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Abstract. Linear Projection is a widely used algorithm often implemented with

high throughput requisites. This work presents a novel methodology to optimise

Linear Projection designs that outperform typical design methodologies through

a prior characterisation of the arithmetic units in the data path of the circuit under

various operating conditions. Limited by the ever increasing process variation,

the delay models available in synthesis tools are no longer suitable for perfor-

mance optimisation of designs, as they are generic and only take into account the

worst case variation for a given fabrication process. Hence, they heavily penalise

the optimisation strategy of a design by leaving a gap in performance. This work

presents a novel unified optimisation framework which contemplates a prior char-

acterisation of the embedded multipliers on the target device under PVT variation.

The proposed framework creates designs that achieve high throughput while pro-

ducing less errors than typical methodologies. The results of a case study reveal

that the proposed methodology outperforms the typical implementation in 3 real-

life design strategies: high performance, low power and temperature variation.

The proposed methodology produced Linear Projection designs that were able to

perform up to 18 dB better than the reference methodology.

Keywords: FPGA, embedded multiplier, over-clocking, PVT optimisation, Linear Pro-

jection.

1 Introduction

The Linear Projection algorithm, also known known as Karhunen-Loeve Transforma-

tion (KLT), is used in many scientific areas to compress data, i.e. face recognition. Ad-

ditionally, the advent of big data and near real-time performance requirements has pro-

pelled an increased demand in performance for implementations of this algorithm [5].

The continuous increase of resources and performance in Field-Programmable Gate

Arrays (FPGAs), along with low power consumption and highly specialised embedded

blocks, has made them attractive to implement the Linear Projection algorithm, which

relies on multiplications and additions, with high throughput requirements. In real-life

applications, where usually there are hard area requirements, or when the Linear Pro-

jection targets a large number of dimensions, unrolling or deeply pipelining the design

is unfeasible. Thus, the multiplication is assigned to the embedded multipliers and the



convolution is folded. To overcome the performance limitation of the embedded multi-

pliers, which can’t be deeply pipelined, the Linear Projection circuit is over-clocked to

extreme frequencies beyond those reported by the synthesis tool in order to push further

its overall performance.

Taking into account that synthesis tools rely on models, and don’t have information

about the actual device that is being targeted, they are conservative in their estimate.

Notwithstanding, a device can operate at higher clock frequencies, which can be de-

termined via experimentation, still a margin in performance needs to be preserved to

contemplate variation due to process variation and operating conditions (i.e. temper-

ature and voltage). The proposed methodology tries to close this gap by pushing the

performance further into the error-prone region.

Forasmuch as the performance of designs implemented using FPGAs are affected

by Process-Voltage-Temperature (PVT) variation, the same way as any other silicon

device, optimising an over-clocked Linear Projection will depend on the sensitivity of

the design to PVT variation. That fact requires the design on the device to operate

under variation of different conditions simultaneously. To address this problem the pro-

posed methodology supports design strategies with different operating conditions, such

as low-power and high-performance. Moreover, in real-life voltage and clock frequency

are fixed and don’t change much over time, whereas temperature is very expensive to

control. In addition, the proposed methodology can optimise designs for graceful degra-

dation over a wide range of temperatures. This means that a single design won’t be

optimised for a operating over the worst case temperature, but a set of temperatures.

Fig. 1. Mean squared error of the reconstruction of the Linear Projection in the original space vs

its clock frequency, as well as the maximum operating clock frequencies provided by the conser-

vative models of the synthesis tools. The region of interest corresponds to the clock frequencies

for which the Linear Projection circuit generates errors when ran on a DE0 board from Terasic.

The proposed framework optimises extreme over-clocking of Linear Projection de-

signs into error-prone operation, designated as Region of Interest in figure 1. This figure

shows the evolution of errors with the increase of clock frequency, in a Linear Projec-

tion design from a Z6 space to a Z3 using the embedded multipliers on the FPGA. It

also shows the maximum clock frequencies reported by the synthesis tool.

