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Abstract
A comprehensive solution of the electron kinetics in gas discharges, accounting for
dependencies in space, velocity and time, is often unfeasible. Therefore, the electron behavior is
frequently coupled to fluid models under one of two assumptions: the local-field approximation
(LFA), which equates the electron kinetics to the steady-state calculation with the local and
instantaneous value of the reduced electric field; or the local-energy approximation (LEA), in
which the rate coefficients and the electron power distribution among different collisional
channels depend on the local value of the mean electron energy. In this work, we focus on
time-locality to assess the impact of the LFA and LEA assumptions on the calculation of the
temporal evolution of the electron kinetics in nanosecond discharges. To do so, we consider an
accurate Monte Carlo time-dependent formulation as golden standard. We study electron
relaxation in different background gases (air, argon, and mixtures of both) at two pressures (10
and 100 Torr). The LEA generally provides more accurate results than the LFA, with increasing
differences at lower pressures, where energy relaxation is slower. The greater accuracy of the
LEA comes from the temporal effects introduced by the equation for the mean electron energy,
which is absent in the LFA. Opting by the LFA in conditions of slow relaxation can lead to
serious degradation of the model results, with errors on the production of excited species up to
several tens of percent. Hence, in those scenarios, and when a kinetic approach is not possible,
the LEA should be adopted instead of the LFA. The comparison is extended to a two-term
time-dependent solver based on a quasi-stationary assumption for the first anisotropy. This
method provides a good description of the electron kinetics, except at early times (! 0.2 ns) at
10 Torr, where the quasi-stationary assumption becomes inaccurate.
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1. Introduction

Interest in nanosecond-pulsed discharges (NPDs) is rapidly
growing due to their remarkable non-equilibrium proper-
ties [1–5]. However, their potential comes with considerable
complexity, and a detailed study of the fundamental pro-
cesses in the discharge is necessary to determine the most
efficient configuration for a specific application. NPDs are
characterized by very high reduced electric fields, E/N, that
can be as high as →1000 Td, with rising times on the nano-
second timescale. These characteristics pose significant mod-
eling challenges, particularly concerning electron kinetics and
their coupling with heavy species.

The electron kinetics in gas discharges can be described by
the electron Boltzmann equation (EBE) or by Monte Carlo
(MC) simulations. However, in either approach, obtaining a
complete solution that accounts for dependencies in space,
velocity and time is usually impractical. As a result, the elec-
tron behavior is often coupled with fluid models under one of
two assumptions [6–11]. The first assumption, the local-field
approximation (LFA) or the quasi-stationary approximation,
equates the solution of the electron kinetics to the steady-state
calculation using the local and instantaneous value of E/N.
This approximation holds when the electron energy relaxa-
tion/thermalization is sufficiently fast. The second assumption
is the local-energy approximation (LEA), in which the rate
coefficients and the electron power distribution along differ-
ent collisional channels depend on the local value of the mean
electron energy. In this case, the EBE is typically solved for a
wide range of E/N under steady-state conditions, and the res-
ults are then converted into a lookup table as a function of the
mean electron energy. Moreover, an additional equation for
the mean electron energy is included, using the input power
from the electric field and the power losses obtained from the
lookup table.

The focus of this work is on time locality, assessing the
impact of the LFA and LEA assumptions on the temporal
evolution of electron kinetics in NPDs, where the timescales
of energy relaxation can be comparable or even longer than
the pulse timescales. The present work is also relevant for
the study of streamer discharges at atmospheric pressure, as
the electric field at the streamer heads typically involve very
rapid changes in E/N, where locality approximations might
not be valid [6, 12, 13]. We consider the formulation within
the LisbOn KInetics MC (LoKI-MC) solver [14, 15] as the
golden standard for the homogeneous electron kinetics, since
it provides the exact solution apart from statistical fluctu-
ations. We then compare this accurate solution against the
LFA, LEA and two-term time-dependent approaches in nano-
second pulses, varying the gas pressure (10 and 100Torr) and
considering both molecular (N2–O2) and atomic (Ar) gases.

The low-temperature plasma community has dedicated sig-
nificant efforts to the study of the temporal relaxation of the
electron kinetics following the instantaneous application of
an electric field with fixed amplitude, as thoroughly reviewed
by [16]. For instance, investigations have been reported in

He [17, 18], Xe [16, 19], Ne [20], Ar [18, 21], N2 [17, 20,
22–24], N2–O2 (air) [23, 25], and He–O2 [26]. While most
investigations focus on selected E/N values, the comprehens-
ive study conducted by [16] covers a broad range of E/N
fields for Xe, revealing a pronounced dependence of thermal-
ization time on E/N. Regarding time-dependent E/N pulses,
rather than step-like variations, studies of electron relaxation
have been conducted in N2 and N2–O2 by [23], where a time-
dependent solution is compared with the LFA, and in He–O2

by [26], where a time-dependent solution is compared with
the LEA. However, these studies rely on solving the two-term
Boltzmann equation along with a quasi-static approximation
for the first anisotropy f 1. Besides the well-known limitations
of the former [14, 27], the latter may not accurately capture
the non-equilibrium behavior inherent in steep variations of
E/N [17]. For this reason, the present study extends the ana-
lysis to evaluate the accuracy of the two-term time-dependent
solution in nanosecond pulses.

