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Abstract

Smart places are systems composed of sensors, actuators and computing infrastructure that ac-
quires data about the surrounding environment and use that data to improve the experience of the
people interacting with the place. The smart place runs an Internet of Things (IoT) application that
transforms raw sensor data into informed action. For instance, RFID readers can detect a tagged object
approaching and an automatic door is opened after the event is processed in a dedicated server.

Usually, IoT applications are latency-sensitive because actions need to be done in a timely manner.
To meet this requirement these applications are usually provisioned close to the physical place, which
represents an infrastructure burden because it is not always practical to deploy a physical server at a
location. Utility Computing in the Cloud can solve this issue. However, the latency requirements must
be carefully assessed. Fog Computing is a recent concept that brings the cloud close to the “ground” -
i.e close to devices at the edge of the network -, aiming to provide low latency communication for appli-
cations and services.

The present work implemented an automatic provisioning mechanism to deploy IoT applications ac-
cording in an Utility Computing platform. Our demonstration scenario is an automated warehouse that
uses a RFID event processing software to track objects in the facilities. We compared the event latency
performance of both approaches and data storage performance.

The results confirm that a fog-based approach is more adequate for latency-sensitive applications,
presenting a better performance when compared with a cloud-based approach.

Keywords: Internet of Things, Cloud computing, Fog computing, Application Deployment, RFID,
Fosstrak Platform
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Resumo

Smart places são sistemas compostos de sensores, actuadores e infra-estrutura computacional que
adiquirem dados do ambiente circundante e usam estes dados para melhorar a experiência das pes-
soas que interagem com este ambiente. O smart place possui uma aplicação para a Internet das Coisas
(IoT) que é capaz de transformar estes dados em informação. Por exemplo, leitores RFID podem detec-
tar um objecto que está a aproximar-se e uma porta automática é aberta após o evento ser processado.

Geralmente, aplicações IoT são latency-sensitive visto que as acções tem de ser rapidamente exe-
cutadas, o que faz com que a infra-estrutura necessária para aprovisionar a aplicação tem de ser local,
o que muitas vezes é ineficiente e dispendioso. A Utility Computing na nuvem pode resolver este pro-
blema. Entretanto, os requisitos de latência devem ser cuidadosamente avaliados. A Computação em
Nevoeiro é um conceito recente que aproxima a nuvem e os dispositivos que encontram-se na periferia
da rede, fornecendo comunicação de baixa latência para aplicações e serviços.

Neste trabalho foi implementado um mecanismo para automatizar o deployment de aplicações IoT
basedas na nuvem e no nevoeiro. Nosso cenário é um armazém automatizado que utiliza um software
para o processamento de eventos RFID para rastrear objectos nas instalações. Nós comparamos a
performance da latência dos eventos para ambas as abordagens e a performance do armazenamento
de dados.

Os resultados obtidos confirmam que a abordagem baseada em nevoeiro é mais adequada para
aplicações latency-sensitive, apresentando uma melhor performance quando comparada com a abor-
dagem em nuvem.

Palavras-Chave: Internet das Coisas, Computação em Nuvem, Computação em Nevoeiro, Deploy-
ment de Aplicações, Plataforma Fosstrak

v





Contents

List of Tables viii

List of Figures xi

List of Source Codes xiii

Acronyms xv

1 Introduction 1
1.1 Application Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Smart Places Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Example Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Cloud computing concepts and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Smart Place Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1.1 Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2.1 Key-value Stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2.2 Relational Database Clusters . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2.3 RFID Middleware Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Configuration Management Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3.1 Chef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Fog computing for low latency responses . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Internet of Things frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Internet of Things stack example: EPC Framework . . . . . . . . . . . . . . . . . . 10
2.3.1.1 GS1 EPCglobal Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1.2 Fosstrak Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Solution 15
3.1 Smart Place Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1.1 Provisioning Recipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1.2 Provisioning Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.1.3 Provisioning Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.1.4 Docker Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Smart Warehouse Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vii



3.2.1 Cloud Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Fog Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3.1 Cloud Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3.2 Fog Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Evaluation 27
4.1 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Latency Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Data Storage Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Experiments Performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Latency Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1.1 Cloud-based warehouse latency . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.1.2 Fog-based warehouse latency . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 Data Storage Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2.1 Product pick up run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2.2 Triple product pick up runs . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Results Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.1 Interaction Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.2 Data Storage Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Conclusion 41
5.1 Contributions Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Cloud infrastructure for Smart Place applications . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography 44

viii



List of Tables

2.1 Smart Place application domains characteristics. . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Evaluation requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Event Cycle parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Cloud deployment: performance metrics results. . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Fog deployment: performance metrics results. . . . . . . . . . . . . . . . . . . . . . . . . 34

ix





List of Figures

2.1 IoT and Fog Computing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 EPCGlobal Architecture Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Fosstrak architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Provisioning mechanism conceptual architecture. . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Provisioning Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Provisioning mechanism architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Fosstrak containers stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Cloud deployment: conceptual architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Fog deployment: conceptual architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 RFID application setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 Cloud deployment: technological architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.9 Fog deployment: technological architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Latency evaluation methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Data storage evaluation methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Latency Interaction sequence diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Cloud deployment: event latency breakdown. . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Cloud deployment: event processing breakdown. . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Fog deployment: event latency breakdown. . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.7 Fog deployment: event processing breakdown. . . . . . . . . . . . . . . . . . . . . . . . . 35
4.8 Robotic Warehouse demonstrator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.9 CPU Utilization performance results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.10 Network traffic performance results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.11 CPU Utilization performance results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.12 Network traffic performance results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xi





List of Source Codes

1 EPCIS Docker container provisioning recipe. . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 ALE Docker container provisioning recipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 Capturing application Docker container provisioning recipe. . . . . . . . . . . . . . . . . . 18
4 MySQL Docker container provisioning recipe. . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 Cloud Deployment: provisioning role. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6 Fog Deployment: Fog provisioning role. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7 Fog deployment: Cloud provisioning role. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

xiii





Acronyms

ADSL Asymmetric Digital Subscriber Line. 24, 26, 30

ALE Application Level Events. 11, 12, 27, 28, 30–35, 39–42

AMI Amazon Machine Image. 29

AWS Amazon Web Service. 8, 21, 29, 42

CM Configuration Management. 8, 15, 16

CPU Computer Processing Unit. 6, 36, 40

EC2 Elastic Cloud Computing. 29, 42

EPC Electronic Product Code. 3, 10, 12

EPCIS Electronic Product Code Information System. 11, 13, 17, 21, 24, 25, 29, 30, 40, 42

ERP Enterprise Resource Planning. 10

FCServer Filtering & Collection Server. 21, 24, 25, 30

GB Gigabyte. 22, 29

GHz Gigahertz. 29

HAL Hardware Abstraction Layer. 12

HTTP Hypertext Transfer Protocol. 26, 29

IaaS Infrastructure as a Service. 5, 6

IoT Internet of Things. 1, 2, 6, 10, 27, 41, 43

JSON JavaScript Object Notation. 17

LLRP Low Level Reader Protocol. 11, 12, 24

LTE Long-term Evolution. 24, 26

LXC Linux Container. 6

M2M machine-to-machine. 9

MB Megabyte. 36, 37, 39

xv



NoSQL Not Only SQL. 7

OS operating system. 6

PaaS Platform as a Service. 5, 6

PIQL Performance Insightful Query Language. 7

RAM Random-access memory. 29

RDBMS Relational Database Management System. 7

RFID Radio-Frequency IDentification. 1–4, 6, 10–12, 24–28, 30, 35, 39, 41–43

SaaS Software as a Service. 5, 6

SDK Software Development Kit. 21

SOA Service Oriented Architecture. 8

ubicomp Ubiquitous Computing. 1

VM Virtual Machine. 5, 6, 8, 17, 21, 22, 25, 26, 29, 42

WSN Wireless Sensor Network. 10

xvi



Chapter 1

Introduction

In recent years, computing is becoming more ubiquitous in the physical world. The term Ubiquitous
Computing (ubicomp) was introduced many years ago by Mark Weiser [1]. In this vision computational
elements are embedded seamlessly in ordinary objects that are connected through a continuously avail-
able network. Technology advances such as the mobile Internet contributes to achieve this vision [2],
as well as the Internet of Things (IoT), a system composed of physical items that are continuously con-
nected to the virtual world and can act as physical access points to Internet Services [3]. However, there
are some challenges that must be addressed in order to make these ubicomp systems truly ubiquitous
[4] such as data, context awareness and infrastructure. An important concern regards ubiquitous data:
Where it is located?, Who can access it? and How much time should this data persist? Also, ubiqui-
tous systems are constantly interacting with the surrounding environment. Thus, these systems need
to understand the context in which they are inserted and also to adapt to the changes that occur in this
environment. Another import concern regards about the infrastructure burden of the ubiquitous systems.
Many times these systems requires low-latency interaction with users and environments, which implies
that at least part of an ubicomp system needs to be tightly bound to the local infrastructure of the interact-
ing environment. This requirement for local infrastructure can be a barrier in the adoption of ubiquitous
systems in a large-scale perspective. The IoT and the Utility Computing in the cloud paradigms can help
to solve those issues.

On one hand, the Utility Computing in the cloud provides the illusion of infinite computing resources
available on demand to the public users [5]. This paradigm can help to reduce the infrastructure burden
of ubiquitous systems, while providing important features such as high availability and high scalability.
The Utility computing provides data centralization, allowing users to store data during long periods of
time and to define the access policies for this data. On the other hand, the IoT aims to solve a key prob-
lem in wider adoption of ubiquitous systems, the tight coupling with a particular embedded infrastructure.
With the IoT a variety of objects or things - such as Radio-Frequency IDentification (RFID) tags, sen-
sors, actuators, etc. - will be able to interact with each other and cooperate with the surrounding things
to reach common goals [6]. Furthermore, IoT middleware solutions are able to processing the raw data
collected from these things in order to understand the context where they are inserted.
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1.1 Application Domains

The Internet of Things offers a great potential that makes possible the development of a huge num-
ber of applications. There are several environments and domains where IoT applications are expected
to improve the quality of life of the people that live and work in these environments and also will pro-
vide competitive advantage against current solutions. Currently, some of the application domains that
promise to play a big role in the adoption of IoT are:

Ambient Intelligence. Environments that use the intelligence of the objects within themselves to
become a more comfortable and efficient environment. For instance, a room that has its temperature
adapted according to the weather, an office that has its lights adapted according the time of the day and
an automated industrial plant where its is possible to monitor the production progress.

Logistics. Real-time information processing based on technologies such as RFID allow the moni-
toring of almost every phase of the supply chain, ranging from raw material purchasing, transportation,
storage, distribution and after-sales services.

Transportation. From personal vehicles to public transportation, mobile ticketing and transporta-
tion of goods. Cars, trains and buses are equipped with sensors, actuators and computational power that
are able to provide information about the status of the vehicle, improve the navigation and even perform
collision avoidance. Regarding the transportation of goods, it is possible to monitor the conservation
status of perishable goods - temperature, humidity, etc. - during its transportation.

Healthcare RFID tags can be used to monitor the position of patients, hospital staff and also to
control the inventory of materials. Sensors can be used to monitor patient conditions, hospital environ-
ment conditions - temperature, air quality, etc.

Beyond the presented examples, the IoT field covers many other domains. To give a more unified
view over those domains, we propose the term smart places, that can be defined as a system composed
of sensors - e.g. RFID - actuators - e.g. automatic doors - and computational infrastructure - e.g. servers
- that are able to acquire data about the surrounding environment and use that data to improve the
experience of the people interacting with the place.

1.2 Smart Places Challenges

Challenges [4] for the construction of smart places that resulted from leveraging part of the smart place
infrastructure to the cloud:

• Data is continuously generated by the things that compose the system. These data must be
stored, processed and presented in a seamless and efficient way. Several middleware solutions
for smart places [7][8][9] relies on database management systems that are very efficient, but will
those systems able to handle with the volume of data generated by smart place applications?

• Deployment of smart places usually is performed in an isolated and vertical manner where hard-
ware, middleware and application logics are tightly coupled. This provisioning model presents
some limitations that makes the deployment of a smart place an inefficient process, since that
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each time that a smart place is deployed its software components and embedded devices need to
be manually installed and configured. Therefore, new provisioning approaches need to be adopted
in order to make the deployment of smart places more efficient and scalable.

• Low-latency Interaction is a key requirement that requires that both network access latency and
data transmission latency be reduced. However, in a cloud-based deployment, part of the system’s
infrastructure is moved to the cloud - for instance the middleware layer, which is responsible for
processing the information and take decisions based on the results. However, will a cloud-based
deployment able to meet the low-latency requirements of many smart place systems?

• Management of smart places is an issue that must be carefully addressed. It has been shown
that end-users are unable to manage their own personal computers systems well [10] and there is
no reason to believe that they will had a better performance at managing a much more complex
system. It is reasonable to assume that service providers will perform the management of the ser-
vices . These managed services introduces new questions that must be answered. For instance,
who will pay for this services and who will control this services?

