor control, muscle excitations and 

activations, musculotendon contraction, body segment accelerations, and joint loading. 

In particular, the anatomy and physiology of the neuromusculoskeletal system can be 

emulated as a forward dynamics simulation where neural impulses excite muscles that 

are attached to bones which in turn are interconnected at highly movable joints. Thus, 

biomechanical computer models and methods form a framework that relates muscle 

mechanics with whole body movement (Zajac et al. 2002; Erdemir et al. 2007).  

 

It is easy to realize the value that computer musculoskeletal models have for clinical 

and surgical practices as mobility impairments, due to disease or injury, have a 

profound impact on the quality of life. Their applicability is vast and can be used to 

understand the biomechanical outcome and to design more effective medical 

procedures. Also, they are used to simulate surgical manipulations of 

neuromusculoskeletal structures in order to improve mobility in people with 

musculoskeletal and neurologic disorders. In addition, musculoskeletal models are used 

to support medical diagnosis at the pre- and post-operative stages, to provide tools for 

the design of artificial joints, protective equipment for sportsmen or for vehicle 

occupants, and to analyze injury mechanisms (Thelen et al. 2006; Delp et al. 1990; 

Neptune 2000; Pandy 2001). One of the greatest purposes of musculoskeletal models 

consists of serving as complement to experimental studies by estimating biomechanical 

quantities that are extremely difficult or ethically impracticable to measure in vivo, such 

as neural control, muscle excitation patterns, muscle fiber forces, ligament forces, joint 

torques and reaction forces or articular contact patterns and pressures. Therefore, 

computational methods can be seen as a gateway to estimate and predict the quantitative 

and qualitative nature of biomechanical parameters, even for parameters that the lack of 

standard approaches of non-invasive measuring or those that are not easily validated 

experimentally (Pandy 2001; Neptune et al. 2009). In a near future, computer 
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musculoskeletal models have the potential to design patient-specific treatments to 

restore more effectively the function of force-generation capacity of muscles, joint 

motion, or ligament stability (Fregly 2009). This would provide not only a more 

objective prediction of post-treatment function but also an informed clinical or surgical 

decision rather than one based only on subjective experience, hence reducing the 

recovery time and operational costs involved in treatment (Fregly et al. 2012). 

 

Transversal to all disciplines of Computational Engineering, including multibody 

dynamics and musculoskeletal biomechanics, resides the study of geometry and 

topology. Geometry is at the core of kinematics as it is used to determine moment arms, 

to formulate the surface outline of interacting bodies and the degrees of freedom (i.e., 

position and orientation) of all bodies that compose a mechanical system, along with 

temporal derivatives of the degrees of freedom. Topology dictates the rules on how 

bodies are interconnected to provide a clear representation of the system’s degrees of 

freedom. Geometrical concepts are also used as fundamental mathematical objects to 

define contact forces and moments between the system components, for instance, to 

define the outlines of a body or to determine the minimum distance between body 

boundaries.  

 

Since contact loads are ubiquitous to any mechanical system and play a crucial role 

on its dynamical response, there is a huge interest on studying the geometry of artificial 

and biological mechanisms where contact takes place. Both rigid body dynamics and 

musculoskeletal biomechanics offer a myriad of challenging geometric problems that 

neither experimentation nor theoretics can answer alone. Some problems have an 

analytical solution, but the majority can only be solved with Computational Geometry 

techniques, in particular, design problems related to geometric modeling and shape 

analysis (Willmore 1959; Velho et al. 2002; Farin 2002). Important geometric questions 

that arise whenever two contacting bodies interact also require the use of Computational 

Geometry techniques (Johnson 1985). 

 

Pivotal to these geometric problems is the mathematical model employed to 

represent the geometry on an object. Both the problem formulation and solution 

proposal orbit around the adopted mathematical model, namely, its representation which 
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can be explicit, implicit, parametric, or mixed (Duncan 2005). The diversity of surface 

mathematical models with well defined analytical expressions can be grouped into two 

major classes: idealized geometries and freeform surfaces. Idealized geometries usually 

have rigid radial dimensions, possess implicit and parametric expressions that describe 

an object, frequently, by a single surface patch with just a few set of parameters, and are 

usual to model simplified versions of a geometric locus. Algebraic surfaces, quadrics, 

superquadrics and hyperquadrics are examples of such surface models (Bloomenthal et 

al. 1997; Barr 1981; Hanson 1988). On the other hand, freeform surfaces can represent 

any complex, flexible, and organic shape usually with a parametric representation 

consisting of several patches glued together by continuity constraints. B-splines (Farin 

2002), NURBS (Duncan 2005) and T-splines (Sederberg et al. 2003) are examples of 

the freeform surface class.  

 

Freeform surfaces set the bar of accurate geometric representation at the highest 

level. But this fact does not hinder the true applicability of idealized geometries for 

modeling purposes. In reality, the advantages of using these rigid analytical surfaces 

results from their intrinsic geometric simplicity, in particular, idealized geometries are 

used to approximate the overall geometric complexity of bodies that compose a 

mechanical system. By considering only the global features of a mechanical system, all 

the unnecessary surface boundary details are left out. This is an important aspect for 

feature extraction and geometric measurement, specially, for shape analysis. These 

simpler models (i.e., geometric primitives) are not only capable of representing a wide 

range of geometric shapes with just a few parameters, but also to construct more 

complex objects by, skillfully, assembling these simpler geometric primitives. Such 

modeling paradigm is performed with the constructive solid geometry technique, where 

geometric primitives represent independent parcels of geometric information of the 

overall geometry. For instance, since the musculoskeletal system is anatomically 

complex, the amount of geometric information needs to be reduced to highlight 

essential three-dimensional geometric relationships among the system elements. In 

particular, geometric primitives are used to approximate the interior volume and 

outlines of bodies by partitioning the human figure into several sub-volumes along the 

skeleton (MADYMO® 2012). Notice that even relatively simple geometric models can 

report the non-linear behavior of a biomechanical system. Another important advantage 
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of idealized geometries is related to their computational efficiency as their incorporation 

into a multibody model does not carry an important computational cost (MADYMO® 

2012). Contact procedures also require less computation time when modeling the 

multibody system with idealized geometries. Surface fitting and contact detection are 

less expensive when using idealized geometries in comparison to freeform surfaces. 

Commercial software developers have also been faithful supporters of the inclusion of 

geometric primitives in their geometric and contact modeling capabilities (MADYMO® 

2012; LifeMOD Biomechanics ModelerTM 2002). 

 

Therefore, and under the scope of rigid body dynamics, to accurately design and 

simulate a mechanism, that is either interacting with the surrounding environment or 

devising relative joint motion among the articulated bodies that compose it, contact 

forces must be utterly considered. Computational Contact Mechanics is the discipline 

that provides the models and methodologies necessary to compute the behavior of any 

constrained mechanical system. The constraints are compliant (i.e., soft) or non-

compliant (i.e., hard) in nature and induce the reactive forces produced at 

communicating rigid bodies (Yamaguchi 2006). The general problematic of rigid 

contact analysis focuses on the resolution of the following fundamental problems 

(Johnson 1985):  

 

(i) definition of a representative geometric description of the contacting surfaces;  

(ii) contact detection;  

(iii) minimum distance calculation between potential contacting surfaces; and  

(iv) establishment of a constitutive force model that depends on the bodies material 

properties, minimum distance between bodies and associated rate change. 

 

This thesis focuses on the first and third fundamental problems of compliant contact 

mechanics. Thus, the general motivations for this work sprout from contemporary 

geometric problems that continue to challenge not only multibody dynamics and 

musculoskeletal biomechanics, but also many other fields of computer science. The 

main motivation for this work comes from the current interest in integrating surface 

contact models in constrained multibody systems. In fact, addressing contact problems 

is of great importance in the design and analysis of mechanisms and machines and, 
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more importantly, in biological systems as contact models can estimate the contact 

quantities that are often inaccessible in clinical and surgical practice.  

 

Central to this work is the adoption of smooth convex surfaces as idealized 

geometries. Smooth convex surfaces are capable of representing many biological 

structures and present desirable mathematical properties. Planes, spheres, ellipsoids, 

superellipsoids, ovoids and superovoids are the surface models used in this thesis. It 

should be noted that, for many other reasons, these surfaces also have a growing 

acceptance within many computer science communities.  

 

Other purposes of this work consist of developing computational tools and methods 

related to interacting smooth convex surfaces, namely, how to efficiently determine 

tangent vectors to an implicit surface (Lopes et al. 2013a), and how to accurately 

determine the minimum distance between such surfaces in an efficient manner (Lopes et 

al. 2010). More particular biomechanical questions that are related to contact analysis 

are addressed and used as application cases, namely, the geometric modeling of 

spheroidal articular surfaces (Lopes et al. 2013b) and the comparison between 

conventional pointlike and surface contact models for modeling the foot-ground contact 

interaction.  

 

Although part of this work is dedicated to study very specific biomechanical 

problems (e.g., articular surface shape analysis and walking forward dynamics 

simulations with surface contact models), the contributions and innovations of this work 

are certainly the thesis’ major assets as the applicability of the research here conducted 

is widespread to areas in computer science and simulation technology. 

 

1.2 Problem statement 

 

Dealing with geometric problems is unavoidable when studying the mechanics of 

multibody systems with compliant contact elements, in particular, the musculoskeletal 

biomechanics of the human body. In this thesis, the considered problematic can be split 

in two major topics. Firstly, on the geometric modeling of mechanical objects and, 

secondly, on detecting if two objects are in contact by calculating the minimum distance 
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between them. The problems associated with these geometric topics are related to the 

design and analysis of mechanical systems, respectively, and express the inseparable 

structure-function relation (in biomechanics, the anatomy-physiology relation) that 

characterizes these systems. 

 

The following Sub-Sections pose the specific questions addressed in this thesis 

which sustain the generic topics stated above. All problems considered are formulated 

mathematically taking smooth convex surfaces as the lead actors to represent an object’s 

geometry. The resolution of these problems follows either analytical or numerical 

approaches. In the cases where only a numerical solution is found, there is also the 

concern to satisfy the most preferred computational desiderata: the computational 

solutions must be accurate, efficient, robust and easily implementable.  

 

1.2.1 Geometric description of scan data with smooth convex surfaces 

 

The first problem belongs to the realm of shape analysis of mechanical systems: given a 

set of points obtained by scanning a 3-D object, and assuming that the object is rigid 

and that its global characteristics can be represented by spheres, (super)ellipsoids or 

(super)ovoids, which is the shape model that best fits the scanned data? The motivation 

around this problem lead to indagations on the shape analysis of spheroidal synovial 

joints, namely for the humeral and femoral heads, and to the development of a surface 

fitting methodology that includes medical image segmentation, mesh smoothing, and 

anatomical feature extraction. In order to model the geometry of anatomical structures 

or human body segments, the proposed surface fitting method, relying on the implicit 

representation, must be generic enough to approximate a suitable surface to any feasible 

set of scanned data. 

 

1.2.2 Minimum distance calculation between potential contacting surfaces  

 

The second problem appears when formulating the minimum distance between two 

smooth objects: given a normal vector to an implicit surface, how to determine 
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analytically an orthogonal set of tangent vectors to the surface? This problem appears in 

many other geometric situations, basically, in any application where orthogonalizing a 

vector is necessary. 

 

The third problem consists of detecting if two smooth objects are in contact: given 

the affine transformation information (i.e., dimensions, position and orientation) of two 

smooth convex surfaces, what is the minimum distance between them? This problem is 

specifically posed for a pair of convex implicit surfaces and also for a (super)ellipsoid-

plane pair parametrically defined. According to the closest distance calculated it is then 

possible to detect whether two bodies are in contact. Note that this problem is not easy: 

even for a pair of simple surfaces such as sphere and ellipsoid, the minimum distance 

problem is mathematically involved. 

 

The fourth and final problem deals with comparing contact models used for 

representing the foot-ground interaction taking walking simulation as a case study: 

between a pointlike ground-contact model, which is the most conventionally used in 

walking biomechanics, and a surface contact model defined as a (super)ellipsoid-plane 

pair, which provides a better computational cost without compromising the simulated 

gait data? 

 

1.3 Literature review 

 

This literature review focuses on the research problems abovementioned in Section 1.2. 

Before starting with an in-depth literature review per se, this section opens with an 

overview of the applicability of the research developed in several computational 

disciplines. For this purpose, Section 1.3.1 provides many examples found in academic 

and industrial sources, giving more solidity to the importance of smooth convex 

surfaces and to the notion that many open questions, namely, the ones stated in Section 

1.2, still remain active and under the attention of many different scientific communities. 

Secondly, a more sound literature review on surface fitting, vector orthogonalization, 

and contact detection methods developed to solve the problematic pointed in Section 1.2 

is given in Section 1.3.2, Section 1.3.3, and Section 1.3.4, respectively. Regarding the 

problem statement related to contact model comparison for foot-ground contact in 
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walking simulations, due to its specificity and to promote a more fluent reading, the 

related literature review is compiled in the corresponding chapter, namely, in Section 

6.1. 

1.3.1 Examples of the usage of smooth convex surfaces in computational disciplines 

 

During the past decades, smooth convex surfaces have been extensively used in a vast 

range of computational studies and industrial applications. Examples of such 

computational studies can be found in Geometric Modeling, Computational Geometry, 

Computer Vision, Geomechanics, Robotics, Musculoskeletal Biomechanics, Computer-

Aided Orthopedic Surgery, Computer-Aided Manufacturing, Vehicle Design and 

Crashworthiness among many other disciplines. There are even entire mathematical 

fields dedicated to the study of convex sets such as Convex Geometry and Convex 

Optimization, to name a few (Bazaraa et al. 1993). Each distinct discipline approaches 

common geometric problems from different angles, thus providing rather disjunctive 

developments and bringing fresh perspectives to solve specific 3-D modeling and 

contact detection problems. Still today, each discipline has their favorite solutions and it 

seems that only an interdisciplinary effort could bring final resolutions to, apparently, 

enduring problems. 

 

Through a series of application examples, the goal of this Sub-Section is to give a 

broad view on the usefulness of smooth convex surfaces in various computational 

disciplines. All examples consider mechanical systems, either discrete or articulated 

mechanisms, where smooth convex surfaces are rigidly attached to a kinematic structure 

and are used for 3-D modeling or contact detection purposes. 

 

Geometric Modeling with smooth convex surfaces such as planes, spheres, and 

ellipsoids is a common practice in many applications, especially those where body 

outlines are encoded more efficiently using simpler surfaces rather than meshes or 

freeform surfaces, as shown in Figure 1.1. As an example of such geometric 

simplification, the volume of a given 3-D mesh can be approximated by a hierarchical 

set of optimized bounding ellipsoids (Liu et al. 2007; Bischoff and Kobbelt 2002). The 

volume occupied by the mesh is divided into several sub-volumes where each is 
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approximated by a tight volume bounding ellipsoid, yet still maintaining shape fidelity 

of the original mesh. This set of bounding ellipsoids allows the approximate 

reconstruction of 3-D shapes from a very small amount of information, a useful feature 

for robust transmission of geometric objects. Probably the most popular 3-D modeling 

technique that uses smooth convex objects is Constructive Solid Geometry where 

complex shapes are built by combining various primitive shapes with Boolean 

operations (Pasko et al. 1995). While Constructive Solid Geometry is a technique well 

suited to model manmade objects with great geometric precision, other modeling 

schemes make use of smooth convex surfaces to model organic shapes (PIXOLOGIC® 

2013). For instance, a mesh can be generated as the envelope of a set of spheres placed 

at key locations of an articulated structure (Ji et al. 2010; Velho et al. 2002). The 

resulting mesh can be further improved and refined or modified by manipulating the 

underlying articulated structure. This modeling technique finds applications in digital 

sculpting and skeleton-based animation (PIXOLOGIC® 2013; Ji et al. 2010). 

 

 
Figure 1.1 – Smooth convex surfaces for geometric modeling purposes: (a) ellipsoid-trees for a 
horse and bunny models by (Liu et al. 2007), showing four levels of bounding volume 
complexity; (b) diagram of a solid built with geometric primitives accompanied with graph of 
Boolean operations; (c) overview of (Ji et al. 2010) approach to build a base mesh based on a 
skeleton of spheres {(a) Adapted from (Liu et al. 2007) with author’s permission; (b) Adapted 
from Wikipedia; (c) Adapted from (Ji et al. 2010) with John Wiley and Sons permission}. 

(a) (b)

(c)
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Another computational discipline where smooth convex surfaces play fundamental roles 

is Computer Vision. One of the goals of Computer Vision is to automatically 

reconstruct 3-D objects and environments from a set of images. Smooth convex surfaces 

offer geometric models such as superellipsoids to represent global features of objects 

depicted in image data, namely, for image segmentation, object pose estimation and 

recognition, as seen in Figure 1.2 (Jaklič et al. 2000; Jaklič and Solina 2003; Katsoulas 

et al. 2008). An interesting application consists of tracking fully articulated objects by 

registering surface models to 3-D image data (Horaud et al. 2009). This challenging 

problem has been addressed to recover, from several camera images, the articulated 

human-motion parameters by fitting an articulated implicit surface, built by blending 

over a set of ellipsoids linked to a kinematic structure. 

 

 
Figure 1.2 – Computer Vision applications with smooth convex surfaces: (a) (Katsoulas et al. 
2008) use superellipsoids to recover object information from intensity and range scan images; 
(b) (Horaud et al. 2009) represent body segments as ellipsoids that when blended originate an 
articulated implicit surface of the human body which can be fitted to motion capture data {(a) 
Adapted from (Katsoulas et al. 2008) with IEEE permission; (b) Adapted from (Horaud et al. 
2009) with IEEE permission}. 

(a)

(b)

Intensity 
image

Range scan 
image

Recovered 
superellipsoids
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A very active research topic that makes extensive use of smooth convex surfaces for 

contact dynamics is the Discrete Element Method. This method is a well established 

tool in geomechanics and chemical engineering where it is used to compute the motion 

of mechanical systems with a large number of discrete particles, namely, particle flows 

of granular media, powder media and pharmaceutical tablets, being some examples 

illustrated in Figure 1.3 (Fleissner et al. 2007; Donze et al. 2007; Yan et al. 2010; 

Kodam et al. 2012; Xu and Chen 2012). Numerous algorithms for contact detection 

between convex surfaces have been presented in the literature and, since Discrete 

Element Method simulations are computational expensive, more efficient contact 

detection methods are always welcomed (O'Sullivan 2010). 

 

 

Figure 1.3 – Discrete Element Method applications with smooth convex surfaces: (a) 
simulation of a particle driven water wheel by (Fleissner et al. 2007) where each particle (i.e., 
sphere) is colored according to its velocity; (b) (Kodam et al. 2012) by grouping three spheres to 
model a bi-convex pharmaceutical tablet demonstrate accurate simulations of tablets in a 
rotating drum {(a) Adapted from (Fleissner et al. 2007) with Springer permission; (b) Adapted 
from (Kodam et al. 2012) with Elsevier permission}. 

(a)

(b)

Experimental Simulation
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Figure 1.4 – Applications of smooth convex surfaces in Musculoskeletal Biomechanics: (a) 
(Desailly et al. 2010) identifies muscle paths by wrapping a straight around smooth convex 
surfaces; (b) medical image based knee model and simplified version used for modeling joint 
contact by (Sandholm et al. 2011) {(a) Adapted from (Desailly et al. 2010) with Elsevier 
permission; (b) Adapted from (Sandholm et al. 2011) with Springer permission}. 
 

Smooth convex surfaces also find multiple applications in Musculoskeletal 

Biomechanics including shape analysis of bone structures (Sholukha et al. 2011), 

definition of musculotendon paths (Garner and Pandy 2000), and implementation of 

contact surfaces to model joint motion, as shown in Figure 1.4 (Pandy et al. 1997) or 

interactions between external environment and body segments (Vilà 2012). Regarding 

shape analysis, the articular surfaces of synovial joints are commonly represented as 

idealized quadric geometries, such as spheres, ellipsoids and paraboloids (Netter 2001; 

Schuenke et al. 2012). This type of geometric representation has revealed to be 

important for designing artificial joint prosthetics (Jiang et al. 2010) and to measure 

relevant anatomical information for surgical procedures (Cerveri et al. 2011). When 

(a)

(b)

Straight line Wrapping surface Wrapped muscle

Detailed knee model Simplified knee model

ellipsoids
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dealing with musculotendon geometry, many muscles present a non-straight line path as 

they wrap and slide around the complex morphologies formed by passive structures 

(e.g., ligaments and bony parts). The accurate prediction of muscle paths in relation to a 

joint is a fundamental aspect in biomechanics, as muscle length, moment arm and 

torque directly depend on the muscle path. Most of these morphologies can be modeled 

as spheres and cylinders since, for these surfaces, the wrapping path can be analytically 

determined (Garner and Pandy 2000; Charlton and Johnson 2001; Desailly et al. 2010). 

In a more dynamical front, smooth convex surfaces have been used to model joint 

contact for estimating joint loads and contact pressure distributions (Guess 

and Maletsky 2005; Sandholm et al. 2011). The articular surfaces are modeled by fitting 

simple geometric primitives, such as planes, spheres and ellipsoids, to range scan data 

or medical images. These geometries are then incorporated into a musculoskeletal 

model as contact elements from which contact loads are determined and inserted into 

the equations of motion.  

 

The amount of studies reported here shows that the utility of smooth convex surfaces 

has been successfully recognized in academia. But the utility of this type of surfaces has 

also known commercial success, namely, in the form of physically-based modeling and 

simulation software. Two major software programs, which have been applied to a wide 

variety of commercial projects, are LifeMOD (LifeMOD Biomechanics ModelerTM 

2002) and MADYMO (MADYMO® 2012). The former is directed to generate human 

models with various levels of sophistication and aims to address applications related to 

biomechanics, such as sports performance, injury evaluation and gait simulation 

(McGuan 2002). The latter is better known for vehicle design, vehicle ride comfort, 

crashworthiness and occupant safety. MADYMO is also known to have a built-in set of 

dummy models described by means of ellipsoids, cylinders and planes (MADYMO® 

2012). The major limitations of this type of simulation software consist of their closed-

source nature and, more importantly, of documentation which does not report how 

contact detection (i.e., minimum distance between surfaces) is formulated.  

 

In general, the geometric modeling paradigm of such software packages consists of 

building, for each mechanical system and surrounding environment, a kinematic 

structure with smooth convex surfaces attached to the composing bodies. In order to 

http://www.ncbi.nlm.nih.gov/pubmed?term=Guess%20TM%5BAuthor%5D&cauthor=true&cauthor_uid=15863345
http://www.ncbi.nlm.nih.gov/pubmed?term=Maletsky%20LP%5BAuthor%5D&cauthor=true&cauthor_uid=15863345
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widen the range of commercial projects, these software packages present three 

fundamental geometric features (LifeMOD Biomechanics ModelerTM 2002; 

MADYMO® 2012): (i) by combining several surface elements, a large variety of body 

outlines can be modeled with a very low set of parameters even if such model consists 

of a less detailed geometrical representation comparatively to a mesh or a freeform 

surface model; (ii) smooth convex surface models can be refined by including more 

surface elements in order to increase geometric accuracy; and (iii) flexible bodies can be 

approximated as smooth convex surfaces lumped in kinematic joints in combination 

with dynamic restraint models.  

 

As for the simulating paradigm of these commercial software packages, smooth 

convex surfaces are used for multibody dynamics simulations where each surface acts 

as a contact element. The interactions between the mechanical system and the external 

environment, and also the internal contact forces at joints are modeled with these 

contact elements. Note that, by definition, multibody systems with smooth convex 

surface models are well suited for performing extensive parameter sensitivity and non-

linear optimization studies, since the multibody approach is computationally fast to 

simulate the dynamic behavior of general mechanical systems (Johnson 1985; 

Nikravesh 1988). These models can be used in co-simulation studies where multibody 

methodologies are combined with a finite element solver, making use of the best of both 

approaches: efficient methods for simulating the dynamics of articulated systems and 

creation of detailed models of deformable structures (MADYMO® 2012). 

1.3.2 Smooth convex surface fitting for 3-D modeling and shape analysis 

 

The previous Sub-Section revealed the importance of smooth convex surfaces in several 

computational disciplines. This Sub-Section focuses on surface fitting, in particular, 

methods found in Geometric Modeling, Image Processing and Computer Vision that 

make use of smooth convex surfaces. A brief literature review on this topic is presented 

along with applications in 3-D modeling and shape analysis of scanned data. 

 

In general, fitting a surface to a set of scattered or unorganized points (i.e., point 

cloud) consists of determining the surface parameters that minimize the distances 
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between the surface and each point of the data set (Bazaraa et al. 1993; Ahn 2004). 

Hence, a point cloud can be represented by a mathematically well-defined shape model. 

It is in the compact nature and analytic properties exhibited by a shape model that 

resides the core purpose of surface fitting: the large amount of geometric information 

contained within a point cloud is always compressed into a much lower dimensional 

space of the shape model parameters. Therefore, surface fitting is commonly used as a 

3-D modeling procedure to build simple or complex geometries from large amounts of 

scanned data, as illustrated in Figure 1.5. Surface fitting is also frequently used for 

shape analysis, which consists of a procedure to identify which shape, from an 

appropriate collection of shape models, better fits a given point cloud (Petitjean 2002; 

Kumar et al. 1995).  

 

 
Figure 1.5 – Surface fitting example where a smooth convex surface is used to accurately 
represent the geometry and topology of a mechanical structure, in this case, a femoral head. 
 

In particular, smooth convex surfaces have deserved much attention in surface fitting 

applications since global shape attributes, both qualitative and quantitative in nature, 

can be reliably inferred from point clouds (Jaklič et al. 2000). In addition, and due to 

their intrinsic simplicity, smooth convex surfaces are an efficient and compact 

representation capable of describing many 3-D objects, thus capturing the geometric 

essence of a point cloud and, simultaneously, uncover its underlying topology. 

Regarding object topology, performing surface fitting with smooth convex surfaces 

requires that the point cloud has a similar topology to the surface type under analysis. 

For more generic point clouds, partitioning or segmenting the original data set into 

smaller point clouds is necessary for an effective smooth convex surface approximation. 

 

Triangular mesh from 
medical images

Pointcloud with 
fitted surface

surface 
fitting
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Figure 1.6 – Femur shape prediction with quadrics, namely, sphere, ellipsoids and hyperboloids 
by (Sholukha et al. 2011). A total of nine geometric primitives are fitted to coordinate data 
{Adapted from (Sholukha et al. 2011) with Elsevier permission}. 
 

Regarding methodologies and algorithms, any literature revision on the topic of 

smooth convex surface fitting reveals the following common aspects (Ahn 2004; 

Petitjean 2002): (i) as an optimization procedure that seeks for the best surface of a 

given point cloud, surface fitting is usually formalized as a least squares minimization 

problem; (ii) in general, the objective function consists of a sum of squared residuals or 

surface errors where each residual is a distance measure, either Euclidean (i.e., physical 

distance) or non-Euclidean (i.e., quasi-physical distance), that quantifies how close a 

point is to the optimal surface; (iii) surface fitting based on the Euclidean distance 

provides better results with the cost of larger computation times, while surface fitting 

with a non-Euclidean distance provides fast and good results but requires much more 

user supervision; (iv) both heuristic and meta-heuristic methods have been used for 

fitting smooth convex surfaces, although the latter provides a more robust 

approximation method; (v) being an iterative procedure, it is necessary to provide an 

initial guess for the surface parameters, preferably close to the final solution, in order to 

guarantee that the algorithm converges to a desirable fit; (vi) by far, the most used 

surface representation for fitting smooth convex surfaces is the implicit representation. 

 

Being one of the most elementary tasks in science and engineering, surface fitting 

finds a wide range of applications that explore the potential of smooth convex surfaces 

for 3-D modeling and shape analysis. Here, a short application list is given. Smooth 

convex surface fitting finds its applications in Computer Aided-Design and Computer-

Aided Manufacturing, where the measurement points of real objects require a well-

defined mathematical description that outputs accurate and reliable geometric 

parameters, such as position, orientation, size and shape. Within Image Processing, 

Computer Vision and Pattern Recognition, surface fitting is applied not only to model 
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the geometry but also to extract geometric information contained in 2-D and 3-D image 

data. The shape parameters obtained are used for object modeling, object recognition, 

object reconstruction, shape recovery from range data, and scene interpretation, as 

illustrated in Figure 1.6 in which the geometry of a femur is approximated by quadric 

surfaces. (Ahn 2004; Xiao and Siebert 2005; Hyun et al. 2003). In particular, Medical 

Image Processing requires tools to accurately recover or reconstruct the shape of objects 

in large sets of contiguous images, allowing also the extraction of relevant anatomical 

information for clinical and surgical practice (Petitjean 2002; Mahaisavariya et al. 2002; 

Sholukha et al. 2011).  

1.3.3 Vector orthogonalization 

 

Vector orthogonalization is a common operation performed in many mathematical and 

engineering applications. It consists of finding a set of orthogonal vectors to a given 

base vector, for example, finding the tangent and binormal vectors to a given surface 

normal, as represented in Figure 1.7. In this Sub-Section, several approaches found in 

the literature to orthogonalize a vector are presented. 

 

 
Figure 1.7 – Vector orthogonalization performed upon a given surface normal in order to obtain 
a set of orthogonal vectors that belong to the tangent plane. 
 

A first and naïve approach for vector orthogonalization consists of encountering a 

non-collinear vector, v, whose cross-product  with a given arbitrary non-null vector n 

would provide an orthogonal vector, t, with v, n, t ∈ ℝN. By applying a cross-product 

between n and t a second vector of the base is obtained, b, with b ∈ ℝN. In order to 

avoid vanishing vectors or quasi-null vectors, the angle between the given vector, n, and 

the auxiliary vector, v, must be sufficiently large so that the cross-product does not 

output a quasi-null vector. An example of this approach is presented in (Eberly 2012) 
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where an orthonormal set in several dimensions is computed based on the cross-product 

between the given vector and the column of the identity matrix whose unit component 

value corresponds to the entry of the given vector with the least magnitude. This 

approach is also applied by (Lopes et al. 2010) where a set of non-collinear vectors is 

obtained based on the analogy with a square plate mechanism.  

 

A second approach for vector orthogonalization consists of writing an orthogonal 

matrix (e.g., the projection matrix of the given vector, nnT) and rotating its column 

vectors so that one of them is collinear to the given vector. Since this matrix is 

orthogonal, its columns form a basis which can be rotated so that one of the basis 

vectors becomes aligned with the given vector. By evaluating the angles formed 

between the given vector and with each of the basis vectors, one can determine the 

desired rotation by simply choosing a basis vector that makes a sufficiently large angle 

with the given vector, being the axis of rotation is given by their cross-product. This 

approach has been used for calculating curvatures of implicit surfaces (Zhao et al. 

2006). Note that these two approaches do not provide a direct mathematical formula for 

the desired vector base. They rather consist of geometric processes involving testing for 

eventual singularities and malformed vectors.  

 

A third approach for vector orthogonalization, which is only applicable to normal 

vectors derived from implicit and parametric surfaces, consists of calculating the 

eigenvalues and eigenvectors of the normal vector gradient (i.e, the Jacobian of the 

normal vector) since these are the principal curvatures and principal directions at the 

surface point, respectively (Willmore 1959). The eigenvectors form an orthogonal basis 

where one of the vectors is collinear to the given normal. Despite the richness of 

geometric attributes associated with this approach, it is only valid for C2 continuous 

surfaces and solving the eigenvalue/eigenvector problem is computationally costly as it 

demands the calculation of the Jacobian matrix and to solve the characteristic 

polynomial. In addition, the eigenvectors are numerical solutions, and thus, cannot be 

directly applied for analytical analyses. 

 

A forth approach consists of applying the first stage of a full form of the QR 

decomposition to construct an orthonormal basis, namely, a variant that uses either 
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Givens rotations or Householder reflections.  These variants output a matrix Q whose 

first column is collinear to the given vector. As for the most common variant, i.e., the 

reduced form using the Gram-Schmidt process is not applicable since, by definition, it 

only outputs a collinear vector when given a matrix with a column form. Among Givens 

rotations and Householder reflections, the latter is preferable since it exhibits the lowest 

computational cost for QR decomposition (Givens QR has twice more flop count than 

Householder QR). Most frequently in the literature, these variants are presented only for 

square matrices (Press et al. 2007) although the decomposition exists for a generic 

rectangular matrix (Stoilov and Stoilova 2004). In this thesis, the particular case of the 

input matrix defined as a 3x1 column is considered.  

1.3.4 Contact detection algorithms for smooth convex surfaces 

 

As described in Sub-Section 1.3.1, contact detection algorithms for smooth convex 

surfaces have important applications in several computational disciplines such as, 

molecule simulation in computational physics (Doney et al. 2005), modeling 

discontinuous mechanical systems in geomechanics (i.e., Discrete Element Method) 

(Lin and Ng 1995), and humanoid design in biomechanics (MADYMO® 2012). From 

such a variety of disciplines, distinct methods have been developed to determine if two 

convex surfaces are in contact, usually, by calculating the minimum distance between 

them. In general, computing the closest distance is not a trivial task. Although there are 

contact pairs that present analytical solutions, most smooth convex surfaces require a 

numerical approach. For instance, computing the minimum distance between two 

spheres is analytically simple, but between two ellipsoids (i.e., the simplest nonspherical 

shape) no analytic solution exists as reported in numerous publications (Zheng et al. 

2009; Pazouki et al. 2012; Xu and Chen 2012). This example highlights the fact that a 

contact detection problem can become mathematically involved just by considering a 

slightly different surface shape.  

 

Fundamental to the applicability of a contact detection algorithm is the considered 

surface representation. Given an application, the selection of the surface representation 

takes into account a tradeoff between accuracy and performance. For instance, the 

dominant representation for real-time and interactive applications (i.e., computer games 

http://www.sciencedirect.com/science/article/pii/S0032591012000198
http://www.sciencedirect.com/science/article/pii/S0032591012000198
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and virtual reality) is still the polyhedral surface. This surface representation provides 

an efficient handling of contact and is capable of modeling both simple and complex 

geometries. But polyhedral surfaces are geometrically inaccurate due to their discrete 

nature and lack of smoothness (van den Bergen 2004). Therefore, this representation 

does not fully address the needs of engineers that require precise and exact methods to 

quantitatively analyze the contact mechanics of a mechanical system. Since complex 

polyhedral surfaces can be accurately approximated by a set of smooth convex surfaces, 

other representations such as implicit and parametric surfaces are finding their way into 

contact detection as they enable smoother, geometrically exact, and less memory-

consuming algorithms. For these reasons, it is expected that contact detection 

algorithms for real-time and interactive applications will gradually shift their 

representation paradigm from polyhedral to smooth convex surfaces with 

implicit/parametric representation (van den Bergen 2004). 