The manuscript is structured as follows. Section 2 presents
the theoretical background, where section 2.1 outlines the
problem at the core of this study and the next three subsec-
tions elaborate on the different methods being compared in
this research: section 2.2 introduces the time-dependent MC
solver, LoKI-MC; section 2.3 discusses the LFA and LEA
assumptions; section 2.4 provides a concise overview of the
two-term time-dependent solver, LoKI-B. Section 3 presents
and discusses the results obtained using the different methods.
Section 4 closes the manuscript with final remarks.

2. Theoretical background

2.1. Problem statement

In this work, we study the temporal evolution of the electron
kinetics in nanosecond E/N pulses under homogeneous con-
ditions. We pay particular attention to selecting configurations
that closely resemble those observed in experiments. We use
the following analytical expression for E

N (t) from [23]:

E
N
(t) =

E0

N

√
t

tpulse
exp

(
− t
tpulse

)
, (1)

where E0/N= 700 Td and tpulse = 5 ns. The corresponding
temporal profile of E/N is illustrated in figure 1. It reaches a
maximum value of approximately 300 Td after t= 2.5 ns and
decays to a value approximately 100 times lower after 32 ns.
This expression mimics well typical profiles of nanosecond
discharges; see, for instance, figure 6 in [28] and figure 2 in
[29].

It should be noted that this work does not aim at provid-
ing an accurate description of the spatiotemporal evolution of
nanosecond discharges. For example, high-speed ionization
waves are formed in nanosecond discharges, and the pulse
of the electric potential moves along the discharge length
at a high speed [30–32]. Moreover, the breakdown in nano-
second discharges is often caused by the early development
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Figure 1. Reduced electric field pulse analyzed in this study, as
defined by expression (1), with E0/N= 700 Td and tpulse = 5 ns. In
addition, the figure presents a linear reconstruction of the E/N
pulse, achieved by considering intervals between different slopes of
0.05 ns.

of electron avalanches, which cannot be properly described
with a zero-dimensional formulation. Additionally, the elec-
tron relaxation at later stages of the electric field pulse can
be strongly influenced by electron escape to the surrounding
walls. Here, we avoid the intricacies of a simultaneous spatial
variation, which is highly system-dependent, and systematic-
ally evaluate the impact of different approximations on the fast
temporal evolution of electron kinetics using a homogeneous
formulation.

To assess the importance of collisionality in electron relax-
ation, we consider two gas pressure values: 10 and 100 Torr,
which are commonly encountered in real discharges [3, 28,
29]. Moreover, we investigate two distinct background gas
mixtures, 80%N2–20%O2 (air) and 100%Ar, in order to eval-
uate the electron kinetics across a wide range of conditions.
In air, electron energy relaxation at low-to-medium energies
is efficient and controlled by rotational and vibrational colli-
sions, while in argon, it is less efficient and mainly controlled
by elastic collisions. Consequently, the effectiveness of time-
locality approximations may differ for these two background
gas mixtures. In section 3.4, we also address mixtures con-
taining both air and argon. The input cross-section data for
the various gases are consistent across the different methods
and are taken from the IST-Lisbon database on LXCat [33–
36]. As the influence of Coulomb collisions is neglected, the
results of the electron kinetics do not depend on the elec-
tron density, and the initial value for the electron density is
only relevant for the impact on the chemical kinetics, which is
addressed in section 3.4. In all cases, the electron density is ini-
tialized to 2.58× 1018m−3, which corresponds to initial ion-
ization degrees of 8× 10−6 and 8× 10−7 at 10 and 100 Torr,
respectively.

2.2. MC time-dependent solver

LoKI-MC simulates the electron kinetics in a background gas
under the influence of electric and magnetic fields. The tech-
niques employed in LoKI-MC are detailed in [14, 15, 37].
Therefore, only a brief overview is given here. LoKI-MC
tracks the stochastic motion of multiple electrons over time,
characterized by free flights punctuated with electron-neutral
collisions. The time intervals between collisions are calculated
according to the null-collision method, using a trial collision
frequency denoted as ν ′. This frequency must be chosen suf-
ficiently high to overestimate the total collision frequency.
The overestimation of the collision frequency is then com-
pensated by introducing null collisions, where no actual inter-
action takes place. The electron ensemble is synchronized at
intervals of ν ′−1 in order to perform the sampling of swarm
coefficients.