• Cost vs. Performance of smart placeas infrastructure - i.e. hardware, software, maintenance and
energy costs - is an important issue that can determine if the cloud platform is the most adequate
to support smart place instead of a local infrastructure. By leveraging the smart place infrastructure
to the cloud the cost of its infrastructure can be reduced in a significant amount. However, will be
the performance of the smart place satisfactory when its infrastructure is leveraged to the cloud?

1.3 Objectives

The objective of this work is to determine if the cloud platform is able fulfill the fundamental requirements
of smart places. In this work we focused to determining if a cloud-based deployment can meet the low-
latency interaction and data storage performance requirements. Since smart places presents different
requirements according its domain, our efforts will be engaged in determine if the cloud platform is suit-
able to support a smart warehouse that relies on the RFID technology [11].

1.3.1 Example Domain

Our smart place example domain is an automated warehouse. In the warehouse, products are trans-
ported through automated guided vehicles. These products are tagged with RFID tags that can be
identified by RFID readers. Through the data collected by these readers is possible to gather informa-
tion about the smart place. For instance, is possible to determine which products enter or leave the
warehouse. A complete example of a platform that allows the transformation of that data into informa-
tion is Fosstrak1, an open source RFID software that implements the Electronic Product Code (EPC)
Network standards.

To accomplish our objectives, in this work we will follow two approaches and determine which of them
is more adequate to deploy a smart warehouse based on the RFID technology. . The first, is a more
traditional deployment approach, where all the application middleware is provisioned in the cloud. The
second is a deployment approach based on the Fog Computing[12] paradigm, a virtualized platform that
is located close to the smart place and provides network, computing and storage resources between the

1http://fosstrak.github.io/
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embedded devices in the physical place and the traditional cloud.

Since the cloud platform offers flexibility to deploy applications, we propose a solution that automates
the deployment of RFID application middleware in the cloud regarding the chosen approach: cloud or
fog. Our solution consists in a provisioning mechanism that automates the application deployment ac-
cording pre-defined provisioning policies and software images.

Our initial hypothesis is that a fog-based deployment will present a best overall performance and
as consequence will be more adequate to deploy the smart warehouse RFID application middleware.
However the data storage capabilities of fog are inferior and they will have to be validated whether they
are enough.

1.4 Dissertation Outline

The remainder of this document is organized as follows:

• Chapter 2. Background summarizes the relevant work in the field and introduces some key con-
cepts that support our work such as a description of the Fog Computing paradigm, the EPCGlobal
Network and Fosstrak platform.

• Chapter 3. Solution presents the approaches adopted to deploy and provision the smart place
software stack, namely the Fosstrak platform. We also details the implementation for the pro-
posed solution: the provisioning strategies, the virtualization technologies and the deployment
approaches.

• Chapter 4. Evaluation describes the experiments made to meet the defined objectives and
presents an analysis of the obtained results.

• Chapter 5. Conclusion summarizes the presented work, presents the main conclusions, some
important research points for future work and the main contributions that resulted from this disser-
tation.
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Chapter 2

Background

This chapter presents the background necessary to understand the area of the problem to be solved.
First section reviews the relevant related work to solve the challenges of converging the Internet of
Things and Utility Computing. The following sections present a description of the concepts that com-
poses the basis of our work.

2.1 Cloud computing concepts and tools

As mentioned in Section 1.2, the leverage of part of the smart place infrastructure to the cloud brought
some challenges that must addressed. In the next sections, we present the most relevant work regard-
ing to solve the smart place deployment in the cloud and data storage performance. Furthermore, we
present a brief description of Docker, a lightweight virtualization platform in alternative to traditional Vir-
tual Machines. Finally we describe Chef, a configuration management tool that automates the provision
of smart applications in the cloud.

2.1.1 Smart Place Computing

Deployment of smart places usually was performed in a physical and isolated manner. By leveraging the
infrastructure of smart places to the cloud, new provisioning approaches have to be adopted. Currently,
cloud service delivery models are being developed based on the existing layers of the cloud architecture
[13]:

• Infrastructure as a Service (IaaS) refers to the provisioning of infrastructure resources on-demand
- e.g. Virtual Machines (VMs), storage and network.

• Platform as a Service (PaaS) refers to providing platform layer resources such as operating system
support and software development frameworks.

• Software as a Service (SaaS) refers to providing on demand application over the Internet.

Soldatos et al. [14] presented the idea of converging the IoT and the utility computing in the cloud.
The proposed architecture is the core concept of the OpenIoT Project1. The cloud is used at IaaS level,
which allows to measure the utility of the services provided by inter-connected objects. Distefano et
al. [15] proposed a conceptual architecture by mapping various elements in both cloud and IoT to the

1http://openiot.eu
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three layers of the cloud architecture (IaaS, PaaS and SaaS). In this proposal IoT resources are pro-
vided voluntarily by their owners, while management functions - such as node management and policy
enforcement - are viewed as peer functions of cloud infrastructure management. A PaaS module is re-
sponsible for mashup IoT and cloud infrastructure (IaaS) resources to applications, which are delivered
to the clients through SaaS. CloudThings [16] is an architecture that uses the cloud platform layers to in-
tegrate Internet of Things and Cloud Computing. The proposed architecture is an online platform which
accommodates IaaS, PaaS, SaaS and allows system integrators and solution providers to leverage the
complete application infrastructure for developing, operating and composing applications and services.
Li et. al [17] proposed IoT PaaS, a cloud platform that supports scalable IoT service delivery. Solution
providers are able to deliver new solutions by leveraging computing resources and platform services -
domain mediation, application context management, etc. - to the cloud. The proposed architecture aims
to enable virtual vertical service delivery, for that it has a multi-tenant nature which is designed to help
at the isolation of the environments of different solutions.

Although a significant progress was achieved regarding the improvement for the deployment of IoT
solutions, most of the work still are in a conceptual stage. What is certain is that cloud service delivery
models will be the basis for the service delivery models of IoT solutions.

2.1.1.1 Containers

Containers are a virtualization technique that is performed at the operating system (OS) level, different of
hypervisor-based solutions - e.g. VMs - where the virtualization is performed at the hardware-level. In a
OS level virtualization, all guests share the same operating system as the base machine [18]. Although
the effect of both types of virtualization are similar, unlike the hypervisor-based virtualization an OS level
virtualization does not provide the ability to run multiple VMs with different operating systems on the
same physical machine. However, OS level virtualization provides significant benefits when compared
to hypervisor-based solutions. Containers are small, they have low memory and Computer Processing
Unit (CPU) overhead, they also are easy to port between different virtualization environments [19].

Linux Containers (LXCs)2 is an OS virtualization environment that relies on Linux Kernel. LXC are
hardware-agnostic and platform-agnostic, and also provides features such as application isolation and
multi-tenancy. The present work will use containers to provisioning the RFID application software stack.
Thus, we chose to use Docker as our container-based virtualization platform.

Docker Platform. Docker3 is an open source project to pack, ship and run any application as a
lightweight container. Since Docker containers are based on LXC, it can run anywhere4, from a laptop
to a cloud instance. Another benefit that Docker platform provides is the Docker Hub5 service, a public
repository that stores Docker images that are used to create the containers.

2.1.2 Data Storage

Smart places generate a large amount of data. The cloud must be able to store and process that data in
an efficient manner. Currently, there are several alternatives to perform data storage in the cloud, from

2http://www.linuxcontainers.org
3https://www.docker.com/
4Initially, Docker required that the physical machine where the containers will be created is running a Linux kernel. Currently,

Microsoft launched Windows Server Containers, an OS level virtualization mechanism where it is possible to perform the man-
agement of containers through Docker.

5https://hub.docker.com/

6

http://www.linuxcontainers.org
https://www.docker.com/
https://hub.docker.com/


key-value stores to Relational Database Management System (RDBMS) clusters. In the next sections,
we will summarize the most relevant work regarding these alternatives.

2.1.2.1 Key-value Stores

Since that data storage and retrieval in the cloud had specific requirements, cloud providers started to
implement their own solutions.

Google Big Table, Facebook Cassandra and Amazon Dynamo [20] [21] [22] are key-value stores -
Not Only SQL (NoSQL) databases - that have the ability to horizontally scale - i.e, distribute both data
and load of simple operations through many servers - but it has a weaker consistency model than the
ACID transactions of most RDBMSs systems [23].

Performance Insightful Query Language (PIQL) [24] is a SQL-like API built to run on top of exist-
ing performance predictable key-value stores, that provides many of the benefits of using a traditional
RDBMS, such as the ability to express the queries in a declarative way, automatic data parallelism,
physical data independence and automatic index selection and maintenance, all while maintaining the
low-latency guarantees on application performance that come from the underlying key-value store.

2.1.2.2 Relational Database Clusters

Relational Database Management System are database management systems that store data in form
of related tables. Unlike the key-value stores, RDBMS offers a complete pre-defined schema, a SQL in-
terface and ACID transactions. Recently, some progress has been reached as regards the performance
and scalability of these systems. Although most of the works still are in development, it is possible to
highlight some solutions that are in a more mature state.

MySQL Cluster [25] is an in-memory clustered distributed RDBMS. Compared with the basic MySQL
implementation it works by replacing the InnoDB engine with the NDB - a proprietary distributed layer
from MySQL. MySQL Cluster is built on top of a shared-nothing6 architecture and includes features
such as failover, node recovery, synchronous data replication and no single point of failure. MySQL
Cluster seems to be the solution that scales to more nodes than other RDBMS - 48 is the limit. How-
ever, it was reported that after scaling up to a few dozen nodes it starts to run with stability problems [26].

VoltDB [27] is a RDBMS designed for performance and scalability. VoltDB assumes a multi-node
cluster architecture where the database tables are partitioned over multiple servers. To allow fast-acess
of data, tables can be replicated over servers. Data recovery is supported through the replication of table
rows (shards) across the cluster. The current implementation also supports database snapshots. Cur-
rently some features still are missing, but in its current implementation VoltDB already presents some
features that improves the performance of SQL execution. As result, the number of nodes that are
needed to support a given application load can be reduced in a significant way.

As shown there several solution to perform data storage in the cloud. Choose what is the best
solution will depend of the application domain and its requirements.

6Shared-nothing architecture share neither data on disk or data in memory between the nodes in the cluster.
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2.1.2.3 RFID Middleware Platforms

Gomes et. al [28] proposed a new infrastructure for EPCGlobal compliant middleware platforms in order
to improve the performance of these middleware platforms. The Fosstrak platform was evaluated and the
results show that Fosstrak is not the best option when executing the modules responsible for collecting
the data (ALE) from RFID readers and storing the event data (EPCIS) in the same machine. In order
to improve the performance of the EPCGlobal compliant middleware platforms, the new infrastructure
adopts a decentralized architecture where the EPCIS is deployed in the cloud and it is connected to a
NoSQL database instead of MySQL. The ALE module adopts a multi-threading architecture in order to
support a high parallel demand of RFID readers. Currently, a prototype of the proposed infrastructure is
being developed using OpenNebula, pthreads and Service Oriented Architecture (SOA).

2.1.3 Configuration Management Tools

Configuration Management (CM) tools are software management tools that allows to automate and
specify the deployment of an application. Usually, users describe the system resources and their de-
sired state and the CM tool is responsible for enforcing the desired state. For instance, CM tools allows
the automation of the provisioning of physical and virtual machines, perform dependency management
of software components and to perform the automation of management tasks.

Currently, there are several solutions to perform configuration management of software, where the
most relevant are Chef7, Puppet8, Ansible9 and Salt10. The main difference between these tools is that
some of the them are more oriented to developers, which is the case of Chef and Puppet that requires
some programming experience to be used, while others are more oriented to system administrators,
which is the case of Ansible and Salt.

2.1.3.1 Chef

Chef is a configuration management tool that allows to describe the infrastructure as code. In that way
it is possible to automate how the infrastructure is built, deployed and managed. Chef architecture is
composed of the Chef Server - that stores the recipes and other configuration data - and the Chef Client
- that is installed in each server, VM or container, i.e, the nodes that are managed with Chef. The Chef
client periodically pulls Chef server latest policy and state of the network, and if anything on the node is
out of date, the client update its state in order to be consistent with the latest policy.

The tool was built from the ground up with the cloud infrastructure in mind. With Chef, it is possible to
dynamically provision and de-provision the application infrastructure on demand to keep up with peaks in
usage and track. For instance, the knife command has a plugin for provisioning cloud resources across
several cloud providers - Amazon Web Service (AWS)11, Google Compute Engine12 and Openstack13.

7https://www.chef.io/
8https://puppetlabs.com/
9http://www.ansible.com/

10http://saltstack.com/
11https://aws.amazon.com/
12https://cloud.google.com/compute/
13https://www.openstack.org/
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2.2 Fog computing for low latency responses

The Fog Computing [12] is a paradigm that aims to bring the cloud close to the “edge of the Network”.
By bringing the cloud close to the ground - hence the fog analogy - the Fog will be able to meet the
requirements of several applications that the traditional clouds are not able to accomplish. The most no-
table case is the Internet of Things, that requires mobility support, geo-distribution in addition to location
awareness and low latency. The Fog aims to achieve that by virtualizing the computing, storage and
network services between end devices and the traditional data centers in the cloud.