 

During the past three decades, many contact detection methods were developed. 

These methods addressed smooth convex pairs in conformal or non-conformal 

configuration, and were described either with polyhedral, implicit or parametric 

representations. Here, a list of contact detection algorithms for smooth convex surfaces 

is presented. Most of the cases refer to contact detection between ellipsoids and 

superellipsoids, as these surface types have deserved great attention by several 

computational communities. As for deformable bodies, freeform surfaces, polyhedral 

meshes, and associated contact detection methods, these are out of the scope of this 

thesis. 

 

Smooth convex surfaces are particularly well suited for defining bounding volumes 

that completely enclose an object (Sulaiman and Bade 2012). They play an important 

role in proximity queries by improving the efficiency of any contact detection 

methodology. Common types of smooth convex bounding volumes are the sphere and 

capsule (i.e., a swept sphere) which present simple ways to test for surface overlap, as 

shown in Figure 1.8 (van den Bergen 2004; Ericson 2005; Pasko et al. 1995). Ellipsoids 

also prove to be very useful bounding volumes as reported by (Jia et al. 2011) that 

developed a proximity query expressed as an algebraic condition for real-time 

continuous contact detection for ellipsoids moving under rigid body transformations. 
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The algebraic condition is a quartic polynomial equation, also named as separation 

condition or characteristic equation, which relates the geometric parameters of shape, 

spatial orientation, and position of two ellipsoids. Depending on the sign of all four 

roots it is possible to determine the contact status. The resolution of the characteristic 

equation is straightforward, leading to a simple and yet efficient algorithm for contact 

detection of ellipsoidal bodies that computes the exact time interval of contact (Choi et 

al. 2009).  

 

 
Figure 1.8 – Examples of bounding volumes that completely enclose a detailed mesh object. 
 

Although proximity queries enhance the efficiency of contact detection methods, 

they only provide information on whether two surfaces overlap or not, thus, no 

information related to distance measures is outputted. In order to determine the closest 

distance between smooth convex surfaces, there are two common formulations found in 

the literature (Bazaraa et al. 1993; Johnson 1985): (i) as a constraint optimization 

problem in which the objective function is defined by the Euclidean distance between 

surface points, where the constraints are derived from the common normal concept, as 

illustrated in Figure 1.9, and the closest surface points or the direction of common 

normal are the design variables (Chakraborty et al. 2008; Portal et al. 2009; Xu and 

Chen 2012; Wellmann et al. 2008); and (ii) as a system of homogeneous non-linear 

equations consisting of geometric conditions given by the common normal concept 

(Baraff 1990; Vil’ke et al. 2009). 

 

It is well known from non-linear optimization that the minimum distance calculation 

for smooth convex surfaces is a problem for which the existence of a minimizing 

solution is proven by Weierstrass’ theorem, while the unicity of solution is proven by 

second-order optimality conditions (Grosan and Abraham 2008). The minimum 

distance calculation problem is also well-posed for the surface types addressed in this 

work since the solution depends continuously on the data that defines such surfaces. 
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Based on these theoretical results, several studies used constraint optimization methods 

to solve the minimum distance problem, as described in the next paragraphs. 

 

 
Figure 1.9 – Illustration of the most fundamental concept in contact detection: the surface 
points with closest distance present common normal directions. 

 

(Hopkins 2004) developed a contact detection technique for surfaces obtained by the 

dilation process from mathematical morphology (Serra 1983). The dilation process 

consists of placing the center of a sphere of fixed diameter at every point on a basic 

shape, thus, enabling a large family of shapes to be created, including ellipsoids. The 

minimum distance is computed numerically with a simple optimization method, namely 

the line-search method, where a distance vector constrained to the surfaces goes sliding 

until the change of the distance value falls below a preset tolerance. The major 

limitation of this method is that it takes 10-100 iterations to find the solution points. In 

addition, the method does not properly test for collinearity between normal surface 

vectors, thus compromising geometric accuracy of the results.  

 

Relying on an interior point algorithm, (Chakraborty et al. 2008) formulated the 

distance computation for convex bodies as an optimization problem to minimize the 

Euclidean distance subjected to the condition that potential contact points lie on the 

surfaces. Such method presents global convergence properties that are robust even in 

the absence of any initial information about the closest points. The method is also quite 

accurate since the identified points belong to the surface. Its main drawback is a lesser 

computational efficiency compared to other methods (Lin and Ng 1995; Kwak et al. 

2000).  

 

OPn OQn

P
Q
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Specifically for superellipsoids (Barr 1981) and contrary to most usual contact 

detection algorithms, (Wellmann et al. 2008) formulates the minimum distance problem 

with respect to the unknown common normal direction instead of the contact points 

(Lopes et al. 2010). Thus, the complexity of the problem is reduced from a four-

dimensional problem (i.e., surface contact points represented with a parametric surface 

representation) to a two-dimensional (i.e., direction vector) unconstrained optimization 

problem. Due to its non-linearity, the problem is solved by a combination of Newton’s 

method and a Levenberg-Marquardt method (Bazarra et al. 1993). The algorithm proved 

to be efficient in terms of the number of iterations required to reach a high geometric 

accuracy, but it is only applicable to smooth convex surfaces which present a closed-

form expression of the surface point locations that share a common direction with the 

given vector (e.g., Barr’s superellipsoids). 

 

Rather than dealing with intricate, complex and time consuming optimization 

schemes (Chakraborty et al. 2008; Jalón and Bayo 1994; Grosan and Abraham 2008; 

Moustakas et al. 2007), the constraint optimization problem can be reformulated as a 

system of non-linear equations (Grosan and Abraham 2008) where the minimum 

distance problem is written, solely, as the set of the geometric constraints that express 

the common normal conditions, thus, non-linear objective functions nor constraint 

equations are required. With the problem written as a system of non-linear equations, it 

is possible to explore efficient and accurate numerical methods such as the Newton-

Raphson method that offers quadratic convergence (Press et al. 2007; Atkinson and Han 

2005). The following paragraph describes several studies that formulate the minimum 

distance problem as a system of homogeneous non-linear equations. 

 

For discrete element modeling, (Lin and Ng 1995) applied contact detection 

algorithms for ellipsoids based on the common normal vector concept, which states that 

two points are the candidate contact pair of points if the normal directions at these 

points are collinear to the intersecting line. As a result, a set of non-linear equations, 

obtained from equaling only two coordinates of the normal vectors and from equaling 

two coordinates of the normal vector to the distance vector, is solved numerically. Two 

additional conditions of the points lying on the ellipsoids were also considered. As 

major limitations, the method was tested only for ellipsoids and presents a system of 
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non-linear equations that, although derived from the prescribed common normal 

conditions, is C1 continuous, does not consider one of the vectors coordinates and fails 

when the points of contact are coincident. (Baraff 1990) and (Vil’ke et al. 2009) also 

considered a set of equations that guarantee that the surface normals are collinear, the 

distance vector is collinear to the common normal vector and the contact points belong 

to the surfaces. The main difference between these two approaches resides on 

considering a pair of unconstrained multipliers to define the normal and distance vector 

magnitudes in order to satisfy the corresponding conditions. By considering these two 

variables, the system of equations becomes closely related to the Lagrange multiplier 

formulation for constrained minimization, thus the system consists of a total of 8 

equations with 8 unknowns instead of the desired 6 equations formulated in terms of the 

6 Cartesian coordinates of the contact points. These issues encourage the consideration 

of other relationships that include tangential surface vectors, namely, tangents and 

binormals in order to rewrite the set of equations, in a more propitious form, aiming at a 

more efficient and less complex numerical resolution of the contact detection problem. 

 

1.4 Scopes and objectives 

 

The main objective of this thesis is to study fundamental geometric questions related to 

smooth convex surfaces and their role in multibody contact dynamics, namely, surface 

tangent vector calculation, geometric modeling of joints, and contact detection. This 

objective is willingly accompanied by the goal to develop and implement reliable and, 

at the same time, efficient computational tools to study neuromusculoskeletal systems 

from both morphological and mechanical points of view. In order to attain these 

objectives, the following specific goals related to the above-mentioned geometric 

questions are addressed:  

 

• To explore the use of smooth convex surfaces for solving 

geometric  problems that naturally arise in multibody dynamics, in 

particular, musculoskeletal biomechanics; 
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• To develop a geometric modeling framework to build multibody 

systems by fitting implicit surface geometries to point cloud data; 

 

• To develop computational tools for the extraction of anatomical 

features and shape analysis of synovial articular surfaces by 

employing the implicit surface representation;  

 

• To examine the synovial joint classification proposed by 

MacConaill which assumes that spheroidal joints (e.g., shoulder 

and hip joints) are better described by ovoidal shapes than spheres 

or ellipsoids; 

 

• To determine an efficient, preferably analytical, forms of 

calculating surface tangent vectors, given solely the surface normal 

vector; 

 

• To investigate further applications of vector orthogonalization in 

differential geometry; 

 

• To develop and improve methodologies dealing with contact 

detection between implicit convex surfaces that can be used to 

describe rigid body contact interactions;  

 

• To shed light on how the redefinition of a simple geometric 

formalism, defined as the surface tangent vector, can be important 

to reformulate the contact detection problem; 

 

• To integrate compliant contact elements described as smooth 

convex surfaces in musculoskeletal simulations; 

 

• To develop computationally efficient surface contact algorithms to 

estimate reaction loads during human movement, where the 

traditional pointlike contact elements are compared with smooth 



28 
 

convex surface contact elements by evaluating computational 

performance and experimental validation.  

 

1.5 Contributions 

 

The contributions of this work are transversal to many computational disciplines besides 

Contact Mechanics and Musculoskeletal Biomechanics, and include: 

 

• The advancement of geometric modeling and contact detection 

methods dealing with smooth convex surfaces within multibody 

dynamics; 

 

• The development of computational tools that can be used in 

computer-aided orthopedic software and in physics-based 

simulation software; 

 

• The development and implementation of a framework for fitting 

generic implicit surface models to point cloud data that is capable 

of (i) extracting anatomical information from segmented medical 

images or range scan data; (ii) performing morphologic studies 

based on a hierarchy of shape models that outputs the shape that 

best fits the data; 

 

• To explicitize how the Householder transformation is a useful 

geometric tool that outputs a set of orthogonal vectors to a given 3-

D vector; 

 

• To show that the Householder vector orthogonalization formula is a 

simple, efficient, and numerically robust tool for contact mechanics 

applications; 
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• The deduction of differential geometry formulas to calculate 

tangent vectors and curvatures to an implicit surface based on the 

Householder transformation; 

 

• To make the Householder vector orthogonalization formula 

explicitly available in the literature; 

 

• The development and implementation of a mathematical 

framework on contact detection for convex implicit surfaces, where 

the minimum distance problem is reformulated using an elegant 

way to compute orthonormal sets based the Householder 

transformation;  

 

• Shifting the representation paradigm in contact detection 

algorithms  from polyhedral meshes to analytical surfaces (i.e., 

implicit or parametric), in particular, smooth convex surfaces since 

these enable smoother, geometrically exact, and less memory-

consuming algorithms and also can be used to approximate 

complex polyhedral meshes; 

 

• The formulation of the numerical expression for estimating the 

minimum distance between the contact pairs formed by ellipsoid-

ellipsoid and superellipsoid-superellipsoid; 

 

• The formulation of the analytical expression for calculating the 

minimum distance between the contact pair formed by an 

superellipsoid and a plane; 

 

• The development of more efficient compliant contact elements for 

simulating human movement, namely, gait motion; 

 

• To make publicly available code for performing vector 

orthogonalization and to detect contact between ellipsoids (MDC-
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ELLIPSOIDs 2013) which can be reused for educational and 

research purposes. 

 

1.6 Organization of the thesis 

 

In this thesis, a geometric problematic focused on smooth convex surfaces, which 

relates shape analysis, tangent vector calculation, and contact detection is presented. 

The thesis is organized in the order in which these problems are encountered in the 

formulation of surface contact detection, ending with an application case study. Hence, 

each chapter addresses a particular geometric topic or application and, with the 

exceptions of Chapters 1, 2, and 7, each chapter has the conventional structure of a 

journal paper. 

 

Chapter 2 gathers fundamental geometric concepts that are encountered throughout 

the thesis, and should be consulted whenever a geometric notion pops up within the 

remaining chapters. The concepts presented describe different surface representations, 

definitions on smoothness and convexity, importance of geometric primitives and 

presentation of some shape models, concepts on coordinate transformation, and metrics 

for evaluating the distance between convex surfaces. 

 

In Chapter 3, the topic of geometric modeling with smooth convex surfaces is 

explored by presenting a surface fitting framework. The framework can be used to build 

discrete or articulated multibody models or to perform shape analysis of mechanical 

structures. As a case study, the shape of spheroidal joints, namely, shoulder and hip 

joints, are analyzed by comparing spheres, (super)ellipsoids, and (super)ovoids. The 

preliminary results obtained show that superovoids provide the best representation of 

the anatomical structures under analyses.  

 

In Chapter 4, the Householder vector orthogonalization transformation is explored 

for Computer-Aided Design and Manufacturing, Computer Geometry and Contact 

Mechanics applications. This topic is exposed in advanced since it provides interesting 

differential formulas for the tangent vectors of implicit surfaces, thus, making the 

Householder formula a crucial corner stone for the proposed contact detection 
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methodology described in Chapter 5. In addition, numerical evaluations where the 

efficiency of the Householder formula is compared to other vector orthogonalization 

techniques are shown. The results indicate that the Householder formula is the most 

numerical robust and computational efficient compared to more standard techniques. 

 

In Chapter 5, a review in contact detection theory is provided in order to understand 

contact detection problems and to propose effective solutions. The remaining of the 

chapter is dedicated to the development of an efficient contact detection methodology 

that is formulated based on the Householder vector formulas. 

 

A musculoskeletal case study is presented and discussed in Chapter 6. The study 

compares two foot-ground contact models integrated into a forward dynamics 

simulation of human walking. In this case study, the advantages of using smooth convex 

surfaces as compliant contact elements are shown.  

 

Finally, in Chapter 7 the overall conclusions that follow from the thesis are discussed 

and suggestions for future research directives on implicit surface modeling, synovial 

joint morphology, vector orthogonalization, contact detection algorithms for smooth 

convex surfaces, and further developments on musculoskeletal models with compliant 

contact elements are given. 

 

1.7 List of selected publications 

1.7.1 Peer-reviewed journals 

 

Lopes DS, Neptune RR, Ambrósio JA, Silva MT (2014), A methodology for the 

implicit surface modeling of spheroidal joints based on Macconaill’s ovoidal 

classification, Journal of Biomechanical Engineering (submitted). 

 

Lopes DS, Silva MT, Ambrósio JA (2013), Tangent vectors to a 3-D surface normal: 

A geometric tool to find orthogonal vectors based on the Householder transformation, 

Computer-Aided Design, 45(3): 683–694.  

 



32 
 

Machado M, Lopes DS, Ambrósio JA, Flores P, Pombo J, Silva MT (2011), 

Development and implementation of a generic methodology for contact dynamics of the 

human knee joint, EUROMECH Newsletter, 38. 

 

Lopes DS, Silva MT, Ambrósio JA, Flores P (2010), A mathematical framework for 

contact detection between quadric and superquadric surfaces, Multibody System 

Dynamics, 24(3): 255–280. 

1.7.2 International conferences 

 

Coli N, Boldini D, Bandini A, Lopes DS (2012), Modeling of complex geological rock 

mixtures under triaxial testing conditions, Proceedings of the 2012 ISRM International 

Symposium – Rock Engineering and Technology for Sustainable Underground 

Construction, Stockholm, Sweden. 

 

Machado M, Flores P, Lopes DS, Ambrósio JA (2012), On dynamic analysis of 

contact problems with freeform surfaces: a knee joint 3-D study, 18th Congress of the 

European Society of Biomechanics, Lisbon, Portugal. 

 

Lopes DS, Silva MT, Ambrósio JA, Neptune RR (2010), Articular contact detection 

of the coupled tibio-femoral and patello-femoral joints modeled as a multibody system 

with superquadric surfaces, 1st Joint International Conference on Multibody System 

Dynamics, Lappeenranta, Finland, 2010. 

 

Ribeiro N, Fernandes PC, Lopes DS, Folgado J, Fernandes PR (2009), 3-D solid 

and finite element modeling of biomechanical structures – a software pipeline, 

Proceedings of the 7th EUROMECH Solid Mechanics Conference, Lisbon, Portugal. 

  



33 
 

2. Fundamentals for Computational 

Geometry 
 

This chapter gives a short introduction to geometric concepts which are used throughout 

the thesis. Standard mathematical representations of surfaces are discussed and 

compared in Section 2.1. The definition of surface smoothness and a short introduction 

to convex geometry are provided in Section 2.2, followed by a presentation of the 

geometric primitives used in the this work given in Section 2.3. How to transform 

points written in a local reference system to a global reference system, and vice-versa, is 

explained in Section 2.4. Section 2.5 introduces distance metrics and the formulation to 

the problem of determining the minimum distance between convex objects.   

 

2.1 Mathematical representations of a surface 

 

Mathematical or numerical models of surfaces are required to describe and understand 

spatial phenomena. The definition of the geometric loci of surfaces requires an accurate 

description of their position, orientation, and shape, not to mention their deformation 

when considered. Surface representations are required to model simple or complex 

shapes with desired smoothness and continuity. Surface representations must also 

provide the ability to evaluate derivatives because numerous geometric attributes 

depend on derivation operators (e.g., normal and tangent vectors, principal curvatures). 

Ideally, a surface representation must model any object with arbitrary precision, be 

easily built and modified, easily implementable in a computer code and allow efficient 

computations for fitting, rendering, and collision purposes. Nowadays, there is no 

approach that satisfies all of these geometric problems simultaneously. 

 

In order to perform geometric modeling, to render or 3-D print a surface, a concrete 

numerical or analytical representation is necessary. The state of the art approaches for 

representing smooth convex surfaces consists of polygonal meshes, which are described 

numerically by a list of vertices and faces, or by analytical functions that explicitly, 
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implicitly or parametrically define the location of the surface points in space. Choosing 

the most suitable surface representation depends on the geometric problem at hands, 

which always requires a tradeoff amongst efficiency, accuracy, and generality in order 

to satisfy both computational power and geometric complexity. 

 

Polygonal meshes are the most used and widespread surface representation in 

industry applications (Pottmann et al. 2005). Although polygonal meshes are adequate 

for visualization, 3-D printing and 3-D modeling purposes, they do not provide direct 

geometric information such as position, orientation, size, and shape of the surface as 

these must be computed whenever necessary. A faithful polygonal representation 

demands a considerable amount of memory space to store a dense mesh. In addition, 

polygonal meshes have limited accuracy in representing a surface smoothness as it 

consists of a set of contiguous planar patches, thus, by definition imposes C0 continuity 

at the edges. Hence, to represent simple surfaces such as spheres and ellipsoids, 

polygonal meshes are not the most appropriate choice for the development of efficient 

algorithms.  

 

To overcome these limitations, analytical approaches prove to be more suitable for 

representing simple smooth convex objects as they are highly compact and provide 

effective geometric information about the surface. Analytical equations also provide a 

very exact representation of the surface points and of its smoothness, being possible to 

deduce with great precision geometric attributes such as normal and tangent vectors, 

curvature, or principal directions (Ahn 2004). Within the realm of analytical 

representations there are three types of geometric models to describe simple, continuous 

and convex surface objects in 3-D space. All model types consist of an analytical 

equation or set of equations that depends on the spatial coordinates of a surface point P, 

described by the position vector expressed in Cartesian coordinates, [ ]OP , , Tx y z=x

(Duncan 2005). Analytic surfaces in 3-D space can be mathematically described in an 

explicit, implicit, or parametric form. 

 

Explicit surfaces are defined as a graph over the xOy plane, thus, explicit surfaces are 

also known as height fields. Given the x and y coordinates in the plane, the z coordinate 

is explicitly expressed as  
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 ( ),z F x y=  (2.1) 

where F is a scalar function defined by the mapping F : ℝ2 ⟶ ℝ. Only non-closed 

surfaces can be represented explicitly. A paraboloid is a clear example of a surface 

represented explicitly, as shown in Figure 2.1. 

 

 
Figure 2.1 – Paraboloid surface z = F(x, y) = 0.5x2 + 0.5y2 
 

In an implicit surface representation, a simple object is defined as the locus of points 

whose coordinates satisfy an equation of the form 

 ( )P 0F =x  (2.2) 

for some real-valued scalar function F : ℝ3 ⟶ ℝ. This type of equations is also called a 

zero set since it consists of a single element of a set of iso-valued functions ( )PF k=x , 

one for each iso-value k, where k is an arbitrary real number. Thus, by varying k, 

function F defines a series of offset surfaces defined over all space, as shown in Figure 

2.2. An implicitly defined surface partitions space into two sets, the interior and exterior 

of the surface. Here, the interior space is conventioned as the volume where F is 

negative and the exterior space where F is positive. That is why function F is also called 

an inside-outside function, as its evaluation reveals if a point is in the interior, exterior 

or on the surface. Another convention is that the normal surface vectors point outwards 

to the exterior space. 
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As for the term “implicit” it derives from the fact that the coordinates of the surface 

points are only known once resolved Equation 2.2, that is, once the roots or zeros of 

function F are determined, which leads to a subset of ℝ3 of the form 

 ( ){ }3
P 0F∂Ω = ∈ =x x

 (2.3) 

where ∂Ω is the set of points that define the surface.  

 

 
Figure 2.2 – Level-sets of the implicit expression F(x, y, z) = x2 + 0.5y2 + z2 (2-D view). 
 

Parametric surfaces are the most common representations in computational geometry 

and design applications (Farin 2002; Duncan 2005). The parametric representation 

consists of a vectorial function that maps a two-dimensional domain into a three-

dimensional space. The parametric surface is the set of all points s(u,v) where u and v 

ranges over the domain [u1,v1]x[u2,v2] of the surface function s : [u1,v1]x[u2,v2] ∈ ℝ2 ⟶ ℝ3.  

 ( ) ( )
( )
( )

1 2 1 2, ,    ,  
,
,

u v x x u v u u u v v v
y y u v
z z u v

= = ≤ ≤ ≤ ≤ 
 = 
 = 

s  (2.4) 

The following table lists several properties and limitations of the three types of 

surfaces described in this section (Table 2.1). This table is intended for comparing the 

mentioned surface representation types providing an overview of the notable features 

and limitations of such representations.   
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 Notable features Limitations 

Explicit 

 
• Easily convertible to implicit and 

parametric representations. 

 
• Does not have as many notable features 

as implicit and parametric 
representations. 

• Explicit features are axis-dependent 
and single-valued (e.g. a sphere cannot 
be described in explicit form). 

• Only capable of representing a limited 
range of shapes. 

 

Implicit 

 
• Very usual descriptive form of a 

surface. 
• Directly defines a solid (i.e., points 

satisfying F(x) < 0) bounded by the 
surface (points satisfying F(x) = 0). 

• Straightforward to test whether a 
point lies inside or outside of a solid 
or on a boundary surface. 

• Easy to compute the surface normal 
by differentiation. 

• Partitions the space into 3 subsets of 
points (F(x) < 0, F(x) = 0, F(x) > 0). 

• Allows efficient modifications of 
geometry and/or topology by 
supporting surface splitting and 
merging. 

• Useful to perform boolean 
operations (i.e., union, difference, 
intersect) for Constructive Solid 
modeling. 

• Represent surface offsets. 
• Good for ray-surface intersection. 
 

 
• Computationally expensive to render 

since edge and boundary information 
needs to be computed beforehand. 

• Surface coefficients rarely have an 
explicit geometric meaning. 

• Strong numerical sensitivity of the 
surface shape for small variations of 
some coefficients (i.e., small variation 
of some coefficients may produce a 
large and unpredictable variation of the 
surface geometry). 

• Difficult to fit and manipulate free 
form shapes. 

• Difficult to transform since their 
features are axis-dependent. 

 

Parametric 

 
• Surface points are easily generated. 
• Allows direct computation of surface 

normals and higher order 
derivatives. 

• Easy to generate composite surfaces. 
• Easy to fit and manipulate free form 

shapes. 
• Easy to transform since their features 

are axis-dependent. 
• Efficient to render. 
• Suitable for interactive geometric 

design (i.e., sketch-based modeling). 
• Suitable for an easy and natural 

shape design modeling. 
 

 
• Do not define solid objects. 
• Lack a characteristic function to 

evaluate if a point is inside, outside or 
belongs to a surface.  

• Boolean operations are slower and 
more complicated to perform. 

 

Table 2.1 – Compilation of notable features and limitations of explicit, implicit and parametric 
surface representations (Farin 2002; Velho et al. 2002; Duncan 2005). 
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2.2 Smooth convex geometry 

 

Two of the most fundamental geometric concepts used in this thesis are surface 

smoothness and surface convexity (Figure 2.3), both simple properties to formulate 

(Farin 2002; Bazaraa et al. 1993). From an analytical point of view, a real function of 

several variables is smooth if it has derivates from first order up to some desired order 

over the entire function domain. This means that the considered surfaces to not present 

spurs, spikes, or pointy edges, and since they are differentiable everywhere the normal 

and tangent vectors can be calculated at any surface point, along with other important 

differential quantities such as curvatures. As for convexity, a 3-D convex object consists 

of a set of points x ∈ ℝ3 whose connection still lies in the set, i.e., the following 

condition holds for all x1,x2 ∈ Ω: 

 ( )3 1 21  ,   0 1α α α= − + ∈ Ω ≤ ≤x x x  (2.5) 

Note that Equation 2.5 defines x3 as a linear combination of two given points in the 

object and by varying α a straight line segment is traced. Thereby, the simplest 

examples of 3-D convex sets are a point and a straight line segment while cubes, 

spheres and ellipsoids remain as assumed icons for a convex set. Equation 2.5 also 

states that convex objects are compact, connected and have a nonempty interior.  

 

 
Figure 2.3 – (a) Smoothness or continuity of surface patches. (b) Convex and concave objects. 

http://mathworld.wolfram.com/Derivative.html
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2.3 Geometric primitives or shape models 

 

A complex geometric object can be seen as the end result of grouping a collection of 

basic shapes (or geometric primitives) that adopt specific spatial configurations in order 

to properly represent the object’s geometric loci. Moreover, geometric primitives can be 

deformed in a global or local fashion by transformation operations such as stretching, 

twisting, tapering or bending (Barr 1981). In this manner, geometric complexity is 

achieved using simpler pieces, usually defined by polygons or analytical surface patches 

whose boundaries are restricted by tight continuity conditions. Therefore, it is necessary 

to understand basic shape models in order to construct complex surface geometries 

(Pasko et al. 1995). Since any geometric modeling practice requires the use of a finite 

set of fundamental shapes, geometric primitive objects must be generic enough to 

encompass both natural and man-made shapes, but simple enough to not compromise 

modeling intuition. This is indeed the chief advantage of geometric primitives as they 

allow complex geometries (including free-form shapes) to be easily built and altered 

based on a limited number of interactive parameters. 

 

The motivations on studying geometric primitives have been written in the 

Introduction chapter. Here, a more thorough presentation of the considered geometric 

primitives is given. The geometric primitives presented in this thesis consist of the 

following collection of smooth convex objects: plane, quadrics (e.g., elliptic paraboloid, 

hyperbolic paraboloid, one sheet hyperboloid), ellipsoid, superellipsoid, ovoid, and 

superovoid. All of these geometric primitives are extensively used as their 

representation power is demonstrated in many applications such as shape analysis, 3-D 

modeling, and contact analysis. The geometric primitives here considered share in 

common the following characteristics and properties: 

 

• have a limited, intuitive, and controllable set of parameters that affect global 

properties of the shapes in a comprehensible manner, i.e., by varying a 

parameter the modeler knows the cause-effect relation on the geometry; 

 

• are symbolically represented by an idealized, compact, and exact analytical 

representation which unequivocally describes the shape; 
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• defined by real-valued continuous functions whose properties are well 

understood; 

 

• only define a limited set of surface shapes; 

 

• are convex, Cn, n ≥ 1, n ∈ ℕ, continuous surfaces, and differentiable at any 

surface point, thus differential information (e.g., surface normals and 

curvatures) is available continuously over the surface, even where the 

surface is almost square or edgy. 

 

The following table lists the geometric primitives and their corresponding application 

studies of this thesis (Table 2.2). 

  

Geometric primitive Application 

Plane Contact detection 

Sphere Vector orthogonalization, Surface fitting, Contact detection 

Quadrics Vector orthogonalization 

(Super)ellipsoid Vector orthogonalization, Surface fitting, Contact detection 

(Super)ovoid Surface fitting 

 
Table 2.2 – Table of the geometric primitives that are used in the application studies presented 
in the thesis.  
 

2.3.1 Plane 

 

The plane is the simplest of all smooth convex surfaces as its implicit representation 

consists of a linear polynomial written in Cartesian coordinates (Duncan 2005). The 

inside-outside function of an arbitrary plane is written as 

 ( ), ,P g g g g g gF x y z ax by cz d= + + −   (2.6) 

where a, b, and c are the x, y, and z components to the normal vector to the plane and d 

is the inner product of the normal and a position vector of some known point in the 

plane. Figure 2.4 illustrates an example of a plane. The corresponding equation of the 
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unit sized canonical form, i.e., the spatial configuration in which the surface is centered 

at the origin and the main axis are aligned with the local coordinate system, is given by: 

 ( ), , 0 1 0 1P g g g g g g g g g
a b c a b cF x y z x y z x y z
d d d d d d

= ⇔ + + − = ⇔ + + =  (2.7) 

where xg, yg, zg ∈ ℝ are the global coordinates of the points in space that belong to the 

plane.  

 

 
Figure 2.4 – Plane surface F(x, y, z) = 0.5x + 0.5y + z 
 

2.3.2 Quadrics 

 

Generally, the inside-outside function of a quadric surface (Duncan 2005) is expressed 

as a dimensionless real valued scalar function, 

 2 2 2
11 22 33 1 2 3( , , ) 1QF x y z a x a y a z a x a y a z= + + + + + −  (2.8) 

with 

 11 1 22 2 33 3 0a a a a a a= = =  (2.9) 

where {a11, a22, a33} are shape coefficients and {a1, a2, a3} are unit or zero valued 

coefficients that define the quadric surface family type, as referred in Table 2.3. 
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Dimension parameters along the x, y, and z directions are given by the following 

formulas: 

 
1 1 1

2 2 2
11 22 33, ,a a b a c a− − −= = =  (2.10) 

As for the locus of points that satisfy the second degree equation in three variables is 

given by, in the canonical form,  

 2 2 2
11 22 33 1 2 3( , , ) 0    1Q g g g g g g g g gF x y z a x a y a z a x a y a z= ⇔ + + + + + =  (2.11) 

There are plentiful parametric expressions for quadric surfaces but a generic 

expression can be deduced for the quadric surfaces listed in Table 2.3 which is 

presented in Appendix A and is useful for visualization purposes. 

 

Quadric surface type Coefficients Thumbnail 

Ellipsoid a11 > 0, a22 > 0, a33 > 0 
 

Hyperboloid (1 sheet) a11 > 0, a22 > 0, a33 < 0 
 

Hyperboloid (2 sheets) a11 < 0, a22 < 0, a33 > 0 

 

Paraboloid (elliptic) a11 > 0, a22 > 0, a33 = 0, a3 < 0 
 

Paraboloid (hyperbolic) a11 > 0, a22 < 0, a33 = 0, a3 < 0 
 

 

Table 2.3 - Quadric family classification according to the coefficient values. 
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2.3.3 (Super)Ellipsoids 

 

Ellipsoids are the single closed quadric surface and are modeled by altering a mere set 

of 9 parameters, making it possible to place, orient and scale sphere-like, disc-like and 

cigar-like surfaces. As shown in Figure 2.5, superellipsoids consist of a generalization 

of ellipsoidal surfaces by replacing the fixed exponent by an arbitrary non-negative 

number equal to or larger than 2 (Barr 1981; Jaklič et al. 2000). Thus, relatively to 

ellipsoids, the varying exponent consists of the introduction of a new degree of freedom 

for geometric modeling. Superellipsoids are more flexible due to the exponents of the 

coordinate terms which affect the squareness/roundness of the surface, allowing for any 

ellipsoid-like shape to become either round or square. The implicit shape model, or 

inside-outside function of a superellipsoid is defined as 

 ( ) 31 2, ,SE l l l l l lF x y z x y z γγ γ= + +  (2.12) 

and the equation that defines a unit sized superellipsoid in the canonical form is given 

by: 

 ( ) 31 2, , 1  1SE l l l l l lF x y z x y z γγ γ= ⇔ + + =  (2.13) 

where γ1, γ2, γ3 ∈ ℝ+ \{0}, are real non-negative exponents, and xl, yl, zl ∈ ℝ are the local 

coordinates of the point in space that belongs to the surface. The values of γ1, γ2, and γ3 

are bounded between 2 and less than infinity so that only smooth convex shapes, with 

no C0 singularities, are modeled. Note that spheres and ellipsoids are particular cases of 

superellipsoids when all exponents are equal to 2, as pictured in Figure 2.5. 

 

 
Figure 2.5 – Unit sized superellipsoids for varying exponent values (with γ = γ1 = γ2 = γ3). The 
surface shapes are mediated between rounded and squared. 
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A particular type of superellipsoids that is extensively used in Computer Graphics 

was proposed by (Barr 1991). The considered superellipsoid type has the following 

implicit representation defined as a dimensionless, real valued scalar function:  

 ( )

1

2
1 1 2

2 2 2

, , l l l
SEB l l l

x y zF x y z
a b c

ε
ε

ε ε ε
 
 = + +
 
 

 (2.14) 

where a, b, and c ∈ ℝ+ \{0}, are the radii dimensions along the xl, yl, and zl directions of 

the local Cartesian coordinates, and ε1 and ε2 are the exponents that affect the roundness 

(or squareness) of the orthogonal curves that lay on xlOyl and ylOzl, respectively. These 

exponents, εk, k ∈ {1,2}, range between 0 and 2 in order to maintain a strictly convex 

surface, where εk → 0 leads to a cuboid, εk = 1 an ellipsoid, and, εk = 2 an octahedron. 