To ensure a constant number of electrons throughout
the simulation, we employ a renormalization technique that
adjusts particle counts to balance attachments and ionizations.
However, as our goal is to study the temporal evolution across
various timescales, we have incorporated the flexibility to
track different numbers of electrons over different time inter-
vals. This approach allows us to follow a large number of elec-
trons (106 − 107) during the rise and early decay of the pulse, a
moderate number (105 − 106) during the midterm decay, and a
smaller number (104 − 105) during the late decay phase. In this
way, we can keep the computation time relatively low, around
tens of minutes, while ensuring good statistics for each time
decade of interest.

When incorporating time-dependent electric fields, the
free-flight integration needs to be modified compared to the
DC case. We divide the electron motion into smaller inter-
vals, during which the electric field E varies linearly as E(t0 +
δt) =−(E0 +Aδt)ez. The analytical solution for the electron
position and velocity between time instants t0 and t0 + δt is
straightforward. Under the conditions of this study, assuming
a single linear variation of the electric field along the free flight
is accurate. The quality of this approximation is evident in
figure 1, where the linear reconstruction is compared against
the original E/N profile. It is important to note that the time
interval used for the linear electric field variation is always
equal to or smaller than the synchronization time. In the worst-
case scenario under study, involving argon at 10 Torr, the syn-
chronization time is approximately 0.01 ns. In the linear recon-
struction example, we use a time interval five times larger than
the maximum synchronization time, specifically 0.05 ns, and
the reconstruction still matches the original pulse very well. To
further confirm the accuracy of this approach, we have divided
the motion into 100 smaller parts and found no visible devi-
ation of the results from the single-linear case.

2.3. The local-field and LEAs

For a rigorous discussion on how the local-field and LEAs
appear in the context of fluid modeling, starting from the
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general EBE, the reader is referred to the works by [6] and [8].
Investigations performed under the LFA can be found, e.g. in
[28, 38–40], and under the LEA in [9, 41–46].

The LFA involves calculating the steady-state electron kin-
etics while assuming locality in both space and time. In this
case, the electron energy distribution function (EEDF), rate
coefficients and transport parameters explicitly depend on the
local and instantaneous value of E/N. For a homogeneous sys-
tem, this approximation remains valid as long as the electron
energy relaxation frequency (νε) is much larger than the char-
acteristic frequency of E/N variation (νE/N):

νε
νE/N

$ 1 , νE/N ≡
∣∣∣∣
d(E/N)

dt

∣∣∣∣/(E/N) . (2)

Note that the calculation of νE/N involves the relative vari-
ation of the reduced electric field with time. In principle,
if the numerical precision is sufficient to prevent artificially
high values of νE/N at low reduced electric fields, the com-
parison between νε and νE/N in equation (2) remains useful.
When spatial variations are relevant, in addition to the previ-
ous condition, the mean free path for energy relaxation (λε)
must be much smaller than the minimum characteristic length
for the variations of both E/N and the background gas mix-
ture (λspatial). Although the same conditions must also be veri-
fied for momentum relaxation, verifying the energy relaxation
condition is sufficient, as the momentum relaxation frequency
(νm) is much larger than νε under virtually all conditions.

In the LEA, an equation for the mean electron energy 〈ε≃ is
introduced, which can be expressed as follows [6, 8]:

∂ (ne〈ε≃)
∂t

= eneµeE2 + nePcoll +Θtransp . (3)

Here, ne is the electron density, µe is the electron mobility and
Pcoll is the net power transferred by collisions per electron. The
term Θtransp represents a transport contribution that we omit
since our focus is on temporal effects. Therefore, in homogen-
eous conditions, the equation for mean energy becomes:

d〈ε≃
dt

= eµeE2 +Pcoll −〈νeff≃〈ε≃, (4)

where 〈νeff≃ ≡ dne/dt denotes the average effective ionization
frequency and −〈νeff≃〈ε≃ represents the contribution of the
electron density growth. In the context of the LEA, µe, Pcoll

and νeff are considered functions of the mean electron energy
〈ε≃. The approximated dependencies for these quantities are
derived by solving steady-state electron kinetics across a wide
range of E/N and then parameterizing the results as func-
tions of 〈ε≃ [7, 42]. The validity domain of the LEA is less
well-defined than in the LFA, but due to the use of parameter-
ized steady-state mobilities in the Joule heating term, at least
the momentum transfer must be much faster than the rate of
change of the electric field:

νm
νE/N

$ 1 . (5)

Similarly, in the case of spatial variations, the mean free path
for momentum-transfer (λm) should be much smaller than
λspatial.

Lastly, in this work, we employ LoKI-MC for the accur-
ate solution of steady-state electron kinetics, required for both
the LFA and LEA, ensuring that any deviations from the
exact time-dependent solutions arise due to the time-locality
approximations.

2.4. Two-term time-dependent solver

In addition to the calculations described in the previous
sections, we employ the electron kinetics solver LoKI-B to
solve the time-dependent EBE under the two-term approxim-
ation, as detailed by Tejero-del-Caz et al [23, 47], aiming to
evaluate the quality of the approach. For completeness, we
provide an overview of the primary approximations involved
in LoKI-B, while avoiding intricate mathematical details.