Figure 2.1: The Internet of Things and Fog Computing (Bonomi et. al (2012)).

Bonomi et. al [12] presents the architecture of a Fog Computing platform. As illustrated in Figure 2.1
the distributed infrastructure of Fog is composed of heterogeneous resources that must be managed
in a distributed way: the infrastructure comprising of several physical tiers, covering from data centers,
core of the network, edge of the network and end devices.

Multi-Service Edge is the lowest tier of the Fog and it is responsible for performing machine-to-
machine (M2M) interactions. It collects and process the data from the Embedded Systems and Sensors
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tier, issues commands to the actuators and also filters the data that is locally consumed and sent to the
higher tiers. Core Networking and Services tier is responsible for providing network services that are
used to exchange data between sub-networks. This tier also provides security services as well QoS and
multicast services for the applications.

Since the interaction time between the different tiers can range from seconds - e.g. low-latency real-
time analytics - to days - transactional analytics - the Fog must support several types of storage, from
ephemeral storage at the lowest tiers to semi-permanent at the highest tier. It is important to point that
the higher is the tier, the geographical coverage is wider and the time scale is larger [29]. The global
coverage is given by the Cloud tier, which acts as a central repository for the persistent data and that is
used to perform business analytics.

2.3 Internet of Things frameworks

Smart places cover several application domains, as mentioned in Section 1.1. Gubbi et. al [2] presented
the technological characteristics for several domains of IoT applications, as illustrated in Table 2.1. The
application domains are characterized according several aspects, including application network size,
categorization of users, application bandwidth requirements and IoT devices.

The smart place applications usually uses RFID tags and Wireless Sensor Network (WSN) as IoT
devices. The IoT devices are powered through rechargeable batteries - e.g. for applications deployed
in physical spaces with easy access to the devices such as Offices and Warehouses - and/or through
energy derived from external sources such as solar energy and wind energy - e.g. for applications that
are deployed in large and/or remote physical spaces such as cities and forests. Usually, the IoT devices
are connected to the Internet through a wireless connection such as 3G, 4G and Wi-fi. The data man-
agement can be performed through a local server or a shared server, in case of smart place application
domains that are composed of multiple sub-domains - e.g. smart cities and smart transportation - and
need to share data between those domains.

In the present work, our application domain characteristics are similar to the Smart Office/Home and
is based on the RFID technology and the EPC Framework.

2.3.1 Internet of Things stack example: EPC Framework

The RFID middleware is the component of a RFID system that sits between the low level components
- e.g. readers and tags - and the business client application - e.g. Enterprise Resource Planning
(ERP) systems. The next paragraphs describe the EPCglobal, a framework that provides standardized
interfaces that isolates hardware vendors from business applications, and Fosstrak, a open-source RFID
middleware platform that implements the GS1 EPC Network standards.

2.3.1.1 GS1 EPCglobal Architecture

GS114 is an organization that is responsible for the development and maintenance of standards for sup-
ply chain. One of the standards developed by GS1 is the EPC, which is an unique serial identifier for

14http://www.gs1.org
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RFID tags. GS1’s subsidiary EPCglobal Inc.15 created the EPCglobal Architecture Framework, that cur-
rently is the standard for RFID platforms. Figure 2.2 presents a high-level architecture of the EPCglobal
framework that shows its main interfaces and roles.

Figure 2.2: GS1 EPCGlobal Architecture Framework.

The framework16 has a set of standardized interfaces that enables the interchange of information
between entities. In the context of our work, the most relevant components of the framework architecture
are:

• Reader Interface provides the interfaces that must be implemented by the RFID readers. The
Low Level Reader Protocol (LLRP) standard provides interfaces that allows the control of all the
aspects of RFID reader operation.

• Filtering & Collection is the module that coordinates the RFID readers that are in the same physical
space and also abstracts the readers from the upper layers. It allows the execution of read and
write operations on tags. Furthermore, it is responsible for filtering, aggregating and grouping the
raw tag data when requested.

• Application Level Events (ALE) Interface defines the control and delivery of filtered and collected
data from the Filtering & Collection module to the Electronic Product Code Information System

15http://www.gs1.org/epcglobal
16For more information about the standards of the EPCglobal Framework, the full documentation is available at http://www.

gs1.org/gs1-architecture
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(EPCIS) Capturing Application. The ALEs are a selection of the events that are meaningful for the
client applications.

• EPCIS Capture Application supervises the operation of the lower EPC layers, and provides busi-
ness context based on information involved in the execution of a particular step of a business
process.

• EPCIS Repository is the module where all the business events generated by the EPCIS Capturing
Applications are stored to later be accessed by the EPCIS Accessing Application. The EPCIS
Query Interface defines how client applications can retrieve information from the repository.

2.3.1.2 Fosstrak Platform

The Free and Open Source Software for Track and Trace (Fosstrak) is an EPCglobal Network compliant
RFID software platform that was developed by Floerkemeier et. al [7]. Figure 2.3 presents the architec-
ture of the Fosstrak platform.

Figure 2.3: Fosstrak architecture.

The Fosstrak platform is composed of three modules that implements the corresponding roles in the
EPC Network: Reader Module, Filtering and Collection Middleware Module and EPCIS Module. For our
work the relevant modules of the platform are:

• Filtering & Collection Server is the module responsible for filtering and collecting data from RFID
readers. To communicate with the readers, the module uses the LLRP standard for LLRP com-
pliant readers and uses the Fosstrak Hardware Abstraction Layer (HAL) for unsupported readers.
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The module internally abstracts the readers as LogicalReaders instances that are defined and
configured through a LRSpec document, as defined by EPCglobal. Fosstrak also implements the
Event Cycle, that is an interval of time during which tags are collected. The output of an Event
Cycle is the ECReport document that is sent to the Capturing Application.

• Capturing Application is part of the EPCIS module. This module is responsible for transforming
uninterpreted events received on the ECReports into meaningful business events. Regarding its
implementation, the Capturing Application is built on top of the Drools17 engine where rules can
be specified in the form of: “when” something happens, “then” do “this”. Unfortunately, the rules
are static and once defined they can not be updated in runtime.

• EPCIS Repository provides an EPCglobal-certified EPCIS Repository, which means that all Fos-
strak EPCIS modules and interfaces are compliant with the EPCglobal standard. This module
provides persistence for EPCIS events. For storing new events the module provides the capture
interface and the query interface for retrieving historical events is provided. Furthermore, the mod-
ule provides two EPC Network-conformant interfaces to a relational database (currently MySQL).

17http://www.drools.org/
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Smart Home/Office Smart Retail Smart City Smart Agriculture/Forest Smart Water Smart Transportation

Network Size Small Small Medium Medium/Large Large Large

Users Very Few,
family
members

Few,
community
level

Many, policy
makers and
general
public

Few, policy
makers and
landowners

Few,
government

Large,
general
public

Energy Rechargeable
battery

Rechargeable
battery

Rechargeable
battery,
Energy
Harvesting

Energy
Harvesting

Energy
Harvesting

Rechargeable
battery,
Energy
Harvesting

Internet Connectivity Wifi, 3G, 4G
LTE,
backbone

Wifi, 3G, 4G
LTE,
backbone

Wifi, 3G, 4G
LTE,
backbone

Wifi,
Satellite
Communica-
tion

Wifi,
Satellite
Communica-
tion,
Microwave
Links

Wifi,
Satellite
Communica-
tion

Data Management Local Server Local Server Shared
Server

Local
Server,
Shared
Server

Shared
Server

Shared
Server

IoT Devices RFID, WSN Smart Retail RFID, WSN WSN Single
Sensors

RFID, WSN,
Single
Sensors

Bandwidth Requirements Small Small Large Medium Medium Medium/Large

Table 2.1: Smart Place application domains characteristics.
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Chapter 3

Solution

Usually, provisioning the components of a smart place application is an operation that is manually exe-
cuted and requires expertise since that the software components must be correctly installed and config-
ured. Furthermore, every time that a new smart place is deployed these operations must be repeated.
With that in mind, in order to make the deployment of smart places more efficient in Section 3.1 we
propose a solution that automates the provision of smart places application middleware in the cloud.

In the present work our main goal is to determine if a cloud-based deployment can meet the re-
quirements of RFID-based smart place applications, as mentioned in Section 1.3. To achieve our goals
we will follow two approaches to deploy the smart warehouse application middleware: cloud and fog.
In Section 3.2, we describe the alternative architectures of the smart warehouse regarding the chosen
deployment approach.

3.1 Smart Place Provisioning

In this section we propose a mechanism that automates the provisioning of software for smart ware-
houses in the cloud. Our solution relies on Configuration Management (CM) tools that leverage existing
software stacks. Figure 3.1 presents the approach for the proposed mechanism.

Figure 3.1: Provisioning mechanism conceptual architecture.
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In the proposed approach, the provisioning of a smart warehouse is based on provisioning policies
and software images that are defined and configured in a development environment. The provisioning
policies allow to define which components of software must be provisioned in a given instance, config-
ure management tasks such as to trigger a notification when a resource state changes. The software
images contains all the software components required to deploy the smart warehouse application.

Figure 3.2: Provisioning Mechanism Sequence Diagram.

After the provisioning policies were defined and configured, the Orchestrator uploads them to its
respective remote repositories (CM Server and VM Image Repository). When the provisioning request
is performed - through a configuration management interface provided by the Orchestrator - the con-
figuration management client (CM Client) in the cloud server pulls the polices from the configuration
management server (CM Server), a centralized server that is responsible to maintain a consistent state
of the provisioned nodes in the cloud. In order to enforce the polices, the CM Client pulls the software
images from a central repository and then performs the provisioning and configuration of the software.
After provisioning the infrastructure, the CM client periodically polls the CM server in order to determine
if its current state is consistent with the most recent policy, as illustrated in Figure 3.2
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3.1.1 Implementation Details

The implementation of the provisioning mechanism relies on the Chef tool. Chef provides several fea-
tures that allow to describe infrastructure as code. In the implementation of the provisioning mechanism,
the main features used were the Chef recipes, roles and knife command-line tool1. In the current im-
plementation, we used Docker containers to provisioning the smart warehouse software at the cloud
providers in alternative to traditional VMs.

3.1.1.1 Provisioning Recipes

The recipes that describe the smart warehouse infrastructure are based on cookbooks available at the
Chef Supermarket2 and also in custom recipes that were defined specifically for this work to describe
how the Fosstrak software stack is provisioned in the cloud. Since we are using Docker containers the
recipes were defined based on the official Docker cookbook for describing how the containers must be
provisioned. For instance, Listing 1 present the provisioning recipe for the Docker container that runs
the EPCIS Repository:

1 # Pull latest image

2 docker_image ’cloud4things/fosstrak-epcis’

3

4 # Run container exposing port 8080

5 docker_container ’cloud4things/fosstrak-epcis’ do

6 detach true

7 container_name ’fosstrak-epcis’

8 link ’fosstrak_db:db’

9 expose ’8080’

10 end

Listing 1: EPCIS Docker container provisioning recipe.

The recipe specification describes that first the Docker image identified as cloud4things/fosstrak-
epcis must be pulled from the central repository. In particular, this image contains the software required
to deploy the EPCIS repository web application, namely an Apache Tomcat web-server and the EPCIS
repository source code. Finally, the recipe describes that the image cloud4things/fosstrak-epcis must
be used to create a container named fosstrak-epcis and the port 8080 need to be exposed. Further-
more this container must be linked to the container fosstrak-db that internally is represented by the alias
db. The detach parameter describes if the container must run in the background or not. Optionally, the
recipe attributes can be parametrized through a JavaScript Object Notation (JSON) file that specifies the
attributes value.

We also defined the recipes that provision Docker containers for the remaining Fosstrak stack,
namely the Filtering & Collection Server (Listing 2), Capturing Application (Listing 3) and MySQL database
(Listing 4).

1The tool uses culinary analogy in most of its concepts
2https://supermarket.chef.io/
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1 # Pull latest image

2 docker_image ’cloud4things/fosstrak_ale’

3

4 # Run container exposing port 8081 and remaping to port 8080

5 docker_container ’cloud4things/fosstrak_ale’ do

6 detach true

7 container_name ’fosstrak_ale’

8 link ’fosstrak_capture:capture’

9 port "8081:8080"

10 end

Listing 2: ALE Docker container provisioning recipe.

1 # Pull latest image

2 docker_image ’cloud4things/fosstrak_capture’

3

4 # Run container exposing port 9999

5 docker_container ’cloud4things/fosstrak_capture’ do

6 detach true

7 container_name ’fosstrak_capture’

8 link ’fosstrak_epcis:epcis’

9 expose ’9999’

10 end

Listing 3: Capturing application Docker container provisioning recipe.

1 # Pull latest image

2 docker_image ’cloud4things/fosstrak_db’

3

4 # Run container exposing port 3306

5 docker_container ’cloud4things/fosstrak_db’ do

6 detach true

7 container_name ’fosstrak_db’

8 expose ’3306’

9 volume ’/mnt/docker:/docker-storage’

10 end

Listing 4: MySQL Docker container provisioning recipe.