Note that FSEB is written in the canonical form, i.e., surface centered at the origin and 

the main axes are aligned with the local coordinate system, and is also called the inside-

outside function since its evaluation tells if a point is either inside, outside or upon the 

surface. Hence, the equation that defines the geometric loci of a superellipsoid in the 

canonical form is 

 ( )

1

2
1 1 2

2 2 2

, , 1    1 0l l l
SEB l l l

x y zF x y z
a b c

ε
ε

ε ε ε
 
 = ⇔ + + − =
 
 

 (2.15) 

Furthermore, a Barr’s superellipsoid can also be represented parametrically using 

angle-center parameters (Wellmann et al. 2008): 

 ( ) ( )
( )
( )

1 2

1 2

2

1 2 1 2 1 2 1

1 2 1 2 2

2 2

, cos cos cos cos ,     

sin cos sin cos
2 2sin sin

SEB sign a

sign b

sign c

ε ε

ε ε

ε

ϕ ϕ ϕ ϕ ϕ ϕ π ϕ π
π πϕ ϕ ϕ ϕ ϕ

ϕ ϕ

 = − ≤ <
 
  − ≤ ≤ 
  

s
 (2.16) 

which, by differential calculus, leads to surface normal vectors written in the local 

coordinate system as 
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 ( ) ( )
( )
( )

1 2

1 2

2

2 21
1 2 1 2 1 2 1

2 21
1 2 1 2 2

21
2 2

, cos cos cos cos ,     

sin cos sin cos
2 2sin sin

SEB sign a

sign b

sign c

ε ε

ε ε

ε

ϕ ϕ ϕ ϕ ϕ ϕ π ϕ π
π πϕ ϕ ϕ ϕ ϕ

ϕ ϕ

− −−

− −−

−−

 = − ≤ <
 
  − ≤ ≤ 
  

n
 (2.17) 

where φ1 and φ2 are the angles that vary along the xlOyl and ylOzl plane, respectively. 

Other parametric representations exist to describe superellipsoids as is presented in 

Appendix A but are not as useful for the contact detection applications foreseen in this 

work. 

 

As a special remark, in any computational implementation involving polynomials 

with rational exponents, awareness must be given to the numerical evaluation of 

superquadric equations (Jaklič et al. 2000). The correct order of evaluation of these 

exponential terms is ( )12x
ε
 with 2 /γ ε= , to assure that the result is not a complex 

number when x < 0. In order to prevent divisions by zero, the exponent must be greater 

or equal to zero. The values of γ1, γ2, and γ3 are equal or larger than 2 so that only 

convex shapes, with no geometric singularities, are modeled. An angle-center 

parametric expression for superquadrics with γ1 = γ2 = γ3 is also easily deducible.  

2.3.4 (Super)Ovoid 

 

The considered superovoids consist of a generalization of an ovoidal form proposed by 

Todd and Smart (Todd & Smart 1984) after replacing the fixed quadratic exponent by 

an arbitrary non-negative number greater than 2, as depicted in Figure 2.6. The main 

difference with respect to superellipsoids is that (super)ovoids only have a single axis of 

symmetry. But similar to superellipsoids, the surface shape varies between rounded and 

squared by varying the exponent values, being several examples shown in Figure 2.6.  

 

 
Figure 2.6 – Unit sized superovoids for varying exponent values (with γ1 = γ2 = γ3). The 
surface shapes are mediated between oval and squared frustum. 
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The inside-outside function of a superovoid is written as 

( )
( ) ( )

1 2
3

1 22 3 2 3
0 1 2 3 0 1 2 3
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SO l l l l

x x l x l x l y y l y l y l

x yF x y z z
c c z c z c z c c z c z c z

γ γ
γ

γ γ= + +
+ + + + + +

 (2.18) 

and the corresponding equation of the unit sized canonical form is given by: 
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 (2.19) 

where γ1, γ2, γ3 ∈ ℝ+ \{0}, are real non-negative exponents, xl, yl, zl ∈ ℝ are the local 

coordinates of the point in space that belongs to the surface, and c0x, c1x, c2x, c3x, c0y, c1y, 

c2y, c3y are ovoidal shape coefficients. The values of γ1, γ2, and γ3 are also bounded 

between 2 and less than infinity so that only smooth convex shapes are modeled, and 

the ovoidal shape coefficients are bounded as 0 ≤ c0x, c1x, c0y, c1y ≤ 1 and −0.1 ≤ c2x, c3x, 

c2y, c3y ≤ 0.1. Note that superovoids are not only a generalization of ovoids, in which γ1, 

γ2, γ3 = 2.0, but also of superellipsoids, with c0x, c0y = 1.0 and c1x, c2x, c3x, c1y, c2y, c3y = 

0.0, for which inverse cubic zl–polynomial asymmetric factors were introduced in the x 

and y terms as illustrated in Figure 2.6. 

 

2.4 Local and global coordinate transformations 

 

A common transformation in geometric modeling and contact detection consists of 

converting local point coordinates into global coordinates, and vice-versa as implied in 

Figure 2.7. An affine transformation is used to accomplish this coordinate conversion. 

Affine transformations are applied to the surface points by converting local coordinates, 

xl, into global coordinates, xg, using a geometric transformation that incorporates a 

scaling matrix, D, a rotation matrix, R, and a translation column vector, t, as  

 [ ]
1

1 3

1 1
T

l l l l gx y z
−

×

  
= =   

  

RD t
x x0  (2.20) 
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where xl and xg are written in homogeneous coordinates. The rotation matrix is defined 

by a ‘yaw-pitch-roll’ type, i.e., the matrix product defined as Rx(ϕ)Ry(θ)Rz(ψ) where ϕ, 

θ, ψ are the angles of rotation along the respective coordinate system axis or by any 

other set of suitable angular coordinates (Nikravesh 1988). The D matrix is a diagonal 

matrix whose leading diagonal cells are the scaling factors along the local reference 

directions xl, yl, and zl. Therefore, given the canonical form of a surface, e.g., Equation 

2.12 and Equation 2.18, by replacing the local coordinates with the expression given by 

Equation 2.20, the surface function becomes written in a more generalized form. To 

transform local coordinates into global coordinates it is only necessary to premultipy xl 

by the inverse transformation matrix 

 
1 3

1 1
T

g g g g lx y z
×

  
 = =    

  

RD t
x x0  (2.21) 

 
Figure 2.7 – Global and local coordinate reference systems with their associated transformation 
matrices. 
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2.5 Distance functions and minimum distance between convex objects 

 

Distance is a concept which relates two objects with a metric value indicating the 

relative closeness or likeness between objects (Ahn 2004; Atkinson and Han 2005). In 

physical or Euclidean space, the distance that is worth measuring occurs between two 

points or, more generally, between two convex objects, as those pictured in Figure 2.8. 

In this case, the distance is considered as the length of the shortest straight line 

connecting the boundaries of the convex objects. Mathematically, a distance function 

defines a metric between elements of a set. In Euclidean 3-D space, the distance 

between points is a function d : ℝ3 x ℝ3 ⟶ ℝ expressed as a square root sum of the 

coordinate differences (or 2-norm), also known as Euclidean distance. Given two points 

in space x1,x2 ∈ ℝ3, the Euclidean distance function satisfies the intuitive conditions 

listed in Table 2.4. These conditions establish a concrete meaning of “how close to” and 

“how far apart” two objects are.  

 

 
Figure 2.8 – Minimum distance between convex objects: (a) point and ellipsoid; (b) two 
arbitrary convex objects. 
 

Positive definiteness d(x1, x2) ≥ 0, d(x1, x2) = 0 iff x1 = x2 

Symmetry d(x1, x2) = d(x2, x1) 

Triangle inequality d(x1, x3) ≤ d(x1, x2) + d(x2, x3), for any x3 ∈ ℝ3 

 
Table 2.4 – Conditions that characterize a distance function. 

 

Although there are several distance functions that satisfy the conditions mentioned in 

Table 2.4, e.g., p-norms, with p ≥ 1, p ∈ ℕ, that are fundamental for contact detection 
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applications, other metrics which are quite often in geometric modeling, simply do not. 

For instance, pseudo-Euclidean distances usually provide a gross approximation of the 

distance between objects, for instance, the inside-outside function of an implicit surface 

is in fact a pseudo-Euclidean distance from a point to the surface. For two convex 

objects in arbitrary spatial configurations, the closest distance between their boundaries 

is given by the minimum value of the Euclidean distance function defined by two points 

located on the convex surface boundaries. If P and Q are such two points located on 

individual object boundaries, then the distance between the two points is given by 

( )OP OQ OP OQ 2
,d = −x x x x . Thus, from an optimization point of view, the Euclidean 

distance acts an objective function from which a global minimum needs to be found. 

For a stronger definition for the distance between two non-empty convex sets, the 

infimum of the distances between any two of their respective points is considered. 
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3. Implicit Surface Modeling with 

Smooth Convex Shapes 
 

This chapter explores the topic of geometric modeling with smooth convex surfaces. A 

surface fitting framework is developed to extract 3-D coordinate data from volume 

images and to fit a surface that models the data. This framework is also designed to 

incorporate a wide range of smooth convex surfaces, thus, granting a high geometric 

representation to build discrete or articulated multibody systems or to perform shape 

analysis of mechanical structures. 

 

As a case study that explores the applicability of the developed surface fitting 

framework, the shape of spheroidal joints (i.e., ball-and-socket joints), namely, shoulder 

and hip joints, are analyzed by comparing spheres, (super)ellipsoids, and (super)ovoids. 

This case study is based on MacConaill’s assumption that spheroidal articular surfaces 

are better represented by ovoidal shapes rather than purely spherical shapes 

(MacConaill and Basmajian 1977). In order to address this assumption, the surface 

fitting framework is specifically redesigned to extract morphological information of 

synovial articular surfaces by fitting implicit shape models to computed tomography 

data. The applied tools include several image processing and computational geometry 

techniques, such as active contour segmentation, mesh smoothing, and implicit surface 

fitting to point clouds using a non-linear least-square minimization approach solved 

using a genetic algorithm. The geometric primitives evaluated were spheres, ellipsoids, 

superellipsoids, ovoids and superovoids, which were used to represent macroscopic 

features of the humeral and femoral proximal epiphyses. By comparing the surface 

fitting error statistics of the different geometric primitives, the surface model with 

highest goodness-of-fit was determined. The results suggest that superovoids fit better 

than spherical or even (super)ellipsoidal shapes for both the humeral and femoral 

articular surfaces cases under study. 

 

This chapter is structured as follows. Section 3.1 provides an introduction and an 

extensive literature review to the topic of surface fitting of synovial joints. Section 3.2 
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presents the developed surface fitting framework by exposing detailed descriptions of 

each processing stage. The obtained results are presented in Section 3.3. Finally, results 

are discussed and conclusions are sketched in Section 3.4. 

3.1 Introduction 

 

Within orthopedic surgery, the success of joint reconstruction and replacement 

procedures partly depends on two geometrical aspects: (i) the type of shape models used 

to represent articular surfaces and other bone landmarks; and (ii) how accurately surface 

fitting tools extract anatomical information from medical images. For instance, 

preoperative planning and intraoperative navigation of hip osteotomy and total hip 

arthroplasty require accurate anatomical information on articular surface curvature, and 

the location of the joint axes and centers of rotation in order preserve the joint 

kinematics (Kang et al. 2011; Cerveri et al. 2011). The computer-assisted orthopedic 

surgery (CAOS) tools that measure, predict or infer such morpho-functional information 

consist of complex image processing and computational geometry pipelines assigned to 

fit specific shape models to articular surface data.  

 

Most of the utilized shape models are algebraic surfaces defined with quadratic 

polynomials including sphere (Kang et al. 2011; Cerveri et al. 2011; Anderson et al. 

2010; Xi et al. 2003; Gu et al. 2008; Allaire et al. 2007a; Allaire et al. 2007b), ellipsoid 

(Cerveri et al. 2011; Xi et al. 2003; Gu et al. 2008; Allaire et al. 2007a; Allaire et al. 

2007b; Jacq et al. 2000), elliptic paraboloid (Matsuura et al. 2010), hyperboloid of two 

sheets (Allaire et al. 2007b), and cylindrical (Eckhoff et al. 2003) shapes. Other models 

such as conchoids (Kang et al. 2011; Anderson et al. 2010; Menschik 1997) have also 

been used. These shape models provide quantifiable information relative to macroscopic 

clinical landmarks of interest in orthopedics other than articular centers and axes, 

namely, contact areas and bone volume (Kang et al. 2011; Cerveri et al. 2011; Anderson 

et al. 2010; Xi et al. 2003; Matsuura et al. 2010; Eckhoff et al. 2003). Surface fitting 

tools are also useful for determining the optimal implant sizes and corresponding 

positioning and alignment (Cerveri et al. 2011), visualization of virtual bone resections 

(Cerveri et al. 2011), evaluation of morpho-functional studies (Anderson et al. 2010; 

Matsuura et al. 2010), discrimination of normal and pathological morphological 

signatures in both a qualitative and quantitative manner (Cerveri et al. 2011; Allaire et 
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al. 2007b), evaluation of subject-specific shape analysis due to intrinsic morphological 

variability (Cerveri et al. 2012), design of new joint replacement prosthetics (Cerveri et 

al. 2011; Xi et al. 2003; Jiang et al. 2010; Gu et al. 2010; Gu et al. 2011), and insight 

upon the functional mobility and stability of a joint (Anderson et al. 2010). These tools 

are also useful for the development of computer models of joints with contact detection 

between articular surfaces that are used to analyze the main movements and to estimate 

the contact loading environment (Burdin et al 1994), estimation of a joint’s range of 

motion based on the joint center (Kang 2004), and quantification of the relationship 

between joint morphology and cartilage mechanics (Anderson et al. 2010). 

 

For spheroidal articular surfaces, such as the humeral and femoral heads, the 

standard assumption regarding shape modeling is that these surfaces can be properly 

represented by a pure spherical form. Contrary to this classification, which is commonly 

encountered in classical anatomical treaties (Netter 2011; Agur and Dalley 2012; 

Schuenke et al. 2012), MacConaill provided a series of anatomical observations 

regarding synovial articular surfaces, which led to a more complex and realistic 

assumption on joint morphology: spheroidal articular surfaces are better represented by 

ovoidal forms rather than spherical since a sphere does not account for relevant (global) 

characteristics, namely, axial asymmetry and non-homogeneous curvature (MacConaill 

1966; MacConaill 1973; MacConaill and Basmajian 1977). Thus, considering this 

morphological assumption, surface fitting tools that consider ovoidal forms as 

geometric primitives are expected to extract better approximations of the global 

characteristics of spheroidal joints and, consequently, would lead to a better 

understanding and treatment improvements of many de-generative joint diseases (Kang 

et al. 2011), reduce the overall time of the surgical operation, and perhaps most 

ingeniously, could even inspire new joint prosthetic designs (Xi et al. 2003; Jiang et al. 

2010; Gu et al. 2010; Gu et al. 2011).  

 

Regarding prosthetic designs, several authors reported that spheroidal articular 

surfaces, such as the femoral head, acetabular cavity and humeral head, are not clearly 

spherical but present a more complex form (Kang et al. 2011; Cerveri et al. 2011; 

Anderson et al. 2010; Xi et al. 2003; Gu et al. 2008; Allaire et al. 2007a; Allaire et al. 

2007b; Jacq et al. 2000; Cerveri et al. 2012). These studies describe articular surfaces of 
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synovial joints as smooth surfaces exhibiting quasi-homogeneous curvatures that follow 

low-order polynomial surface geometries (e.g., quadric and quartic surfaces). These 

studies use with geometric primitives that are not truly ovoidal, although a conchoid 

surface may be considered as half-ovoidal. 

 

Here, spheroidal articular surfaces are described taking spheres, (super)ellipsoids 

(Barr 1981) and (super)ovoids (Todd and Smart 1984) as geometric primitives. The 

considered (super)ovoid model follows an expression derived from avian eggs, which is 

particularly well suited for chickens (Barta and Székely 1997). Note that the suitability 

of ovoidal shapes to represent the humeral and femoral heads has been evidenced by 

MacConaill (MacConaill 1966; MacConaill 1973; MacConaill and Basmajian 1977) 

and it is not further questioned here. 

 

The geometric primitives describe the articular surface as a rigid body whose implicit 

surface definition contains parameters related to dimension, overall curvature, axial 

(a)symmetry, relative position and spatial orientation. The main novelty of this work 

consists of introducing geometric primitives with irrational-degree and ovoidal features 

into morpho-functional studies of articular surfaces. Such geometric primitives provide 

a higher degree of geometric modeling freedom relative to a sphere (i.e., a wider range 

of curvatures from round to squared forms, and axial asymmetry). 

 

In this chapter, an implicit surface fitting tool is presented that extracts global aspects 

that reflect joint morphology and kinematics of spheriodal articular surfaces from 

computed tomography (CT) data sets of the shoulder and hip regions. For each 

anatomical case, a comparative study is performed between the considered geometric 

primitives aiming to a more precise mathematical description of the morpho-functional 

aspects of spheroidal articular surfaces. The comparison criterion consists of goodness-

of-fit measures which are intrinsically related to how well the geometric primitive 

approximates the anatomical data from the CT images. Thus, the higher the goodness-

of-fit the better a geometric primitive describes, macroscopically, a spheroidal articular 

surface. The surface fitting methodology uses genetic algorithms to solve a least-square 

minimization problem. Signed Euclidean distances between the points and fitted surface 

are considered as the surface fitting errors for statistical analysis and shape model 
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comparison. It is expected that superellipsoidal surfaces may fit better than ellipsoidal 

(thus spherical) although superovoids may provide the best fit of all the considered 

geometric primitives for the application case that demonstrates the identification 

procedure. To the author’s knowledge, fitting a superellipsoid or (super)ovoid to a 

spheroidal articular surface is a novel approach explored in this work.  

 

3.2 Methodology 

 

The shape models applied here to represent spheroidal articular surfaces are adopted or 

mathematically (re)modeled based on previous geometric modeling studies (Barr 1981; 

Todd and Smart 1984). Articular surface information used as the basis of the studies is 

extracted from CT data sets of the shoulder and hip regions. The computational tools 

used relies on a geometric modeling pipeline that covers specific image processing and 

computational geometry techniques as outlined in Figure 3.1. Image segmentation of the 

bone-cartilage interface is performed with a semi-automatic approach with active 

contours (Yushkevich et al 2006; ITK-SNAP 2013). The reconstructed bone meshes are 

smoothed in order to remove undesired mesh artifacts (Lorensen and Cline 1987; 

ParaView 2013). Afterwards, the articular surface meshes are manually delineated and a 

point cloud from the resulting mesh vertices is obtained (Blender). Implicit surface 

fitting is formulated as a non-linear least-squares minimization problem, solved by 

using a genetic algorithm. To compare the goodness-of-fit between the geometric 

primitives, the signed Euclidean distances between the points and fitted surfaces (i.e., 

surface errors) are calculated numerically with an orthogonal distance optimization 

framework, subjected to a non-linear equality constraint given by the implicit surface 

equation. Qualitative and quantitative analysis of the fitted results are finally undertaken 

based on the surface errors. 

3.2.1 Hierarchy of shape models 

 

The considered geometric primitives are idealized geometries with mathematical 

properties and geometric characteristics that should match a series of macroscopic 

features that describe the considered spheroidal articular surfaces (e.g., convex, C2 

continuous, topologically a sphere, limited and closed surface). Section 2.3.3 and 
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Section 2.3.4 provide mathematical descriptions of the considered geometric primitives, 

namely, (super)ellipsoids and (super)ovoids.  

 

 
Figure 3.1 – Software pipeline for information extraction and geometric modeling of spheroidal 
articular surfaces. An implicit shape model is fitted to medical image data, thus providing 
quantitative information regarding global geometric characteristics. File formats and software 
tools are shown in gray and blue boxes, respectively. The software versions used are ITK-SNAP 
2.2.0, PARAVIEW 3.10.1, Blender 2.43, and MATLAB® R2009b. 
 

The surface fitting process relies on a hierarchal graph of shape models organized 

according to the level of non-linearity, in which superovoids are a generalization of 
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superellipsoids and where ellipsoids are a specific case of superellipsoids, as 

schematized in Figure 3.2 (a). This hierarchy can be seen as a series of morphing 

transformations applied to an ellipsoid and evolving until a superovoid, as implied by 

Figure 3.2 (b). 

 

 
Figure 3.2 – (a) Graph of the considered shape models illustrating that each surface is obtained 
by rescaling, exponentiating or asymmetrizing the root shape, i.e., the sphere. (b) Venn diagram 
of the non-linear hierarchy between the considered shape models; superovoids enclose all 
geometric primitives. 
 

3.2.2 Three-dimensional reconstruction of articular surfaces of synovial joints 

 

A single clinical case is used here to exemplify the approach used to identify the best 

fitting surfaces to the spheroidal articular joints. CT images of the hip and shoulder 

regions constitute the experimental data used to verify the ovoidal shape assumption to 

represent spheroidal articular surfaces. These images contain a rich amount of 

anatomical raw data from which topological and geometrical information of the 

objectified anatomical structures is extracted. The CT images clearly reveal the hard 

tissue structures from the multitude of surrounding soft tissues, namely, cortical bone 

material which is critical for a successful segmentation. The images present no 

considerable noise or artifacts. None of the scanned subjects revealed a visible joint 

pathology. Image spatial resolution reveals both global and local details since voxel 

resolution is close to 10-1 mm3. The hip image set (512x512 acquisition matrix, in-plane 

resolution = 0.664x0.664 mm, slice thickness = 1.5 mm, 356 slices) was scanned from a 

39 year old female using a Philips MX 8000 IDT 16 (Philips Medical Systems, The 
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Netherlands) and can be found in OsiriX’s DICOM sample image sets website 

(http://www.osirix-viewer.com/datasets/), being designated by the PELVIX case 

(OsiriX). The shoulder joint image set (512x512 acquisition matrix, in-plane resolution 

= 0.905x0.905 mm, slice thickness = 1.25 mm, 363 slices) was acquired from a 24 year 

old healthy male subject with a LightSpeed Pro 16 (General Electric Healthcare, United 

Kingdom) as reported in (Ribeiro et al. 2009). Previous consent for the use of the CT 

data sets was given by the enrolled subjects. 

 

The segmentation task focuses on defining the geometric loci of the smooth cortical 

bone structures exhibiting a close homogeneous curvature (i.e., articular surfaces). After 

applying a global threshold to the images (i.e., an intensity region filter) the bone 

regions are segmented with 3-D active contours and all segmentation errors are 

manually corrected. 3-D triangular surface meshes of the humeral and femoral heads are 

generated from the segmented data with a marching cubes algorithm (Lorensen and 

Cline 1987). Since this mesh presents undesired scanning features, primarily a 

zigzagged aspect, mesh filtering is carried out with a Laplacian filter. From the 

reconstructed 3-D meshes, the articular surfaces are manually delimited based on 

anatomical knowledge of bone topography by identifying smooth regions exhibiting 

closely homogenous curvature. After deleting the edges and faces of this triangular 

mesh, the mesh vertices are then converted to a point cloud. Note that the articular 

surfaces correspond to the interface between cortical bone and cartilage (i.e., geometric 

modeling does not take into account soft tissues, merely the outer boundary of bony 

tissue and not the free surface of the articular surface). For a more detailed description 

of the pipeline for 3-D reconstruction of anatomical structures see (Ribeiro et al. 2009).  
. 

3.2.3 Point cloud processing 

 

Point clouds are obtained from the segmented meshes, which correspond to a high 

resolution set of geometric measurements of 3-D points that belong to the articular 

surface and are described in Cartesian coordinates. The point cloud may be dense or 

sparse, and evenly or unevenly scattered. Here, only the global features are of interest, 

thus, only a sub-set of the measured points is necessary to represent an articular surface. 
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Thus, the topographic details are discarded. Note that an excess of geometric 

information only accounts for local details and too many points may lead to undesired 

results for the surface fitting algorithm. Thus, instead of tens of thousands of points only 

a few tens of hundred points are needed for surface fitting. Gaussian sampling (LaValle 

2006), which is a down sampling procedure, is performed so that a homogeneous and 

representative set of points is obtained for the humeral and femoral cases, as described 

in Table 3.1. The sampling criterion consists of randomly picking a point using a 

uniformly distributed pseudorandom number generator with a Gaussian distribution. 

Then, all points contained within the neighborhood of the randomly picked point (i.e., 

an open ball centered at the point with a small radius) are discarded. Afterwards, a new 

random point is selected. The process continues until the ratio of selected points is 

achieved. This can dramatically reduce the number of points required for the surface 

fitting process. On the other hand, the down sampling must not be too severe as an 

optimal number of points is necessary to ensure computational efficiency and 

meaningful anatomical results. It is also necessary to guarantee that there are no 

duplicated points or outliers. The processed point cloud data serves as the input for the 

surface fitting optimizer. 

 

 Original number 
of points (O) 

Reduced number 
of points (R) Percentage (R/O) Open ball radius 

Humeral 
head 2659 1595 ~ 60 % 0.3 mm 

Femoral 
head 58644 1759 ~ 3 % 0.2 mm 

 

Table 3.1 – Number of points of the original and reduced point clouds along with the 
corresponding percentage of down sampling made upon the point cloud data. A proper open ball 
radius is chosen to guarantee a uniform downsampled point cloud. 
 

3.2.4 Optimization settings and initialization 

 

Although genetic algorithms search for the optimal fit in a global manner, proper 

optimization settings and initialization are required to guarantee an efficient and 

effective search, namely, a close initial approximation in the neighborhood of the global 

solution. In order to provide a good initial approximation for the sphere and ellipsoid 
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shapes, these are calculated by a least squares approach with a quadric surface 

approximation (Dai and Newman 1998). This particular algebraic geometry problem 

consists of solving a system of linear equations and whenever the approximation fails or 

the approximated surface is not representative of the anatomy, a new set of points is 

reselected to find a proper invertible matrix. The approximated sphere and ellipsoid 

settle a close approximation of the affine parameters (i.e., dimensions, relative position 

and spatial orientation for any of the geometric primitives). For the remaining shape 

models, the surface fitting methodology follows a hierarchal graph of non-linearity 

whose root is the sphere that evolves to an ellipsoid, which then branches to 

superellipsoids and (super)ovoids depicted in Figure 3.2 (a). In this manner, the optimal 

ellipsoid parameters serve as the initial approximation for the superellipsoidal and ovoid 

fittings. In turn, the superovoid initial approximation is given by the optimal 

superellipsoid and ovoid. For every surface fitting case, the optimization algorithm is 

constrained by boundary constraints, which are defined as simple inequalities affecting 

the surface parameters and are settled as a set of intervals centered at the interpolated 

ellipsoid parameters, while the non-affine parameters are user-defined constants. 

 

3.2.5 Surface fitting with genetic algorithms 

 

Surface fitting is a geometric modeling technique which locates and computes the shape 

model from the unstructured point cloud. Shape extraction follows the hierarchal graph 

of non-linearity whose root is an approximated ellipsoid which then leads to implicitly 

defined superellipsoids or (super)ovoids, depicted in Figure 3.2 (a). In general, fitting an 

implicit surface to a cloud of points can be formalized as the following non-linear 

optimization problem with simple boundary constraints (Xi et al. 2003; Ahn 2004): 

given a set of N points in Cartesian space, P = {xi : xi ∈ ℝ3, i = 1, … , N}, N ∈ ℕ, which 

belongs to the outer cortical bone surface of spheroidal joints, determine the vector of 

geometric parameters, λ ∈ ℝM, where M ∈ ℕ is the number of geometric modeling 

parameters that minimizes the error-of-fit objective function, EOF(λ), defined as the 

square sum of residuals, f, where each residual is the difference between the shape 

model function and the corresponding point datum as: 
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where l, u ∈ ℝM are lower and upper bound column vectors, respectively, that delimit 

the admissible set of the solution space, and F is the implicit surface representation of 

the chosen shape model. Note that vector λ contains the global anatomical information 

which includes the rotation and translation parameters used in the affine 

transformations, curvature, and asymmetry, where the latter applies only for ovoids. 

Also note that curvature and asymmetry parameters are intimately related to shape and 

are the parameters defined in Equation 2.12, for the (super)ellipsoids, and Equation 

2.18, for the (super)ovoids. 

 

Shape model λ M 

S λS = [a,t1,t2,t3]T 4 

E λE = [a,b,c,t1,t2,t3,ϕ,θ,ψ]T 9 

SE λSE = [a,b,c,γ1,γ2,γ3,t1,t2,t3,ϕ,θ,ψ]T 12 

O λO = [a,b,c,c0x,c1x,c2x,c3x,c0y, c1y,c2y,c3y,t1,t2,t3,ϕ,θ,ψ]T 17 

SO λSO = [a,b,c,γ1,γ2,γ3,c0x,c1x,c2x,c3x,c0y,c1y,c2y,c3y,t1,t2,t3, ϕ,θ,ψ]T 20 

 

Table 3.2 – Vector of geometric parameters for the sphere, ellipsoid, superellipsoid, 
ovoid, and superovoid shape models and corresponding number of geometric modeling 
degrees of freedom, M. 

 

The admissible set, Ω ⊆ ℝM, or surface parameter space can be expressed as the 

compact hypercube (i.e., limited and closed set) as:  

 0 1 0 1 0 1 0 1 0 1 0 1
1

[ , ] [ , ] [ , ] ... [ , ] [ , ] [ , ]
M

M
k

k
I a a b b c c φ φ θ θ ψ ψ

=
∈Ω = = × × × × × × ⊆λ    (3.3) 

where Ik is a real-valued interval of the kth surface parameter, M = 9,12,17,20 is the total 

number of surface parameters for the ellipsoid, superellipsoid, ovoid and superovoid 

models, respectively. As for spheroidal surfaces, the shape parameters must be 
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constrained, in this case, the values for a, b, and c are all positive, and γ1, γ2, and γ3 are 

confined to be greater than or equal to 2. The non-linearity of each objective function 

and the presence of a large number of local minima compels the recourse of 

metaheuristic methods, such as genetic algorithms, to numerically solve the 

minimization problem. The Genetic Algorithm and Direct Search ToolboxTM, from 

MATLAB®, is used for implementing the surface fitting code running on an Intel® 

Core 2 Duo processor 1.66 GHz and 2 GB of RAM. Execution times are measured for 

each shape model and corresponding structure. 

 

3.2.6 Surface fitting error analyses 

 

To calculate the surface fitting error and, more importantly, to compare the goodness-

of-fit between different geometric primitives, it is necessary to calculate the minimum 

Euclidean distances from each point of the point cloud to the fitted surface. Note that 

the residual value, f, defined by Equation 3.1 is not equal to the physical distance except 

for the spherical case. Thus, it is common to designate such value as the pseudo-

Euclidean distance. Unfortunately, the exact geometric distance from a point to an 

arbitrary (super)ellipsoid or (super)ovoid surface cannot be expressed analytically. 

Here, the minimum distance between each point of the point cloud and the optimally 

fitted geometric primitive, as shown in Figure 3.3, is calculated by taking the signed 

Euclidean distance, SED(xOQ), as:  

 ( ) ( )( )
OQ OQ OQ

OQ OP OP OP OQ PQ2 2
min  ;   min  sign   min  SED F= − =

x x x
x x x x x d  (3.4) 

subjected to the non-linear equality constraint 

 ( )OQ; 1F ∗ =x λ  (3.5) 

with xOQ being contained in the vicinity of xOP 

 OP OQ OP− ≤ ≤ +x ε x x ε  (3.6) 

where xOQ ∈ ℝ3 is the surface point with minimum distance, xOP ∈ P is the given point 
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from the point cloud, which can be inside, outside or upon the fitted surface, dPQ ∈ ℝ3 is 

the distance vector between the given point P and the iterated point Q, F is the implicit 

surface representation given by Equation 2.12 or Equation 2.18, sign(.) is the sign 

function, λ* is the vector of geometric parameters of the optimally fitted surface, and ε 

is a tolerance vector (e.g., ε = ε[1 1 1]T). Here, ε is considered to be much smaller than 

the axial dimensions of the surface, e.g., ε = 3.0 mm. In this case, the admissible set is 

given by the set of points contained in a cubic box, 2ε wide, and that satisfies the non-

linear equality constraint defined by the zero-set implicit surface functions of Equation 

2.12 or Equation 2.18 illustrated in Figure 3.3. The same genetic algorithm code 

(MATLAB® optimization toolbox) is used to solve this optimization problem and 

execution times are also measured for each shape model and anatomical structure. 

 

 
Figure 3.3 – Minimum Euclidean distance between a point and an implicit object. The colored 
patch represents an admissible set of this minimization problem. 

 

The surface fitting errors are analyzed in two ways: (i) a qualitative analysis by 

visual inspection that relies on the graphical representation of the point cloud and the 

encountered surface solution; and (ii) a quantitative analysis based on the values of the 

surface fitting errors measured as the signed Euclidean distances and associated 

statistics. The qualitative analysis is performed to ascertain the overall goodness-of-fit 

of the estimated surfaces. It consists of a rapid and global analysis of the entire point 

cloud data set and geometric primitive which, by visual inspection, gives a first 

impression on whether the fit is viable or not. In the same manner, it is also possible to 

find the regions of the point cloud that fit less successfully. The surface fitting error 

analysis and goodness-of-fit statistics provide numerical insight on which geometric 

primitive is more representative of the medical data. Juxtaposing the signed Euclidean 

PQd


ε

ε

P

Q

( ); 1F ∗ =x λ
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distance histograms with a fitted Gaussian curve and by comparing the corresponding 

statistics(i.e., minimum error, maximum error, standard variation, sum squared error, 

root mean square) allows for a local analysis of the approximation. The fitted Gaussian 

curve is used as a metric for goodness-of-fit quality. The statistical measures are 

focused on central tendency and dispersion aspects of the surface fitting errors and 

allow to ascertain if the surface parameter values hold or if they have anatomical 

significance.  

 

3.3 Results 

 

By visual inspection, all fitted shape models approximate quite well the global features 

of the articular surfaces, although non-spherical shapes present a better anatomical fit 

for both humeral and femoral cases. From this qualitative analysis, it is also clear that 

the spherical models present more concentrated areas of points with greater fitting errors 

relative to the remaining shapes. Note that the surface fitting errors are color coded 

according to the minimal signed Euclidean distances calculated between each point and 

the idealized geometric primitive, as depicted in Figure 3.4. 