As a starting point, we assume that the homogeneous elec-
tron velocity distribution function, denoted as fe(v, t), can be
expanded in Legendre polynomials with respect to the velocity
vector v:

fe (v, t) =
∑

l

fl (v, t)Pl (cosθ)( f0 (v, t)+ f1 (v, t)cosθ . (6)

Here, Pl(cosθ) is the Legendre polynomial of order l; θ is the
polar angle of v relative to the anisotropy direction (defined
by the electric field); f 0 and f 1 correspond to the isotropic and
first anisotropic components of the electron velocity distribu-
tion function, respectively. When written in terms of energy
u, the isotropic part f0(u, t) corresponds to the EEDF, normal-
ized such that

´∞
0 f0(u, t)

√
udu= 1. Let us note that neglecting

higher order terms in the Legendre expansion is only accurate
if anisotropies are sufficiently low.

Upon inserting this expansion into the homogeneous EBE,
we derive two equations: one for ∂f0

∂t , which depends on f 0
and f 1, and another for ∂f1

∂t , which also depends on f 0 and f 1.
For higher order Legendre expansions, the second equation
would involve f 2 as well. Additionally, we assume that the
term ∂f1

∂t can be neglected and is set to zero. This approx-
imation assumes that the relaxation of f 1 occurs significantly
faster than that of f 0 and the electric field E, and holds when
νm/νε $ 1 (typically the case), together with condition (5).
Under this assumption, f 1 can be expressed as a function of
f 0, and

∂f0
∂t can be simplified to depend solely on f 0. Then, the

equation for f 0 can be solved over time. It is worth noting that
the quasi-static assumption for f 1 serves only to simplify the
complexity of the system and is independent of the two-term
approximation. However, in regions where the electric field
variation is steep and condition (5) does not hold, this assump-
tion may impact the accuracy of the solution, as demonstrated
in the next section.
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Figure 2. Temporal evolution of the mean electron energy (→ε〉), drift velocity (vd) and ionization coefficient (kion), in air, at (a) 10 Torr and
(b) 100 Torr conditions.

3. Results

This section presents the results of the electron kinetics under
the conditions outlined in section 2.1, comparing the rigor-
ous MC time-dependent approach with the other approxim-
ate methods described in sections 2.2–2.4. We begin by ana-
lyzing the temporal evolution of the electron swarm coef-
ficients. Next, we discuss the importance of quantifying
the characteristic relaxation frequencies, and examine the
EEDFs at various time instants. Finally, in section 3.4, we
showcase the impact of these assumptions when coupling
the electron kinetics with the chemical kinetics, focusing
on the production of reactive oxygen and nitrogen species
(RONS).

3.1. Electron swarm coefficients

We start by detailing the temporal evolution of the electron
swarm coefficients in air, under the application of the E/N
pulse depicted in figure 1. Figure 2 illustrates the evolution of
the mean electron energy (〈ε≃), drift velocity (vd) and ioniza-
tion coefficient (kion), up to 100 ns, for conditions at (a) 10 Torr
and (b) 100 Torr.

At 10 Torr (see figure 2(a)), the evolution of 〈ε≃ calcu-
lated by the LFA differs significantly from the rigorous time-
dependent MC approach. This discrepancy arises because at
lower pressures electrons do not collide rapidly enough to
adapt to fast E/N variations, and condition (2) is not veri-
fied. After approximately 2 ns, the LFA and time-dependent
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Figure 3. Temporal evolution of electron-impact O2 dissociation (top), e+O2(X)→ e+ 2O(3P), and N+
2 dissociative recombination

(bottom), e+N+
2 → 2N, in air, at (a) 10 Torr and (b) 100 Torr conditions.

calculations begin to converge. However, around 20 ns, when
the E/N pulse has decayed to 25 Td, the LFA again devi-
ates from the time-dependent solution. A similar trend is
found for vd. Notably, during the initial 2 ns, the LFA signi-
ficantly overestimates electron production, quantified by the
value of kion.

Both the LEA and two-term time-dependent approaches
capture 〈ε≃, vd and kion results closer to the time-dependent
MC results than the LFA. Interestingly, the LEA and two-term
outcomes of 〈ε≃ and vd exhibit striking similarity during the
first 0.2 ns. This resemblance arises due to shared approxim-
ations in the two methods: (i) the two-term time-dependent
solution calculates the first anisotropy f 1 using a quasi-static
approximation, wherein f 1 depends on the instantaneous E/N
and f 0 values; (ii) in the LEA approach, the electron mobil-
ity µe (linked to f 1) is computed using steady-state calcula-
tions parameterized as a function of the mean electron energy.
These approximations are based on the condition (5), which
is not valid during the early pulse rise, and they also influence
the 〈ε≃ evolution, as the Joule heating power depends on f 1 or
µe. Nevertheless, both the LEA and two-term time-dependent
yield satisfactory results after 0.2 ns. In the late pulse-decay
phase, the two-term time-dependent solution aligns closely
with the rigorous solution, while the LEA slightly deviates,
although still closer than the LFA.