3.1.1.2 Provisioning Roles

A role is a categorization that describes what are the responsibilities of a specific node, what settings
and software components should be given to it. For instance, it is possible to define what are the nodes
that includes the database, web server, etc. The roles allows to describe the smart place warehouse
topology in the cloud.

The roles that describe the smart warehouse application topology were defined based in the archi-
tecture of the smart warehouse for the cloud and fog deployment approaches, presented in Section 3.2.
In the next sections, we describe with more detail the roles that were defined to provisioning the smart
warehouse infrastructure.
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Cloud Provisioning Roles. In a cloud-based deployment the Fosstrak software stack is provi-
sioned in a single instance, as illustrated in Figure 3.8. Thus, we defined a single role to describe the
responsibilities of the node provisioned in the cloud.

1 {

2 "name" : "fosstrak-server",

3 "run_list" : [

4 "recipe[docker]",

5 "recipe[docker::fosstrak-db]",

6 "recipe[docker::fosstrak-epcis]"

7 "recipe[docker::fosstrak-capture]",

8 "recipe[docker::fosstrak-ale]",

9 ]

10 }

Listing 5: Cloud Deployment: provisioning role.

The fosstrak role describes that the nodes must have installed all the modules of Fosstrak that are
specified in the docker cookbook : docker, fosstrak-db, fosstrak-epcis, fosstrak-capture and fosstrak-ale
recipes. The nodes that have assigned this role are identified as fosstrak-server.

Fog Provisioning Roles. In a fog-based deployment the Fosstrak software stack is distributed
across the fog and cloud, as illustrated on Figure 3.9. Therefore, we defined two different roles that
describe the responsibilities of the provisioned nodes.

1 {

2 "name" : "fog-server",

3 "run_list" : [

4 "recipe[docker]",

5 "recipe[docker::fosstrak-capture]",

6 "recipe[docker::fosstrak-ale]"

7 ]

8 }

Listing 6: Fog Deployment: Fog provisioning role.

The fog role describes that fog nodes must have installed the following resources specified in the
recipes of the docker cookbook : docker, fosstrak-capture and fosstrak-ale. The nodes that have as-
signed this role are identified as fog-server, as illustrated in Listing 6.

The cloud role describes that cloud nodes must have installed the remaining modules of Fosstrak
that are specified in the docker cookbook : docker, fosstrak-db and fosstrak-epcis recipes. The nodes
that have assigned this role are identified as cloud-server, as illustrated in Listing 7.
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1 {

2 "name" : "cloud-server",

3 "run_list" : [

4 "recipe[docker]",

5 "recipe[docker::fosstrak-db]",

6 "recipe[docker::fosstrak-epcis]"

7 ]

8 }

Listing 7: Fog deployment: Cloud provisioning role.

3.1.1.3 Provisioning Mechanism

To provisioning the resources in the cloud instances we used knife, a command-line tool developed by
Chef that provides an interface between the local Chef repository and the Chef server. The provisioning
mechanism architecture is illustrated in Figure 3.3.

Figure 3.3: Automatic provisioning mechanism architecture.

In a development environment the Docker images are built and then uploaded to the Docker Registry
repository (1). The provisioning of the cloud resources is described in the cookbooks that are uploaded
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to the Chef server (2). The provisioning request (3) is performed using knife, that allows to describe the
image type, the instance type and the policies - e.g. the role(s) and/or recipe(s) - that need to be applied
on each provisioned node. Then the Chef client runs the configuration policies that are pulled from the
Chef server (4). In our solution the Chef client apply the configuration recipes that are described in the
role assigned to the node. The Chef client pulls the Docker images from the remote repository, build
the containers based on those images and finally applies the configuration that is associated to each
container.

We decide to chose Chef instead of its competitors - i.e. Puppet and Ansible - for several reasons.
First, the knife tool is very powerful and allow us to interact with our entire infrastructure. For instance,
it is possible to bootstrap a new server, apply a role to a set of nodes in our environment. Furthermore,
with knife ssh it is possible to execute a command on a certain number of nodes in our environment. For
instance, if we change the role configuration that is assigned to a set of nodes in our infrastructure, knife
allows to update all these nodes with the most recent policy with a single command. Also, knife provides
plugins for several cloud providers, such as AWS3, and Google Compute Engine4. These plugins allow
the provisioning of the application in the cloud providers infrastructure using the same resources - e.g.
roles, recipes, etc - for all available providers.

In order to make the provisioning of the instances in the cloud more efficient, our provisioning mech-
anism should be able to provision multiple instances with a single provisioning order. However, the
current implementation of Chef tool does not support the provisioning of a cluster of nodes, but there
are third-part plugins that already support this operation such as the spiceweasel5 command-line tool.

3.1.1.4 Docker Containers

Docker containers are used to provisioning the software stack of Fosstrak platform. A complete instal-
lation of Fosstrak requires a compatible Java Software Development Kit (SDK), a full MySQL database
and a Apache Tomcat server.

In the current implementation, we are provisioning a single container for each component of Fos-
strak, the EPCIS repository, the Capture application, the Filtering & Collection Server (FCServer) and
also for the MySQL database, as illustrated in Figure 3.4. Currently, the container images of Fosstrak
are published in the Docker Hub repository to later be used to create the containers.

By default each container runs a process that is isolated from the other processes that shares the
same environment (kernel). Compared with the isolation provided by traditional VMs - which are fully
isolated - the isolation provided by Docker containers is less secure, since that if a container has its
security broken, it is possible that other containers and host may be compromised.

In order to connect the different modules of the Fosstrak, our containers are linked through the linking
system provided by Docker. This mechanism creates a secure tunnel between the containers, allowing
the recipient container to access selected data about the source container. For instance, our EPCIS
container - which is linked to the MySQL database container - is able to access information about the
MySQL container.

3https://aws.amazon.com/
4https://cloud.google.com/compute/
5https://github.com/mattray/spiceweasel
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Figure 3.4: Fosstrak containers stack.

The reasons that we chose Docker containers instead of traditional VMs is that containers require
less disk space and read/write (I/O) operations in the disk when compared with traditional VM images
[30]. Furthermore, Docker containers are easier to port to another infrastructure when compared with
traditional VMs because when a container requires that the application and all of its dependencies are
ported together while the VMs require that the entire application, the guest operating system, the binaries
and libraries are ported, which can be several Gigabytes (GBs) in size.

3.2 Smart Warehouse Deployment

Our smart place is an automated warehouse where automated vehicles transport tagged objects that
can be identified by readers and sensors that are deployed in the place, as described in Section 1.3.1.
In traditional solutions, the application is provisioned in a local infrastructure. Although such approach
guarantees that the low-latency requirements are meet, this solution comes with several downsides -
such as the low scalability, infrastructure and maintenance costs - that can be a barrier for these appli-
cations.

Leveraging the infrastructure required to provisioning the smart warehouse application to the cloud
guarantees that the downsides of traditional solutions are solved. However, we also need to guarantee
that the latency requirements of these applications are fulfilled. The cloud and fog concepts give us more
flexibility to perform the deployment of smart warehouse applications, which allow us to provisioning
the application modules in a more distributed way. The following sections describe the deployment
approaches of smart warehouse applications based in the cloud and fog concepts.

3.2.1 Cloud Deployment

Figure 3.5 presents the architecture of a cloud-based smart warehouse deployment. The warehouse is
composed of smart objects, sensors and readers that capture the events that occurs in the warehouse.
The application middleware is provisioned in the cloud, which virtualizes the computing, storage and
network resources needed to support the application.

The smart warehouse can be connected to the cloud through a physical or wireless connection.
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Figure 3.5: Cloud deployment: smart warehouse conceptual architecture.

3.2.2 Fog Deployment

Figure 3.6: Fog deployment: smart warehouse conceptual architecture.

Figure 3.6 presents the architecture of a fog-based smart warehouse deployment. As in the cloud-
based deployment the warehouse is composed of smart objects, sensors and readers. The proposed
approach aims to extend the cloud paradigm to the edge of the network. The fog achieves that by
virtualizing computing, storage and network resources. Unlike the cloud infrastructure, that usually is
provisioned thousands of kilometers from the smart warehouse, the fog infrastructure usually is provi-
sioned closest to the smart warehouse.
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Regarding the application middleware, the application components are distributed across the cloud
and fog. The components responsible for storing the data during a long period of time are provisioned
in the cloud. The components responsible for performing real-time processing of the data generated in
the warehouse, and the components that filter the data that is consumed locally and must be delivered
to the cloud are provisioned in the fog.

Both the smart warehouse as the fog can be connected respectively to the fog and cloud through
several types of connection, from a physical connection to a wireless connection.

3.2.3 Implementation Details

The smart warehouse setup was based in a demonstration scenario described by Correia et al. [31], as
illustrated in Figure 3.7.

Figure 3.7: RFID application setup.

The warehouse is composed of a robot transporting tagged products that are identified by RFID
readers deployed in the physical space. To monitor the robot inside the warehouse, the Fosstrak RFID
middleware is used. In our implementation, the RFID readers are emulated through the Rifidi Emulator,
which uses the LLRP protocol to communicate with the Fosstrak platform.

3.2.3.1 Cloud Deployment

The RFID middleware is provisioned in the cloud in a single virtual machine. In the Fosstrak implemen-
tation the FCServer, EPCIS repository and the Capture application requires an Apache servlet container
to deploy and run the web applications. The EPCIS repository is connected to a MySQL database that
stores the event data. The technological architecture for a cloud-based deployment is presented in Fig-
ure 3.8.

The smart warehouse can be connected to the cloud through a physical (e.g. Asymmetric Digital
Subscriber Line (ADSL) or Fiber-optic) to a wireless connection (e.g. Wi-Fi, 3G or Long-term Evolution
(LTE)).
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Figure 3.8: Cloud deployment: smart warehouse technological architecture.

Figure 3.9: Fog deployment: smart warehouse technological architecture.

3.2.3.2 Fog Deployment

Figure 3.9 presents the technological architecture for a fog-based deployment. The RFID middleware
is provisioned across the fog and the cloud. At the cloud, all the software components are provisioned
in a single VM. The EPCIS repository is deployed and running on top of an Apache Tomcat servlet
instance. The repository is connected to a MySQL database, which stores the event data. In the cur-
rent implementation the fog was built with a traditional VM. The FCServer and the Capture application
are deployed and running on top of a single Tomcat servlet instance. The Capture application sent the
events collected by the FCServer to the EPCIS repository through the EPCIS Capture Interface - via
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Hypertext Transfer Protocol (HTTP) requests.

Both the smart warehouse as the fog can be connected respectively to the fog and cloud through sev-
eral types of connection, from a physical connection (e.g. ADSL or Fiber-optic) to a wireless connection
(e.g. Wi-Fi, 3G or LTE).

3.3 Summary

In this chapter we proposed a solution to automate the provisioning of smart warehouse applications
based on the RFID technology in the cloud. The implementation details for the proposed solution and
the technological components used in our implementation also were discussed.

Our provisioning mechanism is based on the Chef tool. To provisioning Fosstrak’s software stack we
are using Docker containers in alternative to the traditional VMs. The provisioning mechanism relies on
the recipes, roles and the knife command, which are provided by Chef. We defined a set of recipes that
allow to describing how the Fosstrak software stack should be installed in a node while the roles allow
to attributing responsibilities to a specific node. The knife command is used to execute the provisioning
request and to interact with the provisioned infrastructure.

The provisioning mechanism implemented in this work allows to perform the deployment of a smart
warehouse application based in Fosstrak across the cloud and fog, although it can be extended to
support other RFID middleware platforms. The flexibility in the deployment provided by the cloud and
fog concepts will allow us to evaluate the approaches and chose which one is more adequate to support
smart warehouse applications based on the RFID technology.
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Chapter 4

Evaluation

The present chapter describes the evaluation methodology as well as the experiments performed to
determine if a cloud-based or a fog-based deployment is more adequate to support smart warehouse
applications based on the RFID tehcnology. The evaluation process will compare the approaches in
regard to low-latency and data storage performance.

Our main goal is to obtain basic statistical values that allow us to decide which approach is more
suitable to fulfill the expected requirements. Furthermore, we present a discussion regarding which
approach is more adequate to deploy an IoT application according its domain.

4.1 Evaluation Methodology

In order to determine which deployment approach is more adequate to meet the latency and data storage
scalability requirements, we propose the following methodologies to perform the evaluation:

4.1.1 Latency Interaction

The response time between an event that occurs in the smart warehouse and the corresponding action
that is triggered in the physical space, the proposed methodology consists in perform the monitoring of
the smart warehouse network and determine how much time is spent between the ALE collect the event
triggered and client application receive the notification report, as illustrated in Figure 4.1.

Figure 4.1: Latency interaction evaluation methodology.
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The ALE module is responsible for collecting and processing the reader events and take the correct
decisions based on those events. In the Fosstrak implementation the collection and processing of reader
events is performed according to an Event Cycle specification. The Event Cycle is a set of periodical
cycles where the ALE module collect the events from the readers. The data about the Event Cycle is
delivered to the client application through a report. The information in the report can be used to notify
the client regarding an event in the smart warehouse or even to trigger a new event in the warehouse
such as open or close a door.