A novel methodology is proposed to optimise Linear Projections under a unified

framework for over-clocking, which considers different sources of variation simultane-



ously. A key step of the proposed framework is the performance characterisation of the

embedded multipliers in a given device when they are clocked with clock frequencies

well above from what is reported by the synthesis tool. The main idea is to have a prior

characterisation of the device with respect to the degradation of the performance of

the computational units. This characterisation suits the use of FPGAs because of their

reconfigurability property.

The proposed framework automatically selects the best designs to improve the per-

formance of Linear Projection implementations, while minimising errors without the

expense of extra circuit resources. The obtained performance information (i.e. errors

that are expected at the output of the multipliers) is injected to a Bayesian formulation

of the problem in order to obtain the coefficients for the Linear Projection.

This framework uses an error model (for the operating conditions), and later au-

tomatically combines this information with high-level parameter selection of the algo-

rithm, generating designs less prone to error, when compared to typical implementations

of the KLT algorithm.

The main contributions in this paper are:

– Extension of the characterisation and optimisation frameworks to support embed-

ded multipliers;

– Introduction of the support for PVT variation in the characterisation framework and

in the optimisation algorithm;

– Creation of a new error model for the embedded multipliers under a range of oper-

ating conditions;

– Optimisation of Linear Projection designs for performance targeting different sce-

narios (i.e. low power, high performance, temperature variation resilience).

2 Background

Usually the implementation and performance of Linear Projections designs in a digital

system is bound to the number of bits used in quantisation and the depth of pipelining.

However, these methodologies are unable to cope with different operating conditions

aforementioned, consequence of the adopted design strategies, and the intra-die and

inter-die variation.

The ever increasing process variation and the fact that circuits need to support differ-

ent voltages and temperatures makes the designs to operate at lower clock frequencies

than the maximum offered by the fabrication process. Synthesis tools use conservative

models which set the maximum performance of a circuit below the performance of the

worst transistor for the family of the device.

One of the most well known technique that can be applied to address the problem

of performance variability in a Linear Projection design within a device is Razor [13].

It is a generic time-redundant method proposed for Dynamic Voltage Scaling (DVS) of

CPUs, which can be applied to any path prone to errors due to time violations, where

the recovery is performed at the expense of extra latency.

In [10] the authors present two strategies to compensate for intra-die performance

variability by providing a generic characterisation step for the performance of the device



followed by a reconfiguration step where parts of the design are mapped to specific

locations of the device given their performance requirements.

Even though all the aforementioned approaches provide significant improvements

in performance, they don’t cover all sources of PVT variation. Similar to [13], [6] pro-

poses a methodology to recover from errors due to PVT at the expense of time redun-

dancy, which heavily penalise Linear Projections applications processing streams of

data. A novel approach to improve the performance of Linear Projection designs, using

Constant Coefficient Multipliers (CCMs), relied on over-clocking of the design [7].

To the best of the authors knowledge there’s no work published which addresses

how to optimise a Linear Projection design considering different designs strategies,

implying different operating conditions, while optimising the design for performance,

and minimising errors due to extreme over-clocking.

The work described in [7] is limited by its restriction to CCMs. In this paper, this

constraint is lifted to make the proposed framework practical in a wider range of real-

life applications. Furthermore, a new optimisation framework that utilises information

from a prior characterisation for a Linear Projection design optimisation is presented. It

includes a new algorithm for design space exploration that utilises an objective function

tuned for the utilisation of embedded multiplier modules within that Linear Projection

framework under different operating conditions. Moreover, since the routing inside the

embedded multipliers doesn’t change, it means that the designs are optimised on a per

device basis.

The following sections of this paper detail the proposed methodology to accelerate

Linear Projection designs, while being resilient to PVT variation, based on the prior

characterisation of the device.

The proposed framework breaks new ground proposing:

– graceful degradation of results at the output of the Linear Projection with the in-

crease in variation of the working conditions;

– a methodology to push forward the performance of embedded multipliers without

using extra circuitry;

– a methodology to optimise a design over a set of varying conditions performing

better than accounting for the worst case scenario.