 

In accordance, and complementary to the qualitative analysis, the quantitative 

analysis of the surface fitting errors indicate that the bone-cartilage boundary of both the 

humeral and femoral heads closely resemble the idealized geometric primitives, as the 

error metrics are very small (i.e., in the vicinity of 10-1 mm) and therefore have 

anatomical significance. Table 3.3 and Table 3.4 show the surface fitting errors and the 

parameters of the Gaussian curves, respectively. Tracing the histograms of the signed 

Euclidean distances and fitting a Gaussian curve to each histogram indicates that all 

geometric primitives reveal global features of the considered articular surfaces, as seen 

in Figure 3.5. Ideally, if a geometric primitive fully describes the anatomical data then 

the histogram’s Gaussian curve would be a Dirac function. Therefore, the most zero 

centered and thinner Gaussian curve corresponds to the best fit, whilst the most broad 

and off-centered curve corresponds to the worst fit. This is why quantitative analysis 

based on the Gaussian curve parameters (i.e., mean, μ, and standard deviation, σ) has the 

limitation that it can only indicate the worst and best fits.  
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Figure 3.4 – 3-D views of the optimally fitted surfaces for the (a) humeral and (b) femoral 
cases. In all cases, the geometric primitives fit the data in a global fashion. Data points are 
colored based on the signed Euclidean distance (red – interior points; green – vicinity points; 
blue – exterior points). 

 

For the humeral head case, it is clear that the worst shape model corresponds to the 

sphere and the best shape is the superovoid, to which the lower mean value and standard 

deviation are associated, as observed in Table 3.4. For the femoral head, the values lead 

to inconclusive results.  
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 min (mm) max (mm) 
mean 

(mm) 
std (mm) 

RMS 

(mm) 

Humeral 

head 

Sphere -2.643 3.257 7.724x10-1 5.466x10-1 9.462x10-1 

Ellipsoid -2.700 2.288 4.477x10-1 4.232x10-1 6.159x10-1 

Superellipsoid -1.943 2.306 4.454x10-1 4.076x10-1 6.037x10-1 

Ovoid -2.264 2.198 4.042x10-1 4.124x10-1 5.773x10-1 

Superovoid -2.327 2.094 3.935x10-1 3.968x10-1 5.587x10-1 

Femoral 

head 

Sphere -2.003 2.376 4.372x10-1 4.291x10-1 6.125x10-1 

Ellipsoid -2.361 1.932 4.081x10-1 3.967x10-1 5.690x10-1 

Superellipsoid -2.229 1.997 3.981x10-1 3.965x10-1 5.617x10-1 

Ovoid -2.227 2.011 3.562x10-1 3.723x10-1 5.152x10-1 

Superovoid -2.084 1.970 3.511x10-1 3.626x10-1 5.046x10-1 

 
Table 3.3 – Surface fitting error statistics for each geometric primitive for the humeral and 
femoral head cases. The total number of points is 1595 and 1759, respectively. The mean, 
standard deviation, and root mean square are calculated for the absolute value of the surface 
error, ||dPQ ||2. 
 

 Humeral head (mm) Femoral head (mm) 

Sphere 
μ -3.586x10-2 -2.500x10-2 

σ 9.458x10-1 6.122 x10-1 

Ellipsoid 
μ -2.708x10-2 -3.870 x10-2 

σ 6.155x10-1 5.679 x10-1 

Superellipsoid 
μ -2.682x10-2 6.808 x10-3 

σ 6.033x10-1 5.619 x10-1 

Ovoid 
μ -3.568x10-2 -7.416 x10-4 

σ 5.764x10-1 5.153 x10-1 

Superovoid 
μ -2.435x10-2 -9.585 x10-3 

σ 5.584x10-1 5.047 x10-1 

 
Table 3.4 – Parameters of the Gaussian curves fitted to the signed Euclidean distance 
histograms for each geometric primitive. 

 

Statistical metrics such as the minimum, maximum, mean, standard deviation, and 

root mean square of the surface fitting errors allow a more detailed evaluation of the 

goodness-of-fit. Although there is not a significant statistical difference between the 

various shape models, the preliminary surface fitting error results indicate that both 

humeral head and femoral heads are better described by a superovoid which presents the 
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lowest surface fitting errors, along with a low standard deviation relative to the 

remaining geometric primitives. Figure 3.6 shows graphically the shape approximations 

to the humeral and femoral epiphyses with better fitting parameters. The statistics 

shown in Table 3.3 also indicate that the goodness-of-fit of the different shapes 

improves in the following order: sphere, ellipsoid, superellipsoid, ovoid and superovoid.  

 

 
Figure 3.5 – Histograms of the signed Euclidean distances between the points and geometric 
primitives for (a) the humeral and (b) femoral head cases. The fitted Gaussian curves are also 
shown (red curve – sphere, green curve – ellipsoid, blue curve – superellipsoid, yellow curve – 
ovoid, black curve – superovoid). 

(a)

(b)

Signed Euclidean Distance (mm)

N
um

be
r o

f P
oi

nt
s

Signed Euclidean Distance (mm)

N
um

be
r o

f P
oi

nt
s



68 
 

 
Figure 3.6 – Proximal epiphyses of the (a) humeral and (b) femoral bones representations with 
the calculated shape model with highest goodness-of-fit. 

 

The geometric parameters represented by the exponents of the superellipsoid and 

superovoids show that the values are very close to the quadric counterpart, as presented 

in Table 3.5. This deviation, despite being small, improves the goodness-of-fit. In 

addition, ovoidal asymmetrizion also contributes for an increased goodness-of-fit 

comparatively to non-ovoidal shapes as described in Table 3.6. The calculated ovoidal 

coefficients are within the boundaries established by (Todd and Smart 1984) to describe 

avian eggs. This is an interesting result of biomimetism since avian eggs can be used to 

describe spheroidal articular surfaces in a macroscopic manner. In terms of intra-

articular variability, when comparing the two articular surface cases the lowest root 

mean square values of the femoral head indicate that this anatomical object is more 

spherical in nature than the humeral head. 

 

Regarding computational cost, the time required for the surface fitting genetic 

algorithm to converge is, in increasing order, the sphere, ellipsoid, ovoid, superellipsoid, 

and the superovoid. The amount of computational time necessary for these 

computations is strictly related to the non-linearity of the fitting surface. Thus, it is 

quicker to fit a sphere to the data than a superovoid. The same timely order is also 

observed for calculating the Euclidean distances as shown in Table 3.7. 

 

(a) (b)
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Humeral head Femoral head 

γ1 γ2 γ3 γ1 γ2 γ3 

Sphere 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 

Ellipsoid 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 

Superellipsoid 2.00026  2.00033 2.00148 2.05832 2.00308 2.08983 

Ovoid 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 

Superovoid 2.00011 2.00219 2.02288 2.09139  2.00019 2.00459 

 
Table 3.5 – Exponents of the various shape models.  
 

 Humeral head Femoral head 

Ovoid 

c0x 9.972x10-1 9.270x10-1 

c1x 2.686x10-5 6.470x10-3 

c2x 9.999x10-2 7.522x10-2 

c3x 6.589x10-2 5.040x10-2 

c0y 9.812x10-1 9.704x10-1 

c1y 5.923x10-2 5.040x10-2 

c2y 5.501x10-2 3.941x10-2 

c3y 9.848x10-2 8.976x10-2 

Superovoid 

c0x 9.749x10-1 8.953x10-1 

c1x 1.709x10-2 1.998x10-2 

c2x 9.992x10-2 5.566x10-2 

c3x 5.628x10-2 3.631x10-2 

c0y 9.672x10-1 9.235x10-1 

c1y 1.299x10-1 3.316x10-2 

c2y 9.995x10-2 2.924x10-2 

c3y 6.226x10-2 6.766x10-2 

 
Table 3.6 – Ovoidal shape coefficients. 
 

 S E SE O SO 

Humeral 

head 

Surface fitting 0.546 3.377 5.580 8.438 19.93 

Euclidean distance 28.12 30.29 31.55 32.13 34.87 

Femoral 

head 

Surface fitting 0.515 1.009 5.710 6.668 13.46 

Euclidean distance 29.10 31.85 33.96 34.00 35.99 

 
Table 3.7 – Computational times, in minutes, of the surface fitting and Euclidean distance 
optimizers. (S – sphere; E – ellipsoid; SE – superellipsoid; O – ovoid; SO – superovoid). 
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3.4 Discussion 

 

MacConaill’s mathematical and clinical work on synovial joint morphology indicates 

that the macroscopic features of spheroidal articular surfaces closely follow an ovoidal 

form (MacConaill 1966; MacConaill 1973; MacConaill and Basmajian 1977). Although 

his assumption has been known for over 40 years, many CAOS methodologies still 

remain faithful to the spherical classification. Thus, studies have been hesitant to 

explore more generic shapes which could contribute significantly to the anatomical 

description of human joints and to design improved artificial joints. On the other hand, 

several studies have considered non-spherical shapes but none are truly ovoidal (Kang 

et al. 2011; Cerveri et al. 2011; Anderson et al. 2010; Xi et al. 2003; Gu et al. 2008; 

Allaire et al. 2007a; Allaire et al. 2007b; Jacq et al. 2000; Matsuura et al. 2010; Eckhoff 

et al. 2003; Menschik 1997). In this work, MacConaill’s morphological assumption is 

addressed and computationally tested for a single case of humeral and femoral heads by 

considering the possibilities for spherical, ellipsoidal, superellipsoidal, ovoidal and 

superovoidal surface models are used to describe the morphological characteristics of 

the anatomical structures. To the authors knowledge, fitting a superellipsoid or 

(super)ovoids was never performed before on spheroidal articular surfaces, being the 

approach described here novel. 

 

The presented surface fitting framework is a valuable CAOS tool for morphological 

studies, as well for orthopedic surgery applications that aim to restore function in 

osteoarticular systems as it provides quantitative information regarding global 

characteristics of the spheroidal joint. The developed methodology consists of a pipeline 

of computational tools that are useful for orthopedic diagnostic, orthopedic surgery, 

preoperative planning, intraoperative navigation, post-operative status evaluation to 

reduce invasiveness and operating time, to improve surgical precision and 3-D guiding, 

and to design artificial joints. The surface fitting framework has the following 

capabilities: (i) provides a morphological visage of scanned data from medical images 

or range data by parameterization of articular surfaces, (ii) is extendable to other 

(implicit) shape models, (iii) accurately measures subject-specific morpho-functional 

parameters, such as articular centers, functional axes, mechanical axes, and specific 

morphology which are important to decide the proper prosthesis and implant or to 
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estimate the amount of bone that has to be removed in an osteotomy, (iv) performs a 

detailed data analysis to find the best shape model that describes the morphology of an 

articular surface, (v) performs a shape comparison based entirely on signed Euclidean 

distances between points and fitted surface rather than pseudo-Euclidean distances, and 

(vi) allows the use of non-spherical shape models to describe the morphology of normal 

and pathological articular surface anatomy, which is important to track the temporal 

evolution of pathological cases.  

 

The shape models considered encompass a wide spectrum of spheroidal shapes yet 

also simple enough to identify key macroscopic parameters. Considering several shape 

models is also relevant for morpho-functional studies in order to account for inter-

articular anatomic variability between different subjects. At the same time, the 

considered shape models have a compact number of parameters that are intuitive and 

controllable, which represent important features for geometric modeling (Barr 1981) 

The capability of these geometric primitives of not representing the local anatomical 

details contained within the CT images is a useful feature to build musculoskeletal 

models, in particular, for multibody system simulations, as they are a reasonable 

anatomical approximation to describe the mechanical behavior of a synovial joint, since 

these shape models usually have a diminished number of parameters in order to gain 

simplification for the design and analysis of the system (Anderson et al. 2010). Note 

that this morphological study relies on a hierarchal graph of surfaces organized 

according to the level of non-linearity, in which superovoids are a generalization of 

superellipsoids and where ellipsoids are a specific case of superellipsoids. This 

hierarchy can be seen as a series of morphing transformations applied to an ellipsoid 

and evolving until a superovoid. The surface fitting procedure benefits of this hierarchy 

of shape modeling and starts by finding an optimally fitted sphere and ellipsoid to the 

data, followed by constraining the superellipsoid and ovoid initial approximations based 

on the optimal ellipsoid. Superovoid initial approximation is then constrained based on 

both the optimal superellipsoid and ovoid. For non-affine parameters, the 

superellipsoidal and superovoidal exponents do not need to be greater than 4 since the 

articular surfaces are close to a quadratic surface, hence, quadratic-to-quartic exponent 

intervals reveal to be sufficient. Ovoidal and superovoidal models futher require 
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additional tuning for the asymmetric parameters. Despite this hierarchic strategy, 

several optimization runs are carried out to finetune the boundary constraints.  

 

Although the shape models are global in nature, spheres and (super)ellipsoids are 

more limited in terms of representing morphological subject-specific variations, both 

interspecific and intraspecific. In contrast, ovoids are more generic and account for a 

greater individual morphology variation and natural complexity since they have more 

degrees of geometric modeling freedom, namely, asymmetry parameters. Thus, as 

expected, the most generic surface model has the best fit for the given medical data. 

Despite the greater generality, Smart and Todd ovoids and their exponent-extended 

counterpart have an undesired mathematical characteristic for contact detection 

applications between convex surfaces (Lopes et al. 2010), namely the same level-set 

which has two forms since the equation has more than two real and unequal roots 

(Equation 2.19). In particular, the surface figure consists of an oval with a concave 

hyperbolic-like sheet at its vertex. This makes such surfaces not topologically 

equivalent to a sphere, nor limited and closed through the entire spatial domain. 

Therefore, Smart and Todd ovoidal surfaces are not appropriate for efficient contact 

detection applications since they consist of a composed surface rather than a fully 

convex surface. Other ovoidal surfaces should be explored to surpass this topological 

and geometric limitation. Fortunately, the surface fitting methodology presented here is 

generic and may enclose any implicitly defined shape model with a convex spheroidal 

form, for instance, members of the hyperquadric surface family (Hanson 1988).  

 

3-D reconstruction of anatomical structures from CT images is always characterized 

by image and mesh artifacts that affect the point data coordinates. Both partial volume 

effect, which occurs at the bone-cartilage interface, and smoothed meshes, performed by 

the Laplacian filter, are two unavoidable artifacts that cause spatial point deviations. 

However, since these artifacts represent very small displacements (in the order of 10-2 

mm) relative to the articular surface dimensions they do not affect the global features of 

the anatomical structure.  

 

The excessive number of nodes within the reconstructed bone mesh consists of 

another type of undesired artifact, since it is an excess of local anatomical detail that 



73 
 

may divert global feature measurements. Therefore, proper Gaussian sampling must be 

performed, for both humeral and femoral cases, in order to obtain a homogeneous and 

smaller set of points that, while still portraying the macroscopic features of the joints. 

On the other hand, too much down sampling deletes relevant macroscopic data and 

must be avoided. 

 

The objective function of the surface fitting minimization problem is non-linear 

presenting several local minima. Genetic algorithms are applied to solve this non-linear 

problem as they are robust enough to tolerate inherent local inaccuracies (i.e., usage of a 

large set of initial approximations randomly scattered throughout the admissible set). 

Therefore, this algorithm accounts for morphological variability and natural complexity. 

For such a non-linear optimization problem, genetic algorithms do not guarantee to 

achieve the global minimum of the surface fitting problem. Thus, several optimization 

runs are performed in order to seek the parameter space for better local solutions. The 

optimizer succeeds when the admissible set is properly constrained and the initial 

approximations are close to the desired solution, otherwise the optimization algorithm 

may fail or deliver a non-desirable solution. For instance, approximating an ellipsoid 

from a smaller set of representative points is found to be an efficient and effective 

strategy for setting the initial approximation for the affine surface parameters (i.e., 

dimensions, position and orientation). In particular, this provides a very close estimation 

for the initial approximation for the ellipsoidal, superellipsoidal and even for ovoidal 

cases. Whenever ellipsoid approximation fails, mainly due to a non-homogenous point 

selection, a new set of points is selected and the process restarted.  

 

Visual inspection is a qualitative analysis prone to subjective interpretation, but 

nevertheless allows controlling the process of surface fitting as it usually indicates if the 

local solutions are close or far from the optimum. The minimum point-surface 

Euclidean distance histogram is another useful form of visual inspection that, together 

with the fitted Gaussian curves, gives an overall insight of the goodness-of-fit. Despite 

the usefulness of the visual information, qualitative analysis must be complemented by 

surface fitting error statistics in order to definitively decide which geometric primitive 

has the best fit. The surface errors calculated in this work have the same order of 
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magnitude of other morphological studies of the hip joint (Anderson et al. 2010; 

Menschik 1997; Cerveri et al. 2012; Kang 2004). 

 

A major issue concerning the pipeline is the computational time required by the 

surface fitting and the Euclidean distance optimizers, which rely on the performance of 

the genetic algorithm. In particular, the signed Euclidean distances are calculated via a 

brute force approach since the geometric distance from a point to an arbitrary 

(super)ellipsoid or (super)ovoid surface cannot be expressed analytically. This impacts 

adversely the computational time. In addition, the greater the number of shape 

parameters required by the surface description the more fine-tuning and larger the 

number of iterations required. Although the optimizer takes a few minutes to achieve a 

proper solution, as seen in Table 3.7, the results show a good level of accuracy as the 

results have anatomical meaning. The calculation of the minimum distances between 

points and surface, the optimizer is more time consuming since a genetic algorithm has 

been used for such minimum distance evaluation leading to CPU times in the order of 

30 min. 

 

It should be noticed that the approach presented here consists of considering solely 

one case study per anatomical structure. The lack of more case studies does not allow 

validating MacConaill’s observations but simply to propose a methodology that 

indicates new research paths on morpho-functional studies of humeral and femoral 

heads. Therefore, to fully test MacConaill’s assumption and validate the proposed 

surface fitting framework, future work should consider a larger population, e.g. of 10-25 

subjects with healthy humeral and femoral heads, to understand the degree of generality 

of the trends observed in this study. A more thorough statistical analysis is also 

necessary to quantify, unambiguously, the shape model that best fits the data. 

 

In summary, a surface fitting framework was developed to explore MacConaill’s 

assumption on articular surface morphology. The framework computes the geometric 

primitive with best fit among a hierarchy of shape models. In general, the surface 

approximations have topological and geometric significance and are representative of 

the point clouds that they fit. For both humeral and femoral cases, the spherical shape 

provides the worst surface fitting statistics while the superovoid had the best goodness-
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of-fit. By tracing the histogram of the surface fitting errors, Gaussian distributions with 

a tight deviation are obtained, which indicate a qualitatively good fit. The preliminary 

results indicate that MacConaill’s assumption is valid, hence may even contribute to 

standardize his classification of synovial joints, although more in depth morphological 

studies with more subjects are needed to confirm this standardization.  

 

The present work is part of a larger research framework that covers not only articular 

surface shape modeling but also the associated biomechanical function, and the design 

of improved and personalized artificial joints (Xi et al. 2003; Jiang et al. 2010; Gu et al. 

2010; Gu et al. 2011). The surface fitting framework presented here is intended to be 

incorporated into a geometric modeling module for musculoskeletal simulations, as the 

fitted surfaces provide a reasonable approximation of the joint mobility and stability, 

and to explore quantifiable relationships between joint morphology and its intrinsic 

kinematics of both normal and pathological joints. Contact detection algorithms will 

allow one to address the influence of the bone morphology and malformations on the 

range of motion and magnitude of movement between the articulating bones (Burdin et 

al. 1994). As future work, a morpho-functional finite element study regarding new 

designs for shoulder and hip joint prosthetics can be carried out, in which several 

ovoidal surfaces can be built to be tested with static and dynamic loading conditions 

that reflect daily activities. 
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4. Vector Orthogonalization of Surface 

Normals with Householder 

Transformations 
 

An important geometric and linear algebraic problem, denoted as vector 

orthogonalization, is considered in this chapter. The problem is to find a set of linearly 

independent vectors that span the entire ℝ3 Euclidean space given only one of the base 

vectors. This chapter contains the explanation on how the Householder transformation 

(Householder 1953), which is extensively used for matrix orthogonalization, provides 

an elegant analytical expression that solves the vector orthogonalization problem. Based 

on the QR matrix factorization method, the orthogonal vectors are produced using a 

Householder reflection that transforms the given vector into a multiple of the unit vector 

whose entries are all zero with the exception of the first. Based on efficiency, accuracy 

and numerical robustness criteria, the proposed technique is compared to other vector 

orthogonalization methods. The numerical results show that the Householder vector 

orthogonalization formula is the most efficient when it comes to outputting a set of 

orthonormal vectors, presenting speedups close to 1.017 times faster when compared to 

other efficient techniques. In addition, when dealing with Cn continuous implicit 

surfaces, with n > 1 and n ∈ ℕ, the Householder vector orthogonalization formula 

reveals to be particularly useful for vector calculus since it provides a set of differential 

operators to calculate, not only the normal, but also the tangent and binormal surface 

vector fields which can be used to calculate surface curvatures. The major contribution 

of this work is to explicitize how the Householder transformation holds an analytical 

expression that calculates the tangent and binormal vectors from a given normal at a 

surface point vector, which is computationally efficient and numerically robust for real-

time computational geometry and computer graphics applications. This formula is also 

useful to handle contact detection and contact force descriptions in engineering 

applications that use smooth convex surfaces. Such a vector orthogonalization technique 

also has direct applications in several CAD/CAM processes, ranging from the 

elaboration of rough solid models to the precise manufacturing of a product. 
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4.1 Introduction 

 

In linear algebra, orthogonalization consists of finding a set of orthogonal vectors, 

called the basis, which spans an entire space or a particular subspace (Householder 

1953). The vectors that form a basis are linearly independent, meaning that they are 

mutually orthogonal and that any vector can be expressed as a linear combination of the 

vectors that compose the basis. To construct a basis considering solely a non-null vector 

demands an orthogonalization process capable of generating the remaining linearly 

independent vectors. The operation to build such base vectors is here designated as 

vector orthogonalization. In ℝ3 Euclidean space, the vector orthogonalization problem 

can be stated by the following question: 

 

How to determine a vector that is orthogonal to an explicitly given arbitrary, fixed, real, 

and non-null 3-D vector? 

 

In this thesis, the strategy explored to orthogonalize a vector makes use of the 

transformation proposed by Alston Scott Householder for the inversion of 

nonsymmetric matrices (Householder 1958) which offers an explicit proposal to find 

perpendicular vectors. Such a transformation consists of a matrix that performs a 

reflection of a vector along a (hyper)plane containing the origin. The (hyper)plane is 

defined by an auxiliary vector whose components make part of the transformation 

matrix. Note that a reflection is a special case of an orthogonal transformation. Rotation 

matrices are another type of orthogonal transformations (Householder 1953; Allen III 

and Isaacson 1998). Numerically, the Householder transformation introduces blocks of 

zeros into vectors or columns of matrices in an extremely stable manner regarding 

round-off errors. Due to its column-zeroing functionality, the Householder 

transformation is extensively used in linear algebra and numerical analysis. Besides QR 

decomposition, there are several applications of the Householder transformation for 

solving different mathematical problems formulated as systems of linear equations: 

upper-triangularization of symmetric and nonsymmetric matrices, computation of 

determinants, computation of matrix inverses, factorization of matrices (SVD), 

approximation by linear least-squares, and computation of eigenvalues and eigenvectors 
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of real symmetric matrices (Householder 1953; Allen III and Isaacson 1998; Süli and 

Mayers 2003).  

 

In order to solve the vector orthogonalization problem via Householder 

transformations, a specific Householder matrix H, with H ∈ ℝNxN, is designed so that it 

annihilates all elements of a given vector n (e.g., a normal 3-D vector at a surface 

point), with the exception of the first, when premultiplied by this matrix. Such a system 

of equations is equivalent to a set of collinear and orthogonal vector relationships 

between the given vector n, with n ∈ ℝN \{0}, and the columns of the matrix H. This set 

of vector relationships may be written as the linear algebraic equation Hn = λe1, with λ 

∈ ℝ and e1 ∈ ℝN, where e1 is the first column of the identity matrix, I ∈ ℝNxN. By 

making the first column of H collinear to n, and since H is orthogonal, the remaining 

columns are perpendicular to the given vector. So, it is the content of the Householder 

matrix rather than the reflected vector itself that is of interest to solve the problem. 

 

Note that, for the particular case of n being a 3-D normal vector to a surface, this 

Householder transformation discloses an explicit geometric meaning as the second and 

third columns (or lines) provide formulae for calculating a tangent vector basis to the 

given 3-D normal vector. This geometric meaning is extremely relevant for contact 

detection formulations (Lopes et al. 2010) since the system of equations Hn = λe1 

consists of a set of collinear and orthogonal conditions formulated by the common 

normal concept (Johnson 1985). Consequently, this geometric meaning raises a couple 

of practical questions: (i) given a 3-D normal vector to a surface, n ∈ ℝ3 \{0}, which is 

the vector h ∈ ℝ3 \{0} that defines the Householder matrix that contains the tangent 

vector basis?; (ii) is it possible to deduce an analyticity expression for this vector h? 

 

One goal of this chapter is to exploit the geometric meaning of the Householder 

transformation for the vector orthogonalization of the 3-D case and its application 

framework within contact mechanics, namely, using the formula for improving the 

efficiency of contact detection methodologies and making use of its analiticity for 

granting continuous contact forces. Hence, this Chapter complements a previous work 

where the Householder reflection or transformation was solely used as an explicit 

formula readily prepared to be applied for vector orthogonalization within a contact 
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detection methodology (Lopes et al. 2010). Here, the theoretical background and 

necessary demonstrations, along with some examples, are presented in order to show 

the usefulness and to exemplify the purpose of applying the Householder transformation 

for solving the vector orthogonalization problem. The computational efficiency, 

numerical robustness, and accuracy of the Householder formula is also investigated by 

comparing the Householder technique to other vector orthogonalization methods (Lopes 

et al. 2010; Eberly 2013). The benchmarked results shall then reveal the most efficient 

algorithm(s) for vector orthogonalization, an important feature for several engineering 

applications in which contact detection of extremely high number of interactions is 

necessary (Mazhar et al. 2011). Another goal of this chapter is to highlight the utility of 

the Householder formula to calculate vector tangential vector fields given an implicit 

surface functional and, consequently, surface curvature. It is indeed an important 

geometric application of the formula in contact detection with implicit surfaces, as the 

Householder transformation provides an elegant, straightforward, and analytical formula 

to calculate a local orthogonal basis of a plane tangential to a surface point, thus, finding 

the tangent and binormal vectors. In fact, the Householder vector orthogonalization 

formula offers a set of differential operators to calculate the normal, tangent, and 

binormal vector fields of a given scalar field described by an implicit surface function. 

 

4.2 2-D vector orthogonalization 

 

Finding a perpendicular vector in 2-D Euclidean space has a well-known rule of thumb 

in computer geometry: just swap the vector components and invert the sign of one of the 

entries, as implied in Figure 4.1. More specifically, given an arbitrary, non-null and real 

valued vector n ∈ ℝ2 \{0}, the orthogonal vectors, t and -t, with t ∈ ℝ2 \{0}, are 

obtained by premultiplying n by one of the following 2x2 real valued generalized 

permutation matrices, P+ and P -:  

 0 1
1 0

x y

y x

n n
n n

+ = − = − =     
     
    

P n t  (4.1) 

 0 1
1 0

x y

y x

n n
n n

− = = = −     
     − −    

P n t  (4.2) 



81 
 

 

 
Figure 4.1 – 2-D vector orthogonalization. 
 

The generalized permutation matrices P+ and P- are in fact reflection matrices in 

which the reflecting line segment (i.e., the 2-D (hyper)plane) makes an angle of ±45º 

with the given vector n. Since the permutation matrix is valid for the 2-D case, it is 

legitimate to question if there exists a similar or an equivalent transformation to perform 

vector orthogonalization in 3-D. If such transformation exists, does it represent a 

reflection, a rotation, or another type of orthogonal transformation?  

 

Within linear algebra and numerical analysis, the Householder transformation 

represents the generalization of reflection matrices. To assume that the Householder 

transformation encloses a highly efficient, accurate and robust solution towards the 

vector orthogonalization problem, that is capable of satisfying real-time applications, 

becomes quite a natural hypothesis. Therefore, the purpose is to exploit a formula that is 

both a non-trivial and elegant way to obtain a vector basis that is orthogonal to an 

arbitrary vector.  

 

4.3 3-D vector orthogonalization 

4.3.1 Orthogonal matrices 

 

Let K be the field of real numbers, and let E be a real vector space over K defined as the 

three-dimensional Euclidean space ℝ3. The elements of K are called scalars and the 

elements of E are called vectors. A vector space E is a set that is closed under finite 

O x

y

nt


−t

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vector addition and scalar multiplication. In 3-D space, a vector basis is any set of three 

linearly independent vectors capable of generating the vector space of E and is defined 

as a subset of vectors v1, v2, v3 in E that are linearly independent and span E. 

 

Central to the problem in question are the definitions of orthogonality for vectors and 

matrices. Two vectors, u ∈ ℝ3 and v ∈ ℝ3, are said to be orthogonal if they meet at a 

right angle, i.e., uTv = 0. A matrix Q ∈ ℝ3x3 is orthogonal if its inverse is its transpose. 

An equivalent characterization of an orthogonal matrix is that its columns form an 

orthonormal set of vectors q1, q2, q3 ∈ ℝ3. Therefore, a matrix is said to be orthogonal if 

its columns are linearly independent, hence, forming a basis. Orthogonal matrices have 

several key properties. For instance, by multiplying a vector by an orthogonal matrix the 

norm of a vector remains invariant, hence, orthogonal matrices preserve Euclidean 

length. It follows that all eigenvalues of an orthogonal matrix Q have unit magnitude 

and, consequently, |det(Q)| = 1.  

 

Geometrically, multiplying a vector by an orthogonal matrix reflects the vector about 

a plane or rotates it along an axis. In 2-D, these transformations have simple geometric 

interpretations: reflection matrices reflect an arbitrary vector n ∈ ℝ2 across a rectilinear 

curve; rotation matrices by premultiplying an arbitrary vector n ∈ ℝ2 produce a vector 

Qn that lies at an angle θ to n. 

 

4.3.2 Householder reflection 

 

The Householder transformation consists of a linear transformation that describes a 

reflection about a (hyper)plane that contains the origin and sends a chosen axis vector, 

h, to its negative and reflects all other vectors through the (hyper)plane perpendicular to 

h. This transformation, represented graphically in Figure 4.2, has the following 

definition:  

 

Definition: a mapping ℝN ⟶ ℝN, n ⟶ Hn, for a matrix H ∈ ℝNxN of the form H = I – 

2hhT/hTh, with h ∈ ℝN, is called a Householder transformation.  
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Thus, the matricial expression for the 3-D Householder matrix is 

 

 2
1 31 1 2

2 2 2

2
2 31 2 2

2 2 2

2
1 3 2 3 3

2 2 2

2 1 2 2 2

2 1 2 2

2 2 1 2

T

T

h hh h h
h h h

h hh h h
h h h

h h h h h
h h h

 
= − = − − − 

 
 
− − − 
 
 
 − − −
 

hhH I
h h

 (4.3) 

where [ ]1 2 3
Th h h=h  and h = ||h||2 is the Euclidean norm of vector h. 

 

 
Figure 4.2 – Householder reflection illustrated on the plane that contains n, h, and Hn. H 
defines a mirror (hyper)plane reflecting any vector to the other half (hyper)space. 

 

 Note that the Householder matrix results from the sum of two orthogonal matrices: 

the identity matrix and the projection matrix of h upon itself. Depending on the 

coordinate type considered, Equation 4.3 can be expressed in either Cartesian or 

curvilinear coordinates (e.g., polar coordinates). Table 1 lists the orthogonal matrix 

properties of the Householder reflection along with the corresponding geometric 

meaning. 

 

A Householder transformation is geometrically defined as a reflection of n about the 

(hyper)plane H = {x ∈ ℝN : xTh = 0}, where h is the vector whose components define 

the (hyper)plane. This follows from the vectorial identity obtained by applying the 

parallelogram law that decomposes the vector n into a component in the direction h and 

into an orthogonal component: n – 2(hTn)h = n – (hTn)h – (hTn)h, as seen in Figure 4.2. 

Note that the vectors n, h, and Hn are coplanar. In particular, if n ∈ ℝN and hTn = 0, 

then Hn = n. If the angle between n and h is denoted by φ, then the angle between h 

O

n

h


( )Th n h
 



{ }3 : 0H T= ∈ =x x h


 

( )2 T= −Hn n h n h
 

  
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and Hn is equal to φ+π. From these observations, the vector Hn is the reflection of n in 

the (hyper)plane H. 

 

Property Equation Geometric meaning 

H is orthogonal 
HTH = I, 

(Hu)THv = uTv 

H preserves norms and 

angles. 

H is symmetric 
HT = H, 

(Hu) Tv = uT(Hv) 

H preserves norms and 

angles. 

H is involuntary H2 = I 

H reflects u to its mirror 

image, a second application 

of H sends it back again. 

Unitary determinant det(H) = -1 
H turns the unit cube inside 

out along one axis. 

Unitary matrix norm ||H||2 = 1 H preserves norms. 

 

Table 4.1 – Orthogonal matrix properties of the Householder reflection matrix. Vectors 
u, v ∈ ℝN and ||.||2 represents the Euclidean norm.  
 

4.3.3 3-D Householder vector orthogonalization formula 

 

Within the 3-D vector Euclidean space E, the objective is to obtain a subspace B that 

spans E = {e1,e2,e3}, where ei are the columns of the identity matrix. Therefore, the 

solution of the vector orthogonalization problem consists of a base, B = {n,t,b}, where 

n is the explicitly given vector and t and b are the desired orthogonal vectors with n, t, 

b ∈ ℝ3 \{0}. In the face of the typical nomenclature used in contact mechanics, vectors, 

n, t, b are referred to the normal, tangent, and binormal vectors respectively. Ideally, the 

base B should have an analytical expression that depends solely on the normal vector, 

i.e., B = {n,t,b} ⟺ B(n) = {n,t(n),b(n)}, where both tangent and binormal vectors 

depend on the coordinates of n. 