The smart warehouse is running a monitoring system that stores information about the incoming and
outgoing packets in the warehouse network. In particular, we will perform the network monitoring with
tcpdump1, a command-line tool that allows the monitoring of the packets that are being transmitted or
received over a network. Through the logs produced by this tool, we are able to determine how the
connection time is spent.

The Fosstrak ALE module can be configured to generate information to register when a new event
is processed and also when a new report is delivered to the client. Thus, with the information provided
by the monitoring system and the ALE module it is possible to calculate the latency request for an event
that occurs in the warehouse.

With this methodology we intend to obtain information regarding how the communication time is
spent when an event is triggered in the warehouse for the deployment approaches described in Chap-
ter 3. In order to determine which approach is more adequate to deploy the application, we propose a
set of metrics that allow us to measure how much time is spent in the network communication, event
processing and the latency of the events that occur in the physical space:

1. Latency

(a) Event Latency : the time spent since an event is triggered in the warehouse until the client
application receives the notification of the event.

2. Network Communication

(a) Upload Time: the time spent since that an event is triggered in the warehouse until the ALE
module receives the event.

(b) Response Time: the time spent since that the ALE module delivers the Event Cycle report
until the client receives it.

3. Event Processing

(a) Tag Processing Time: the time spent since that the ALE module receives an event notification
until the RFID tag is processed.

(b) Idle Processing Time: the time spent for the ALE module where the collected tags already
exists and no further action is required.

(c) Filtering & Aggregation Time: the time spent for the ALE where the collected tags are filtered
and aggregated.

(d) Report Creation Time: the time spent for the ALE module to create the Event Cycle report for
the current EventCycle.

1http://www.tcpdump.org/
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The analysis of these metrics will allow us to compare the performance of the fog-based and cloud-
based deployment approaches and help to determine which one is more adequate to deploy the smart
warehouse application.

4.1.2 Data Storage Performance

Smart warehouse applications usually generates a large amount of data that must be stored and pro-
cessed in a efficient way, as described in Section 1.2. To evaluate the data storage performance for
a smart warehouse application based on Fosstrak, the proposed methodology consists in stress the
EPCIS Repository by simulating several readers that are concurrently triggering events - through HTTP
requests - to the repository that is running in the cloud, as illustrated in Figure 4.2.

Figure 4.2: Data storage performance evaluation methodology.

The cloud server is running a monitoring system that periodically stores data related to a set of
system metrics, such as CPU Utilization and the volume of incoming network traffic by the instances
(Network In). In the present work, the monitoring of the VMs in the cloud and for collecting the system
metrics from the instances, we will use AWS CloudWatch2, a monitoring service provided by Amazon.

The analysis of these metrics allows to observe how the performance and behavior of the EPCIS
module is affected regarding the amount of events that are generated in the smart warehouse.

4.2 Evaluation Setup

To perform the evaluation experiments we chose AWS as cloud provider. All the experiments were
conducted in AWS Elastic Cloud Computing (EC2) instances running the Amazon Linux Amazon Ma-
chine Image (AMI) operating system. The VMs presents a configuration with a 2.5 Gigahertz (GHz)
single-core processor with 1 GB of Random-access memory (RAM). In the fog-approach configuration,
the experiments were conducted in a VM with a 2.6 GHz dual-core processor with 2 GB of RAM and
running the Linux Ubuntu 14.04.2 LTS operating system. The smart warehouse was connected to the

2http://aws.amazon.com/cloudwatch/
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cloud and fog through a ADSL connection with a bandwidth of 10 Mbps.

Regarding the software components, the application stack is composed of the Apache Tomcat
7.0.52.03 with Java version 1.7.0 update 79. The RFID middleware used was the Fosstrak (described
in section 2.3.1.2) and the versions were: a) FCServer version 1.2.0; b) Capture Application version
0.1.1; and c) EPCIS Repository version 0.5.0. Furthermore, the EPCIS Repository was connected to a
MySQL server version 5.5. The Rifidi Emulator4 used to emulate the RFID readers is in version 1.6.0.

4.3 Experiments Performed

The experiments performed in our evaluation were based on the scenario and data amount from the
RFIDToys [32] Master Thesis. In short, the RFIDToys is a warehouse demonstrator consisting of a robot
transporting tagged products that are identified by RFID readers deployed in the physical space, as de-
tailed in Section 3.2.3. In the performed experiments, we used a scenario where a tagged robot was
programmed to execute a given number of laps in the warehouse plant where an automatic door opens
when one of the RFID readers that are placed in the plant detects that the robot is approaching.

Based on this scenario and application domain we defined a set of non-functional requirements that
our solution must accomplish. The evaluation requirements are presented in Table 4.1.

Name Description
R1 The event latency must be < than the robot wait time.
R2 The network latency Upload Time + Response Time must be at the < 100ms.
R3 The idle time of an Event Cycle must be < than half of the event latency.
R4 The EPCIS must support at least 5 users sending simultaneously a large

amount of events (≈ 18× 103).

Table 4.1: Evaluation requirements.

4.3.1 Latency Interaction

To evaluate the latency interaction according the methodology proposed in Section 4.1.1, During the
lap the robot stops during 5 seconds in front of the door and then continues its lap. The door must be
opened before the robot starts to moving again.

To perform the simulation we defined two different specifications (ECspec) for the Event Cycles of
the ALE module, Baseline Event Cycle and Half-period Event Cycle. The configuration parameters for
the ECspecs are presented in Table 4.2.

Event Cycle Specification Period Duration Iterations
Baseline Event Cycle 10s 9.5s 10
Half-period Event Cycle 5s 4.75s 20

Table 4.2: Event Cycle parameters.

3http://tomcat.apache.org/
4http://rifidi.org
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The evaluation of the event latency for the proposed approaches was performed in two steps. First,
we want to determine during a Event Cycle how much time the ALE is processing an event and how
much time the module is in an idle state. Furthermore, we want to determine how much time each stage
of the event processing pipeline takes. The event processing pipeline is divided in the following stages:
(i) the event data is uploaded; (ii) event data is processed; (iii) event data is filtered and aggregated; (iv)
the event cycle report is created; and finally (v) the event cycle report is delivered to the client application,
as illustrated in Figure 4.3.

Figure 4.3: Latency Interaction sequence diagram.

4.3.1.1 Cloud-based warehouse latency

The behavior expected when the ALE is configured with a faster Event Cycle specification is that the
event latency presents a better overall performance. According the metric values presented in Table 4.3
it is possible to observe that the event latency decrease from 8.244s to 4.266s. The values for the
network latency improved when the ALE is configured with the faster ECspec, close to ≈ 65% of im-
provement for the Upload Time metric - from 0.294s to 0.103s - and ≈ 40% for the Response Time
metric - from 0.228s to 0.149s. The values for the time where the ALE remains in an idle state also
presented a significant improvement, from 7.346s to 2.569s.

The value for the Tag Processing Time increased ≈ 1000% when the ALE is configured with Half-
period ECspec - from 0.002s to 0.024s. The value for the Filtering & Aggregation Time metric increased
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Metric Base Event Cycle Half-period Event Cycle
s % s %

Upload Time 0.294 3.244 0.103 2.373
Tag Processing Time 0.002 0.029 0.024 0.608
Idle Processing Time 7.346 88.939 2.569 62.472
Filter & Aggregation Time 0.370 4.675 1.490 31.019
Report Creation Time 0.003 0.035 0.003 0.063
Response Time 0.228 3.078 0.149 3.467
Event Latency 8.244 100.00 4.266 100.00

Table 4.3: Cloud deployment: performance metrics results.

≈ 300% - from 0.370s to 1.490s.

Event Time Breakdown. Figure 4.4 summarizes the latency breakdown for an event that occurs
in a smart warehouse deployed in the cloud. In the current experiment the ALE module was configured
with the Baseline ECspec and the Half-period ECspec.

Table 1 - Cloud Server Latency

Read Upload Time (s) Tag Processing 
Time (s)

Idle Time (s) Filtering & 
Aggregation (s)

Report Creation 
Time (s)

Response Time (s) RTT (s) Effective Time (s) Upload Time (%) Processing Time 
(%)

Filtering & 
Aggregation (%)

Report Creation 
(%)

Response Time 
(%)

Effective Time (%) Idle Time (%)

1 0.075 0.002 5.136 0.001 0.001 0.352 5.567 0.431 17.401 0.464 0.232 0.232 81.671 7.742 92.258

2 0.084 0.001 5.312 1.401 0.001 0.176 6.975 1.663 5.051 0.060 84.245 0.060 10.583 23.842 76.158

3 0.076 0.008 8.281 -0.000 0.003 0.623 8.991 0.710 10.704 1.127 0.000 0.423 87.746 7.897 92.103

4 0.384 0.003 8.424 1.177 0.003 0.131 10.122 1.698 22.615 0.177 69.317 0.177 7.715 16.775 83.225

5 0.065 0.001 3.163 0.144 0.003 0.152 3.528 0.365 17.808 0.274 39.452 0.822 41.644 10.346 89.654

6 0.491 0.001 8.947 0.149 0.004 0.156 9.748 0.801 61.298 0.125 18.602 0.499 19.476 8.217 91.783

7 0.493 0.001 8.941 0.157 0.003 0.154 9.749 0.808 61.015 0.124 19.431 0.371 19.059 8.288 91.712

8 0.490 0.001 8.956 0.154 0.002 0.154 9.757 0.801 61.174 0.125 19.226 0.250 19.226 8.209 91.791

9 0.492 0.003 8.952 0.151 0.004 0.153 9.755 0.803 61.270 0.374 18.804 0.498 19.054 8.232 91.768

Average 0.294 0.002 7.346 0.370 0.003 0.228 8.244 0.898 35.371 0.317 29.923 0.370 34.019 11.061 88.939
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(a) Baseline Event Cycle: latency breakdown.

Latency Results Using ECspec with 5s period

Table 1 - Cloud Server Latency

Read Upload Time (s) Tag Processing 
Time (s)

Idle Time (s) Filtering & 
Aggregation (%)

Report Creation 
Time (s)

Response Time (s) RTT (s) Effective Time (s) Upload Time (%) Processing Time 
(%)

Filtering & 
Aggregation (%)

Report Creation 
(%)

Response Time 
(%)

Effective Time (%) Idle Time (%)

1 0.119 0.451 3.226 0.059 0.001 0.110 3.966 0.740 16.081 60.946 7.973 0.135 14.865 18.659 81.341

2 0.088 0.002 3.161 1.391 0.001 0.054 4.697 1.536 5.729 0.130 90.560 0.065 3.516 32.702 67.298

3 0.091 0.002 3.156 0.081 0.003 0.031 3.364 0.208 43.750 0.962 38.942 1.442 14.904 6.183 93.817

4 0.096 0.002 2.120 2.430 0.003 0.327 4.978 2.858 3.359 0.070 85.024 0.105 11.442 57.413 42.587

5 0.087 0.002 3.161 0.186 0.003 0.032 3.471 0.310 28.065 0.645 60.000 0.968 10.323 8.931 91.069

6 0.087 0.001 1.584 3.083 0.001 0.046 4.802 3.218 2.704 0.031 95.805 0.031 1.429 67.014 32.986

8 0.088 0.001 4.216 0.456 0.003 0.041 4.805 0.589 14.941 0.170 77.419 0.509 6.961 12.258 87.742

10 0.087 0.001 3.691 0.980 0.002 0.319 5.080 1.389 6.263 0.072 70.554 0.144 22.966 27.343 72.657

12 0.615 0.001 2.108 2.142 0.001 0.048 4.915 2.807 21.910 0.036 76.309 0.036 1.710 57.111 42.889

13 0.063 0.003 3.157 0.061 0.002 0.063 3.349 0.192 32.812 1.562 31.771 1.042 32.812 5.733 94.267

14 0.069 0.002 2.100 2.434 0.003 0.343 4.951 2.851 2.420 0.070 85.374 0.105 12.031 57.584 42.416

15 0.061 0.002 2.108 2.546 0.003 0.072 4.792 2.684 2.273 0.075 94.858 0.112 2.683 56.010 43.990

16 0.062 0.001 2.630 0.470 0.003 0.069 3.235 0.605 10.248 0.165 77.686 0.496 11.405 18.702 81.298

17 0.062 0.001 3.110 1.310 0.003 0.197 4.683 1.573 3.942 0.064 83.280 0.191 12.524 33.590 66.410

18 0.064 0.001 1.586 2.854 0.002 0.170 3.250 1.664 3.846 0.060 171.514 0.120 10.216 51.200 48.800

19 0.062 0.001 1.055 3.378 0.003 0.216 4.715 3.660 1.694 0.027 92.295 0.082 5.902 77.625 22.375

20 0.064 0.001 2.634 0.491 0.003 0.199 3.392 0.758 8.443 0.132 64.776 0.396 26.253 22.347 77.653

21 0.068 0.001 2.113 2.327 0.003 0.176 4.688 2.575 2.641 0.039 180.738 0.117 6.835 54.927 45.073

22 0.062 0.003 2.632 0.502 0.005 0.245 3.449 0.817 7.589 0.087 61.444 0.612 29.988 23.688 76.312

23 0.065 0.004 1.825 2.624 0.003 0.225 4.746 2.921 2.225 0.137 89.832 0.103 7.703 61.547 38.453

Average 0.103 0.024 2.569 1.490 0.003 0.149 4.266 1.698 11.047 3.274 81.808 0.341 12.323 37.528 62.472
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(b) Half-period Event Cycle: latency breakdown.