3 Linear Projection Revisited

The Linear Projection, also known as KLT, or Principal Component Analysis (PCA),

transform is formulated as follows. Given a set of N data xi ∈ RP , where i ∈ [1, N ]
an orthogonal basis described by a matrix Λ with dimensions P ×K can be estimated

that projects these data to a lower dimensional space of K dimensions. The projected

data points are related to the original data through the formula in (1), written in matrix

notation, where X = [x1, x2, ..., xN ] and F = [f1, f2, ..., fN ], where f i ∈ RK denote

the factor coefficients.

F = ΛTX. (1)

The original data can be recovered from the lower dimensional space via (2):

X = ΛF +D (2)



where D is the error of the approximation. The objective of the transform is to find

a matrix Λ such as the Mean-Square Error (MSE) of the approximation of the data is

minimised. A standard technique is to evaluate the matrix Λ iteratively as described in

steps (3) and (4), where λj denotes the jth column of the Λ matrix.

λj = arg max E{(λT
j Xj−1)

2} (3)

Xj = X −

j−1
∑

k=1

λkλ
T
kX (4)

where X = [x1x2...xN ], X0 = X , ‖λj‖ = 1 and E{.} refers to expectation.

4 Optimisation of Linear Projection Designs for Over-Clocking

In the circuit to implement the Linear Projection design, the data path holds the most

critical paths. The main purpose of this work focus on over-clocking embedded multi-

pliers, as they’re the components with the largest delay in the data path of the design.

Figure 2 shows a rolled architecture of a circuit to implement the data path of one

projection vector from a Zp to Zk Linear Projection. This was preferred instead of the

unrolled one due to the amount of area taken by it.

Fig. 2. Schematic of the data path for one projection vector of a Linear Projection circuit.

The input stream of the circuit is identified with Xp. The input sample from each

dimension is multiplied by the corresponding projection vector λpk. This multiplication

only concerns the magnitude of the input and λpk values. The inputs and outputs of the

multiplier are registered. The output of the multiplier is connected to an adder to do the

accumulation. The accumulation sign depends on the signs of the input and λpk. The

output stream is identified with fk.



The calculation of the projection matrix Λ and its hardware mapping onto FPGAs

are often considered as two independent steps in the design process. However, con-

siderable area savings can be achieved by coupling these two steps as shown in [4, 3].

The Bayesian formulation presented in [3] considers the subspace estimation and the

hardware implementation simultaneously, allowing the framework to efficiently explore

the possibilities of custom design offered by FPGAs. This framework generates Linear

Projection designs which minimise errors and circuit resources, when compared to the

standard approach of the KLT transform application followed by the mapping to the

FPGA.

The key idea in [3] is to inject information about the hardware (i.e. in this case about

the required hardware resources of a CCM) as a prior knowledge in the Bayesian for-

mulation of the above optimisation problem. In more detail, the proposed framework

in [3] estimates the basis matrix Λ, the noise covariance Ψ , and the factors using Gibbs

sampling algorithm [8] from the posterior distribution of the variables, having injecting

knowledge about the required hardware recourses for the implementation of the CCMs

through a prior distribution. Thus, a probability density function is generated for the

unknown Λ matrix, which is used to for generation of samples, where the prior distri-

bution tunes this posterior distribution, and thus accommodating the impact the required

hardware resources.

[7] provides an extension of the above work for the optimisation of Linear Projec-

tion designs using CCMs combating the effects for circuit area as well as performance

variation due to over-clocking. This work is focused on the extension of the previous

work to support embedded multipliers and PVT variation in the characterisation, error

modeling, and generation of designs to implement (1). The framework selects the multi-

pliers used for the implementation of each dot product in (1) along with the coefficients

of the Λ matrix that define the lower dimension space.