At 100 Torr (see figure 2(b)), where electron collisions are
significantly more frequent than at 10 Torr, the LFA is valid
over a broader time interval, being satisfactory from 0.4 ns to
30 ns. For clarity in the presentation of results, the two-term
time-dependent solution is omitted from the figure in this case,
although it closely matches the MC time-dependent calcula-
tion. Similarly to the 10 Torr case, the LEA offers a better
description than the LFA.

To further demonstrate the influence of time-locality
approximations on electron-impact rate coefficients with
relevance on the plasma chemistry, figure 3 illustrates the
temporal evolution of electron-impact O2 dissociation (top),
e+O2(X)→ e+ 2O(3P), and N+

2 dissociative recombination
(bottom), e+N+

2 → 2N. At 10 Torr, during the initial nano-
second, O2 dissociation is strongly overestimated by the LFA
and N+

2 dissociative recombination is underestimated. After
10–20 ns, O2 dissociation is underestimated by the LFA and
N+

2 dissociative recombination is considerably overestimated.
The pronounced overestimation of dissociative recombination
must be highlighted, as it is one of the primary processes lead-
ing to electron loss. Therefore, the LFA may predict a much
faster decay of electrons, which subsequently influences the
overall chemistry during the late decay phase, as demon-
strated in section 3.4. Once again, the LEA provides a much
better result, albeit not perfect. At 100 Torr, the differences
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Figure 4. Temporal evolution of the mean electron energy (→ε〉), drift velocity (vd) and ionization coefficient (kion), in argon, at (a) 10 Torr
and (b) 100 Torr conditions.

between the various approaches are smaller yet still
discernible.

Next, we proceed to analyze the behavior in argon, where
energy relaxation is generally much weaker. Figure 4 illus-
trates the temporal evolution of 〈ε≃, vd, and kion, up to 1µs, for
conditions at (a) 10 and (b) 100 Torr. The disparity between
the LFA and rigorous time-dependent methods is even more
pronounced in argon compared with air. The strong inaccur-
acy of the LFA in describing the late decay arises from the low
energy relaxation frequency of argon, as detailed in the follow-
ing section. Both the LEA and two-term time-dependent solu-
tions providemuch better descriptions than the LFA. However,
similarly to observations in air, neither of these approaches
can accurately capture the steep increase of vd during the

first 0.2 ns. The two-term time-dependent solution matches
the late decay perfectly, while the LEA yields satisfactory
results. At 100 Torr, the LFA shows good results during the
pulse rise after 0.3 ns but still fails notably for times longer
than 30 ns, due to the assumed instantaneous adjustment of
the EEDF to the reduced field when the energy relaxation is
actually slow.

In general, the results presented in this section show that,
despite the highest E/N derivative occurring during the pulse
rise, the use of different locality approximations can have a
greater impact during the E/N decay than during the rise, since
the mean electron energy can remain elevated for an extended
period of time. These findings are further clarified in the fol-
lowing sections.
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Figure 5. Energy-dependent frequencies of momentum transfer (νm) and energy relaxation (νε), in (a) air and (b) argon, at gas pressures of
10 and 100 Torr (left and right axis, respectively).

3.2. Characteristic relaxation frequencies

The analysis of the characteristic relaxation frequencies
provides further insight into the deviations of different time-
locality approximations from the accurate time-dependent
solution and establishes quantitative criteria to anticipate their
domains of validity. The relaxation efficiency is determined
by both the frequency of momentum transfer (νm) and the fre-
quency of energy relaxation (νε). These frequencies can be
estimated in the following way [48, 49]:

νm (ε) =

√
2εe
m

∑

i

niσm,i (ε) , (7)

νε (ε) =

√
2εe
m

{
∑

i∈elast

2m
Mi

niσi (ε)

+
∑

i∈rot,vib,elec,ion

|∆εi|
ε

niσi (ε)+
∑

i∈att

niσi (ε)

}
. (8)

Here, ε is the electron energy in eV; ni and Mi are the dens-
ity and mass of the heavy target in collision i; σm,i(ε) and
σi(ε) are the corresponding momentum-transfer and integral
cross sections, respectively, and they match under the assump-
tion of isotropic scattering; ∆εi is the inelastic energy trans-
fer, which is negative for inelastic collisions and positive for
superelastic collisions. As expressed in equations (7) and (8),
for momentum transfer, the sum is equally performed over
all collision types, whereas for energy relaxation, the sum is
separated into three parts: (i) elastic collisions; (ii) rotational,
vibrational, electronic and ionization collisions; (iii) attach-
ment collisions.