Figure 4.4: Cloud deployment: Event Cycle latency breakdown.

The graphs presented in Figure 4.4a and Figure 4.4b show that, during most of time of an Event
Cycle the ALE module is in an idle state. Also, it is possible to observe that the ECspecs affected the
percentage of time where ALE is processing the events (Effective Time) and where is in an idle state
(Idle Time). With the Baseline ECspec the ALE remains ≈ 89% of the Event Cycle period in an idle state
while when configured with the Half-period ECspec this value decreases to ≈ 62%. This means that
during the Event Cycle period the ALE module can be in an idle state during 9 seconds when configured
with the Baseline ECspec while with the Half-period ECspec this value can last for 3 seconds.

Event Effective Time Breakdown. Figure 4.5 presents the time breakdown for the stages of the
event processing pipeline. Figure 4.5a presents the how much time is spent in each phase of the pipeline
when the ALE is configured with Baseline ECspec and in Figure 4.5b when it is configured with the Half-
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period ECspec.

Table 1 - Cloud Server Latency

Read Upload Time (s) Tag Processing 
Time (s)

Idle Time (s) Filtering & 
Aggregation (s)

Report Creation 
Time (s)

Response Time (s) RTT (s) Effective Time (s) Upload Time (%) Processing Time 
(%)

Filtering & 
Aggregation (%)

Report Creation 
(%)

Response Time 
(%)

Effective Time (%) Idle Time (%)

1 0.075 0.002 5.136 0.001 0.001 0.352 5.567 0.431 17.401 0.464 0.232 0.232 81.671 7.742 92.258

2 0.084 0.001 5.312 1.401 0.001 0.176 6.975 1.663 5.051 0.060 84.245 0.060 10.583 23.842 76.158

3 0.076 0.008 8.281 -0.000 0.003 0.623 8.991 0.710 10.704 1.127 0.000 0.423 87.746 7.897 92.103

4 0.384 0.003 8.424 1.177 0.003 0.131 10.122 1.698 22.615 0.177 69.317 0.177 7.715 16.775 83.225

5 0.065 0.001 3.163 0.144 0.003 0.152 3.528 0.365 17.808 0.274 39.452 0.822 41.644 10.346 89.654

6 0.491 0.001 8.947 0.149 0.004 0.156 9.748 0.801 61.298 0.125 18.602 0.499 19.476 8.217 91.783

7 0.493 0.001 8.941 0.157 0.003 0.154 9.749 0.808 61.015 0.124 19.431 0.371 19.059 8.288 91.712

8 0.490 0.001 8.956 0.154 0.002 0.154 9.757 0.801 61.174 0.125 19.226 0.250 19.226 8.209 91.791

9 0.492 0.003 8.952 0.151 0.004 0.153 9.755 0.803 61.270 0.374 18.804 0.498 19.054 8.232 91.768

Average 0.294 0.002 7.346 0.370 0.003 0.228 8.244 0.898 35.371 0.317 29.923 0.370 34.019 11.061 88.939
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(a) Baseline Event Cycle: event pipeline breakdown.

Latency Results Using ECspec with 5s period

Table 1 - Cloud Server Latency

Read Upload Time (s) Tag Processing 
Time (s)

Idle Time (s) Filtering & 
Aggregation (s)

Report Creation 
Time (s)

Response Time (s) RTT (s) Effective Time (s) Upload Time (%) Upload Time II (%) Processing Time 
(%)

Processing Time II 
(%)

Filtering & 
Aggregation (%)

Filtering & 
Aggregation II (%)

Report Creation 
(%)

Report Creation II 
(%)

Response Time 
(%)

Response Time II 
(%)

Effective Time (%) Idle Time (%)

1 0.119 0.451 3.226 0.059 0.001 0.110 3.966 0.740 16.081 3.001 60.946 11.372 7.973 1.488 0.135 0.025 14.865 2.774 18.659 81.341

2 0.088 0.002 3.161 1.391 0.001 0.054 4.697 1.536 5.729 1.874 0.130 0.043 90.560 29.615 0.065 0.021 3.516 1.150 32.702 67.298

3 0.091 0.002 3.156 0.081 0.003 0.031 3.364 0.208 43.750 2.705 0.962 0.059 38.942 2.408 1.442 0.089 14.904 0.922 6.183 93.817

4 0.096 0.002 2.120 2.430 0.003 0.327 4.978 2.858 3.359 1.928 0.070 0.040 85.024 48.815 0.105 0.060 11.442 6.569 57.413 42.587

5 0.087 0.002 3.161 0.186 0.003 0.032 3.471 0.310 28.065 2.506 0.645 0.058 60.000 5.359 0.968 0.086 10.323 0.922 8.931 91.069

6 0.087 0.001 1.584 3.083 0.001 0.046 4.802 3.218 2.704 1.812 0.031 0.021 95.805 64.202 0.031 0.021 1.429 0.958 67.014 32.986

7 0.088 0.001 4.216 0.456 0.003 0.041 4.805 0.589 14.941 1.831 0.170 0.021 77.419 9.490 0.509 0.062 6.961 0.853 12.258 87.742

8 0.087 0.001 3.691 0.980 0.002 0.319 5.080 1.389 6.263 1.713 0.072 0.020 70.554 19.291 0.144 0.039 22.966 6.280 27.343 72.657

9 0.615 0.001 2.108 2.142 0.001 0.048 4.915 2.807 21.910 12.513 0.036 0.020 76.309 43.581 0.036 0.020 1.710 0.977 57.111 42.889

10 0.063 0.003 3.157 0.061 0.002 0.063 3.349 0.192 32.812 1.881 1.562 0.090 31.771 1.821 1.042 0.060 32.812 1.881 5.733 94.267

11 0.069 0.002 2.100 2.434 0.003 0.343 4.951 2.851 2.420 1.394 0.070 0.040 85.374 49.162 0.105 0.061 12.031 6.928 57.584 42.416

12 0.061 0.002 2.108 2.546 0.003 0.072 4.792 2.684 2.273 1.273 0.075 0.042 94.858 53.130 0.112 0.063 2.683 1.503 56.010 43.990

13 0.062 0.001 2.630 0.470 0.003 0.069 3.235 0.605 10.248 1.917 0.165 0.031 77.686 14.529 0.496 0.093 11.405 2.133 18.702 81.298

14 0.062 0.001 3.110 1.310 0.003 0.197 4.683 1.573 3.942 1.324 0.064 0.021 83.280 27.974 0.191 0.064 12.524 4.207 33.590 66.410

15 0.064 0.001 1.586 1.427 0.002 0.170 3.250 1.664 3.846 1.969 0.060 0.031 85.757 43.908 0.120 0.062 10.216 5.231 51.200 48.800

16 0.062 0.001 1.055 3.378 0.003 0.216 4.715 3.660 1.694 1.315 0.027 0.021 92.295 71.644 0.082 0.064 5.902 4.581 77.625 22.375

17 0.064 0.001 2.634 0.491 0.003 0.199 3.392 0.758 8.443 1.887 0.132 0.029 64.776 14.475 0.396 0.088 26.253 5.867 22.347 77.653

18 0.068 0.001 2.113 2.327 0.003 0.176 4.688 2.575 2.641 1.451 0.039 0.021 90.369 49.637 0.117 0.064 6.835 3.754 54.927 45.073

19 0.062 0.003 2.632 0.502 0.005 0.245 3.449 0.817 7.589 1.798 0.087 0.087 61.444 14.555 0.612 0.145 29.988 7.104 23.688 76.312

20 0.065 0.004 1.825 2.624 0.003 0.225 4.746 2.921 2.225 1.370 0.137 0.084 89.832 55.289 0.103 0.063 7.703 4.741 61.547 38.453

Average 0.103 0.024 2.569 1.419 0.003 0.149 4.266 1.698 11.047 2.373 3.274 0.608 73.001 31.019 0.341 0.063 12.323 3.467 37.528 62.472
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(b) Half-period Event Cycle: event pipeline breakdown.

Figure 4.5: Cloud deployment: event processing pipeline breakdown.

Comparing the obtained results, it is possible to observe that time breakdown is evenly distributed
between the Upload (≈ 35%), Filtering & Aggregation (≈ 30%) and Response (≈ 34%) stages when
the ALE module is configured with the Baseline ECspec, while the Tag Processing and Report Creation
stages represents a small percentage of the total time, less than ≈ 1%. When the ALE is configured
with the Half-period ECspec, the Filtering & Aggregation stage is the most time consuming, represent-
ing close to ≈ 73% of the total time. As when configured with the Baseline ECspec, the Upload and
Response stages presents similar results, respectively close to ≈ 11% and ≈ 12%. Regarding the Pro-
cessing stage, the time required to process the event data increased in a significant way, from less than
≈ 0.3% to ≈ 3%. The Report Creation stage presented the same values from the Baseline ECspec
configuration (≈ 0.3%).

Experiment Results. In our scenario, that means the warehouse door only will open if the ALE
module was configured with the Half-period ECspec, otherwise the robot will crash with the door.

4.3.1.2 Fog-based warehouse latency

As in the previous experiment the event latency presented a better overall performance for the faster EC-
spec. According the metric values presented in Table 4.4 it is possible to observe that the event latency
improves in a significant way - from 7.450s to 4.250s. This result is achieved thanks to the improvement
in the latency of at the Filtering & Aggregation Time by ≈ 52% - from 2.530s to 1.230s - and the amount
of time that ALE is in an idle state - from 4.944s to 2.747s. Regarding the network latency, the values
for the Upload Time and Response Time improved 1ms for both metrics.

However, when configured with a faster Event Cycle specification the tag processing time presented
an inferior performance, where time to process the event data increases ≈ 470% - from 0.049s to 0.279s.
Also the report creation time increased 300% - from 0.001s to 0.003s.
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Metric Base Event Cycle Half-period Event Cycle
s % s %

Upload Time 0.005 0.065 0.004 0.088
Tag Processing Time 0.049 0.519 0.279 5.743
Idle Processing Time 4.944 67.920 2.747 67.795
Filter & Aggregation Time 2.530 31.318 1.203 26.031
Report Creation Time 0.001 0.021 0.003 0.084
Response Time 0.010 0.157 0.009 0.258
Event Latency 7.540 100.00 4.245 100.00

Table 4.4: Fog deployment: performance metrics results.

Event Time Breakdown. Figure 4.6 summarizes the latency breakdown for an event that occurs
in a smart warehouse deployed in the fog. Figure 4.6a shows the latency breakdown for an event when
the ALE module is configured with the Baseline ECspec and in Figure 4.6b when it is configured with
the Half-period ECspec.

Table 1 - Edge Server Latency

Read Upload Time (s) Tag Processing 
Time (s)

Idle Time (s) Filtering & 
Aggregation (s)

Report Creation 
Time (s)

Response Time (s) RTT (s) Effective Time (s) Upload Time (%) Processing Time 
(%)

Filtering & 
Aggregation (%)

Report Creation 
(%)

Response Time 
(%)

Effective Time (%) Idle Time (%)

1 0.006 0.001 4.754 1.823 0.001 0.012 6.597 1.843 0.326 0.054 98.915 0.054 0.651 27.937 72.063

2 0.002 0.002 5.294 0.757 0.002 0.009 6.066 0.772 0.259 0.259 98.057 0.259 1.166 12.727 87.273

3 0.003 0.001 4.746 2.895 0.001 0.006 7.652 2.906 0.103 0.034 99.621 0.034 0.206 37.977 62.023

4 0.002 0.001 5.268 3.418 0.001 0.021 8.711 3.443 0.058 0.029 99.274 0.029 0.610 39.525 60.475

5 0.004 0.001 4.738 2.365 0.001 0.006 7.115 2.377 0.168 0.042 99.495 0.042 0.252 33.408 66.592

6 0.014 0.001 5.779 2.701 0.002 0.015 8.512 2.733 0.512 0.037 98.829 0.073 0.549 32.108 67.892

7 0.003 0.001 5.791 2.702 0.002 0.011 8.510 2.719 0.110 0.037 99.375 0.074 0.405 31.951 68.049

8 0.003 0.002 3.163 0.059 0.002 0.015 3.244 0.081 3.704 2.469 72.840 2.469 18.519 2.497 97.503

9 0.005 0.525 7.428 1.586 0.001 0.005 9.550 2.122 0.236 24.741 74.741 0.047 0.236 22.220 77.780

10 0.006 0.002 5.261 3.212 0.001 0.006 8.488 3.227 0.186 0.062 99.535 0.031 0.186 38.018 61.982

11 0.005 0.001 2.166 6.315 0.001 0.009 8.497 6.331 0.079 0.016 99.747 0.016 0.142 74.509 25.491

Average 0.005 0.049 4.944 2.530 0.001 0.010 7.540 2.596 0.522 2.525 94.584 0.284 2.084 32.080 67.920

Latency Results Using ECspec with 10s period
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(a) Baseline Event Cycle: latency breakdown.