4.1 Objective Function

The objective function is formed by the MSE of the reconstructed data in the original

space, and errors that are produced due to the over-clocking, under PVT variation, of

the utilised embedded multipliers.

Let’s denote with X̂ the result of the reconstruction of the projected data in a matrix

form. Then, the objective function U is defined as in (5), where both reconstruction

errors and variation errors are captured. E denotes the expectation and Tr the trace

operator. The matrix formulation is defined as:

U = Tr

(

E

[

(

X − X̂
)T (

X − X̂
)

])

(5)

By expressing the reconstructed data as a function of the Λ matrix, and the variation

error with ε such as X̂ = Λ(F + ε).

By imposing ε to have zero mean, which is achieved by subtracting a constant in the

circuit, and using the fact that the Λ matrix is orthogonal and orthonormal, the objective



function is expressed as:

U = Tr
(

E
[

(X − ΛF )
T
(X − ΛF )

])

+Tr
(

E
[

εT ε
])

= Tr
(

E
[

(X − ΛF )
T
(X − ΛF )

])

+
∑

j

var(εj)

Here j denotes the columns of the Λ matrix. By assuming that the errors at the output

of the multipliers are uncorrelated, then the first term in the final expression relates to

the approximation of the original data from the Linear Projection without any variation

errors, where the second term relates to the variance of the errors at the output of the

embedded multipliers due to over-clocking, under PVT variation. Thus, the errors due to

dimensionality reduction and variation are captured by one objective function without

any need to formulate a problem using a multi-objective function.

4.2 Prior Distribution Formation

The proposed framework utilises information regarding the performance characterisa-

tion of the embedded multipliers for a given device and their respective resource utili-

sation, by suitably constructing a prior distribution function for the coefficients of the

Λ matrix. The utilised models for the over-clocking errors, under PVT variation, are

described below.

Error Models The proposed framework utilises the performance characterisation frame-

work for CCMs, introduced in [7] and now extended to support embedded multipliers

and capture PVT variation. By executing that framework, a profile of the errors ex-

pected at the output of the embedded multipliers when one of the operands is fixed (i.e.

representing a coefficient of the Λ matrix) for various frequencies can be obtained. As

indicated by the objective function formulation, the objective is to capture the variance

of the error at the output of the multiplier which models the uncertainty of the result.

As such, a data structure is formed, Err(m, f, p, v, T ), that holds information regard-

ing the variance at the output of a multiplier when a stream of data is multiplied by a

constant m, the circuit is clocked at frequency f , placed on p coordinates on the FPGA,

using core voltage v, and temperature T .

Prior Distribution The formation of the prior distribution p(·) of the Λ matrix is a

key part of the framework as it injects hardware information to the framework for the

estimation of the Λ matrix. The aim of the prior distribution is to penalise Λ matrix in-

stances with high errors, due to the use of coefficients that generate high errors due

to over-clocking or due to poor description of the original space, by assigning low

probabilities to them. As no information regarding the distribution of the coefficients

is available on their suitability in representing the original space, this part of the prior

distribution is uninformative and results to a flat prior. Thus, the prior distribution re-

flects solely information about the errors at the output of the over-clocked multipliers

as p(λpk, f, p, v, T ) = g(Err(λpk, f, p, v, T )), where the performance of every coeffi-

cient in the Λ matrix is dictated by the targeted clock frequency, the placement on the



FPGA, the core voltage, and the temperature of the device; and g(·) denotes a user de-

fined function. In this work, the following g(·) function is selected as it provides good

results, without any claim on its optimality.

g(Err(λpk, f, p, v, T )) = cE(1 + Err(λpk, f, p, v, T ))
−β (6)

cE is a constant used to ensure that
∑

λpk
g(Err(λpk, f, p, v, T )) = 1. β is a Hyper-

Parameter that allows the tuning of the contribution of errors in the prior distribution.

Err(λpk, f, p, v, T ) is the variance of the error observed from the performance charac-

terisation of the multiplier.