The energy-dependent frequencies νm and νε are depicted
in figure 5, considering both pressures of 10 and 100 Torr and
for the two background mixtures: (a) air and (b) argon. In both
gases, νm $ νε, which is expected. Furthermore, νm and νε
show a strong dependence on the electron energy. In the case
of air, νm exhibits a monotonically increasing trend with elec-
tron energy, except for a localized structure between 1 and
4 eV, where vibrational excitation of N2 dominates. The spikes

in νε starting from 0.3 eV are attributed to resonance peaks
in vibrational excitation of O2, while the relatively large val-
ues of νε between 1 and 4 eV are due to vibrational excita-
tion of N2. The dip in νε at around 4.5 eV is a consequence
of reduced vibrational excitation, and the rapid increase there-
after is associated with the excitation of higher-energy elec-
tronic states and ionization. The significant decrease in νε after
100 eV is due to diminutions in both the magnitude of cross-
sections and the ratios |∆εi|

ε . In argon, momentum transfer
and energy relaxation are entirely controlled by elastic colli-
sions up to approximately 12 eV. Consequently, in this inter-
val, the trends of νm and νε mirror the shape of the elastic
cross section, featuring the well-known Ramsauer minimum
around 0.25 eV. Moreover, in the same region, νε/νm = 2m

M ≈
2.7× 10−5, indicating that energy relaxation is much less effi-
cient than momentum transfer. The sharp increase of νε after
12 eV is caused by the emergence of strong inelastic processes,
including electronic excitations and ionization.

Figure 6 compares the temporal evolutions of the typical
E/N variation frequency, defined as νE/N =

∣∣∣ d(E/N)dt

∣∣∣/(E/N),
and the energy-averaged frequencies 〈νm≃ and 〈νε≃, for both
(a) air and (b) argon, at pressures of 10 and 100Torr. In both
air and argon, 〈νm≃ and 〈νε≃ exhibit variations across differ-
ent orders of magnitude, corresponding to distinct mean elec-
tron energies. Starting with the analysis at 10 Torr, in both air
and argon, the condition νE/N/〈νm≃ , 1 is not satisfied during
the initial 0.2 ns. Therefore, the assumption of instantaneous
relaxation of anisotropies is invalid within this interval, and
the LEA and two-term time-dependent approaches provide
inaccurate results. However, this assumption begins to hold
for later times. Concerning energy relaxation during the pulse
rise, νE/N/〈νε≃ , 1 only occurs after 1 ns, which is roughly
when the LFA provides reasonable results. During the pulse
decay, as electron energy and energy relaxation decrease sig-
nificantly, νE/N/〈νε≃" 1 after 10–20 ns, causing local energy
relaxation to break down and the LFA to become inaccurate.
However, momentum transfer remains sufficiently fast, with
νE/N/〈νm≃ , 1. At 100 Torr, momentum transfer is efficient
throughout the pulse in both gases. The increased collisionality
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Figure 6. Temporal evolution of energy-averaged frequencies of momentum transfer (→νm〉, dashed) and energy relaxation (→νε〉, full), at 10
and 100 Torr, in (a) air and (b) argon. The characteristic frequency of E/N variation (νE/N) is represented with full black lines.

enhances energy relaxation, but it remains insufficient to make
the LFA accurate during the pulse rise and, specially, dur-
ing the pulse decay. This discrepancy is more pronounced in
argon, where for times longer than 20 ns, νE/N/〈νε≃ $ 1.

3.3. Distribution functions

The strong energy dependence of relaxation frequencies, as
demonstrated in figure 5, suggests that the time-dependent
EEDFs can exhibit transient shapes significantly divergent
from the typical steady-state ones.

Figure 7 showcases the EEDFs in air at six time points
t1–t6 throughout the pulse (marked in figure 1), considering
the lower pressure of 10 Torr. The corresponding instantan-
eous values of E/N are indicated in the captions of figure 7.
At t1 = 0.1 ns and t2 = 0.2 ns, neither the LFA, the LEA nor
the two-term time-dependent approaches capture the transi-
ent characteristics of the distribution. By t3 = 0.5 ns, the LEA
and two-term time-dependent approaches begin to provide an
accurate description, as momentum transfer is fast compared
with the field variation. At t4 = 2 ns, temporal locality induces
convergence among all four approaches. The minor deviation
of the two-term time-dependent solution stems from a break-
down of the two-term approximation and not from temporal
non-locality. By t5 = 20 ns, when the pulse has decayed to
E/N(25 Td, the various approximate approaches still predict
well the values of the distribution up to 3 eV, but the LFA
and LEA fail thereafter due to a decrease of energy-relaxation
frequency (see figure 5(a)). This pronounced non-equilibrium
characteristic can only be captured with kinetic descriptions
like MC or two-term time-dependent approaches. Lastly, at
t6 = 53 ns, withE/N having fallen to 0.05 Td, the LFA severely
fails, and the LEA can only crudely replicate the distribution
shape. The intriguing features in the EEDF are directly asso-
ciated with spikes in νe, as shown in figure 5(a). Evidently,
the differences in the EEDFs between the different approxim-
ations directly translate into the differences in the rate coef-
ficients for O2 dissociation and N+

2 recombination shown in
figure 3, which will have an impact in any time-dependent

description of the plasma, as demonstrated in the following
section.