Latency Results Using ECspec with 5s period

Table 1 - Edge Server Latency

Read Upload Time (s) Tag Processing 
Time (s)

Idle Time (s) Filtering & 
Aggregation (s)

Report Creation 
Time (s)

Response Time (s) RTT (s) Effective Time (s) Upload Time (%) Processing Time 
(%)

Filtering & 
Aggregation (%)

Report Creation 
(%)

Response Time 
(%)

Effective Time (%) Idle Time (%)

1 0.002 0.528 4.219 0.185 0.002 0.020 4.956 0.737 0.271 71.642 25.102 0.271 2.714 14.871 85.129

2 0.002 0.001 0.987 -0.000 0.002 0.011 1.003 0.016 12.500 6.250 0.000 12.500 68.750 1.595 98.405

3 0.001 0.530 3.698 0.710 0.007 0.006 4.952 1.254 0.080 42.265 56.619 0.558 0.478 25.323 74.677

4 0.002 0.001 2.110 0.449 0.002 0.005 2.569 0.459 0.436 0.218 97.821 0.436 1.089 17.867 82.133

5 0.001 0.531 2.635 1.764 0.004 0.007 4.942 2.307 0.043 23.017 76.463 0.173 0.303 46.682 53.318

6 0.003 0.014 2.092 0.456 0.002 0.007 2.574 0.482 0.622 2.905 94.606 0.415 1.452 18.726 81.274

7 0.013 0.516 2.115 2.290 0.003 0.011 4.948 2.833 0.459 18.214 80.833 0.106 0.388 57.255 42.745

8 0.001 0.008 2.632 0.455 0.003 0.005 3.104 0.472 0.212 1.695 96.398 0.636 1.059 15.206 84.794

9 0.002 0.529 1.588 2.821 0.004 0.007 4.951 3.363 0.059 15.730 83.883 0.119 0.208 67.926 32.074

10 0.006 0.003 4.212 0.292 0.002 0.024 4.539 0.327 1.835 0.917 89.297 0.612 7.339 7.204 92.796

11 0.012 0.519 4.225 0.013 0.002 0.010 4.781 0.556 2.158 93.345 2.338 0.360 1.799 11.629 88.371

12 0.003 0.001 4.219 0.305 0.006 0.006 4.540 0.321 0.935 0.312 95.016 1.869 1.869 7.070 92.930

13 0.006 0.526 0.540 3.706 0.002 0.006 4.786 4.246 0.141 12.388 87.282 0.047 0.141 88.717 11.283

14 0.001 0.004 4.214 0.298 0.003 0.006 4.526 0.312 0.321 1.282 95.513 0.962 1.923 6.894 93.106

15 0.005 0.523 0.532 3.724 0.003 0.007 4.794 4.262 0.117 12.271 87.377 0.070 0.164 88.903 11.097

16 0.001 0.001 4.214 0.310 0.003 0.005 4.534 0.320 0.313 0.313 96.875 0.938 1.563 7.058 92.942

17 0.003 0.527 1.078 3.182 0.009 0.015 4.814 3.736 0.080 14.106 85.171 0.241 0.401 77.607 22.393

18 0.002 0.001 4.218 0.305 0.002 0.007 4.535 0.317 0.631 0.315 96.215 0.631 2.208 6.990 93.010

19 0.002 0.531 2.674 1.583 0.003 0.014 4.807 2.133 0.094 24.895 74.215 0.141 0.656 44.373 55.627

Average 0.004 0.279 2.747 1.203 0.003 0.009 4.245 1.498 1.121 18.004 74.791 1.110 4.974 32.205 67.795
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(b) Half-period Event Cycle: latency breakdown.

Figure 4.6: Fog deployment: Event Cycle latency breakdown.

Comparing the graphs for both ECspecs is possible to conclude that during most of the time of an
Event Cycle the ALE module is in an idle state (Idle Time) - close to ≈ 68% in both configurations - while
in the remaining time the ALE is processing the event that was collected (Effective Time). Considering
the duration of the ECspecs it means that in average when the ALE is configured with the Baseline
ECspec the module can be in an idle state during 7s while with the Half-period ECspec this idle state
can last for 3 seconds.

Event Effective Time Breakdown. Figure 4.7 summarizes how the time is spent during the stages
of the event processing pipeline. Figure 4.7a presents the time breakdown for each stage of the pipeline
when the ALE is configured with Baseline ECspec and in Figure 4.7b when it is configured with the
Half-period ECspec.
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Table 1 - Edge Server Latency

Read Upload Time (s) Tag Processing 
Time (s)

Idle Time (s) Filtering & 
Aggregation (s)

Report Creation 
Time (s)

Response Time (s) RTT (s) Effective Time (s) Upload Time (%) Processing Time 
(%)

Filtering & 
Aggregation (%)

Report Creation 
(%)

Response Time 
(%)

Effective Time (%) Idle Time (%)

1 0.006 0.001 4.754 1.823 0.001 0.012 6.597 1.843 0.326 0.054 98.915 0.054 0.651 27.937 72.063

2 0.002 0.002 5.294 0.757 0.002 0.009 6.066 0.772 0.259 0.259 98.057 0.259 1.166 12.727 87.273

3 0.003 0.001 4.746 2.895 0.001 0.006 7.652 2.906 0.103 0.034 99.621 0.034 0.206 37.977 62.023

4 0.002 0.001 5.268 3.418 0.001 0.021 8.711 3.443 0.058 0.029 99.274 0.029 0.610 39.525 60.475

5 0.004 0.001 4.738 2.365 0.001 0.006 7.115 2.377 0.168 0.042 99.495 0.042 0.252 33.408 66.592

6 0.014 0.001 5.779 2.701 0.002 0.015 8.512 2.733 0.512 0.037 98.829 0.073 0.549 32.108 67.892

7 0.003 0.001 5.791 2.702 0.002 0.011 8.510 2.719 0.110 0.037 99.375 0.074 0.405 31.951 68.049

8 0.003 0.002 3.163 0.059 0.002 0.015 3.244 0.081 3.704 2.469 72.840 2.469 18.519 2.497 97.503

9 0.005 0.525 7.428 1.586 0.001 0.005 9.550 2.122 0.236 24.741 74.741 0.047 0.236 22.220 77.780

10 0.006 0.002 5.261 3.212 0.001 0.006 8.488 3.227 0.186 0.062 99.535 0.031 0.186 38.018 61.982

11 0.005 0.001 2.166 6.315 0.001 0.009 8.497 6.331 0.079 0.016 99.747 0.016 0.142 74.509 25.491

Average 0.005 0.049 4.944 2.530 0.001 0.010 7.540 2.596 0.522 2.525 94.584 0.284 2.084 32.080 67.920

Latency Results Using ECspec with 10s period
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(a) Baseline Event Cycle: event pipeline breakdown.

Latency Results Using ECspec with 5s period

Table 1 - Edge Server Latency

Read Upload Time (s) Tag Processing 
Time (s)

Idle Time (s) Filtering & 
Aggregation (s)

Report Creation 
Time (s)

Response Time (s) RTT (s) Effective Time (s) Upload Time (%) Processing Time 
(%)

Filtering & 
Aggregation (%)

Report Creation 
(%)

Response Time 
(%)

Effective Time (%) Idle Time (%)

1 0.002 0.528 4.219 0.185 0.002 0.020 4.956 0.737 0.271 71.642 25.102 0.271 2.714 14.871 85.129

2 0.002 0.001 0.987 -0.000 0.002 0.011 1.003 0.016 12.500 6.250 0.000 12.500 68.750 1.595 98.405

3 0.001 0.530 3.698 0.710 0.007 0.006 4.952 1.254 0.080 42.265 56.619 0.558 0.478 25.323 74.677

4 0.002 0.001 2.110 0.449 0.002 0.005 2.569 0.459 0.436 0.218 97.821 0.436 1.089 17.867 82.133

5 0.001 0.531 2.635 1.764 0.004 0.007 4.942 2.307 0.043 23.017 76.463 0.173 0.303 46.682 53.318

6 0.003 0.014 2.092 0.456 0.002 0.007 2.574 0.482 0.622 2.905 94.606 0.415 1.452 18.726 81.274

7 0.013 0.516 2.115 2.290 0.003 0.011 4.948 2.833 0.459 18.214 80.833 0.106 0.388 57.255 42.745

8 0.001 0.008 2.632 0.455 0.003 0.005 3.104 0.472 0.212 1.695 96.398 0.636 1.059 15.206 84.794

9 0.002 0.529 1.588 2.821 0.004 0.007 4.951 3.363 0.059 15.730 83.883 0.119 0.208 67.926 32.074

10 0.006 0.003 4.212 0.292 0.002 0.024 4.539 0.327 1.835 0.917 89.297 0.612 7.339 7.204 92.796

11 0.012 0.519 4.225 0.013 0.002 0.010 4.781 0.556 2.158 93.345 2.338 0.360 1.799 11.629 88.371

12 0.003 0.001 4.219 0.305 0.006 0.006 4.540 0.321 0.935 0.312 95.016 1.869 1.869 7.070 92.930

13 0.006 0.526 0.540 3.706 0.002 0.006 4.786 4.246 0.141 12.388 87.282 0.047 0.141 88.717 11.283

14 0.001 0.004 4.214 0.298 0.003 0.006 4.526 0.312 0.321 1.282 95.513 0.962 1.923 6.894 93.106

15 0.005 0.523 0.532 3.724 0.003 0.007 4.794 4.262 0.117 12.271 87.377 0.070 0.164 88.903 11.097

16 0.001 0.001 4.214 0.310 0.003 0.005 4.534 0.320 0.313 0.313 96.875 0.938 1.563 7.058 92.942

17 0.003 0.527 1.078 3.182 0.009 0.015 4.814 3.736 0.080 14.106 85.171 0.241 0.401 77.607 22.393

18 0.002 0.001 4.218 0.305 0.002 0.007 4.535 0.317 0.631 0.315 96.215 0.631 2.208 6.990 93.010

19 0.002 0.531 2.674 1.583 0.003 0.014 4.807 2.133 0.094 24.895 74.215 0.141 0.656 44.373 55.627

Average 0.004 0.279 2.747 1.203 0.003 0.009 4.245 1.498 1.121 18.004 74.791 1.110 4.974 32.205 67.795
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(b) Half-period Event Cycle: event pipeline breakdown.

Figure 4.7: Fog deployment: event processing pipeline breakdown.

It is possible to observe that the Fltering & Aggregation stage is the most time consuming for both
Event Cycle specifications. With the Baseline ECspec this stage occupies close to ≈ 95% of the total
time, while with the Half-period ECspec this value is close to ≈ 75%. The reason for this difference is in
the Tag Processing stage. With the Baseline ECspec the time for processing the event data represents
close to ≈ 2.5% of the total time while with the Half-period ECspec this value is close to ≈ 18%. The
Upload and Response stages together represents a small percentage of the time spent to process
the event - close to ≈ 5% for both specifications - while the percentage of time to create the reports
represents less than ≈ 1% of the total time.

Experiment Results. As in the previous experiment, in our scenario the warehouse door only will
open if the ALE module was configured with the Half-period ECspec, otherwise the robot will crash with
the door.

4.3.2 Data Storage Performance

To evaluate the data storage performance for the Fosstrak middleware we use the data recorded with
the Rec&Play module - which is able to record RFID sessions that stores the events occurred in the
warehouse maintaining the order and time from the beginning of the session - were used as base to
execute the tests. The sessions were recorded in a scenario developed by Correia et. al [32]. In this
scenario tagged a robot is moving in a closed circuit where two RFID antennas were used facing each
other, as illustrated in Figure 4.8.

As described in Section 4.1.2, the methodology consists in simulating a given number of readers that
are sending events in the warehouse. This simulation was performed through JMeter5, a Java application
designed to perform load testing and measure application performance. In order to reproduce some
situations that can occur in a real smart warehouse, we perform the following variations in the tests
corresponding to the robot movements:

5http://jmeter.apache.org/
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Figure 4.8: Robotic Warehouse demonstrator developed by Correia et. al [32].

• Standard The test is executed with the amount of events and period from the recorded session,
corresponding to the robot moving at standard speed inside the warehouse.

• Double of Requests The test is executed with twice of events from the recorded session, corre-
sponding to two robots moving at standard speed inside the warehouse.

• Half of Interval The test is executed with the amount of events and half of the period from the
recorded session, corresponding to the robot moving at twice the speed inside the warehouse.

The evaluation was executed in two scenarios, Product pick up run and 3 product pick up run.
In the Product pick up run the robot picks the product, transport it to the destination and then returns
to its original position. In the Triple Product pick up run the robot executes the same operation of the
Product pick up run scenario, but in this the operation is repeated for 3 consecutive products. In both
scenarios, we are simulating up to 5 readers sending events concurrently.