4.3 Design Generation

The proposed framework uses Gibbs sampling [8] to extract, from the design space, a

set of designs that minimise the selected objective function U . The resulting designs

are the ones that minimise the value of the objective function. The proposed framework

estimates each dimension (i.e. column) of the Λ matrix in a sequential manner. The user

supplies the targeted dimensions K, the targeted clock frequency f , the coordinates on

the FPGA p, the core voltage v, the temperature T , and the β parameter. The pseudo-

code of the new version for the optimisation algorithm is given in Alg. 1.

Algorithm 1 Linear Projection Design Unified Framework for Over-Clocking

Require: K ≥ 1 ∧ β > 0 ∧ f, p, v, T > 0
Ensure: 1 Linear Projection design

X ← input {original data N cases}
for d = 1 to K do

Create new empty Candidate Projs list

prior ← generate prior(β, f, p, v, T )
λd ← sample projection(X, prior)
F ← (λT

d λd)
−1λT

d X
error ← X −

∑d

j=1
λjF

MSEd ←
∑∑

error2/PN
Proj ← (λd,MSEd)
Add Proj to Candidate Projs list

Extract candidate projections {min MSE}
end for

return The Linear Projection design with minimum MSE

5 Evaluation of Over-Clocked Linear Projections Circuits Under

PVT Variation

The performance of the proposed methodology was compared contra the performance

of the reference design, which is based on a typical implementation of the KLT algo-

rithm. All designs were implemented on a Cyclone III EP3C16 FPGA from Altera [2],



attached to a DE0 board from Terasic [11]. The core voltage of the FPGA was provided

by a digital power supply PL303QMD-P [1] from TTI. The temperature of the FPGA

was set by a thermoelectric cooler placed on top of the FPGA. The temperature con-

troller was calibrated using a digital thermometer from Lascar Electronics [9] and its

deviation is below 1 ◦C.

The aim of this case study is to demonstrate that an optimisation of a Linear Projec-

tion design targeting different design strategies, under different operating conditions,

using the same framework is achievable. The effectiveness of the framework is demon-

strated with a case study implementing a Linear Projection from Z6 to Z3. The charac-

terisation of the FPGA, the training of the framework and the test used different sets of

data from a uniform pseudo-random distribution, quantised with 9 bits. After synthesis,

the tool reported a resource usage of 126 logic cells and 3 9× 9 embedded multipliers,

and a maximum clock frequency of 342 MHz. Examining the timing report reveled that

the critical paths belong to the embedded multiplier and the delay for the remaining

components in the data path, i.e. accumulator, and the Finite State Machine (FSM), are

out of reach for the selected over-clocking frequencies. This was achieved by pipelin-

ing the final accumulation stage in the data path. The results from the characterisation

of the embedded multipliers were verified using Transition Probability from [12]. To

better demonstrate the impact of variation for each design strategy only one setting

has been changed. The framework supports variation of many operating conditions si-

multaneously. The results for the reference implementation without information about

the characterisation of the device are identified with KLT, whereas the results for the

proposed framework are identified with NEW. They are compared in terms of Peak

Signal-to-Noise Ratio (PSNR) of the reconstruction of the projected data in the orig-

inal space. The number of cases considered has been limited for the purpose of clear

presentation of results.

5.1 Optimisation Targeting Maximum Performance

Optimising a Linear Projection design aiming for the maximum performance implies

an increased FPGA core voltage and active cooling of the device. During the test, the

device was kept at 5 ◦C and supplied with 1400 mV, instead of the 1200 mV specified

by the manufacturer.

With a clock frequency twice as much as the maximum specified by the synthesis

tool for the normal working conditions, the designs generated by the proposed frame-

work exhibited a reconstruction PSNR up to 15 dB better than the KLT designs for the

same working conditions, as can be observed in figure 3. On the other hand, if a target

PSNR of 30 dB is to be met, then the designs generated by the framework can operate

up to 20 MHz higher than the KLT designs.