Figure 8 depicts the EEDFs in argon at the same time
instants t1–t6 and 10 Torr. For the initial four time points, con-
clusions parallel those in air. At t1 = 0.1 ns and t2 = 0.2 ns,
the non-equilibrium profile cannot be described with the
three approximate methods. At t3 = 0.5 ns, the LEA and two-
term time-dependent techniques already give good results. At
t4 = 2 ns, electron kinetics attains quasi-static conditions and
all time-locality approximations are valid. By t5 = 20 ns, the
LFA fails in the high-energy tail, while the LEA and two-term
time-dependent methods match the rigorous time-dependent
solution. Finally, at t6 = 53 ns, the LFA collapses and the LEA
still gives reasonably good results, albeit with an overestima-
tion of the high-energy tail. Again, the breakdown of the LFA
may have a significant impact on the chemical description in
the after-pulse phase.

3.4. Impact on chemical kinetics

The previous section highlights significant differences in the
EEDFs based on the assumptions made for the electron kin-
etics solution. Since the electron-impact rate coefficients used
in chemical kinetics are calculated by integrating the cross-
section weighted by the EEDF, it is expected that the use of
time-locality assumptions may significantly influence chem-
ical kinetics. Here, we aim to quantify the error introduced
by the LFA and LEA in chemical kinetics compared to the
accurate time-dependent solution, focusing on the RONS. To
achieve this error quantification, we use the results of the elec-
tron kinetics calculation as input for a system of rate-balance
equations that solve the evolution of the chemical kinetics of
discharges involving air and air-argon mixtures. For the E/N
pulse, we use the same analytical expression (1), but with
slightly different parameters from the previous sections: for
10 Torr, E0/N= 700 Td and tpulse = 10 ns, and for 100 Torr,
E0/N= 400 Td and tpulse = 5 ns, to increase (decrease) the
overall electron-impact ionization at lower (higher) pres-
sures. Additionally, to analyze the accumulation of errors over

9



J. Phys. D: Appl. Phys. 58 (2025) 185204 T C Dias and V Guerra

Figure 7. EEDFs in air, at 10 Torr, for different time instants t1–t6.

pulses, the E/N pulse is repeated every µs during a total of
8µs. This repetition rate ensures various pulses within a short
time period, but is shorter than typical experimental condi-
tions. For all cases, the electron density (ne) is initialized to
2.58× 1018m−3 and the initial gas temperature (Tg) is 300K.
The chemical kinetic scheme involving N2–O2 species is taken
from [50], including the updates on the oxygen kinetic scheme

from [51]. The reactions involving interactions between N2–
O2 and Ar species are taken from [52].

The temporal evolution of the normalized electron density
during the eight E/N pulses is shown in figure 9(a), for air
at both 10 and 100 Torr, as well as for 10% air / 90% argon
mixture at 100 Torr. For air at 10 Torr, the electron density is
strongly underestimated by the LFA, while the LEA provides

10



J. Phys. D: Appl. Phys. 58 (2025) 185204 T C Dias and V Guerra

Figure 8. EEDFs in argon, at 10 Torr, for different time instants t1–t6.

a good description. The unsuccess of the LFA under these con-
ditions is primarily due to a stronger decay in electron dens-
ity after the pulse, caused by an overestimation of dissociative
recombination (main electron sink, see figure 3), which res-
ults in significantly different initial conditions for subsequent
pulses. For air at 100 Torr, as collisionality increases, both the
LFA and LEA provide good descriptions. However, for 10%

air / 90% argon at 100 Torr, the results of the LFA deviate once
again from the accurate solution, while the LEA continues to
provide a good description. This demonstrates that even at gas
pressures near atmospheric levels, the LFA can be problematic
when gas mixtures are mainly composed of atomic gases.

The temporal evolution of the normalized O-atom density
for the same conditions is shown in figure 9(b). Inaccuracies
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Figure 9. Temporal evolution of the normalized (a) electron density and (b) O-atom density, under three distinct conditions: air at 10 Torr,
air at 100 Tor, and 10% air / 90% argon at 100 Torr. The solutions using the inputs from the LFA and LEA are compared against the accurate
time-dependent solution.

in the electron density calculations subsequently lead to errors
in the O-atom density that accumulate pulse after pulse. For
air at 10 Torr and for 10% air / 90% argon mixture at 100 Torr,
these errors are significant, whereas for air at 100 Torr, they
remain minimal.