 

Regarding the case of n being a 3-D normal vector to a surface, the Householder 

transformation that sets the normal vector to be collinear with the first column thus 

discloses an explicit geometric meaning for the second and third columns (or lines) as 
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they provide the formulae for calculating a tangent vector basis to the given 3-D normal 

vector. This geometric meaning is extremely relevant for contact detection formulations 

(Lopes et al. 2010) since the system of equations Hn = λe1 consists of a set of collinear 

and orthogonal conditions formulated by the common normal concept (Johnson 1985). 

Hence, what remains is to determine the auxiliary vector h that produces a matrix H 

whose rows satisfy the following collinear and orthogonal conditions: 

 

 1 2 3|| ,    ⊥ ⊥n h n h h  (4.4) 

where h1, h2, h3 are the columns of the Householder matrix, i.e.,  

 

 [ ]1 2 3 1

2

3

T

T

T

 = =
 
 
  

H h h h h
h
h

 (4.5) 

Given the Householder matrix, described by Equation 4.3, a construction proof of 

vector orthogonalization is provided hereafter. The analytical formula consists of a 

matrix whose rows or columns form an orthogonal basis. The overall strategy relies on 

applying the Householder transformation to zero the 3−1 elements below the first 

element of a given column vector. Thus, the geometric conditions of collinearity and 

orthogonality of Equation 4.4, written as a system of three equations in order to 3 

unknowns (i.e., the coordinates of vector h), can be expressed in the matrix form as: 

 

 
1 1 1 1 1 12 2

2 2 2 2 2 2

3 3 3 3 3 3

||
  0   0         

0 0

T T
x y z x

T T
x y z y

T T
x y z z

h h h n
h h h n
h h h n

λ λ    = = =      
         ⊥ ⇔ = ⇔          

          ⊥ =         

n h h n n h n
n h h n h n
n h h n h

(4.6) 

with λ ∈ ℝ \{0} and where h is the unknown vector for which an analytical expression is 

desired. Note that, by Equation 4.3, H is not uniquely defined by a single vector h, thus, 

any non-null multiple of h defines the same Householder matrix. Therefore, a proper 

vector h that defines the desirable Householder matrix H must be such that Hn is a 

nonzero multiple of e1 and Equation 4.6 can be presented in a more compact form as: 

 

 12
λ=Hn n e  (4.7) 
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Note that Equation 4.7 is essentially the first stage of a QR decomposition using 

Householder reflections (Householder 1953; Press et al. 2007; Süli and Mayers 2003) 

with H playing the role of Q and λ playing the role of R. 

 

Vector h is chosen so that an arbitrary and non-null (but fixed) vector n is mapped by 

H onto a multiple of the axis vector e1. The deduction of the associated vector h that 

defines the Householder matrix of Equation 4.3 has the following two steps: (i) 

determination of the magnitude and sense of vector h; and (ii) determination of the 

direction of vector h. The former step is done considering that orthogonal matrices 

preserve the lengths of vectors, ||Hn||2 = ||n||2, thus, there are only two possibilities for λ:  

 

 1 12 2
            = 1λ= ∨ = − ⇒ ±Hn n e Hn n e  (4.8) 

 

The latter step is done recalling that any non-null multiple of h (e.g., τh, with τ ∈ ℝ 

\{0}) has the same Householder matrix which is an important result to symbolically 

determine h: 

 

 1 12 2

12

12

1 12 2

    2

  2

  

      

T

T

T

T

I

τ

τ

 
= ± ⇔ − = ± 

 

⇔ − = ±

⇔ − = ±

⇔ = ⇒ =

hhHn n e n n e
h h

hhn n n e
h h

n h n e

h n n e h n n e 

 (4.9) 

with 

 2
T

Tτ = h n
h h

 (4.10) 

 

To ensure that the first component of h is always non-null for any nx, the first 

component of h must be chosen as the maximal value of the following set: 

 

 { }( )2 2
max ,x xn nµ = − +n n  (4.11) 
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with nx ∈ ℝ. 

 

It is also necessary to demonstrate, by symbolic calculus, that the lines (or columns) 

of the H matrix form an orthogonal basis in which the first column is collinear to n. If 

the given vector is written as 

 

 
T

x y zn n n =  n  (4.12) 

and without loss of generality, by assuming that the norm of vector n is unitary, ||n||2 = 

1, and considering vector h to be 

 

 12 2

T

x y zn n n = + = + h n n e n  (4.13) 

in which the first element of h is considered as μ = nx + ||n||2, thus, h = (2(nx + 1))1/2, 

then the first column of H, h1, is expressed as 

 

 
( )

( )

( )

22
1

1 1 2 22

1 2
2 2

1 3
2 2

    1 2 1 2

2 2

2 2

x

x y

x z

n nh
h h

h h n n n
h h

h h n n n
h h

 + 
= + ⇒ = − = −  

  
 + − −  
  
 + − −     

h n n e h  (4.14) 

The normal vector and the first column vector are collinear if and only if their cross-

product outputs a null vector: 

 

 
Figure 4.3 – The desired Householder matrix transforms n into a multiple of e1. 
 

O x

y

n

1e

12
= −h n n e

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2e

12
=Hn n e  

12
H+ ∈n n e  
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(4.15) 

 

with 

 

 
2

2( 1)xh n= = +h  (4.16) 

Since h1 is collinear to n then, by the property of matrix orthogonality, the second and 

third columns of H, h2 and h3, are also perpendicular to n. Consequently, the tangent 

and binormal vectors can be considered as the second and third columns of H, 

respectively.  

 

In geometrical terms, as represented in Figure 4.3, this result can be rephrased by 

stating that for any vector n there exists a (3−1)-dimensional (hyper)plane H passing 

through the origin in ℝ3 such that the reflection Hn of n in H is equal to a nonzero 

multiple of e1. To find H it suffices to identify a vector h ∈ ℝ3 normal to H. Since H is 

unaffected by rescaling h, the length of h is immaterial. As mentioned previously, the 

vectors Hn, n and h are coplanar. Therefore, h is a suitable linear combination of n and 

e1. 

 



89 
 

Pseudo-code (3-D Householder vector orthogonalization) 

1. Determine vector h: 

1.1 calculate the Euclidean norm of the given vector, n = ||n||2; 

1.2 determine the first component of h: h1 = max({nx - n, nx + n }); 

1.3 define h2 = ny and h3 = nz; 

2. Determine matrix H = [h1 h2 h3]: 

2.1 calculate the Euclidean norm of h, h = ||h||2; 

2.2 use the analytical expression of H to calculate the matrix: 

 

2
1 31 1 2

2 2 2

2
2 31 2 2

2 2 2

2
1 3 2 3 3

2 2 2

2 1 2 2 2

2 1 2 2

2 2 1 2

T

T

h hh h h
h h h

h hh h h
h h h

h h h h h
h h h

 
= − = − − − 

 
 
− − − 
 
 
 − − −
 

hhH I
h h  

 

3. Set the tangent, t, and binormal, b, vectors as the 2nd and 3rd column of H, respectively: t = 

h2 and b = h3. 

 
Table 4.2 – Pseudo-code for 3-D Householder vector orthogonalization. 
 

It has been shown that the process of vector orthogonalization may consist in 

transforming a vector by applying an operation of reflection, but the same result could 

be obtained from a rotation. Recall that the product of two reflections gives a rotation 

matrix as stated by the theorem of Cartan (Willmore 1959; Householder 1958): every 

orthogonal transformation in ℝN can be expressed as a product of at most N simple 

reflections by (hyper)plane. Determining such rotation matrices is outside of the scope 

of this chapter.  

 

Table 4.2 presents the pseudo-code to calculate the Householder matrix for vector 

orthogonalization in 3-D Euclidean space. The only input is the non-null, fixed, and real 

valued vector n = [nx ny nz]T. Note that step 1.2 of the algorithm shown in Table 4.2 

ensures that the first component of h is always non-null. 
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4.4 Differential operators for calculating normal and tangent vector 

fields of implicit surfaces 

 

Several areas of mathematics and engineering make use of the implicit object definition 

to represent the geometric loci of surfaces (Johnson 1985; Gomes et al. 2009; Velho et 

al. 2002). Implicit geometric objects are defined by a scalar function F(x), F: x ∈ ℝ3 ⟶ 

ℝ (either a Euclidean or non-Euclidean spatial metric), and the surface is the set of 

points, x, that satisfy a level-set equation, e.g., F(x) = 0. In vector calculus, for an 

implicitly defined surface, the normal vectors are obtained by differentiation of the 

surface function in order to the spatial coordinates. When considering Cartesian 

coordinates, the normal vectors are, by definition, the variation of the surface functional 

in the x, y, and z directions. These first order spatial variations are gathered together 

forming the gradient operator. This opens the way to apply the Householder vector 

orthogonalization formula, Equation 4.3 and Equation 4.9, to the surface gradient vector 

leading to the deduction, by symbolic calculus, of a set of non-linear differential 

operators that provide tangential vector fields to an implicit surface. These non-linear 

differential operators are directly obtained by symbolic substitution of the gradient 

vector components into the Householder formula. In this manner, the operators are 

expressed in order to the first order differential terms along x, y, and z, i.e., ∂/∂x, ∂/∂y, 

and ∂/∂z.  Consider the normal of a Cn, n ≥ 1, continuous surface implicitly defined. 

Given the functional expression of the implicit surface, F(x) : ℝ3 ⟶ ℝ, whose zero-

level defines a set of surface points [ ] ( ){ }3 : 0 ,Tx y z F∂Ω = = ∈ =x x  the normal vector 

is derived as  

 

 ( ), ,
T

x y zF x y z F F F = ∇ =  n  (4.17) 

 

The auxiliary vector comes as  

 
T

y zF Fµ =  h  (4.18)  

with 

 { }( )2 2
max ,x xF F F Fµ = − ∇ + ∇  
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Consequently, the Householder’s analytical expression is written as  

 
2

2 2 2

2

2 2 2

2

2 2 2

1 2 2 2

2 1 2 2
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y z

y y y z

y zz z

F F
h h h
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h h h
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h h h

µ µµ

µ

µ

 
= − − − 
 
 
 − − −
 
 
 − − −
  

H  (4.19) 

with 

 2 2 2
y zh F Fµ= + +  (4.20) 

where the first, second and third columns can be assigned as Dn(F(x)), Dt(F(x)), and 

Db(F(x)) differential operators, respectively as shown in Appendix B. Hence, given the 

implicit surface function F and a specific level-set, it is possible to visualize the set of 

orthogonal vector fields defined by Dn(F(x)) and corresponding tangential vectors 

Dt(F(x)) and Db(F(x)). Figure 4.4 illustrates the vector fields of the surface’s gradient 

orthogonal basis for an elliptic paraboloid, ellipsoid, hyperbolic paraboloid and a one 

sheet hyperboloid. As expected, both tangent and binormal vector fields define 

tangential direction fields upon the surfaces which, by numerical integration, draw 

surface curves defined as streamlines (Spencer et al. 2009) that are orthogonal 

trajectories, as shown in Figure 4.4 (b) and Figure 4.4 (c). Note that, at each point 

throughout the surface, the basis vectors are everywhere orthogonal but are rotated 

along the normal vector direction. Although vector orthogonalization is performed 

locally, the tangent and binormal vector fields are globally consistent. This vectorial 

aspect is related to the angular deviation of the Householder tangent vectors from the 

principal curvature directions.  

 

Therefore, the Householder transformation provides, in an explicit fashion, an 

analytic formula of geometric attributes related to tangential vectors of an implicit 

surface. Obviously, these operators are only valid for implicit objects that are at least C1 

continuous. Appendix B compiles the analytic expressions discussed in this Section 

which are written as differential operators for calculating the normal, tangent and 

binormal vectors given an implicit surface. 
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Figure 4.4 – Superficial direction fields defined by the normal (red), tangent (green), and 
binormal (blue) vectors. (a) elliptic paraboloid (radii: 1.0,1.0); (b) ellipsoid with tangent and 
binormal streamlines (radii: 0.5,0.4,0.45); (c) hyperbolic paraboloid with tangent and binormal 
streamlines (radii: 1.0,1.0); (d) one sheet hyperboloid (radii: 1.0,1.0,1.0). Radii are listed for the 
x, y, and z directions of the canonical quadric representation. 
 

Since differential operators are available to compute tangent vector fields to an 

implicit surface, an immediate application consists of determining the curvature at a 

point. The link between the tangential vectors and the curvature is given by the 

following expression: 

 

 
2

T Fk ∇∇
= −w

w w
n

 (4.21) 

(a) (b)

(c) (d)



93 
 

where w ∈ ℝ3 is a unit vector that belongs to the tangent plane at the surface point, F∇∇  

∈ ℝ3x3 is the Hessian matrix of the implicit function, and n is the normal vector or 

gradient of the implicit function at the surface point (Turkiyyah et al. 1997). An 

interesting topic that naturally arises consists of determining if the tangent vectors 

computed with the Householder formula are or not principal curvature directions. 

Vector w can be expressed as a linear combination of the orthonormal basis defined by 

the Householder formula, 

 

 ( ) ( ) ( )cos sinθ θ θ= +w t b  (4.22) 

where θ ∈ [0,2π[ is the angular deviation of w from the tangent base vectors. If θ is a 

principal curvature direction then it must zero the derivative of kw in order to θ, i.e., the 

maxima and minima of kw are given by 

 

 

( )

1 1

20 tan 2

arctan      
2 2

T

T T

dk F M
d F F

M

θ
θ

πθ θ θ θ

∇∇
= ⇔ = = ⇔

∇∇ − ∇∇

   ⇔ = = ∨ = +   
   

w t b
t t b b

 (4.23) 

Assuming that t and b are principal curvature directions, then the angular deviation is 

equal to zero. This assumption implies that  

 

 arctan 0 0 0T TM F= ⇔ ∇∇ = ⇔ =t b t q  (4.24) 

with q = F∇∇ b . Since t and b are orthogonal, in order to q to maintain vector 

orthogonality with t, the Hessian matrix must be a full scalar matrix, i.e., F λ∇∇ = I  

with λ ∈ ℝ, or a scalar matrix with some diagonal entries equal to zero. The plane, 

sphere and cylinders (e.g., spherical, parabolic, and hyperbolic cylinders) are examples 

of such surfaces. However, in general, the Householder vectors do not correspond to the 

principal curvature directions since Equation 4.24 does not hold for the vast majority of 

Hessian matrices, thus, the orthonormal basis defined by the Householder formula 

presents an angular deviation that varies throughout the surface. 
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4.5 Numerical evaluation of vector orthogonalization techniques 

 

A series of numerical tests was carried out to compare, in terms of computational 

efficiency, numerical accuracy and numerical robustness, the Householder formula with 

other vector orthogonalization techniques. For practical purposes, the considered 

techniques, which have been briefly described in the Introduction, are here called as 

Householder (HH), Eberly (EB) (Eberly 2013), Square Plate (SP) (Lopes et al. 2010), 

and Projection Matrix (PM) (Zhao et al. 2006). The complete formulas of these vector 

orthogonalization technieques can be found in Appendix C. The numerical tests 

consisted of calculating real-valued tangent and binormal vectors for a set of 105 unitary 

vectors in ℝ3. The inputs vectors were randomly calculated with a uniformly distributed 

pseudorandom number generator. CPU execution times to compute both tangent and 

binormal vectors were then measured. Whenever possible, symbolic calculations were 

performed upon the vector orthogonalization expressions in order to find a simplified 

expression with the minimum number of floating-point operations per second (FLOPS) 

seen in Appendix C. Each expression was further simplified having in consideration that 

the input vectors were unitary. By direct examination of the analytical and numerical 

expressions, the considered vector orthogonalization techniques revealed to be 

numerically robust since no type of indetermination occurs (1/0, 0/0, 0x∞, ±∞, √-1). A 

statistical analysis was performed upon the measured CPU times and speedups relative. 

Finally, the accuracy (i.e., the value of the inner product between the given normal 

vector and the computed tangent vectors) of each technique was also calculated to 

verify how close the products nTt, nTb and tTb are to zero. Table 4.3 lists the speedups 

(defined as the ratio between the 10% trimmed mean execution time of the EB, SP, PM 

and HH) and the interquartile ranges of each vector orthogonalization technique. These 

measures are robust to outliers, thus, are statistically representative of the time data. 

Table 4.4 lists the average and variance accuracy measures for the considered battery of 

unit vector sets. The vector orthogonalization code was developed in MATLAB® 

R2009b and ran on a PC with an Intel® Core™ i7 CPU 870 @ 2.93 GHz processor with 

8 GB of RAM. All the calculations and CPU time measures were performed with 

double precision. As a special remark, the same numerical test was performed using 

MATLAB®’s qr(.) command (MATLAB® 2013), which computes the Q and R 

matrices using Householder reflectors generating a full form QR decomposition, 
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presenting a speedup value of approximately 2.20 and similar accuracy statistics in the 

order of 10-18. 

 

 Householder Eberly Square Plate Projection Matrix 

Speedup - 1.017 2.795 7.527 

IQM 3.49x10-7 3.48x10-7 1.05x10-6 2.79x10-6 

 
Table 4.3 – Speedup ratios between the considered vector orthogonalization techniques, taking 
HH as the baseline. The CPU time variance of the considered vector orthogonalization 
techniques is also shown. (IQM – interquartile range) 
 

 Householder Eberly Square Plate Projection Matrix 

TM 

nTt 1.69x10-19 -1.71x10-20 -1.95x10-18 -3.51x10-18 

nTb 1.15x10-19 -2.91x10-19 1.83x10-18 2.36x10-19 

tTb -5.92x10-20 1.62x10-20 -2.41x10-19 7.86x10-19 

IQM 

nTt 8.33x10-17 0 3.47x10-18 1.11x10-16 

nTb 1.11x10-16 5.55x10-17 2.47x10-19 1.11x10-16 

tTb 2.78x10-17 0 1.39x10-18 1.11x10-16 

 

Table 4.4 – Accuracy statistics of the considered vector orthogonalization techniques. (TM – 
10% trimmed mean; IQM – interquartile range) 
 

4.6 Discussion 

 

This chapter presents interesting results, application framework and extensions of the 

Householder reflection matrix with the explicitation of the associated formula to 

calculate tangent and binormal vectors given a normal vector. To the authors’ 

knowledge, this explicit description of the use of the Householder transformation to 

orthogonalize 3-D vectors and its application to contact mechanics does not appear to be 

elsewhere. The formula is simple, efficient, and numerically robust for geometric and 

linear algebraic problems. The applicability of the Householder formula as an efficient 

geometric tool in contact mechanics with implicit surfaces is emphasized and 

demonstrated, as it provides the orthonormal set of tangential vectors that enters the 
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minimum distance calculations and a continuous control of the tangential force 

functions. Although computing orthogonal vectors is a quite basic operation, the 

advantages of the Householder technique are highlighted by introducing benchmark 

results in which a numerical evaluation is performed in order to compare the 

Householder method with other alternative vector orthogonalization techniques, based 

on numerical robustness, accuracy and computer efficiency. The analytical expressions 

of the considered techniques reveal that they are all numerically robust and accurate, but 

the Householder technique is shown to be the most efficient compared to the other 

standard methods. In addition, it is possible to directly apply the Householder formula 

to deduce, analytically, differential operators to compute tangent vectors to an implicit 

surface, hence, also surface streamlines that are orthogonal to each other. In addition, 

these tangent vector fields can be used to calculate principal curvature directions of 

implicitly defined surfaces. Such a vector operation may find other applications in mesh 

generation, surface streamline calculation, surface fitting with implicit surfaces, surface 

analysis or shape interrogation. 

 

The generalized 2-D permutation matrix serves as a motto for the assumption that 

orthogonal transformations may offer a potential solution for the vector 

orthogonalization problem. In this chapter, it is shown how the orthogonal 

transformation defined by Householder (Householder 1958) holds as an efficient, 

accurate and elegant analytical expression that solves this problem for a diverse range of 

applications. One of the motivations of this work is to explicitize an expression that 

calculates the tangent and binormal vectors from a given normal at a surface point, and 

that must be computationally efficient and robust expression for contact detection and 

normal and tangential force calculations in applications with implicit surfaces.  

 

The numerical tests, shown in Table 4.3, indicate that every vector orthogonalization 

technique has small interquartile range values, thus, the measured times do not fluctuate 

much around their mean value making it reliable to compare speedups among the 

different techniques. More importantly, the results indicate that, on average, the 

Householder formula is the most efficient from all considered vector orthogonalization 

techniques. Although, both HH and EB techniques show similar computational 

performance and are both simple algorithms, the former technique achieves speedups 
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that are close to 1.017 times better. This slight difference of 1.7% can be significant 

when translated to time savings for mechanical systems with thousands or even millions 

of contact pairs that happen in a single time instant of a dynamic simulation (Radjaï and 

Dubois 2011; Lin and Ng 1995). The 1.7% speedup is intimately related to the number 

and type of floating-point operations involved: while HH presents an additional 2 

summations and 2 multiplications EB has 1 division more, 2 moduli, and, detrimentally, 

1 square root which justifies the higher computational time as such a flop consists of a 

costly operation. Note that HH is more efficient when considering a unit vector as input 

but not as efficient for an arbitrary vector. In this case, EB presents lesser FLOPS (e.g., 

compare HH formula in Table 4.2 with the following EB tangent vector expressions 

(assuming |nx| ≥ |ny|): t = [-nz, 0, nx]T and b = [nynx, -nz
2-nx

2, nynz]T). The drawback is that 

EB applied to arbitrary vectors does not guarantee that the output vectors are unitary, 

while for HH the computed tangents are always unit vectors which is an advantageous 

feature since it is not necessary to normalize them afterwards. Regarding the SP and PM 

techniques, these are less efficient as they require a greater number of FLOPS. Contrary 

to the SP and MP techniques, the Householder formula does not consist of an intricate 

geometric process involving vector testing. Note that the same numerical evaluation but 

with increased number of inputs were also run, showing that independently of the 

number of vectors tested the observed speedups remained greater than 1.0 with respect 

to HH (results not presented). As for MATLAB®’s qr(.) command performance, 

although the software uses compiled LAPACK routines for its basic linear algebra 

computations, the code is not fully optimized for 3x1 input matrices, hence, the large 

speedup comparative to the implemented HH. Relative to vector orthogonalization 

accuracy, all methods revealed to be very accurate with inner product values virtually 

equal to zero, i.e., in the range of 10-20 – 10-18.  

 

One of the culminating points of the Householder formula is that its analyticity offers 

a useful symbolic expression to deduce a set of differential operators to calculate 

tangential vector fields to a surface. From the standpoint of implicit surfaces, the 

Householder transformation provides explicitly analytic formulae for other geometric 

attributes defined with tangential vectors, namely, principal curvature directions and 

associated curvatures. These attributes are extremely important geometric quantities for 

CAD/CAM processes ranging from the elaboration of rough solid models to the precise 
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geometric description of a product, such as shape interrogation (Maekawa and 

Patrikalakis 1994; Patrikalakis and Maekawa 2002), and minimizing reference frame 

computation (Bloomenthal 1990; Wang et al. 2008), which may benefit from using the 

Householder vector orthogonalization approach. The tangential differential operators 

are of great interest for linear algebra, vector calculus, differential geometry or 

multivariate calculus, and can come in handy in different physical areas that are 

mathematically formulated based on field theory, such as electromagnetism and 

continuum mechanics. Apparently the practicality and applicability of the Householder 

reflection in computer graphics, geometry design and CAM is yet to be explored and 

expanded to other geometric and algebraic problems. Note that the theoretical results 

here presented are extendible for ℝp, p > 3.  

 

As future works, it would be interesting to instigate about the following matters: (i) 

to determine the Householder matrices that, when premultiplying the normal vector, 

give raise to tangent vectors; (ii) to better understand the tangential streamlines that are 

traced upon a surface given by the tangent vector fields of an implicit surface; (iii) to 

explore other orthogonal transformations such as the exponential matrix which 

generalizes every orthogonal transformation; (iv) to determine the rotation matrices that 

are equivalent to the reflection matrix; (v) to explore similar theoretical and numerical 

results for the EB formula; and (vi) to perform more in-depth analysis regarding 

differential geometry applications of the Householder formula. 
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5. Contact Detection between Smooth 

Convex Surfaces 
 

The main topic of this chapter consists of the reformulation of the minimum distance 

problem based on non-linear equations involving tangential surface vectors. A 

compliant contact detection methodology for smooth convex surfaces is developed. The 

proposed methodology establishes a set of collinear and orthogonal constraints between 

vectors defining the contacting surfaces that, allied with loci constraints, formulate the 

contact problem. This set of non-linear equations is solved numerically with the 

Newton-Raphson method with Jacobian matrices calculated analytically. The method 

outputs the coordinates of the pair of points with common normal vector directions and, 

consequently, the minimum distance between both surfaces.  

 

Contrary to other contact detection methodologies, the proposed mathematical 

framework does not rely on polygonal-based geometries neither on complex non-linear 

optimization formulations. Furthermore, the methodology is extendable to other 

surfaces that are (strictly) convex, interact in a non-conformal fashion, present an 

implicit representation, and that are at least C2 continuous. For the sake of simplicity, 

the proposed methodology is here applied only to ellipsoids and superellipsoids since 

these surfaces present appealing geometric properties for solution existence and 

uniqueness. Complementarily, several mathematical and computational aspects, 

regarding the rigid contact detection methodology, are described. Several case tests 

involving the contact between different (super)ellipsoidal contact pairs are presented. 

Numerical results show that the implemented methodology is highly efficient and 

accurate for these smooth convex surface types. 

 

Before discussing the proposed contact detection methodology in detail, this chapter 

provides a series of sections that give a broad theoretical overview on contact 

mechanics and contact kinematics. After introducing topics that are universal to any 

contact discipline in Section 5.1, Section 5.2 presents important geometric concepts for 

contact detection, including contact kinematics, proximity queries and the common 
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normal concept. This section also presents how contact detection is related to several 

contact force models and, consequentely, where contact forces are placed in the 

multibody dynamics equations of motion. The fulcrum importance of vector 

orthogonalization in contact mechanics is also presented. Section 5.3 indicates 

analytical solutions for the minimum distance problem for the particular convex sets of 

point-plane and superellipsoid-plane. Finally, in Section 5.4, the theoretical formulation, 

numerical aspects, and computational implementation details of the proposed contact 

detection method are described and contact examples are discussed. 

 

5.1 Introduction 

 

Contact is an omnipresent phenomenon in any mechanical system. Physically, it can be 

defined as the spatial configuration where two bodies concenter towards sharing a 

common geometric locus, where reactive forces are generated to oppose body 

intersection due to local deformation of the contacting surfaces and energy is dissipated, 

usually, in the form of heat. 

 

In the scope of multibody dynamics (Nikravesh 1988), to accurately design and 

simulate a mechanism, that is either interacting with the surrounding environment or 

devising relative joint motion among the articulated bodies that compose it, contact 

forces must be utterly considered. Contact analysis incorporates a computational 

methodology that aims at simulating the behaviour of a constrained mechanical system 

induced by reactive and frictional forces produced at communicating bodies. In order to 

accurately simulate a multibody system, contact analysis focuses on the resolution of 

four fundamental issues:  

 

(i) definition of a representative geometric description of the contacting surfaces; 

(ii) contact detection; 

(iii) minimum distance calculation between potential contacting surfaces; and 

(iv) establishment of constitutive normal and tangential force models that depend on 

the bodies material properties, closest distance and associated rate change.  
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Regarding the first fundamental contact issue, one of the main requirements to model 

the geometry of a 3-D object, in this case the outer surface of a rigid body, is the usage 

of a mathematical description that provides a high geometric representativity, affiliated 

to a compact, controllable and intuitive set of parameters. Ellipsoid or superellipsoid 

surfaces (Barr 1981) are geometric entities that provide such a description for a variety 

of shapes, both natural and manmade. For mechanical systems presenting freeform 

shapes, superellipsoids surfaces can also be applied by finding their best fit to the set of 

points that belong to the generalized surface (Li 2007; Bardinet et al. 2005; Jaklič et al. 

2000). This strategy is suitable to handle contact problems in which the contacting 

surfaces either have geometries close to a superellipsoid surface or the surface vicinity 

of each contact point does not depart from a superellipsoidal form. 

 

To better understand the second fundamental contact issue, the intersection of rigid 

bodies, although physically impossible, can be considered as a motif for the 

mathematical concept of contact: two surfaces (or lines in the 2-D case) are in contact 

when their intersection is not a null set of points or, equivalently, when the lowest value 

of the distance function magnitude (e.g., 2-norm) is lesser or equal to zero. Rigid 

contact detection consists on determining if the referred bodies are sharing a common 

geometric locus, thus, three contact statuses are possible: (i) no contact; (ii) external 

contact or contact at a single point; and (iii) contact with pseudo-penetration. From a 

mechanical point of view, whenever contact occurs it is said that the rigid bodies 

overlap or present a pseudo-penetration. Here, contact is detected when the minimum 

distance is lesser than or equal to zero and positive when surfaces are apart. Note that, 

by this convention, negative distances imply surface overlap. 

 

As for the third fundamental contact issue, this is by far the most mathematically 

demanding contact issue concerns the minimum distance calculation. Given the surface 

representation of the colliding bodies, together with their positions and spatial 

orientations, the resolution of the minimum distance problem is purely geometric. The 

unknown variables of such problem are the spatial coordinates of the potential 

contacting pair of points that present collinear surface normals. Hence, contact between 

two surfaces can be established by the resolution of a set of non-linear equations that 

expresses collinear and orthogonal constraints between the vectors defining the 
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contacting surfaces at the contact points, namely, the normal, tangent, binormal and 

distance vectors (Nikravesh 1988; Schwertassek and Klisch 1997; Pombo et al. 2007; 

Fallahi and Ballamudi 2010; Johnson 1985). Another type of equation that is important 

for the geometric accuracy of contact analysis is hereafter referred as the locus (or 

isosurface) constraint (isoline constraint in the 2-D space). The solution of the locus 

constraint is the set of points that satisfy a geometric property, usually, described by an 

implicit surface function. As an example, the locus constraint of a sphere is the location 

of all the points equally distanced from its center point. Thus, for non-conformal rigid 

contact analysis, the calculation of the minimum distance between convex bodies 

requires that the surface associated with each rigid body to be described with a 

mathematically well-defined continuous and differentiable geometric representation, so 

that analytical expressions of the distance vector and the normal, tangential and 

binormal surface vectors can be deduced. The surface representation can be either 

implicit or parametric. 

 

Relatively to the fourth fundamental contact issue, the magnitude of the contact 

reaction forces, which depends on the minimum distance in a direct proportion (Hertz 

1896), is calculated only when contact occurs. Within the equations of motion, contact 

forces are seen as external forces that act upon interacting or interlinked bodies. 

Different formalisms can be used to describe contact forces, including penalty and 

linear complementarily contact formulations. A common model for penalty 

formulations was proposed by (Lankarani and Nikravesh 1994), based on the Hertzian 

non-linear elastic contact theorem (Hertz 1896) and on the (Hunt and Crossley 1975) 

continuous contact force model, which accounts for energy dissipation. Other 

formalisms, such as the linear complementarily problem (Flores et al. 2010), may also 

take advantage of the proposed geometric description and contact detection framework 

presented here, as they also need to deal with geometric modeling issues and minimum 

distance calculation for the evaluation of the contact forces. 

 

In this chapter, a general non-conformal contact detection methodology for rigid 

bodies, described by ellipsoids and superellipsoids, is presented. The mathematical 

framework presented hereafter relies on vector calculus, algebraic and differential 

geometry. The proposed contact detection methodology establishes a set of geometric 
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constraints that, once fulfilled, render the pair of points of possible contact. The 

resulting methodology consists in a set of non-linear equations that is solved 

numerically with the Newton-Raphson method for which the Jacobian matrices are 

calculated analytically, without resorting to optimization algorithms nor polygonal-

based geometries. In this way, contact detection comes naturally from the minimum 

distance calculation. Furthermore, the methodology is extendable to other surfaces that 

present the following characteristics: (i) are (strictly) convex; (ii) interact in a non-

conformal fashion; (iii) possess an implicit representation; (iv) and are at least C2 

continuous. For the sake of simplicity, the methodology proposed here is applied only to 

ellipsoids and superellipsoids since these surfaces present appealing geometric 

properties for solution existence and uniqueness. The theoretical formulations of the 

geometric description and the computational implementation aspects of contact 

detection are described in the following sections and proper examples are provided and 

discussed. 

 

5.2 Overview of contact detection 

5.2.1 Contact kinematics 

 

In a broad sense, contact kinematics is the geometry of contact mechanics. It consists of 

the motion occurring at contact sites independently of the forces that produce the linear 

and angular positions of the multibody system. Only by tracking the contact sites and 

relative distances between surfaces can contact kinematic methods provide the position, 

velocity, and acceleration of the multibody system based on the bodies outlines and 

system motion. Thus, contact detection techniques and minimum distance algorithms 

are inseparable topics of contact kinematics.  

 

From a mathematical point of view, contact kinematics relies on geometric 

constraints (or geometric conditions) that are expressions which relate the spatial 

information of body configuration and surface properties. Examples of geometric 

constraints include body conformity, surface vector relations of parallelism or 

perpendicularity and geometric loci, as shown in Figure 5.1. By expressing analytic 

relationships between geometric entities that characterize the kinematic structure and 
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attached contact surfaces, it is possible to build a set of equations and inequalities whose 

solution provides insightful kinematic information.  

 

 
Figure 5.1 – Common geometric conditions used to formulate contact kinematics problems and 
corresponding equation types: (a) perpendicularity between two vectors (inner product); (b) 
collinearity between two vectors (cross product); (c) geometric loci of a surface point (e.g.., 
implicit surface equation). 
 

Before formulating geometric constraints to study the motion of a system, it is 

necessary to characterize the spatial configurations and the types of permissible motions 

between contacting surfaces. When dealing with smooth convex surfaces, a contact pair 

can present one of two types of spatial configuration, as seen in Figure 5.2: conformal 

(internal) and non-conformal (external) (Johnson 1985). Geometrically, the signs of the 

radius of curvature establish the type of contact configuration, by definition, positive for 

convex surfaces and negative for concave surfaces. Hence, two surfaces are in a 

conformal configuration when they fit exactly or closely together without deformation 

(i.e., they have opposite signs of radius of curvature). Otherwise, they are in a non-

conformal configuration (i.e., they have equal signs of radius of curvature). 