4.3.2.1 Product pick up run

In this scenario the session contains the data recorded based in the events generated during a product
pick up run. In the current experiment each reader triggered 1593 events with a time period of 82ms

between each event.

Figure 4.9 presents the system metric CPU Utilization for the current experiment. Comparing the
values obtained in the experiment for the proposed variations, the Standard and Double of Requests
variations the presents similar results - maximum CPU close to 14% - and its behavior tend to assume a
linear pattern. For the Half of Interval variation, it is possible to observe that the metric value is always
higher - maximum close to 16% - when compared with the other variations. The metric behavior changes
according the number of threads that are sending events and tend to take a sinusoidal pattern.

The system metric Network In, presented in Figure 4.10, assumes a similar behavior of the previous
metric. For the Standard and Double of Requests variations, they presented similar results - maximum
close to ≈ 2.5 Megabyte (MB) - and its behavior tend to assume a linear pattern. It is possible to take
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Table 5

Standard Run Double of 
Requests

Half of Interval

1 3.802 3.668 4.534

2 6.6 6.7 8.1

3 8.938 8.766 9.802

4 11.5 11.604 13.954

5 14.09 14.136 15.086
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Figure 4.9: CPU Utilization performance results.

Table 4

Standard Run Double of 
Requests

Half of Interval

1 0.542 0.536 0.681

2 1.05 1.089 1.353

3 1.556 1.554 1.677

4 2.062 2.153 2.748

5 2.584 2.572 2.966
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Figure 4.10: Network traffic performance results.

the same conclusions for the Half of Interval variation, where the results are always higher - maximum
close to ≈ 3 MB - and the behavior tends to assume a sinusoidal pattern.

4.3.2.2 Triple product pick up runs

In this scenario the session contains the data recorded based in the events generated during 3 products
pick up runs. In the current experiment each reader triggered 8895 events with a time period of 57ms

between each event.

Figure 4.11 presents the system metric CPU Utilization for the current experiment. Comparing the
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Table 1

Standard Run Double of 
Requests

Half of Interval

1 4.186 4.054 4.85

2 7.492 7.374 8.334

3 10.336 10.536 11.696

4 13.8 13.3 14.212

5 16.273 16.126 17.127
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Figure 4.11: CPU Utilization performance results.

Table 2

Standard Run Double of 
Requests

Half of Interval

1 0.622 0.6 0.744

2 1.252 1.271 1.437

3 1.841 1.84 2.183

4 2.432 2.549 2.654

5 3.172 3.347 3.438
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Figure 4.12: Network traffic performance results.

results obtained in the experiment, it is possible to conclude that they are very similar for all variations.
The Half of Interval continues to present the highest values - maximum close to 18% - while the other
variations presents almost identical results - maximum close to 16%. Regarding the metric behavior, all
variations tends to assume a linear pattern.

As in the previous experiment, the system metric Network In, presented in Figure 4.12, is very similar
to the previous regarding its values and behavior. The Half of Interval variation still presents the highest
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values - maximum close to ≈ 3.5 MB - but as the number of threads increase, it is possible to observe
that the values of the Double of Requests variation tend to be close to the Half of Interval.

4.4 Results Analysis and Discussion

Here we present the result analysis and discussion based on the results obtained in the performed
experiments.

4.4.1 Interaction Latency

Regarding the latency interaction, the results presented in Tables 4.3 and 4.4 show that the fog-approach
presented a better overall performance than the cloud-based approach.

Event Latency. Regarding the results for the Event Latency metric, the fog-based deployment
presented the best results. In order to meet the requirement R1 (presented in 4.3), the event latency
must be less than 5s. According the results it is possible to conclude that both approaches meet R1, but
only when the ALE is configured with the Half-period ECspec.

Network Latency. The most relevant results are in network latency values for both approaches.
The values for the Upload and Reponse metrics presented a substantial difference, where the fog-
based approach is the best one. This allows to conclude that only a fog-based deployment is able to
meet the requirement R2.

However, it is important to point that there some aspects that can improve the network latency of the
cloud-based deployment. For instance, the network connection is a possible bottleneck for the perfor-
mance of such approach. We believe that if the experiments were conducted through a faster network
connection - e.g. a Fiber-optic connection - the overall performance of the cloud-based deployment will
be better, but not as good as in the fog-based deployment.

Idle Time. Another important concern regards with the ECspec configuration. In the experiments
performed for both approaches, we notice that the time where the ALE module remains in an idle state
decreased significantly when the defined ECspec was configured with a smaller period. However, in all
experiments performed the ALE spent more time in the idle state than processing the events. Based on
these results we are able to conclude that none of the approaches meet the requirement R3.

Tag Data Processing. During the evaluation process we noticed a behavior in the performance of
the Fosstrak platform. In the experiments performed for both fog-based and cloud-based approaches we
observe that when the ALE module was configured with the Half-period ECspec, it takes more time to
process the data from the RFID tags. The reason for this performance behavior is unknown and needs
further investigation in order to determine what causes that performance issue.

Data Filtering and Aggregation. Another point observed at the performance of the Fosstrak plat-
form regards about the performance of the Filtering and Aggregation Time metric. In the experiments
performed for the fog-approach the value of the metric improved when the ALE was configured with the
Half-period ECspec. However, in the experiments performed for the cloud-approach, the metric perfor-
mance decrease. To determine what is the reason for this performance issue we need to perform more

39



tests and verify if for faster ECspecs the performance of the Filtering and Aggregation Time continues
to decrease.

4.4.2 Data Storage Performance

Regarding the data storage performance for the Fosstrak middleware, is possible to conclude that the
metrics of CPU Utilization and Network In increase as the threads and requests are growing. It is im-
portant to point out that for this evaluation scenario, it is possible to conclude that the consumption of
computing resources increases as faster the robot moves in the warehouse.

The obtained results in the performed experiments are consistent with the ones obtained by Gomes
et al. [28], which evaluated the performance of the Fosstrak middlware. In the experiments performed
Gomes detected that when the CPU Utilization crosses the value of 95%, the outbound traffic started to
decrease. After analyzing the stored data, the conclusion was that the CPU exhaustion caused by the
EPCIS affected the performance of ALE module - when executed in the same machine - resulting in a
delay of data storage in the EPCIS repository, which explains the observed behavior.

According these results, is reasonable to assume that the performance of the data storage mech-
anism of the Fosstrak implementation can be a bottleneck. However, in the general case the overall
performance is able to meet the requirements defined for our scenario (R4).
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Chapter 5

Conclusion

The present work explored the deployment of IoT applications for smart warehouses based on the RFID
technology with two different deployment approaches: one based in a traditional cloud deployment ap-
proach (cloud-based) and other according the Fog Computing platform (fog-based). More specifically,
the present work focuses to determine if a cloud-based deployment is able to meet the low-latency
requirements of many IoT applications, since that low-latency is an essential requirement of IoT applica-
tions. If a cloud deployment is not able to meet the network latency requirements for those applications,
the cloud platform is not a viable option to perform the provisioning of IoT applications.

To improve the provisioning of RFID application middleware in the cloud, we developed a mecha-
nism based on Docker containers and the Chef tool that automates the installation and configuration of
the modules that composes the Fosstrak platform RFID middleware. This mechanism was of extreme
importance, because it allowed us to perform the application provisioning of the cloud instances in a
very efficient way. Although our experiments were conducted in a single cloud provider, the developed
mechanism gave us the flexibility to choose between several cloud providers to provision the RFID mid-
dleware.

Regarding the system evaluation, we defined two methodologies for evaluate the latency of an event
that occurs in the physical space and the data storage performance for the Fosstrak platform. With the
methodologies proposed, we were able to compare the event latency performance for both cloud-based
and fog-based deployments. We defined two experiments to evaluate the latency performance of the
deployment approaches. The obtained results shows that the event latency performance presented
better results when the application was deployed according a fog-based deployment. However, we
identified some issues regarding the behavior of a Fosstrak module (ALE) that affected the performance
of the event latency for both deployment approaches. Regarding the data storage performance of the
RFID middleware, the results show that the Fosstrak platform is able to process with an acceptable
performance the amount of data that is generated in a smart warehouse.

5.1 Contributions Summary

RFID Smart Place Deployment. A deployment approach based on the Cloud Computing platform
for EPCGlobal compliant RFID middleware platforms. We propose an architecture that focuses to im-
prove the network latency performance of RFID applications by distributing the middleware components
across the fog and the cloud. A mechanism that automates the provisioning of RFID application middle-
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ware in the cloud. The provisioning mechanism allows to provisioning the Fosstrak modules in several
cloud providers. Furthermore, it is based on Docker container images to provisioning the application
stack, it is not specific for the Fosstrak middleware and can be extended for other EPCGlobal compliant
RFID platform. To provisioning the Fosstrak software stack, we developed a set of Docker images that
used to create the Docker containers with the Fosstrak modules, namely ALE, Capture Application, EP-
CIS Repository and MySQL database. The images are open-source and available at Docker Hub. Our
provisioning mechanism was implemented through the Chef configuration management tool. Since the
resources for provisioning the stack using Chef does not exists, we defined a set of recipes and roles
that allow to deploy and configure the Fosstrak software stack.

Interaction Latency Evaluation. Experiments were performed in order to find the best cloud-
based deployment approach that meets the low-latency requirements of RFID applications. Moreover,
we compared both cloud-based and fog-based approaches based on the Event Cycle metrics in order
to determine how the deployment approach affects the performance of the Event Cycle stages.

5.2 Future Work

In the present work, we achieved our initial goals and determined that Utility Computing is adequate to
deploy a smart place application based in RFID technology, both in cloud and fog deployments. However,
our solution is not perfect and there some aspects that can be improved in the future.

Fog Implementation. Our solution proposes that the RFID application is deployed following a fog-
based deployment. This means that we need to have a cloud close to the ground and this cloud must
meet the same requirements of a remote cloud such as high scalability, security and multi-tenancy.
Unfortunately, we were not able to implement a fog that meet these requirements and in our imple-
mentation the fog was built on top of a traditional Virtual Machine. In the future, the fog needs to be
correctly implemented providing all the features of the remote cloud and in addition features such as
location-awareness, mobility support and geo-distribution.

Containers Deployment. In the current implementation we used Docker containers to provisioning
the Fosstrak software stack. In the evaluation of our solution we deploy the containers in a EC2 VM,
which overlays two different mechanisms of virtualization. Although we still are able to take advantage
of some benefits from the containers such as the portability, other benefits such as the low I/O and
disk space are hidden by the VM hypervisor. A future improvement that can be made is to perform
the deployment of the containers on top of the bare-metal or in a cloud-based container service - e.g.
Google Kubernetes 1 or AWS EC2 Container Service2 - in order to improve the overall performance of
the solution.

Cloud Providers Evaluation. The evaluation was performed only in AWS EC2 instances. For the
future is important to evaluate our solution in other cloud providers to compare which offers the best
cost/performance relation.

1http://kubernetes.io/
2https://aws.amazon.com/ecs/
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Latency Interaction Evaluation. To evaluate the latency interaction, we defined only two different
ECspecs. For the future work, we want to evaluate the latency performance for our solution with ECspecs
that presents smaller periods in order to determine which specification is more suitable for our solution.

Evaluation Scenario. In the evaluation scenario we used a virtual RFID reader instead of a physi-
cal one, which does not allow reproducing the environment conditions of a real smart warehouse such as
interferences in the RFID tags antennas, network bandwidth variations, etc. However, in the evaluation
experiments we used for some experiments traces from the work developed by Correia et. al [32], which
have the real data traces mentioned above. A future improvement is to conduct the system evaluation
in a real scenario in order to have more accurate results.

Multi Domain Evaluation In the present work, we confirmed that a cloud based deployment is
adequate to support a smart warehouse application based in RFID technology that requires low latency
interaction for both cloud and fog configurations. But it will be this approach the best choice for all
application domains? Since that IoT covers several domains (as described in 2.1), in the future we want
to perform a multi domain evaluation in order to determine if the Utility Computing is adequate to deploy
the applications for these domains.

Smart Place Cost vs. Performance Analysys The Utility Computing allows to leverage the smart
place infrastructure to the cloud, where the resources are available in a pay-as-you-use model. However,
there is a trade-off between performance and costs. By leveraging the smart place infrastructure to the
cloud, we can reduce the costs of the smart place operation, but the application performance can be
compromised. For the future work, we want to perform an analysis to establish the relation between the
performance and cost of a smart place regarding its deployment approach: cloud, fog and local. This
analysis will allow to choose which is the most adequate approach to deploy an smart place based in
the performance of the application and the costs of the smart place operation.

5.3 Cloud infrastructure for Smart Place applications

With this work we have contributed to the validation of the suitability of the Cloud for Things-based
applications. We believe that using the cloud infrastructure to support smart place applications will be
the most adopted approach, even for applications that have strict requirements such for low-latency and
context-awareness. The flexibility provided by the cloud paradigm will allow that IoT applications from
several domains may be deployed in a cloud infrastructure and take advantage of the benefits offered
by this paradigm. However, reliable and fast network connections are a precondition. Another way to
improve would be to have utility computing principles near the edge of the network, near the devices, as
represented by the fog approach in this work.
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