5.2 Optimisation Targeting Low Voltage

Linear Projection circuits operating under limited power budgets, or battery operated,

tend to operate using the least core voltage possible and be without any active cooling

components. Figure 3 (left) shows the results for the KLT designs when operating at

35 ◦C with different FPGA core voltages. This design strategy considered 900 mV as



Fig. 3. Comparison of the performance of the two methodologies for the particular case of

1400 mV and 5 ◦C.

the minimum core voltage for the FPGA. Figure 3 (right) shows that the designs created

by the framework achieve a better PSNR up to 10 dB for the same clock frequency, or

for similar PSNR, a clock frequency up to 10 MHz higher than the reference designs.

Fig. 4. Performance of the KLT Linear Projection application under different core voltages (left),

and a comparison between the two methods for the particular case of 900mV (right).

5.3 Optimisation Targeting Device Temperature Tolerance

It is well established that temperature affects the performance of silicon devices. Imple-

menting Linear Projection designs without any active cooling components, and oper-

ating them in environments prone to large temperature variation can compromise their

correct functioning. Usually, if an implementation of a Linear Projection has to consider

a wide range of temperatures, then it will have to cope with the worst performance of

them.

To go beyond with the optimisation methodology, it was considered a scenario

where a single design could offer better performance than the reference designs for



a range of temperatures, instead of a design per temperature. Seeing that the errors

increase with the temperature, optimising a design for the worst-case temperature can

restrict the coefficients available to implement the Linear Projection design, hence plac-

ing a ceiling on the best reconstruction MSE that a particular design could achieve, even

without errors in its data-path.

The new idea is focused on sampling Linear Projection designs using the infor-

mation from the characterisation of the device at specific temperatures along with its

probability to operate under those temperatures. To accomplish this, it was investigated

the weighted average of the characterisation errors for a range of operating tempera-

tures in the generation of Linear Projection designs. As follows, the prior distribution

from equation (7) is now:

g (Err (λpk, f, p, v, T )) =
∑

i

αicE (1 + Err (λpk, f, p, v, Ti))
−β

(7)

Here i iterates over all contributing temperatures, and
∑

i αi = 1. The different

weights represent the significance of the errors at a particular temperature. This par-

ticular test case used temperatures 20, 35 and 50 ◦C and α20 = 0.3, α35 = 0.5 and

α50 = 0.2. In practice, the proposed framework generates circuit designs per clock

frequency, covering all the temperatures within the expected range. They are identified

with NEW WAVG in the results.

Figure 5 (left) shows the dependency of the performance of the reference Linear

Projection circuit with the temperature of the device, with a supply voltage of 1200 mV.

Figure 5 (right) shows in detail the comparison between the reference and the optimised

designs for a specific temperature and a range of temperatures. Figure 6 holds the results

for 35 and 50 ◦C.

Fig. 5. Performance of the KLT Linear Projection application depending on the temperature of

the device (left), and a comparison between the three methods at 20 ◦C (right).

The figures show that the designs generated by the framework always outperformed

the KLT designs for all temperatures. Furthermore, at 510 MHz the PSNR is more than

10 dB better than the KLT design, and at 530 MHz the performance of the NEW design



Fig. 6. Performance of the three methods at 35 ◦C (left) and 50 ◦C (right).

at 35 ◦C is better than the KLT design at 20 ◦C. The NEW WAVG designs perform

significantly better than the NEW ones since they incorporate more information about

uncertainty of the results under variation, up to the maximum temperature considered.

6 Conclusion

This paper proposes a novel unified methodology for implementation of extreme over-

clocked Linear Projection designs on FPGAs. It couples the problem of data approxima-

tion and error minimisation under variation of the operating conditions. It was demon-

strated that the proposed methodology optimises Linear Projection designs for perfor-

mance and resilience simultaneously, by inserting information regarding the perfor-

mance of the arithmetic units when operating under variation. Future work comprises

investigating the adoption of a Bayesian formulation for other applications through op-

timisation of their objective function.
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