 

 
Figure 5.2 – Conformal and con-conformal rigid contact surface configurations: (a) conformal 
(internal) – convex and concave surfaces are approaching or are facing each other; (b) non-
conformal (external) – convex surfaces are approaching or are facing each other. 
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Two contacting surfaces, either in conformal or non-conformal configuration, can 

exhibit four types of surface motion (Yamaguchi 2006): sliding, slipping, spinning, and 

rolling, as illustrated in Figure 5.3. Sliding has no rotatary component, only linear 

motion, and can be defined as the relative linear velocity between the two surfaces at the 

point of contact. Slipping is pure angular motion defined as a relative angular velocity 

about a common tangent. Spinning is also a pure angular motion and is defined as a 

relative angular velocity about the common normal. Rolling is a composite motion of 

sliding and slipping. In general, an arbitrary motion of contacting surfaces can be 

regarded as a combination of sliding, slipping, and spinning. 

 

 
 
Figure 5.3 – Types of surface motion at a contact point. 
 

5.2.2 Coordinate transformations 

 

In order to describe the spatial configuration of a pair of contact surfaces, it is necessary 

to evaluate the rigid body transformations of the multibody system from both local and 

global reference systems. Ultimately, the distance between surface contact elements 

depends on this geometric information that is contained not only within the kinematic 

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&field-author=Gary%20T.%20Yamaguchi&search-alias=books&sort=relevancerank
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structure (global spatial information), but also, within the body to which the surface is 

rigidly attached (local spatial information).  

 

 
Figure 5.4 – Multibody model of a contact pair and vector entities involved in contact analysis 
along with the coordinates systems that describe the spatial configurations of bodies and contact 
surfaces (global, rigid body and surface reference frames). 
 

Here, for each contact surface pair, the employed coordinate systems used to define 

the spatial configuration are: the global coordinate system XYZ, the rigid bodies 

coordinate systems ξkηkζk, k ∈ {α,β}, and the surfaces coordinate systems xlylzl, l ∈ {i, j} 

(Nikravesh 1988), as represented in Figure 5.4. Note that each body has a fixed 

coordinate system that must not be confused with the local coordinate systems of the 

attached surfaces. 

 

Position vectors and rotation matrices are then represented, respectively, by r and A 

while position vectors in the surface reference system are denoted by s. Vector and 

matrix subscripts indicate the corresponding coordinate systems, e.g., AOβ represents the 
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coordinate transformation from the fixed coordinate system of body β to the global 

coordinate system O. All vector relationships that define geometric constraints are 

referenced to the global coordinate system. For instance, the position vector of point P 

in Figure 5.4 is given by 

 OP O O O Pi i iα α α α α= + +r r A r A A s  (5.1) 

while a local surface vector such as the normal niP is expressed in the global coordinate 

system as 

 OP O Pi iα α=n A A n  (5.2) 

where AOα and Aαi are the transformation matrices between body and global coordinate 

systems and surface and global coordinate systems, respectively. 

 

5.2.3 Contact detection methods 

 

Contact detection or collision detection is the analytical or numerical process of 

determining or predicting whether two objects share common points in space, over a 

given time span. Finding when and where two or more objects intersect can be a 

computational heavy burden. Such computational bottleneck depends on object 

geometric complexity and the number of potential contact pairs. Therefore, several 

methods have been developed to attenuate this computationally costly process. 

 

The majority of contact detection algorithms fall into one of two categories 

according to the temporal setting (van den Bergen 2004). First, the contact detection 

problem can be considered for a given continuous time set, for which it matters finding 

at what time instants, and where, do objects first come into contact. Second, the 

problem can be considered for a discrete set of time instants, and for each explicit 

instant it interests where do objects contact each other. A third method can be 

considered for the specific case of resting contact, i.e., quiescent objects in contact, 

which requires a special treatment with friction and stiction in order to maintain 

immobility (Baraff 1993). 
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Independently of the type of contact detection method, the efficiency and accuracy 

benefit from temporal coherence. In most mechanical systems, the spatial configuration 

of objects changes very little from one time step to another and motions are usually 

smooth. Exploiting this spatio-temporal feature leads to more efficient methods as the 

calculations performed in a preceding time step are reused in the current time instant 

(van den Bergen 2004). 

 

5.2.4 Proximity queries 

 

In order to increase the efficiency of a contact detection algorithm, it is a widely 

adopted practice to consider contact detection as a two-phase approach (van den Bergen 

2004; Ericson 2005). In the first phase, called broad-phase, proximity queries are 

usually considered (Chakraborty et al. 2006; Choi et al. 2009). Proximity queries consist 

of simple tests to ascertain if two objects are apart for a given instant of time. Such 

operations are designed to be efficient as these they need to be performed several times 

throughout a simulation and they must ensure that non-contacting objects are not 

subjected to further processing.  

 

For most proximity queries, simplified geometries are used as bounding volumes to 

enclose the interacting objects as tightly as possible. A proximity query only gives a 

yes-or-no answer to the query of whether two objects are close enough to be contact 

candidates or are definitely apart for each other, but never the numerical value of closest 

distance. Thus, in case the bounding volumes overlap, the reply to the proximity query 

states that possibly the surfaces are in contact. In the second-phase, called narrow-

phase, more complicated contact detection methods using the detailed geometry of the 

objects are carried out only if their bounding volumes are overlapping. In short, the 

broad-phase is characterized by simple contact detection techniques that are applied 

towards the simpler outlines of the boundary volumes, while the narrow-phase is 

characterized by complex contact detection algorithms that estimate the closest distance 

between more detailed surfaces. The proposed contact detection algorithm is an 

example of narrow-phase algorithm and is presented in Section 5.5.   
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Simple convex polyhedra such as axis-aligned bounding boxes (Held et al. 1995; van 

den Bergen 1997), oriented bounding boxes (Gottschalk et al. 1996), and discrete 

oriented polytopes (Klosowski et al. 1998) are geometric primitives that have been 

widely used as bounding volumes for contact detection. When dealing with closed 

surface quadrics, such as spheres and ellipsoids, the most commonly used proximity 

query is the bounding sphere test. Such technique allows rapid testing for proximity 

contact detection queries, at the cost of precision, and is often evaluated to determine if 

a more detailed contact testing is required. A bounding sphere, as the name suggests, is 

a sphere that contains all the points of the ellipsoid and shares the same centroid. 

Basically, the test consists in evaluating the inequality between the sum of the semi-

major axis of the ellipsoids and the distance between their centroids. If the distance is 

lesser or equal to the sum of the semi-major axis then a more detailed testing must be 

conducted. An elegant and efficient algorithm for detecting contact between two 

ellipsoids was presented by (Choi et al. 2009). This algorithm is based on the separation 

condition of two ellipsoids, which is a necessary and sufficient condition, stating that 

the characteristic equation has positive roots if, and, only if the ellipsoids do not have 

common interior points (Wang et al. 2001). The separation condition heavily depends 

on the matrix form of a quadric surface and is valid for ellipsoids that are not contained 

within each other. Unfortunately, an elegant proximity query, such as the separation 

condition for ellipsoids, is not, to our knowledge, available for superellipsoids. 

 

5.2.5 Common normal concept  

 

While proximity queries are tremendously useful in the broad-phase of contact, a more 

rigorous calculation is required to narrow down the precise location of surface points 

with common normal vectors. Definitely, the most important geometric condition in 

contact detection is given by the common normal concept, as outlined in Figure 5.5: the 

points where two C1 continuous surfaces are in contact or, alternatively, have a 

minimum distance, present normal vectors that share a common direction (Johnson 

1985). Without this concept it is even impossible to formulate the minimum distance 

problem for smooth surfaces, since it is a geometric fact that the shortest distance 

between objects occurs only at surface points that satisfy its geometric conditions.  
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Figure 5.5 – Orthogonal and collinear vector relationships that define the common normal 
concept among (a) the surface normal and distance vectors, and (b) surface normal and tangent 
vectors. Surfaces are represented in 2-D, thus, the binormal vectors are not shown. By 
convention, surface normal vectors point outwards. 

 

As a geometric construction, the common normal concept consists of the line 

segment that connects two points, one on each surface, whose normal vectors share a 

common direction, as seen in Figure 5.5. Thus, this concept can be formulated as a set 

of geometric conditions that assure surface points P and Q have a distance vector, dPQ, 

which is aligned with the surface normals, nOP and nOQ, as observed in Figure 5.5 (a). 

The confinement of the points to the surface geometric loci can be given by the surface 

representation. The collinearity condition between these vectors can be written as two 

cross product equations relating vectors dPQ, nOP, and nOQ or, equivalently, as an 

orthogonal condition involving vector dPQ, surface tangent vectors tOP and tOQ, and 

binormal vectors bOP and bOQ, as depicted in Figure 5.5 (b).  

 

Quite naturally, an interesting parallelism occurs between the common normal 

concept and the Householder vector orthogonalization formula. By writing the collinear 

condition between nOP and nOQ and the orthogonal conditions between the surface 

normals and tangent vectors, the following equivalence appears:  
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where  

 OQ OQ OQ =  H n t b  (5.4) 

is the Householder matrix defined by a vector h  

 OQ OQ 12
= ±h n n e  (5.5) 

with  

 OQ OP= −n n  (5.6) 

and where it is assumed that the normal vectors have unit length. These equations 

express the common normal concept between two points belonging to continuous 

surfaces as a matricial equation defined by a Householder matrix.  

 

 
Figure 5.6 – A pair of spheres illustrating that the common normal concept is only a necessary 
condition for determining the minimum distance between smooth convex surfaces. 
 

Note that the common normal concept consists of a necessary but not sufficient 

condition to define the minimum distance between surfaces (i.e., weak geometric 

constraint). This being, just because two surface points have the surface normals with 

the same direction does not guarantee that they define the closest distance. As an 



112 
 

example, consider two separate spheres, pictured in Figure 5.6. The line that crosses the 

spheres centers intersects at four locations, all these points have surface normals that 

share a common direction but only two define the minimum distance.   

 

5.2.6 Contact detection and multibody dynamics 

 

The main effect that contact loads have on a multibody system consists of constraining 

body and joint motion, either by reducing the number of degrees of freedom or their 

range of amplitude. To model these constraints, two major types of contact models can 

be considered, namely, hard (discontinuous) and soft (continuous) constraints (Gary T. 

Yamaguchi 2006; Lankarani and Nikravesh 1990). The former constraint explicitly 

defines when and where contact occurs and represents contact as a joint with no 

compliance, thus the system configuration is rigidly constrained at the contact point. 

The latter constraint allows small translational and rotational movements among 

interacting bodies, taking deformation and deformation rate into account to generate 

continuous contact loads. Since soft constraint parameters, such as deformation, are 

based on the minimum distance between surfaces, contact detection methods are 

intimatly associated with this type of constraint. As for hard constraints, no contact 

detection procedure is requested as contact is explicitly defined over the entire time 

span. 

 

For multibody systems with soft contact constraints, detecting when and where 

contact occurs is of paramount importance to describe the complete dynamic response. 

The relationship between contact detection or, equivalently, soft constraints and 

multibody dynamics becomes clear when contempling the equations of motion. When 

considering the multibody dynamics formulation, the motion of a distributed mass 

system where contact loads are exerted is described by second-order ordinary 

differential equations, and these can be written in the matrix form as (Yamaguchi 2006): 

 ( ) ( ) ( ) ( ), , , t= + +M q q g q c q q t q q    (5.7) 

where t is the time variable; q , q , q  are the Nx1 vectors of the generalized 

coordinates, velocities, and accelerations, respectively, and N is the number of degrees 

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&field-author=Gary%20T.%20Yamaguchi&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&field-author=Gary%20T.%20Yamaguchi&search-alias=books&sort=relevancerank
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of freedom; ( )M q , the NxN system mass matrix; ( )g q , the vector of gravity forces and 

torques; ( ),c q q , the vector of centripetal, centrifugal, or Coriolis forces and torques; 

( ), , tt q q , the vector of generalized forces and torques.  

 

From Equation 5.7, the relationship between contact detection and the equations of 

motion is represented by the vectorial term ( ), , tt q q , as this vector contains 

contributions of reaction loads applied by the environment or generated at joints 

modeled as contact surfaces. In order to determine the contact contribution for the 

equations of motion, contact detection methods must provide information on the 

distance between interacting surfaces to quantify surface deformation, the contact points 

to determine moment arms and the velocities of the contact points. All these contact 

parameters are used for evaluating continuous contact forces and torques.  

 

There are several continuous contact force models (i.e., soft constraints) that 

formulate elastic, viscous, and friction effects that occur during a contact event 

(Lankarani and Nikravesh 1990; Glocker and Studer 2005). These continuous contact 

force models, which consider deformation and loads as continuous functions, can be 

grouped into two major types: regularized models, such as penalty-based or compliant 

methods, and non-smooth approaches (Pfeiffer and Glocker 1996), in particular the Linear 

Complementarity Problem (Pfeiffer and Glocker 1996), using unilateral constraints 

(Glocker and Pfeiffer 1993; Pfeiffer 2003). To better understand any type of continuous 

contact force model it is necessary to know the vector entities related to the forces 

transmitted at a point of contact. Whenever two bodies interact, forces are transmitted 

from one surface to another through the site of contact. Contact occurs in two distinct 

phases: compression or loading phase followed by the restitution or unloading phase. 

The resultant force can be decomposed into a normal reaction, which is generally 

compressive and collinear to the common surface normal, and a friction force, which 

belongs to the common tangent plane. As the force is transmitted, the effect of 

compression deforms the bodies making contact over a finite area. Thus, associated to 

the reaction force is a resultant tangential moment with rolling components which have 

a frictional effect. Moreover, due to the friction force generated at the contact area a 

normal moment arises and has a spinning effect (Johnson 1985). 
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5.2.7 Contact mechanics and vector orthogonalization 

 

Vector orthogonalization is an operation that builds a frame of reference with its origin 

at the point of contact and axis aligned with the common normal and tangent vectors 

contained within the tangent plane at the contact point. This geometric operation 

emerges naturally in contact mechanics, not only from the necessity to formulate the 

minimum distance between surfaces (Lopes et al. 2010; Johnson 1985), but also from 

the need to guarantee continuous control of the tangential friction forces for smooth 

surfaces (Gonthier et al. 2004). Essentially, vector orthogonalization is used for tracking 

the continuous evolution of the contact point location, relative velocities, normal and 

tangential velocities which is of upmost importance for appraising the interaction forces 

magnitudes, senses, and directions. Therefore, any valuable vector orthogonalization 

procedure for contact mechanics applications must not only contribute for accurate and 

efficient contact detection procedures but also to ensure that the normal force evalution 

and the tangential (creep and friction) forces are properly monitored. Accuracy is here 

considered as the value of the inner product between the given normal vector and the 

computed tangent vectors which must be virtually equal to zero. Any small error in 

calculating orthogonal vectors may affect the contact points calculation and the contact 

forces and, ultimately, affecting the results obtained from solving the equations of 

motion. 

 

Regarding 3-D contact detection, vector orthogonalization is a frequently used and 

fundamental operation: for a given time instant, each point of contact demands the 

determination of an orthogonal reference system composed by the normal, tangent and 

binormal surface vectors which is then used to formulate the minimum distance 

between surfaces for which the contact force magnitude is directly proportional 

(Lankarani and Nikravesh 1994; Hunt and Crossley 1975). Hence, the common normal 

concept is crucial for the formulation of contact detection procedures (Lopes et al. 2010; 

van den Bergen 2004) as the minimum distance between surfaces is determined by the 

localization of the surface points that satisfy the common normal conditions. 

 

In particular, vector orthogonalization operations are strictly relevant for contact 

detection procedures that deal with implicit surface representations, since only the 
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normal vector is directly available by taking the gradient of the surface function (Gomes 

et al. 2009). Contrary to the parametric surface representation, where tangent vector 

formulae are well-known both in the classical and contemporary literature on 

Differential Geometry (Willmore 1959) and on Geometric Modeling (Farin 2002), 

tangent vector formulae for implicitly defined surfaces are not well developed, being 

harder to find and more scattered throughout the literature in comparison to parametric 

surfaces. While, for parametric surfaces, tangent and binormal vectors are all obtained 

by straightforward differential and vector calculus, deriving such vectors recurring to 

differential operators is not as trivial for the implicit surface case. Thus, defining the 

explicit formulae of such a geometric attribute for implicit surfaces is valuable for 

computational geometry, computer graphics and related communities, namely, the 

computational mechanics community. 

 

Regarding force models, one of the approaches’ to solve contact-impact problems 

relies on continuous contact and friction force models. These models represent the 

forces arising from body interactions, assuming that local deformations and, 

consequently, the forces vary in a continuous manner (i.e., are considered as continuous 

functions) (Gonthier et al. 2004; Lankarani and Nikravesh 1994; Hunt and Crossley 

1975). These forces are then introduced into the equations of motion of the mechanical 

system as external generalized forces, leading to continuous velocities and 

accelerations. This promotes a stable numerical integration of the equation of motion 

and discontinuous disturbances for control are diminished or even inexistent (Boos and 

McPhee 2010).  

 

The correct knowledge of these interaction forces during the contact process is 

crucial for the design and analysis of multibody systems, in particular, systems that 

describe sliding or rolling motions. Thus, the geometric information computed by a 

vector orthogonalization technique (i.e., an orthogonal reference system composed by 

the normal, tangent and binormal surface vectors) is used to continuously control the 

contact forces established between two interacting bodies for each contact point, as the 

normal reaction direction coincides with the surface normal’s and the friction force 

direction are written in order to the tangential vector basis vectors (Gonthier et al. 

2004), as well as other relevant contact quantities.  
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Since reaction and friction forces are time dependent, this referential must be 

calculated and updated with maximum efficiency, especially for real-time applications 

(van den Bergen 2004). Computational efficiency is tightly related to the complexity of 

the mechanical system, where the number of contact pairs can be small (e.g., articular 

joint biomechanics (Sandholm et al. 2007), medium (e.g., human biomechanics of 

impact (Yang 2005), vehicle crashworthiness analysis (Carvalho et al. 2011), rail-wheel 

simulations (Pombo et al. 2011), or large (e.g., particle collision in geomechanical 

studies (Radjaï and Dubois 2011; Lin and Ng 1995) where millions of contact pairs may 

occur in a single contact detection simulation. Thus, techniques that increase contact 

detection efficiency are greatly welcomed.  

 

The following consists of a demonstrative application with the objective to 

emphasize the points above mentioned in this Sub-Section, in particular, regarding the 

applicability of the Householder transformation in contact mechanics and its merits to 

realistically simulate the motion of a mechanical system, such as the sphere and bowl 

considered in Figure 5.7. The demonstrative application considered is a simple contact 

system which consists of a small ball rolling inside a spherical bowl (i.e., two spheres in 

a conformal contact configuration). The bowl is made of PTFE, has a radius of 1.0 m 

and is assumed to have infinite mass, thus, is considered rigid and stationary. The ball is 

a homogeneous sphere made of PTFE, with a mass of 1.0 kg, a radius of 0.1 m, a 

moment of inertia equal to 0.01 kg.m2, an equivalent stiffness equal to 140x106 N/m3/2, 

a coefficient of restitution equal to 0.9, and a Coulomb friction of 0.01. The ball is 

released from a point of the equator of the bowl with an initial y-angle and y-angular 

velocity of 10.0 rad and 9.0 rad/s, respectively, and rolls under the action of gravity, 

which acts in the negative z direction. Contact forces are modeled based on the Hunt 

and Crossley contact model (Hunt and Crossley 1975) and Coloumb friction is included 

(Gonthier et al. 2004). Therefore, the ball rolls, and eventually slides, throughout the 

bowl in a descending spiral path until it lands on the lowest point of the bowl, where it 

then slightly bounces until losing all its mechanical energy due to damping and 

frictional energy dissipation. This example clearly benefits from the continuity of the 

tangential and binormal vector fields ensured by the Householder method, since rolling 

(and sliding) demands a continuous evaluation of the tangential (creep and friction) 

forces. 
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Figure 5.7 – The rolling ball inside a bowl example. (a) When the ball is released with an initial 
angular velocity it describes a descending spiral path. (b) Top view of the bowl where the spiral 
form of the ball’s path is more evident. 
 

5.3 Analytical minimum distance solutions for special contact pairs 

 

In general, the minimum distance between convex sets is formulated as a non-linear 

optimization problem that requires a numerical approach. Before describing the contact 

detection methodology proposed for smooth convex surfaces, this section presents 

contact pairs for which an analytical solution for calculating the minimum distance 

exists. The contact techniques presented hereafter, due to their simplicity and efficiency 

can be also used as proximity queries. 

 

5.3.1 Minimum distance between point and plane 

 

Despite its simplicity, determining the closest distance between a point and a plane is an 

important geometric operation (Weisstein 2013). Given an arbitrary point P in space, 

normal vector nπ to a plane and a point Q on the plane, the distance between these 

convex objects is given by  

(a) (b)
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are the position vectors of the involved points, as depicted in Figure 5.8. 

 

 
Figure 5.8 – Vectors involved in projecting a point to a plane. 

 

5.3.2 Closest point on a superellipsoid to a given plane 

 

Within the superellipsoid family, Barr’s surface type (Barr 1981) presents a propitious 

analytical property for an efficient minimum distance calculation: given a unitary 

vector, the superellipsoid’s radii and exponents, along with the surface position and 

orientation, it is possible to deduce a closed-form expression of the surface point 

locations that share a common direction with the given vector. Therefore, there is an 

explicit relation of the minimum distance between a superellipsoid and a plane since the 
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normal of a plane acts as the given vector. This closed-form expression depends on the 

angle-center parametric representation of the superellipsoid and not on the implicit 

representation.  

 

Given the unit normal of a plane (i) and an arbitrary superellipsoid (j) in global 

coordinates, as shown in Figure 5.9, the common normal conditions state that the 

minimum distance points are such that the superellipsoid’s surface normal, nOQ, is 

parallel to the plane’s normal, nOP. To express the normal vector of the plane in the 

local coordinate system of the superellipsoid, this vector is transformed as 

 
( ) ( )1 1

O OP O O Pj j i iπ β β β β α α

− −
= =n A A n A A A A n  (5.11) 

where the matrices A correspond to the orientation transformations between the 

associated coordinate systems. The explicit relationship between the components of 

transformed plane normal nπ and the angular surface parameters, φ1 and φ2, results from 

the collinearity condition between the plane and superellipsoid normal vectors. This 

condition can be expressed as the following cross-product: 
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Figure 5.9 – Vector entities involved in the calculation of the closest surfaces points between an 

arbitrary plane and superellipsoid. 
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Since njQ can be expressed as an angle-center parameterized vector (Equation 2.17), the 

explicit expression of the angular surface parameters can be obtained by replacing the 

components of njQ into Equation 5.11 and solving in order to these angular parameters:  
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Once these angles are calculated the points on the superellipsoid surface are given by 

Equation 2.16. Note that Equation 5.13 and Equation 5.14 present a 0/0 indetermination 

when nπx = nπy = 0 which only occurs at surface points [0, 0, ±c]T.  

 

As the common normal concept consists of a weak formulation of the minimum 

distance problem, since it states necessary but not sufficient conditions so that two 

points form a contact pair, in the case of a superellipsoid-plane surface pair there are 

always two possible solutions that verify the common normal conditions. Since the 

trigonometric relation tan(π±φ) = ±tan(φ) holds for any φ and that the tangent term is 

raised by a multiple of 2 when solving Equation 2.17 in order to φ1 and φ2, then there 

are actually two possible angular values that satisfy the common normal conditions: 

(φ1,φ2) and (π±φ1,π±φ2). Therefore, if sjQ satisfies the common normal conditions then -

sjQ also does. Note that the explicit expressions of Equation 5.13 and Equation 5.14 are 

also valid for the 2-D case (i.e., superellipse-line) where φ2 = 0. After transforming the 

local position vectors of the superellipsoidal points to global coordinates,  

 OQ O O O Qj j jβ β β β β= + ±r r A r A A s  (5.15) 
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the associated points are found by projecting them to the plane (Weisstein 2013). By 

evaluating the signed Euclidean distances of these two solutions and by choosing the 

one with the minimum distance, the contact status is finally determined: (i) if the 

surfaces intersect at a single point, the minimum distance is zero valued; (ii) for 

overlapping or fully penetrating surfaces, this distance is considered negative; (iii) if the 

surfaces are not contacting, this distance is positive.  

 

5.4 Numerical minimum distance solution for smooth convex surface 

pairs 

 

Due to its high non-linearity, the minimum distance between smooth convex surfaces is 

usually calculated with numerical methods. This Section presents a numerical 

methodology to solve the minimum distance problem for any pair of implicitly defined 

smooth convex surfaces. The core idea behind the methodology consists of 

reformulating the common normal concept by considering analytical expressions for the 

tangent surface vectors. For this matter, two distinct methods for calculating the tangent 

and binormal vectors to the implicit surfaces are introduced: (i) a method based on the 

Householder reflection matrix; and (ii) a method based on a square plate rotation 

mechanism. The first provides a base of three orthogonal vectors, in which one of them 

is collinear to the surface normal. For the latter, it is shown that, by means of an analogy 

to the referred mechanism, at least two non-collinear vectors to the normal vector can be 

determined. The resulting system of non-linear equations is solved numerically with the 

Newton-Raphson method with Jacobian matrices calculated analytically. As a case 

study, the contact detection formulation and associated methodology are particularized 

for ellipsoids and superellipsoids. 

 

5.4.1 Problem statement 

 

Consider two non-deformable bodies α and β whose global positions and orientations 

are given. Rigidly coupled to each body are two non-conformal C2 continuous surfaces i 

and j that bear implicit and/or parametric representations. The minimum distance 
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problem consists of determining the surface points that share a common normal and 

where the distance between surfaces is minimal. The common normal concept states the 

necessary conditions for that two points form a contact pair: the normal vectors at these 

points must be collinear relatively to each other and collinear with the distance vector 

that connects the two points, as seen in Figure 5.4. From this enunciation, it can be 

inferred that the mathematical formulation for contact is intimately related to the surface 

representation. Implicit and parametric surface representations are written, in a general 

form, as: 
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( )
( )

,
,

i i

j j

s u
w v

=
=

p p
p p

 (5.17) 

where Fi and Fj are implicit scalar functions that define the locus of points belonging to 

surfaces i and j, respectively, pi and pj are the parametric position vectors of the referred 

surfaces, (x, y, z) the Cartesian coordinates of a surface point and (s, u) and (w, v) their 

respective parametric coordinates. The distance vector, dPQ, that connects the two 

minimum distance surface points, P and Q, is defined as the difference between the 

position vectors of points P and Q, given by rOP and rOQ. Thus, the distance vector is 

written as: 

 PQ OQ OP= −d r r  (5.18) 

It should be noted that rOP and rOQ are unknown quantities, i.e., the coordinates of these 

points are the aim of minimum distance calculations. The normal vector at each point, 

nOP and nOQ, is derived by partial differentiation of the surface equation in order to the 

spatial coordinates. If the implicit surface representation, given in Equation 5.16, is 

considered then the normal vector at a given point is the surface gradient evaluated at 

that point. The tangent and binormal vectors at each point, tOP, tOQ, bOP and bOQ, are 

contained within the plane defined by the respective normal vectors and candidate 

points. In the case of parametric surfaces, defined according to Equation 5.17, the 
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differentiation of the surface expression gives the tangential vectors along each spatial 

parameter and, in this case, the surface normals are calculated by the cross product of 

the tangent vectors. For implicit surfaces, the tangent and binormal vectors must be 

obtained in a more contriving manner as it will be seen in Sub-Section 5.4.3. 

 

5.4.2 Geometric constraints 

 

In this work, rigid contact detection is formulated as a set of geometric constraints that 

are used to describe the referred common normal concept. These constrained equations 

are written as a vector GΦ  that depends on the vector of the unknown points 

coordinates, Gq , 

 ( )G G G=Φ Φ q  (5.19) 

where the superscript ‘G’ is used to classify the geometric constraint equations within 

the multibody formulation. 

 

In general, three types of non-linear equations are used to define a set of geometric 

constraints for minimum distance calculation: (i) orthogonal constraint (relative 

constraint between two perpendicular vectors); (ii) collinear constraint (relative 

constraint between two parallel vectors); and (iii) locus or isosurface constraint (which 

assures that a point in space lies on a contact surface). It should be noticed that the third 

type of constraint is only introduced for contact detection regarding implicit surfaces. 

Moreover, for convenience of the methodology, vector Gq is expressed with respect to 

the local reference frame attached to the intervening surfaces, which is further discussed 

in Sub-Section 5.4.3.  

 

As it was mentioned previously, minimum distance calculation between surfaces is 

stated as the geometric problem consisting of encountering the location of the pair of 

points P and Q in which the distance vector, dPQ, is aligned to the surface normals nOP 

and nOQ, and has a minimum 2-norm value. The collinearity condition between these 

vectors can be written as two cross product equations relating vectors dPQ, nOP and nOQ. 
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Equivalently, this can also be expressed as an orthogonal constraint involving vector 

dPQ, surface tangent vectors tOP and tOQ, and binormal vectors bOP and nOQ as: 

 

PQ OP
PQ OP

PQ OP

PQ OQ
PQ OQ

PQ OQ

0
  

0

0
  

0

⋅ =
× = ⇔  ⋅ =

⋅ =
× = ⇔  ⋅ =

d t
d n 0

d b

d t
d n 0

d b

 (5.20a) 

Other collinearity condition that is verified at the minimum distance points is: 

 

OP OQ
OP OQ

OP OQ

OQ OP
OQ OP

OQ OP

0
  

0

0
  

0

⋅ =
× = ⇔  ⋅ =

⋅ =
× = ⇔  ⋅ =

n t
n n 0

n b

n t
n n 0

n b

 (5.20b) 

The condition expressed by Equation 5.20b is equivalent to the orthogonality 

constraints between the normal vector of one of the surfaces relatively to the tangent 

and binormal vectors of the paired surface. Equation 5.16, Equation 5.20a and Equation 

5.20b utterly define the common normal concept. 

 

In 3-D space, whether one considers the collinear or orthogonal constraint definition, 

Equation 5.20a and Equation 5.20b always render systems of four non-linear 

independent equations. In the case of the parametric surface representation, Equation 

5.20a and Equation 5.20b can be solved for the 4 unknown surface parameters (s,u,w,v). 

Alternatively, when the surface representation follows an implicit definition, 2 

additional locus constraints, given by Equation 5.16, must be added, one for each rigid 

surface, to the set of orthogonal constraints, providing the 4+2 equations necessary for 

solving the 6 Cartesian coordinates (xi, yi, zi) and (xj, yj, zj) of the two potential contact 

points. Redundant constraints must be avoided so that all the equations are linearly 

independent. The geometric constraint equations, i.e., Equation 5.16, Equation 5.20a, 

and Equation 5.20b, serve to restrict the solution space of GΦ to the solution with most 

physical meaning for contact. Gathering a set of geometric conditions to build a system 

of non-linear equations is the next step on formulating the minimum distance problem, 

as described in the following Sub-Section. 
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5.4.3 Vector of geometric constraints and analytical Jacobian matrix 

 

When dealing with C2 surfaces, such as (super)ellipsoidal surfaces, the vector of 

geometric constraints GΦ  is built with C2 continuous functions and the dot and cross 

product operators do not introduce any discontinuity in the domain, therefore, GΦ is a 

twice-differentiable vector function. The system of non-linear equations that contains 

these non-redundant geometric constraints is written as  

 ( )G G =Φ q 0  (5.21) 

and can be solved using the Newton-Raphson iterative procedure. Since GΦ has, at 

least, a C2 mathematical expression, one can exploit the numerical behaviour with 

analytical Jacobians. Hence: 

 ( )( ) ( )
1

1 G
G G G G G G
k k k k

−

+ = −
q

q q Φ q Φ q  (5.22) 

where G
qΦ  is the Jacobian matrix of the geometric constraints and k the Newton-

Raphson iterator index. The Newton-Raphson scheme iterates until the difference 

between 1
G
k+q  and G

kq  is lesser than a user specified tolerance. A rapid convergence is 

usually obtained considering good initial guesses for 0
Gq . 

 

There is more than one way to formulate distance computation via systems of 

geometric constraint equations, e.g., Equation 5.16, Equation 5.20a, and Equation 

5.20b, as the formulation deeply depends on the analytical behaviour of the functions at 

stake and on the surface representation type. For example, when considering parametric 

surfaces loci constraints are, obviously, not relevant and only orthogonal or collinear 

constraints are of interest. In this work, the mathematical modeling for contact detection 

exploits geometric properties associated with the implicit surface representation of 

(super)ellipsoids in order to define the mathematical entities (e.g., vectors and surface 

functions) that participate in the geometric constraint equations. Additionally, other 

geometric properties, such as the radial symmetry, are useful to guarantee unicity of the 

minimum distance problem, which will be described in Sub-Section 5.4.6.  
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From the set of geometric conditions that are verified at the points of minimum 

distance, given by Equation 5.16, Equation 5.20a, and Equation 5.20b, i.e., 4 collinear 

constraints, 8 orthogonal constraints and 2 loci constraints, it is necessary to elect 6 

equations, two of them are, obligatorily, the locus constraints of each implicit surface 

and the remaining 4 are selected such that no linear dependent equations are inserted in 

vector GΦ . 

 

For 3-D (strictly) convex and closed objects represented implicitly, the 

abovementioned geometric constraints of orthogonality and isosurface are grouped in a 

6x1 vector ( ),6GΦ  which can be written in the homogeneous form as, 

 ( ) ( ),6
OP OQ

OP OQ

PQ OQ

PQ OQ

  0

0

0

0

0

0

G G T

T

T

T

i

j
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 = ⇔ ⋅ =  
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   
   
     

Φ q 0 n t

n b

d t

d b

 (5.23) 

where 

 P Q, , , , , i j

TTG T T
i i i j j jx y z x y z   = =   q s s  (5.24) 

is the vector that contains the coordinates of the potential contact pair of points 

expressed in the local reference frame associated with the implicit surface 

representation. The last two geometric constraints in Equation 5.23 are the implicit 

surface equations given in the canonical form, i.e., the surface principal axes are aligned 

with the local coordinate axes and the surface centroid is coincident with the local 

origin. 

 

All vectors in Equation 5.23 are defined in the global coordinate system. However, 

since Gq  holds the coordinates of the possible contact pair of points in the local 

coordinate system of the intervening surfaces, the proper coordinate transformations 

need to be introduced to express these vectors as a function of Gq . Resorting to Figure 
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5.4, the following expressions are used to calculate the global coordinates of vectors 

dPQ, nOP, tOQ and bOQ: 

 

( )

OP O P

OQ O Q

OQ O Q

PQ OQ OP

O O O Q O O O P

i i

j j

j j

j j j i i i
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=

=

=

= − =

= + + − + +

n A A n
t A A t
b A A b
d r r

r A r A A s r A r A A s

 (5.25) 

where niP, tjQ, and bjQ are the local coordinates of these vectors expressed in the surface 

reference frame, AOα, AOβ, Aαi, and Aβj are the rotation matrices, rOα, rOβ, rαi, and rβj are 

the origin positions of the rigid body and surface reference frames, and siP and sjQ are 

the local position vectors of points P and Q as referred in Sub-Section 5.4.1.  

 

The Newton-Raphson method relies on the Taylor series 1st order expansion of 
( ),6GΦ . This demands the calculation of the 6x6 Jacobian matrix of the geometric 

constraints. By definition, each row of the Jacobian matrix is the first partial derivative 

of ( ),6GΦ  in order to Gq . Hence: 
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where, by considering Equation 5.25 leads to 

 ( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )

OP O P

OQ O Q

OQ O Q

PQ O Q O P

G G

G G

G G

GG G

i i

j j

j j

j j i i

α α

β β

β β

β β α α

=

=

=

= −

q q

q q

q q

qq q

n A A n

t A A t

b A A b

d A A s A A s

 (5.27) 

are 3x6 matrices and 
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 ( ) [ ] ( ) [ ]P Q1 0 0 0 0 0       0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 1

G Gi j= = = =   
   
   
   
   

q q
s I 0 s 0 I  (5.28) 

 

Equations 5.21 through 5.28 are generic to any implicit surface that is C2 continuous 

and, once Equation 5.23 and Equation 5.26 are implemented, extending the 

methodology to other surfaces requires the deduction of the analytical expressions for 

niP, tjQ, bjQ, ( ) ( )P Q, ,G Gi jq q
n t  and ( )Q Gj q

b  which is, usually, a straightforward process 

considering the analytical nature of the surfaces definitions.  

 

Despite the generic nature of the method, the geometric constraints presented here 

are only necessary conditions for contact detection, although in some cases, such as two 

non-aligned ellipsoids, the conditions reveal to be sufficient. Therefore, extending the 

formulation to other implicit surfaces entails additional considerations that must 

guarantee the existence and unicity of the minimum distance solution. For example, in 

the case of open surfaces, such as the paraboloid, the boundaries are required to be 

limited and the geometric equations that define the boundaries must enter the vector of 

geometric constraints, in order to evaluate if the potential contact points are contained 

within the surface boundaries. 

 

5.4.4 Tangent and binormal vectors given an arbitrary normal vector 

 

When dealing with Cn, n ≥ 1, implicit surfaces, it is relatively easy to obtain the normal 

vector at any point on the surface. The gradient is a differential operator that once 

applied to the analytical surface expression, Equation 5.16, defines the normal vector at 

each point. However, the tangent and binormal vectors are not calculated just as simply. 

Although it seems intuitive, finding orthogonal vectors given an arbitrary non null 

vector in 3-D Cartesian space is not a trivial task. Here, two different approaches for 

calculating an orthogonal vector basis, that belongs to the tangent plane defined by the 

gradient normal vector, are considered: (i) by determining an appropriate Householder 

reflection matrix; and (ii) by the cross product of the normal vector with an auxiliary 
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non-collinear vector. Both approaches lead to analytical expressions for the tangent and 

binormal vectors which depend on the coordinates of the normal vector and, 

consequently, on the local surface point coordinates.  

 

The Householder transformation (Householder 1958), presented in Sub-Section 

4.3.2,  is expressed as a matrix H which reflects a vector, in this case the normal vector 

n, along a vector axis h: 
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2 2 2
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2 2 2
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2 1 2 2
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 (5.29) 

where 

 ( ) [ ] { }1 2 3 2 2
max ,

TT
x x y zh h h n n n n ≡ = = − + h h n n n  (5.30) 

and 

 
2

h = h  (5.31) 

Note that Equation 5.29 is the same as Equation 4.3, reproduced here for the sake of 

clarity in what follows. Matrix H is symmetric and orthogonal with columns (or rows) 

forming an orthogonal vector basis. The first column of H is collinear to n and the 

remaining columns are perpendicular to n. Here, ( )≡t t n  and ( )≡b b n  are assigned as 

the second and third columns, respectively. Towards the methodology, (Equation 5.29) 

acts, merely, as a formula to calculate the tangent and binormal vectors at a given 

surface point. 

 

Inspired by the motion of a simple rotation mechanism, represented in Figure 5.10, 

an alternative way to determine tangent and binormal vectors is to define a set of four 

vectors in which at least two of them are non-collinear to an arbitrary vector n: 
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 (5.32) 

In general, all four vectors in Equation 5.32 are not collinear to n, except when 

x yn n=  or x yn n= −  in which case, only two non-collinear vectors are available, as seen 

in the rightmost graph of Figure 5.11. Since only one non-collinear vector is required to 

obtain the tangent and binormal, the selection of the non-collinear vector is, here, 

undertook as listed in Table 5.1. Despite the fact that the proof is referred to the 2-D 

plane, i.e., 0zn = , as depicted in Figure 5.11, the proof is clearly valid for any 3-D 

vector as nz can take real values different from zero, 0zn ≠ . 

 

 
Figure 5.10 – Square plate rotation mechanism. The revolute joints rotate at the same angular 
velocity but in opposite senses. 
 

Applying the cross product operator between the normal and the elected non-

collinear vector vl, l ∈ {1,2,3,4}, the tangent and binormal vectors can then be 

calculated with the following expressions 

 ( )
( ) ( )

l

l

≡ = ×
≡ = × = × ×

t t n n v
b b n n t n n v

 (5.33) 
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According to the formalism of Equation 5.27, the Jacobian matrices are expressed as: 
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 (5.34) 

where the tilde sign (~) above the vector notation is the skew-symmetric matrix 

associated with the corresponding vector. 

 

 
Figure 5.11 – “Proof by picture” of the existence of non-collinear vectors given an arbitrary 
vector nxy in the 2-D plane. 
 

 

( ) ( )x ysign n sign n∧
 

Selected non-
collinear vector ( ) ( )x ysign n sign n∧

 
Selected non-

collinear vector 
nx > 0 ∧  ny > 0 v2 or v4 nx < 0 ∧  ny > 0 v1 or v3 
nx = 0 ∧  ny > 0 v2 or v4 nx = 0 ∧  ny > 0 v1 or v3 
nx > 0 ∧  ny = 0 v2 or v4 nx < 0 ∧  ny = 0 v1 or v3 
nx < 0 ∧  ny < 0 v2 or v4 nx > 0 ∧  ny < 0 v1 or v3 
nx = 0 ∧  ny < 0 v2 or v4 nx = 0 ∧  ny < 0 v1 or v3 
nx < 0 ∧  ny = 0 v2 or v4 nx > 0 ∧  ny = 0 v1 or v3 

 

Table 5.1 – Selected pairs of non-collinear vectors according to the signs of the nx and ny 
coordinates. 
 

5.4.5 Contact detection algorithm 

 

The distance vector magnitude, d, is calculated as the signed Euclidean distance of 

vector dPQ, thus, ‘negative distances’ are considered. At a given time instant, the signed 

magnitude d indicates one of the three possible contact situations as summarized in 
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Table 5.2: (i) no contact; (ii) contact at a single point or external contact (rOP = rOQ) and 

(iii) contact with pseudo-penetration. Therefore, by computing the minimum distance 

between rigid surfaces it is possible to detect the contact state. 

 

Contact type Minimum distance Thumbnail 

No contact d > 0 
 

Contact at a single point d = 0 
 

Contact with pseudo-
penetration d < 0 

 
 

Table 5.2 – Contact detection situations according to the minimum distance value given by the 
signed Euclidean distance, ( )OP PQ PQ 2

d sign= ⋅n d d . 

 

 
 

Figure 5.12 – Flowchart of the proposed contact detection algorithm. 

 

Note that the formulated vector of geometric constraints, GΦ , in Equation 5.23, 

reckons only the common normal concept, meaning that, for some contact pairs, it does 

not formulate the minimum distance calculation per se. Consequently, multiple pairs of 

points with common normals that are collinear with the distance vector may appear. In 

such cases, it is necessary to evaluate each possible distance and choose the closest pair 

of points. 
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Within the framework of multibody dynamics, the contact detection algorithm takes 

the bodies positions and orientations, calculated from the equations of motion, and 

returns the location of the pair of contact points together with the contact forces. The 

proposed algorithm can be summarized in the following steps: 

 

(i) Establish the time interval [t0, tend] for the dynamic analysis; 

(ii) At time step t0, establish the initial conditions for the position vector, 0 0( ),t=q q

velocity vector, 0 0( ),t=q q   and contact candidate pair of points, 0 0( );G G t=q q   

(iii) Evaluate the proximity queries; if the surfaces are sufficiently close then go to 

(iv), otherwise go to (vii); 

(iv) Run the Newton-Raphson method with analytical Jacobians to obtain the vector 

of the contact points, Gq ; 

(v) Compute the signed distance magnitude, d, and check for contact; if there is 

contact, evaluate contact forces according to the constitutive law; if not go to 

step (vii); 

(vi) Add the contact forces to the vector of applied forces; 

(vii) Solve the equations of motion deduced from the multibody dynamics 

formulation in order to obtain the body positions and orientations for the new 

time step ;t t+ ∆  

(viii) Update the system time variable t and use the vector Gq obtained in (iv) as the 

initial guess for the Newton-Raphson method in the next time step; 

(ix) Go to step (iii) and proceed with the whole process for the new time step; 

(x) Exit the main algorithm’s loop when the final time step is reached. 

 

Note that the contact detection algorithm is run N times for each function evaluation, 

where N is the number of rigid contact pairs within the multibody system. Figure 5.12 

shows the flowchart of the contact methodology. The numerical implementation of this 

methodology leads to an efficient algorithm since the information of the previous time 

step is used as an initial guess to find the solution of the non-linear equations and, 

therefore, only a few iterations are required to obtain the solution, as it will be discussed 

in Sub-Section 5.4.8. 
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5.4.6 (Super)Ellipsoidal specifications for the contact detection methodology 

 

The selection of a surface model to represent and visualize the body geometry is of 

crucial importance for contact analysis. The important aspects to take under 

consideration are the geometric representativity of the surface and the analyticity of the 

surface functions. Preferably, the surface model must provide a compact representation 

(i.e., a small set of geometric parameters) that can uniquely define a surface. Quadric 

and superquadrics surfaces are geometric descriptions that are used to model a large 

variety of 3-D shapes, presenting great shape fidelity for many natural and manmade 

objects. In this work, the outer surface or certain regions of a body’s boundary are 

modeled as ellipsoidal or superellipsoidal surfaces. 

 

Here, only the implicit surface representation is considered for the contact detection 

methodology. The surfaces are defined as a polynomial function in x, y and z Cartesian 

coordinates with exponents raised to real-valued numbers. Quadrics are second-degree 

polynomials while superquadrics are polynomials with non-negative real exponents. 

Some of the surface family members are (super)ellipsoids, and one and two sheet 

(super)hyperboloids. Associated with each surface function are geometric parameters 

that affect the shape, surface dimensions and overall curvature in a comprehensible 

manner. Section 2.3.2 and Section 2.3.3 provide a more detailed description on these 

geometric primitives. Here, only the specifications and properties of interest necessary 

to particularize (super)ellipsoids for the contact detection methodology are presented.  

 

(Barr 1981) presented an implicit surface representation of a superquadric which, in 

the canonical form, is given by the following expression: 

 ( )
1

2 2 12
11 22 33( , , ) 1 0SEBF x y z a x a y a z

γ
γ γ γγ= + + − =  (5.35) 

where {a11, a22, a33} are shape coefficients, and γ1 and γ2 are the exponents. Depending 

on the signal value of shape coefficients, one can define the family type of the 

superquadric surface. If 1 2γ γ=  with { }1 2, 1, 2γ γ ∈  then Equation 5.35 falls in to a 

quadric implicit function. The formulas for the dimension parameters along the x, y and 

z directions are given by: 
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 2 2 1
1 1 1

11 22 33, ,a a b a c aγ γ γ− − −= = =  (5.36) 

Barr’s implicit definition of the superquadric surface is composed by a function 

raised to 1 2 .γ γ  By twice differentiating Equation 5.35, the exponent 1 2 2γ γ −  appears 

in the resulting expressions. As a consequence, only values of 1 22γ γ≥  are permissible 

for the proposed contact detection method, so that non-negative exponents are 

preserved. This deeply hampers the desired geometric representativity and excludes the 

particular case of the quadric surfaces. For contact analysis with implicit surfaces, the 

superquadric definition proposed by Barr is quite limited, although it is entirely 

applicable when considering the parametric version of the geometric constraints. 

Therefore, an alternative quadric surface generalization is considered: 

 ( ) 31 2
11 22 33, , 1 0SEF x y z a x a y a zγγ γ= + + − =  (5.37) 

where {a11, a22, a33} are shape coefficients, and γ1, γ2, and γ3 are real non-negative 

exponents. 

 

In order to implement (super)ellipsoid contact surfaces it is necessary to deduce the 

associated normal and Jacobian matrices. Given the implicit representation of the 

ellipsoidal surface in the canonical form Equation 2.8, the normal vector is the gradient 

vector of the scalar function FE and is therefore given by: 
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The associated Jacobian matrix contribution is deduced by differential calculus as, 
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with q = [x y z]T. As for the superellipsoidal surface, the normal vector is also given by 

the gradient vector and the Jacobian matrix is obtained in the same fashion: 
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with q = [x y z]T. The expressions of Equation 5.38, Equation 5.39, Equation 5.40, and 

Equation 5.41 are simple and computationally inexpensive, promptly to be assembled 

within the vector of geometric constraints and associated Jacobian matrix of the 

Newton-Raphson scheme expressed by Equation 5.22. 

 

The problem in generalizing the proposed contact methodology to superquadrics is 

that they lead to polynomial equations with fractional exponents, which are difficult to 

solve numerically. Also for the case of superellipsoidal surfaces, when two local surface 

coordinates are close to zero, the Jacobian matrix in Equation 5.41 becomes ill-

conditioned, which can potentially jeopardize the non-singularity of the Jacobian matrix 

of the geometric constraints given in Equation 5.26.  

 

As for the issue of multiple solutions of the common normal concept, in the case of 

(super)ellipsoids, as illustrated in Figure 5.13, 2 or 4 multiple solutions of GΦ  may 

result if one of the following situations occurs: (i) whenever spheres take part of the 

contact pair (2 or 4 solutions); (ii) whenever both surfaces are aligned, i.e., when two of 

the surface’s planes of symmetry are coincident (4 solutions). 

 

In order to guarantee the proper solution to the iterative procedure, one must grant an 

approximated initial position that is close to the desired solution. This is also a 

requirement for the convergence of the Newton-Raphson method. Even if the numerical 

method does not converge to the minimum result, it is convenient to make use of the 

(super)ellipsoids geometric properties and intrinsic characteristics, such as, convexity, 
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compactness (closed and bounded surface) and radial symmetry, to ascertain the unique 

minimum distance solution. Thus, once the method converges, and after converting 

final

G
kq  to global coordinates, it is necessary to inquire if the obtained result, 

 1

2

∗ ∗

∗

 =
 
 

q q
q

 (5.41) 

 
Figure 5.13 – Multiple solutions for the common normal concept. (a1) – Contact pair formed by 
a sphere and an ellipsoid that are aligned with each other; (a2) - Multiple solutions of the 
corresponding vector of geometric constraints GΦ ; (b1) – Contact pair formed by a sphere and 
an ellipsoid that are not aligned with each other; (b2) - Multiple solutions of the corresponding 
vector of geometric constraints GΦ . 
 

corresponds to the minimum distance solution. Given two arbitrary (super)ellipsoids in 

a non-conformal contact situation, there are, at most, a total of four possible solutions of 
GΦ : 
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where the points 1
∗q  and 3

∗q  belong to surface i and 2
∗q  and 4

∗q  belong to surface j. 

Hence, the position vectors of the minimum distance points P and Q are such that: 

 { } { }OP 1 3 OQ 2 4,     and   ,  ∗ ∗ ∗ ∗∈ ∈r q q r q q  (5.43) 

By evaluating the Euclidean distance between all four combinations of the sub-

vectors, 1
∗q , 2

∗q , 3
∗q , and 4

∗q , the element of S that presents the minimum signed 

distance can then be determined: 
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where f is the piecewise signed Euclidean distance function, and { }1,3m∈  and { }2, 4n∈  

are the integer indices of the sub-vector points. 

5.4.7 Demonstrative examples 

 

The results presented in this Sub-Section refer to the distance computation between 

contact pairs of ellipsoidal and superellipsoidal surfaces in several configurations and 

with different geometric parameters, and are listed in Table 5.3 and Table 5.4, 

respectively. No proximity queries or multibody dynamics calculations are undertaken 

in order to evaluate, solely, the distance computation efficiency during the analysis. The 

contact analysis is performed for a time interval of 200 time steps and, based on 
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numerical experiments, with a tolerance of 10-6 for the Newton-Raphson accuracy, i.e., 

1
6

2 2
10k k k

G G G
+

−∆ = − ≤q q q . Prescribed motion is imposed in all cases. The initial 

approximation, 0
Gq , consisted of the bisection between the surface centroids. For the 

remaining time steps, the Newton-Raphson approximations are the resulting vector from 

the previous time step, i.e., G
kq . The contact detection code is developed in MATLAB® 

running on a PC with a Intel® Core 2 Duo processor 1.66 GHz and 2GB of RAM. The 

software code for minimum distance calculation between ellipsoids is available at 

(MDC-ELLIPSOIDs 2013).  

 

Quadric Contact Pair 1 2 3 4 

Coefficients – surface (i) {3.0,3.0,3.0} {3.0,3.0,3.0} {5.0,5.0,2.0} {1.0,5.0,5.0} 

Coefficients – surface (j) {0.5,0.5,0.5} {0.5,0.5,0.5} {5.0,5.0,2.0} {5.0,1.0,5.0} 

Prescribed motion 

(i) rotates 
along the local 
x-axis;  
(j) rotates 
along the local 
x-axis and 
orbits around 
(i). 

(i) rotates 
along the local 
x-axis;  
(j) rotates 
along the local 
[1 1 1]T 
direction. 

(i) rotates 
along the local 
x-axis;  
(j) rotates 
along the local 
[1 1 1]T 
direction. 

(i) rotates 
along the local 
x-axis;  
(j) rotates 
along the local 
[1 1 1]T 
direction. 

Tangent vectors approach H AV H AV H AV H AV 

Total computational time (s) 1.18 1.24 1.23 0.921 1.15 1.22 1.20 1.02 

Total number of Newton-
Raphson iterations 989 983 853 802 977 1005 956 1007 

Newton-Raphson iterations per 
time step ~5 ~5 ~4 ~4 ~5 ~5 ~5 ~5 

 

Table 5.3 – Contact pair tests for the calculation of the minimum distance between ellipsoid 
surfaces in a total of 200 time steps. Caption: Ellipsoid coefficients – {a,b,c}; H – Householder 
approach; AV – Auxiliary vector approach. 
 

High efficiency is obtained for distance calculation of an ellipsoidal surface contact 

pair, in which 200 time steps took a total computational time that is lesser than 1.25 

seconds, and an average of 5 Newton-Raphson iterations per time step. Both 

approaches, the Householder transformation and the set of non-collinear auxiliary 

vectors, for determining tangent and binormal vectors are considered presenting no 
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major differences regarding efficiency. Time evaluation is comparatively higher when 

dealing with superellipsoids due, mainly, to the greater non-linearity of the geometric 

constraints vector. Although all cases converged to the desired solution, in Figure 5.14, 

it is shown an example of an alternative pair of points that satisfies Equation 5.23. 

 

 
Figure 5.14 – Snapshots of the minimum distance calculation for each contact pair defined in 
Table 5.3. The normal, tangent and binormal vectors are colored as red, green, and blue, 
respectively. 
 

Contact pair 1

Contact pair 2

Contact pair 3

Contact pair 4
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Superquadric Contact Pair 1 2 3 

Coefficients – surface (i) {1.0,1.0,1.0, ... 
2.4,2.4,2.4} 

{0.4,1.1,1.1, ... 
3.2,3.2,3.2} 

{4.1,1.1,1.1, ... 
2.5,2.5,2.5} 

Coefficients – surface (j) {1.5,2.1,1.9, ... 
3.0,3.0,3.0} 

{1.0,1.0,0.4, ... 
3.2,3.2,3.2} 

{1.0,1.0,4.0, ... 
3.2,3.2,3.2} 

Prescribed motion 

(i) rotates along the 
local x-axis; 
(j) rotates along the 
local [1 1 1]T direction. 

(i) rotates along 
the local x-axis; 
(j) rotates along 
the local z-axis. 

(i) rotates along the 
local x-axis; 
(j) rotates along the 
local z-axis. 

Tangent vectors approach H H H 

Total computational time 
(s) 1.24 1.97 1.39 

Total number of Newton-
Raphson iterations 1085 1632 1074 

Newton-Raphson 
iterations per time step ~5 ~8 ~5 

 
Table 5.4 – Contact pair tests for the calculation of the minimum distance between 
superellipsoid surfaces in a total of 200 time steps. Caption: Superellipsoid coefficients – 
{a,b,c,γ1,γ2,γ3}; H – Householder approach. 
 

 
Figure 5.15 – Snapshots of the minimum distance calculation for each contact pair defined in 
Table 5.4. The normal, tangent and binormal vectors are colored as red, green, and blue, 
respectively. 

Contact pair 1

Contact pair 2 Contact pair 3
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5.4.8 Discussion 

 

In this work, an accurate, efficient, and easily implementable algorithm for minimum 

distance computation between smooth convex surfaces is presented. The proposed 

contact methodology relies on the common normal concept and on locus constraints that 

are quite intuitive. Consequently, the methodology is easily formulated resorting to 

vector calculus and algebraic and differential geometry, providing a uniform framework 

for distance computation between objects described as smooth convex implicit surfaces 

(at least C2 continuous). 

 

As major advantages towards other contact detection algorithms, the proposed 

contact algorithm does not resort on optimization methods or convex polyhedral 

geometries, making use of the potential of analytical expressions for the surface vectors 

and associated Jacobian matrices. The usage of analytical Jacobians guarantees 

geometric accuracy and contributes to the computational efficiency of the method, since 

no matrix estimation is required for each iteration. Mathematical artifices are introduced 

to compute tangent and binormal vectors for implicit surfaces given the normal vector 

to a surface. The speed at which distance computation is performed enables real-time 

simulations for a contact pair. 

 

Contact calculations contribute quite significantly to the computational cost of 

multibody dynamics analysis. The usage of analytical Jacobians, besides guaranteeing 

the geometric accuracy of the result, also contributes to the computational efficiency, 

since no matrix estimate is required for each iteration neither does it depends on 

polygonal geometries nor complex non-linear optimization methods. A special remark 

must be drawn to the importance of the implicit surface representation since the 

methodology’s success depends greatly on such a compact and well-behaved 

mathematical expression. All in all, the computational efficiency and robustness are the 

major advantages of the present model as it converges rapidly, allowing simulations to 

be performed interactively. Though the computational time is dependent on the initial 

guess (a limitation inherited from the Newton-Raphson algorithm), in all cases tested, 

200 time steps were completed in less than in 1.25 seconds for ellipsoids, and 4.10 

seconds for superellipsoids. 
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In order to implement an efficient Newton-Raphson method it is necessary to surpass 

the method’s major numerical restrictions (Grosan and Abraham 2008; Atkinson and 

Han 2005): (i) the analytical Jacobian matrix is needed, therefore, analytical derivatives 

must be available; (ii) function evaluation must be inexpensive; and (iii) since it is a 

local convergence method, the success of the algorithm deeply depends on the initial 

approximation. Thus, the main pitfall of the methodology is the possibility of the 

Jacobian matrices becoming singular. When the Jacobian matrix, calculated 

analytically, becomes singular, alternative ways to calculate the Jacobian matrix must 

be considered, e.g., by finite difference estimation of the Jacobian matrix or, preferably, 

by reformulating the vector function GΦ  with other linear independent collinear or 

orthogonal constraints, given by Equation 5.20a and Equation 5.20b. Another limitation 

of the methodology consists of the contact formulation is only applicable to convex 

surfaces placed in a non-conformal contact situation. In fact, if one or both surfaces are 

concave, multiple solutions may appear. In order to apply the contact detection 

methodology to conformal situations, a set of superellipsoids can be arranged to fit the 

non-convex surface. In addition, in some contact pair situations, it should be noted that 

there may be more than one possible solutions for Equation 5.23. Therefore, at each 

time step it is necessary to check if the obtained solution matches the minimum 

distance. 

 

From a mathematical point of view, ellipsoids detain a better behavior than 

superellipsoids since special treatment is not required for continuity singularities and the 

issues associated with rational exponents do not take place (divisions by zero and the 

appearance of complex numbers for negative domain values). On the other hand, 

superquadrics possess a higher geometric representativity since the varying exponents 

control the overall curvature of the surface, contrary to quadrics that have a constant 

power. Both quadric and superquadric surfaces have a small number of geometric 

parameters and approximate a wide class of convex objects. 

 

For ellipsoidal surfaces, the Jacobian matrices involved in Equation 5.26 

guaranteedly do not contain lines of zeros. On the other hand, for superellipsoids it is 

necessary to ensure that the Jacobians of the normal vector and auxiliary vectors are not 

ill-conditioned so that G
qΦ  does not become a singular matrix when a pair of local 
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coordinates are close to zero. In such case, it is necessary to consider the pseudo-inverse 

of the geometric constraints Jacobian, although in some particular cases the Jacobian 

becomes singular. Another possible Jacobian singularity appears, for both ellipsoid and 

superellipsoid cases, when 

 PQ OP=d n  (5.45) 

and 

 ( ) ( ) ( ) ( )[ ]1

PQ OP P O O O    GG i j j iβ β β β α α

−
= ⇒ = −

qq
d n n A A A A A A I 0  (5.46) 

simultaneously occur since a set of rows in Equation 5.26 becomes linearly dependent.  

 

Despite the Newton-Raphson’s local convergence behaviour and that the common 

normal conditions possibility on granting multiple solutions in some contact pairs, the 

methodology solves such issues by relying, essentially, on the radial symmetry and 

convexity of the (super)ellipsoidal surfaces: determine the remaining 2 points by radial 

symmetry and the pair of points that are not associated with the maximum distance 

make up the desired solution for Equation 42, Equation 44a and Equation 44b. 

 

Finally, the reason of considering the (super)ellipsoid implicit representation instead 

of the parametric, is due to the lesser non-linear complexity given by algebraic 

expressions with rational exponents than the trigonometric functions raised to rational 

exponents encountered in the parametric counterpart. 
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6. Application of Smooth Convex 

Surfaces in Compliant Multibody 

Systems 
 

The present chapter presents the usage of smooth convex surfaces for modeling and 

simulating multibody systems with compliant contact. This is achieved by presenting a 

biomechanical application were superellipsoid-plane elements are integrated into a 

musculoskeletal model and used on a forward dynamics simulation of gait to represent 

the foot-ground contact forces. The superellipsoid-plane model aims to overcome the 

limitations of more simplified approaches that are commonly used to model such 

contact events (e.g., pointlike elements). 

 

Within musculoskeletal simulations that consider foot-floor interactions, the ground 

contact forces are determined based on a constitutive model that depends on material 

properties and contact kinematics. When considering soft constraints, the kinematics of 

the minimum distance between the foot and the planar ground needs to be computed. 

Due to their geometric simplicity, a considerable amount of studies have used point-

plane elements to represent these interacting bodies, but very few provide comparisons 

between point contact elements and other analytical geometries. The main objective of 

this chapter is to develop a more general-purpose superellipsoid-plane contact model 

that can be used to determine the three-dimensional foot-ground contact forces. 

Simulation results and execution times are compared with a pointlike viscoelastic 

contact model. Both models produced realistic ground reaction forces and kinematics 

with similar computational efficiency. However, solving the equations of motion with 

the surface contact model revealed to be more efficient (~18% faster) and numerically 

less stiff (~37% less). The superellipsoid-plane elements are also more versatile than 

pointlike elements in that they allow for volumetric contact evaluation during three-

dimensional motions (e.g., rotating, rolling and sliding), and consequently they allow to 

introduce topics of rolling contact mechanics, which is not possible with pointlike 

elements. In addition, the superellipsoid-plane element is geometrically accurate and 
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easily integrated within multibody simulation code. These advantages make the use of 

superellipsoid-plane contact models in musculoskeletal simulations an appealing 

alternative to pointlike elements. 

 

This chapter is organized as follows. Section 6.1 starts by introducing the 

motivations, brief review of relevant literature, rationale of the study, and objectives for 

modeling foot-ground contact with superellipsoid-plane elements. Section 6.2 presents 

the methodology used to generate walking movement by forward dynamics simulations, 

where muscle excitations are estimated using dynamic optimization and the compliant 

contact models are detailed. The simulation results are shown in Section 6.3 followed 

by the discussion and concluding remarks in Section 6.4. 

 

6.1 Introduction 

 

During human movement, the musculoskeletal system is influenced by a number of 

internal and external contact forces that influence the dynamic response of the system. 

In order to quantify these forces, contact models are needed to represent the dynamic 

interactions between the body segments of interest. Such models have been used to 

identify load transfer mechanisms (García-Aznar et al. 2009), muscle contributions to 

ground reaction forces (Hamner et al. 2013; Lin et al. 2011), and injury estimation 

during car accidents (MADYMO® 2012). Musculoskeletal models with ground contact 

models can even compliment experimental analyses that are unable to directly measure 

ground reaction forces (Vilà 2012). 

 

Of particular importance for human movement studies is the representation of the 

foot-ground contact. For studies that do not require complex anatomical or prosthetic 

geometries, a common approach for modeling foot-ground contact is to use kinematic 

constraints or pointlike elements. Kinematic constraints restrict the motion of discrete 

points along on the sole of the foot (Lin et al. 2011; Anderson and Pandy 2003; Dorn et 

al. 2012) while pointlike elements use a set of discrete viscoelastic elements with 

Coulomb friction attached to the bottom of each foot segment (Neptune et al. 2000; Fey 

et al. 2012; Peasgoo et el. 2007; Mahboobin et al, 2010). To a lesser degree, analytical 

surface contact models have been used to simulate and analyze foot-ground contact. 
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Spheres, ellipsoids, circular cylinders and planes have been used to model the shoe sole 

and underlying tissues of the foot (MADYMO® 2012; Vilà 2012; Güler et al. 1998; 

Kecskeméthy 2011). Other studies have even used the same analytical surfaces to model 

the articulating surfaces of the knee joint (Wilson and O’Connor 1997; Abdel-Rahmana 

and Hefzy 1998). However, these studies are narrowed to very specific surfaces and do 

not explore the potential of more general-purpose shape models, such as superellipsoids 

which are generic enough to encompass spherical, ellipsoidal and cylindrical shapes into 

a single mathematical expression (Barr 1981). A method to calculate minimum 

distances between any smooth convex implicit surfaces, like superellipsoids and planes, 

was proposed by (Lopes et al. 2010), but the mathematical formulation to calculate the 

closest surface points relies on numerical procedures to solve a non-linear system of 

equations. Thus, it is computationally more expensive compared to an analytical 

solution, such as the one presented in Section 5.3.2. Although different geometries have 

been used to simulate the foot-ground interaction, there are very few studies that have 

compared the performance of pointlike elements with analytical surface elements under 

the same test conditions (Millard et al. 2009; Boos and McPhee 2013). Such a 

comparison would provide insight into the suitability of analytical surface contact 

models in human movement analyses. Thus, the objective of this study was to present a 

general-purpose superellipsoid-plane element for the simulation of contact interactions 

during human movement. To illustrate the applicability of the model, it was used in a 

forward dynamics simulation of walking to represent the foot-ground contact forces. 

Simulation results and execution times were compared to a similar musculoskeletal 

model that used pointlike elements to model the foot-ground contact to assess whether 

the more general purpose superellipsoid-plane element can provide the same level of 

efficiency and accuracy as the commonly used pointlike elements. 

 

6.2 Methodology 

6.2.1 Overview 

 

Figure 6.1 shows the overall computational framework on how walking simulations are 

generated. In general, the computational framework consists of an optimization 

algorithm that, based on experimental data and user defined parameters, feeds optimal 
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muscle excitations to the forward dynamics simulation which outputs the generated 

movement. In particular, forward dynamics simulations represent a direct mapping 

between neuronal command inputs and the resulting movement that is influenced by the 

external forces applied to the musculoskeletal system. On the other hand, the 

optimization framework searches for the muscle excitations patterns that minimize the 

difference between simulated and experimental data (i.e., body segment degrees of 

freedom and ground reaction forces). In order to produce a well-coordinated walking 

movement that emulates the experimental data, several optimization loops are required 

to fine-tune the muscle excitation patterns (Neptune 2000; Pandy 2001). 

 

 
Figure 6.1 – Diagram showing the computational homologous on how the 
neuromusculoskeletal system functions. The boxes show the content of the forward dynamics 
simulator and its relationship with the optimization framework used to generate simulations of 
walking. 
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Here, a two-dimensional musculoskeletal model and optimization framework are used 

to generate forward dynamics simulations of human walking in order to compare the 

contact models. The musculoskeletal model is driven by individual muscle actuators. 

Dynamic optimization is used to identify the muscle excitations that reproduce group-

averaged walking kinematics and ground reaction forces. In order to perform the contact 

model comparison, two different ground contact geometries are implemented: (i) 

pointlike elements (Neptune et al. 2000), and (ii) ellipsoid-plane elements. The formulas 

to calculate the minimum distance between ellipsoidal and planar surfaces are exactly 

the same as for the superellipsoid-plane surface pair. The complete minimum distance 

formulation is based on the common normal concept (Johnson 1985) and on the angle-

center parametric representation of a superellipsoid (Barr 1981). A detailed description 

of the minimum distance formulism can be found in Section 5.3.2.  

 

6.2.2 Musculoskeletal model 

 

The forward dynamics simulations are generated using a musculoskeletal model 

developed with SIMM/Dynamics Pipeline (MusculoGraphics Inc., Santa Rosa, CA) and 

has been described in detail in previous studies (Neptune et al. 2000; McGowan et al. 

2009; Sasali et al. 2008). The model consisted of rigid segments representing the trunk 

(pelvis, torso, head and arms) and two legs (thigh, shank, patella, calcaneus, mid-foot 

and toe), as shown in Figure 6.2. The body segments are kinematically constrained 

using idealized joints, totalizing thirteen degrees-of-freedom in the sagittal-plane: two 

translations and one rotation of the trunk; ten flexion–extensions rotations accounting 

for the joints of both legs. The hip, ankle, mid-foot and toe are modeled as frictionless 

revolute joints and the planar motion of the knee (two translations and flexion–

extension rotation) is prescribed as a function of the knee flexion angle (Delp et al. 

1990). To model the forces exerted by ligaments and joint structures, passive torques 

are applied at each joint (Anderson and Pandy 1999; Davy and Audu 1987). The 

skeletal system was driven by 25 individual Hill-type musculotendon actuators per leg, 

which were combined into 14 muscle groups based on anatomical classification, where 

muscles within each group receive the same excitation pattern, as shown in Figure 6.2. 

The activation-deactivation dynamics is governed by a first-order differential equation 



150 
 

(Raasch et al. 1997; Winters and Stark 1988) and the excitation patterns were 

parameterized using a bimodal pattern (Hall et al. 2011). 

 

 
Figure 6.2 – The 2-D musculoskeletal model consisted of a trunk segment (pelvis, torso, head 
and arms) and two legs (thigh, shank, patella, calcaneus, mid-foot and toe).  The model was 
actuated by 25 Hill-type musculotendon actuators per leg, combined into 14 muscle groups. The 
muscle groups were defined as GMED (anterior and posterior compartments of the gluteus 
medius), GMAX (gluteus maximus, adductor magnus), HAM (biceps femoris long head, medial 
hamstrings), BFsh (biceps femoris short head), IL (psoas, iliacus), RF (rectus femoris), VASL 
(vastus lateralis, vastus intermedius), VASM (vastus medialis), GAS (medial and lateral 
gastrocnemius), SOL (soleus, tibialis posterior), TA (tibialis anterior, peroneus tertius), PR 
(peroneus longus, peroneus brevis), FLXDG (flexor digitorum longus, flexor hallucis longus), 
and EXTDG (extensor digitorum longus, extensor hallucis longus). 
 

6.2.3 Ground contact model 

 

For the pointlike elements, foot-ground contact is modeled using 31 independent 

viscoelastic elements with Coulomb friction (Neptune et al. 2000). These contact 

elements are attached beneath each foot and distributed over the three foot segments in 

locations that describe the shoe’s profile, as depicted in Figure 6.3 (a). Each element 

allows vertical deformation and tangential friction to the floor where each element 

contained mechanical properties of the shoe sole and underlying soft tissue. 
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Deformation is defined as the distance between a point and the ground plane. The 

anterior–posterior friction and vertical ground reaction forces along with the specific 

shoe parameters have been previously described in detail by (Neptune et al. 2000). For 

the ellipsoid-plane elements, a set of 6 independent surface pairs were rigidly attached 

to each foot segment and placed within the shoe’s boundary, as shown in Figure 6.3 (b). 

The ellipsoid-plane elements share the same contact force characteristics as their 

pointlike counterpart (i.e., vertical viscoelastic deformation, Coloumb friction, anterior-

posterior and vertical contact force model, and shoe parameters), although they differ in 

how the distance between the foot and ground is calculated. Note that the distribution of 

either point-plane or ellipsoid-plane elements act as a “bed of springs” or, more 

formally, as an elastic foundation (Johnson 1985). The calculation of the minimum 

distance, or amount of deformation, is valid for both ellipsoids and superellipsoids. Both 

pointlike and surface contact models were developed in C and integrated into 

SIMM/Dynamics Pipeline user-defined modules.  

 

 
Figure 6.3 – Geometric models of the shod foot in a neutral position with (a) pointlike contact 
elements and (b) ellipsoid-plane contact elements (2-D view). The foot is considered as a set of 
three articulated rigid bodies (rear-, mid- and fore-foot) kinematically constrained with revolute 
joints. 
 

6.2.4 Forward dynamics simulations of walking and optimization framework 

 

The equations of motion for the musculoskeletal model are derived using SD/FAST 

(Parametric Technology Corp.) and the forward dynamics walking simulations are 

(a) (b)
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produced using Dynamics Pipeline (MusculoGraphics Inc., Santa Rosa, CA). The 

simulations correspond to a full gait cycle (from left heel-strike to the following left 

heel-strike). A simulated annealing optimization algorithm (Goffe et al. 1994) is used to 

find the optimal muscle excitations parameters and initial generalized velocities that 

minimized the difference between the experimental and group average experimental 

data (Neptune and Hull 1998). Specifically, the cost function is formulated to minimize 

the squared differences in joint kinematics and ground reaction forces as: 
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where wi,m is the weighting factor for variable m, Yi,m is the experimental measurement 

of variable m, ,î mY  is the simulation data corresponding to Yi,m and SDi,m is the standard 

deviation of experimental variable m at time step i. The quantities evaluated in Equation 

6.1 are the trunk translation and tilt, all joint angles, and the anterior-posterior and 

vertical ground reaction forces.  

6.2.5 Experimental tracking data 

 

The experimental data was collected from 10 healthy subjects (seven males, three 

females; 33 ± 12 years) during normal walking (Silverman et al. 2008). This data set 

defines the initial conditions for the simulations (positions and orientations of the body 

segments at left heel-strike) and the experimental tracking quantities used in Equation 

6.1. Subjects provided informed consent approved by the University of Texas at Austin 

and the South Texas VA Medical Center prior to the study. The collected sagittal plane 

kinematics and ground reaction forces were averaged across trials for each subject and 

then averaged across subjects to provide the group average kinematic and kinetic data. 

More details regarding the experimental apparatus, protocol and data processing are 

provided in (Silverman et al. 2008). 

6.2.6 Contact model performance evaluation 

 

Performance evaluation of the contact models consists of comparing the execution 

times, over the simulation of a complete gait cycle, and the accuracy of the experimental 
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data tracking. Numerical integration stiffness over the complete gait cycle is also 

compared using the temporal evolution of the integration time step sizes (∆t). Note that 

if ∆t decreases then the system equations becames stiffer. Simulations are performed on 

a PC with an Intel® Core™ i7-3770 CPU @ 3.40 GHz and 8 GB of RAM. 

 

6.3 Results 

 

There were significant differences in the simulation execution times, as shown in Table 

6.1, and on integration stiffness of the equations of motion, as depicted in Figure 6.4. 

The average execution time was ~18% faster for the ellipsoid-plane model compared to 

the pointlike model. In spite of the ∆t values having the same order of magnitude (10-4 

seconds), the numerical resolution of the equations of motion became ~37% less stiff 

when using the ellipsoid-plane contact model.  

 

Contact element Average execution time (s) Average stiffness measure (s) 

Pointlike 7.8247 2.4980x10-4 

Ellipsoid-plane 6.4205 3.4230x10-4 
 

Table 6.1 – Average execution times and stiffness measures of the performed simulations. 
 

 
Figure 6.4 – History of integration time steps ∆t for the pointlike (dashed red plot) and 
ellipsoid-plane (dashed blue plot) contact models. The horizontal lines indicate the average 
stiffness measures for pointlike (solid red) and ellipsoid-plane (solid blue) contact models. 
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Both contact models produced movements that emulated well the group average 

experimental data over the gait cycle, with the simulated sagittal-plane joint kinematics 

and ground reaction forces being near ±2 standard deviations of the experimental data, 

as observed in Figure 6.5. These results indicate that the ellipsoid-plane surface model 

is able to attain the same level of tracking accuracy as the pointlike contact model. 

 

 
Figure 6.5 – Comparison of the left leg experimental and simulated ground reaction forces 
(normalized to body weight) and joint kinematic data for the pointlike (solid red curve) and 
ellipsoid-plane (solid blue curve) contact models over the gait cycle. The shaded regions 
indicate ±2 standard deviations of the experimental data. 
 

6.4 Discussion 

 

For musculoskeletal studies that do not require complex body segment geometries, 

pointlike contact elements are the most frequently used model for foot-ground 
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interactions, however comparison studies with other suitable contact elements, namely 

analytical surfaces have been few (Millard et al. 2009; Boos and McPhee 2013). The 

goal of this study was to present a superellipsoid-plane ground contact model and 

compare it, under a common simulation case, with the pointlike counterpart by resorting 

on a forward dynamics simulation of walking. Comparing the surface model with a 

commonly used pointlike model showed that they have similar predictive capabilities. 

The superellipsoid-plane contact elements besides having the same level of accuracy of 

tracking experimental data, is more CPU-time efficient than foot models with pointlike 

contact elements and numerically less stiff.  

 

There are a few limitations related to the methodology and the comparison study. 

First, the simulations were bi-dimensional, thus, the potential of superellipsoid-plane 

elements to model 3-D foot motions remains to be explored, in particular foot roll in the 

frontal plane and slipping. Second, more body activities need to be simulated besides 

walking in order to substantiate the contact model comparison. Third, more dynamic 

optimization evaluations are needed to improve the tracking results as small 

discrepancies between experimental and simulated data still persist. Forth, the analytical 

deduction of the closest points is only applicable to smooth convex surfaces that present 

an explicit relationship between the surface points and surface normals (Wellmann et al. 

2008).  

 

Regarding the geometric models of the shod foot, it is assumed that the considered 

distribution of ellipsoids within the sole is mechanically equivalent to the shoe profile 

occupied with pointlike elements. Other contact element topologies should be 

considered and compared to certify that the same findings (i.e., increased computational 

efficiency and less numerical stiffness) are attained. It is important to remark that the 

placement of two ellipsoids at the heel confers a more stable support during heel ground 

contact, comparatively to a single heel ellipsoid or sphere (Vilà 2012; Kecskeméthy 

2011). 

 

The major challenge of the comparison study consists of finding a geometric contact 

element that is more computationally efficient than the simplest geometric model 

available: the point. Furthermore, any surface candidate must provide not only a 
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significant computational efficiency increase, but also produce simulated data that is 

close to experimental joint kinematics and ground reaction forces data. Superellipsoid-

plane elements provide such a solution. The gain in computational efficiency and 

reduced numerical stiffness are very significant compared to the simulation with 

pointlike elements. This gain in efficiency is due to the usage of a lesser number of 

contact elements (6 ellipsoids vs. 31 points for each foot), since a single surface holds a 

large portion of continuous points within a body when compared to a set of independent 

points. Additionally, the average differences between simulated and experimental data, 

for both simulations, were less than 2 standard deviations for most of the gait cycle, 

thus, superellipsoid-plane elements are also a reasonable representation of the foot-

ground interactions. The occurring discrepancies may be justified, in part, due to the 

fact that a 2-D foot-ground contact models does not perfectly reproduce the forces 

generated by a 3-D foot interacting with the ground.  

 

Human movement simulations that include continuous contact with a planar surface 

(e.g., rolling and slipping) benefit from superellipsoid-plane contact elements since they 

have several advantages compared to pointlike contact elements: (i) geometrically, any 

pointlike contact element can be generalized by a sphere or superellipsoid; (ii) body 

segment interactions demand less contact elements when modeled with superellipsoid-

plane elements as opposed to pointlike elements; (iii) surface overlap is more 

representative of body deformation than a single point because it can account for 

contact area and volume, thus allowing volumetric contact; (iv) point models have 

discrete spatial resolution while a surface model has an continuous spatial resolution; 

(v) surface models allow to calculate all contact load components (3 forces and 3 

moments) as a function of the kinematic response. In addition, surface contact elements 

are easily integrated in any multibody dynamics code, which aids the implementation of 

these models into computational platforms that simulate human movement. Although it 

is easier to calculate the minimum distance between a point and a plane, the 

superellipsoid-plane element is equally accurate due to its analytical nature. Points can 

model complex freeform geometries when gathered as point clouds, a common practice 

in meshfree methods. Superellipsoids are not as versatile; even so, they offer a wide 

variety of shapes that go from round to square. This geometric capability can prove to 

be useful to model a hard-sole shoe as a set of several cuboid superellipsoids instead of 
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dozens of pointlike elements distributed throughout the sole (Mahboobin et al. 2010). 

These advantages indicate that superellipsoid-plane elements are an appealing 

alternative to pointlike contact models for foot-ground dynamics. The results obtained 

give confidence in the superellipsoid-plane model, and appear as a valuable contribution 

for a more informed decision on which contact model to choose. 

 

Finally, there are several future work topics that can be willingly addressed. For 

instance, in order to improve experimental data tracking, different foot contact 

topologies can be explored by varying the number, dimensions, orientations and 

locations of the superellipsoids. Optimization procedures can be developed to determine 

the best foot topology for a given motion. Accordingly, sensitivity studies on how foot-

ground contact parameters affect muscle function predictions could then be carried out 

(Dorn et al. 2012) along with the influence of these parameters on the muscle 

contributions to the ground-force decomposition analyses (Delp et al. 2007; Anderson et 

al. 2002). 
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7. Conclusions and Future Work 
 

7.1 Conclusions 

 

The study of smooth convex surfaces for the geometric design and contact analysis of 

mechanical systems provides major challenges in multibody dynamics. Despite of a  

significant progress in this domain, there are still research topics with open questions 

that must receive a more adequate attention. Shape analysis and contact detection are 

two of such research topics that are critical in engineering applications where body 

outlines are encoded more efficiently and accurately using smooth convex surfaces 

rather than meshes or freeform surfaces. This thesis is a comprehensive research on 

these geometric topics where the important class of smooth convex surfaces, which 

encompasses surfaces such as planes, spheres, (super)ellipsoids and (super)ovoids, 

plays a central role.  

 

In general, the implemented methodologies and computational tools combine 

existing algorithms with new computational approaches in order to perform in silico 

indagations, to improve simulation techniques, and also to shed light on new research 

paths. In particular, computational frameworks were developed to extract morphological 

information from medical images, to calculate orthogonal vectors with an elegant 

analytical expression, and to calculate the minimum distance between surfaces with an 

efficient numerical approach. Models and techniques have been compared based on 

accuracy, efficiency, and robustness criteria, and revealed to be easily integrable into 

multibody dynamics codes. In addition, the developed models and techniques are 

readily extendable to solve shape analysis and contact detection problems using a wide 

range of smooth convex surfaces. The performed computational experiments and 

numerical examples reveal that the developed models and techniques are practical for 

applications in computational biomechanics, specifically, applications that make use of 

musculoskeletal models with compliant contact. Therefore, it can be concluded that the 

collection of models and techniques proposed in this thesis lays solid foundations for 
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building a comprehensive computational system to design and analyze kinematic 

structures with contact surfaces. 

 

Since the topics dealt in this thesis are common to several areas in computer science 

and simulation technology, the work here developed is of interest to a wide audience of 

engineers coming from different backgrounds, thus making the applicability of the 

developed tools, probably, the greatest assets of this work.  

 

The conclusions drawn from the results of the performed investigations have been 

presented throughout this document. The most important are gathered here in the 

following Sub-Sections. 

7.1.1 Implicit surface modeling with smooth convex shapes 

 

The developed surface fitting framework revealed many useful capabilities that interest 

geometric modelers of mechanical systems, anatomists that require quantitative 

measures to perform morphology studies, or medical practitioners that need to 

accurately measure the anatomical information contained within CT images. 

 

For geometric modeling applications, the surface fitting framework is extendable to 

other (implicit) shape models, either convex or concave, and performs shape 

comparisons based on the physical distance (i.e., Euclidean distance) between points 

and fitted surface to determine the best shape model that describes a body’s 

morphology. Despite providing accurate results, the method still lacks on efficiency as 

several minutes are required to find a proper solution and, principally, to calculate the 

surface errors. 

 

For biomechanical applications, this computational framework is capable of the 

following functionalities: to accurately measure subject-specific morpho-functional 

parameters (e.g., articular centers, functional axes, and specific body segment 

morphology) which are important to track the temporal evolution of joint anatomical 

malformations, to decide the proper prosthesis and implant or to estimate the amount of 

bone that has to be removed in an osteotomy. As for extensibility to include different 
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shape models, it makes this framework a relevant tool to model not only anatomical 

structures, such as bone features for artificial joint prosthetics, but also body segments 

for humanoid design. 

 

Regarding the morphology study performed with this surface fitting framework, for 

both humeral and femoral cases considered, the spherical shape provided the worst 

surface fitting statistics while the superovoid had the best goodness-of-fit. Hence, the 

preliminary results obtained indicate that MacConaill’s assumption, which states that 

spheroidal articular surfaces are better represented by ovoidal shapes rather than purely 

spherical shapes, should be predisposed towards more anatomical data in order to 

validate his assumption. By identifying ovoidal shapes as better representative of the 

spheroidal articular surfaces from CT images, this work hopes to contribute for the 

standardization of MacConaill’s classification of synovial joints. 

7.1.2 Vector orthogonalization of surface normals with Householder 

transformations 

 

After comparing the Householder vector orthogonalization formula with standard vector 

orthogonalization methods, the numerical results show that the Householder vector 

orthogonalization formula is the most efficient when it comes to outputting a set of 

orthonormal vectors. Not only the formula revealed to be efficient but also accurate, 

robust and possesses an elegant analytical expression to calculate tangent and binormal 

vectors from a given normal at a surface point. In addition, when dealing with Cn 

continuous implicit surfaces, with n ≥ 1, it is possible to directly apply the Householder 

formula to deduce, analytically, a set of differential operators to calculate, not only the 

normal, but also the tangent and binormal surface vector fields to an implicit surface 

which can be used to calculate surface curvatures and principal curvature directions of 

implicitly defined surfaces.  

 

By explicitizing the potential of the Householder transformation for vector 

orthogonalization, several areas can benefit from its computational efficiency and 

numerical robustness, such as real-time computer graphics and computational 

mechanics applications. In particular, this formula allows for a distinct formulation of 
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contact detection and contact force calculations in multibody applications with implicit 

surfaces as described in Chapter 5.  

7.1.3 Contact detection between smooth convex surfaces 

 

A new approach towards the reformulation of contact detection between convex implicit 

surfaces was introduced here. Central to this reformulation are the implicit surface 

representation and the elegant way on how the Householder formula computes 

orthonormal sets given a normal surface vector. Although the contact detection 

algorithm was formulated for any pair of smooth convex implicit surfaces, it has being 

specifically implemented for (super)ellipsoid-(super)ellipsoid contact pair and the 

numerical results show that it has second-order convergence.  

 

The main factor that justifies the efficiency and geometric accuracy of the method is 

the usage of the Newton-Raphson method with analytical Jacobians. By solving the set 

of non-linear equations with this technique, there is no need to numerically estimate the 

Jacobian for each iteration. The drawbacks of the numerical method consist of the 

dependency on the initial guess, it is necessary to deduce the Jacobian matrix by 

symbolic calculus, and the Jacobian analyticity restricts the extensibility for surfaces 

that are at least C2 continuous. The main pitfall of the methodology is the possibility of 

the Jacobian matrices becoming singular. As an advantage, the proposed mathematical 

framework does not rely on polygonal-based geometries neither on complex non-linear 

optimization formulations, which are common contact detection approaches in computer 

graphics and computer game technology, as these lack on geometric accuracy and 

efficiency, making the proposed method an attractive alternative to perform interactive 

simulations. 

7.1.4 Application of smooth convex surfaces in compliant multibody systems 

 

The shod foot interacting with an even ground floor was the application chosen to 

integrate smooth convex surfaces to model compliant contact since it is a commonplace 

in musculoskeletal simulations. Frequently, ground contact is represented as pointlike 

elements where body segments are modeled as a set of points and the floor as a surface 
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plane. But when considering functional surfaces to model this contact system, the 

(super)ellipsoid-plane pair provides a series of advantages. 

 

By comparing simulation results and execution times of a similar musculoskeletal 

model that used pointlike elements to model the foot-ground contact, it was assessed 

that both models have the same level of efficiency and accuracy and produced realistic 

ground reaction forces and kinematics. However, solving the equations of motion with 

the surface contact model revealed to be more efficient and numerically less stiff. These 

conclusions reveal that any human movement simulation that includes continuous 

contact with a planar surface, such as rolling and sliding, benefits from superellipsoid-

plane contact elements and even presents the following additional advantages compared 

to pointlike contact elements: (i) body segment interactions demand less contact 

elements when modeled with superellipsoid-plane elements as opposed to pointlike 

elements; (ii) surface overlap is more representative of body deformation than a single 

point because it can account for contact area and volume, thus allowing volumetric 

contact; and (iii) surface models allow to calculate all contact load components (3 forces 

and 3 moments) as a function of the kinematic response. The main feature that justifies 

these advantages consists of the existence of an analytical formula to calculate the 

minimum distance between (super)ellipsoids and planes. In fact, for interacting bodies 

whose surface geometries can be encoded as a (super)ellipsoid-plane pair, the 

parametric surface representation provides such an analytical formula, thus, it is more 

advantageous for contact detection than using an implicit surface representation.  

 

7.2 Future Work 

 

The problems addressed in this thesis have been under the scrutiny of different scientific 

communities for several decades. There is no shortage of open problems within the 

topics investigated in this thesis, as new insights and innovative solutions are still 

awaited to emerge from areas such as computational geometry, computer graphics, 

robotics or computational biomechanics. The current research effort has potential for 

further extension and should be addressed by any interested researcher in smooth 

convex surfaces and their applicability in multibody dynamics. As the final contribution 

of this thesis, the following points are intended to be a platform for new research paths 
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on shape modeling, vector orthogonalization, contact detection, and integration of 

compliant contact models for musculoskeletal simulations. 

 

Shape model extension - More implicit shape models should be implemented to 

increase the expressive power of the surface fitting framework. Implicit surfaces 

such as tapered superellipsoids (i.e., ovoid shaped superellipsoids) (Xiao and 

Siebert 2005; Barr 1981), ovoids modeled from n-ellipses (Sekino 1999), and 

hyperquadrics (Hanson 1988) are examples of geometric primitives that provide a 

wider range of smooth convex shapes than the ones considered in this thesis, with 

the cost that these geometric primitives have a higher number of parameters. 

 

Faster point-surface distance calculations - For calculating the minimum distance 

between points and surface, the Euclidean distance optimizer is time consuming 

since a genetic algorithm has been used for this task. More efficient non-linear 

optimization approaches should be explored along with techniques to improve the 

finding of closer initial approximations (Bazaraa et al. 1993; Ahn 2004). To 

improve the point-surface initial approximation, and since the points are not far 

from the surface, the distance estimation proposed by (Taubin 1991) may come in 

handy as, by definition, it is a good approximation of the Euclidean distance. 

 

Morphology study of humeral and femoral heads with ovoidal shapes - Since the 

shape analysis findings indicate that ovoidal shapes fit the spheroidal articular 

surfaces better than spherical and ellipsoidal shapes, a more in depth 

morphological study, accompanied with a thorough statistical analysis, should be 

carried out taking in consideration a population of at least 10-25 subjects with 

healthy joints. This would validate the surface fitting framework, thus granting 

statistical significance, and would test MacConaill’s assumption (MacConaill 

1966; MacConaill 1973; MacConaill and Basmajian 1977) for a wider set of 

subjects. Other ovoidal shapes should also be explored to surpass the topological 

and geometric limitations of the Todd and Smart model (Todd and Smart 1984), 

namely implicit surfaces such as ovoids modeled with k-ellipses (Sekino 1999) 

and hyperquadrics (Hanson 1988) that consist of a level-set of concentric surfaces 

(Velho et al. 2002). 
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Artificial joint design with ovoidal shapes - Complementary to a morphologic study 

of spheroidal joints with ovoidal shapes, a finite element study is needed to 

simulate joint biomechanical function of spheroidal joints aiming for the design of 

improved and personalized artificial joints with non-spherical shapes (Xi et al. 

2003; Jiang et al. 2010; Gu et al. 2010; Gu et al. 2011). Several prosthesis designs 

with different ovoidal surfaces would be computationally tested by considering 

static and dynamic loading conditions that reflect daily activities. The new designs 

would also be compared with the current spherical prosthetics that exist in today’s 

medical device markets. 

 

Applications of the Householder vector orthogonalization formula - The full 

applicability of the Householder transformation in pure and applied disciplines is 

yet to be explored. Basically, any geometric or algebraic problem that requests the 

calculation of orthonormal vectors to a given vector can benefit from the 

Householder formula, thus, the range of applications is huge. Future efforts should 

be made to divulge this formula since its analytical properties, numerical 

robustness and efficiency make this technique an interesting topic worth spreading 

throughout literature, including colleague text books on linear algebra and vector 

calculus. As future works, it would be interesting to perform a more in-depth 

analysis regarding differential geometry applications, besides principal curvature 

directions and associated curvatures. 

 

Modified Newton-Raphson method for contact detection algorithm – Despite its 

computational efficiency and numerical accuracy, the proposed minimum distance 

methodology for implicit surfaces has drawbacks that should be rectified. The 

drawbacks affect the robustness that any contact detection demands, namely, to 

find a solution independently of the given initial approximation and spatial 

configuration of the surfaces. It is expected that linear convergence root-finding 

methods (i.e., bisection or regula falsi) will solve this issue by providing the 

global minimum distance solution or a close initial approximation. The Newton-

Raphson method with analytical Jacobians is a local approach and matrix 

singularities may occur. Modified versions should inherit the rapid convergence 

and accuracy of the current method but would have to be global, to guarantee a 
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unique solution and capable to override singular Jacobians whenever they 

appeared (Atkinson and Han 2005; Press et al. 2007). Numerical resolution of 

such a system of non-linear equations could be tackled with a combination of 

root-finding methods, namely, quasi-Newton (e.g., Broyden) or Newton-Raphson 

method with analytical Jacobian matrices could be applied to guarantee a supra-

linear or even quadratic convergence for the vector-valued root-finding pipeline. 

In case these methods fail, vector-valued multivariate bisection or regula falsi 

methods will be chosen to provide either a global solution or a proper initial 

approximation for the minimum distance problem (Bazaraa et al. 1993; Gomes et 

al. 2009).  

 

Comparison with other contact detection methodologies – The current contact 

method should be compared to other minimum distance approaches such as the 

ones proposed by (Chakraborty et al. 2008; Hopkins 2004; Baraff 1990) that 

follows a non-linear optimization approach, and (Wellmann et al. 2008) which 

considers a particular parametric formulation for superellipsoids. The comparison 

criteria would rely on computational efficiency, accuracy and robustness. Also, 

the pros and cons of each method should be listed in order for the developer to 

make an informed decision on which method is most suitable for the application 

under consideration.  

 

Foot-ground contact topology – Regarding the geometric model of the shod foot, other 

foot contact model topologies should be explored by varying the number, 

dimensions, orientations and locations of the superellipsoids and compared to 

certify that the same findings (i.e., increased computational efficiency and less 

numerical stiffness) are attained. A generic topology should be proposed that is 

capable of simulating several types of activities and postures. Based on this 

generic foot topology, specific variants could be modeled for a particular 

movement by relying on optimization procedures that could determine the best 

foot topology for a given motion (Vilà 2012). Accordingly, sensitivity studies on 

how foot-ground contact parameters affect muscle function predictions could then 

be carried out (Dorn et al. 2012) along with the influence of these parameters on 
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the muscle contributions to the ground-force decomposition analyses (Delp et al. 

2007; Anderson et al. 2002). 

 

Foot contact model with tapered superellipsoids – It would be interesting to model a 

hard-sole shoe as a set of several cuboid superellipsoids or tapered superellipsoids 

(Xiao and Siebert 2005; Barr 1981) instead of dozens of pointlike elements 

distributed throughout the sole (Mahboobin et al. 2010), since these shape models 

have a close resemblance to the parts of a hard-sole. Note that in order to do so, it 

would be necessary to verify if there exists an explicit relationship to determine 

the closest points between a tapered superellipsoid and a plane (Wellmann et al. 

2008).  

 

Design and analysis of other biomechanical models with smooth convex surfaces – 

Further musculoskeletal models with integrated surface contact models should be 

developed and analyzed, namely, synovial joints and humanoids, in order to 

exhaustively test the models and methods presented in this thesis. Since the fitted 

surfaces can provide a reasonable approximation of anatomical body segments 

and of synovial joints, the design of biomechanical models would be provided by 

the surface fitting framework here presented, as it can be incorporated into a 

geometric modeling module for musculoskeletal simulations. On the other hand, 

the analysis of such biomechanical models would be assisted by the contact 

detection algorithms which will allow addressing the influence of body geometry 

and shape on the range of motion and magnitude of movement between the 

articulating bones (Burdin et al. 1994; Krekel 2011). 
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Appendix 
 

Appendix A. General parametric expressions for quadric and 

superquadric surfaces 

 

Instead of presenting specific parametric expressions for each (super)quadric surface 

member the generic (i.e., valid for all quadric members and superellipsoid and 

superhyperboloid members) angle-center formulas of the parameterized surfaces are 

deduced and are bestowed for visualization and 3-D modeling purposes.  

 

Due to the radial symmetry of the surface, a generalized angle-center 

parameterization can be deduced by expressing the quadric surface in spherical 

coordinates and by making use of the well-known quadratic formula from algebra: 
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where c cos(.),= s sin(.),= rQ is the radial coordinate, φ and θ are the azimuth and 

zenith angular coordinates. If rQ = 1 for all the angular domain then Equation A.1 

defines a unit sphere. Note that Equation A.2 is a parametric equation that is valid for 

ellipsoid, hyperboloid (1 sheet), hyperboloid (2 sheets), paraboloid (elliptic), and 

paraboloid (hyperbolic) surfaces. This is extremely useful in terms of computational 
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implementation of the visualization of the contact surfaces since only one expression 

represents all surface members.  

 

For superquadrics, the angle-center parameterization is deduced in the same way as for 

the quadric surfaces. This being, the parametric representation pB is given by: 
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where rB is the radial coordinate, φ and θ are the azimuth and zenith angular 

coordinates. Note that Equation A.4 is a parametric equation that is valid for 

superellipsoid, superhyperboloid (1 sheet), superhyperboloid (2 sheets) surfaces.  
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Appendix B. Analytic differential operators for calculating the normal, 

tangent and binormal vectors given an implicit surface 

 

In this Appendix, the operator formulae to calculate the surface normal, tangent, and 

binormal vectors given only the inside-outside function of an implicit surface are 

presented. No profound symbolic deductions are presented.  The differential operators 

under consideration consist of a non-linear mapping of a scalar function to a vector 

space, D: F(x) ∈ ℝ ⟶  ℝN where F is the inside-outside function.  Each operator 

depends on the implicit functional expression and is defined for each vector field 

accordingly: 
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(B.3) 

with 

 ( ) ( ) ( )2 2 2x y z= ∂ ∂ + ∂ ∂ + ∂ ∂  (B.4) 

and where Dn(.), Dt(.), and Db(.) represent the normal, tangent, and binormal differential 

operators. Note that (Equation B.1) is a weighted gradient operator. 

 
  



194 
 

Appendix C. Vector orthogonalization formulas 

 

This Appendix presents the vector orthogonalization techniques in an algorithmic form 

when considering unit vectors as inputs. The pseudo-codes are described on Table C.1, 

Table C.2, Table C.3, and Table C.4. In particular, the HH and EB vector 

orthogonalization techniques are written with the minimum number of FLOPS. As for 

the SP and PM, no simplified expressions were deduced due to the intricate complexity 

of the involved vector and matrix operations. Note that, the input unit vector is given by 

n = [nx, ny, nz]T, and each method outputs normalized tangent and binormal vectors. In 

addition, the amount of FLOPS is compared for the HH and EB techniques as shown in 

Table C.5. 

 

Pseudo-code (3-D Householder vector orthogonalization) 

1. Evaluate the sign of the unit’s vector first component, i.e., sign(nx); 

2. Determine the tangent vector with the following simplified expression: 

2
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3. Determine the binormal vector with the following simplified expression: 
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Table C.1 – Pseudo-code for unit vector HH orthogonalization. 
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Pseudo-code (Cross-product vector orthogonalization) 

1. Determine the non-collinear vector v by choosing the identity matrix column whose unit 

component value corresponds to the entry of the given vector with the least magnitude: 

if   |nx| ≥ |ny| 

v = [0, 1, 0]T 

else 

v = [1, 0, 0]T 

2. Determine the tangent vector by taking the cross-product between n and v; 
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t  

3. Determine the binormal vector by taking the cross-product between n and t; 
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Table C.2 – Pseudo-code for unit vector EB orthogonalization. 
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Pseudo-code (Square Plate vector orthogonalization) 

1. Determine the non-collinear vector v: 

if   |nx|,|ny| ≥ 0 or |nx|,|ny| ≤ 0 

v = [nx + 1, ny - 1, nz]T 

else 

v = [nx - 1, ny - 1, nz]T 

2. Determine the tangent vector: 

2.1 take the cross-product between n and v, i.e., t = nxv; 

2.2 normalize vector t. 

3. Determine the binormal vector: 

3.1 take the cross-product between n and t, i.e., b = nxt; 

3.2 normalize vector b. 

 

Table C.3 – Pseudo-code for SP vector orthogonalization. 

 

 

Pseudo-code (Projection Matrix vector orthogonalization) 

1. Determine the projection matrix nnT = [n1 n2 n3]; 

2. Normalize vectors n1, n2, and n3; 

3. Determine the column vector nk that makes the second greatest angle, θ, with the given 

vector n; 

4. Determine the axis of rotation as the cross-product between n and nk, i.e., u = nxnk; 

5. Calculate the rotation matrix with the Rodrigues’ formula, R = R(u, θ); 

6. Premultiply the remaining projection matrix columns with the rotation matrix R to obtain 

vectors t and b. 

 
Table C.4 – Pseudo-code for PM vector orthogonalization. 
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HH EB 

Common 

factor: 

 

(nx±1)-1 

1 order operation 

1 summation/subtraction 

1 division 

Common 

factor: 

 

(nx
2+ nz

2)-1/2 

1 order operation 

1 summation/subtraction 

2 multiplications 

1 division 

2 modulii 

1 square root 

Vector t 
1 summation/subtraction  

6 (5) multiplications 
Vector t 3 multiplications 

Vector b 
1 summation/subtraction  

6 (5) multiplications 
Vector b 

5 multiplications 

1 division 

Total 

1 order operation 

3 summations/subtractions 

12 (10) multiplications 

1 division 

Total 

1 order operation 

1 summation 

10 multiplications 

2 division 

2 modulii 

1 square root 

 

Table C.5 – Number of FLOPS of the HH and EB techniques given a unit vector. For the HH 
case, the values in parenthesis correspond to nx < 0. 
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