Figure 10 summarizes the errors of the LFA and LEA,
relative to the accurate solution, on the production of vari-
ous RONS, under the three different conditions. The errors

among different species are similar, which confirms that the
temporal evolutions of O-atom densities exemplify well the
discrepancies between the different approaches. Moreover,
for (a) air at 10 Torr and (c) 10% air / 90% argon at
100 Torr, the LFA errors can reach →40%–50%, whereas the
LEA errors are generally below 10%. This emphasizes the
success of the LEA over the LFA in conditions of weak
relaxation.
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Figure 10. Summary of the errors of the LFA and LEA, relative to the accurate solution, of reactive oxygen and nitrogen species, after eight
pulses.

4. Final remarks

This investigation explored various techniques for model-
ing homogeneous electron kinetics in time-dependent E/N
pulses, including: the rigorous time-dependent MC method,
the LFA, the LEA, and the two-term time-dependent method.
The steady-state results of the electron kinetics, supporting
the LFA and LEA approaches, were obtained through accurate
MC calculations to ensure that any deviations arose from tem-
poral non-locality. This study focused on the electron relax-
ation within typical nanosecond pulses, considering different
background gases (air, argon and mixtures of both) and two
pressures (10 and 100 Torr).

A comparison with accurate time-dependent MC solu-
tions clearly shows that, in general, the LEA provides more
accurate results than the LFA. This improvement in accur-
acy can be attributed to the temporal effects incorporated
through the equation for the mean electron energy in the LEA,
which are absent in the LFA. Therefore, under weak relax-
ation conditions, and when a purely kinetic approach is not
feasible, the LEA should be preferred over the LFA. This
recommendation is in line with other investigations in the
community [6, 7].

Since the LFA is commonly used, it is important to emphas-
ize the potential impacts of this approximation on the res-
ults accuracy, specially at lower pressures or when atomic
gases are abundantly present. During the initial nanosecond,
the excessively fast relaxation predicted by the LFA leads to
an overestimation of electron energy, which in turn results in
an overvaluation of electron-impact ionization, dissociation
and excitation. The repercussions of the LFA can be even
more pronounced during the late-decay phase of the pulse.
As E/N vanishes, the LFA predicts a strong decrease of elec-
tron energy, but energy relaxation might not be fast enough to
adapt to the field reduction. This inaccuracy is critical because
the electron density can remain elevated for a considerable

time after the pulse, influencing the heavy-species chemistry.
For example, the LFA can strongly overestimate dissociat-
ive recombination, a significant path for electron loss. This,
in turn, impacts the overall chemistry of heavy species. In
repetitively-pulsed discharges, the accumulation of these sys-
tematic errors after each pulse can result in substantial devi-
ations in model predictions, reaching up to 50% after eight
pulses in the test cases considered in this work. However, we
should stress that for gas mixtures dominated by molecular
gases at pressures near atmospheric levels, both the LFA and
LEA remain relatively accurate.

We should also note that fluid models employing the LEA
can be numerically more expensive than the ones employing
the LFA, since the treatment of the electron heating and col-
lision terms often leads to numerical stiffness, requiring the
usage of smaller time steps and/or sophisticated implicit solv-
ers. Moreover, there might be cases where the required input
cross sections for the LEA are not available, whereas elec-
tron swarm data (ionization frequencies, velocities and diffu-
sion coefficients) can be extracted from pulsed or steady-state
Townsend experiments, enabling the usage of the LFA but not
the LEA [53].

We have demonstrated that a detailed comparison between
the characteristic frequencies of momentum transfer and
energy relaxation, combined with the rate of E/N variation,
can delineate a priori the domains of validity for time-locality
approximations, such as the LFA and LEA. The LFA is inac-
curate in regions where the condition (2) is not verified, while
the LEA is inaccurate (at least) in regions where the con-
dition (5) is not verified. Temporal discrimination is funda-
mental in this examination, as mean electron energies and,
consequently, mean relaxation frequencies, vary significantly
over time. Concerning spatial variations, the analysis can be
done similarly by comparing the mean free-path for energy
and momentum relaxation with the characteristic lengths for
spatial variation.
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The comparison is extended to a two-term time-dependent
solution with a quasi-stationary approximation for the first
anisotropy f 1. Notably, at the lower pressure of 10 Torr,
the two-term approach fails to capture the initial transient
non-equilibrium. However, at later times, momentum trans-
fer becomes faster than the field variation, f 1 approxim-
ates stationarity, and the assumption holds. Similar con-
clusions have been reported, for example, by [17] and by
Vialetto in chapter 2 of [54]. An analogous behavior is
observed for the LEA method, which relies on steady-state
mobilities parameterized as a function of mean electron
energy.

To simplify the analysis, this study did not account for
the influence of electron–electron and electron–ion colli-
sions on the electron kinetics, although these processes can
be incorporated into any of the formulations tested here.
Under conditions of high ionization degrees (→10−4 − 10−3),
Coulomb collisions may significantly enhance energy relax-
ation efficiency. In such scenarios, the LFA and LEA are
expected to provide descriptions that are equal to or better
than those presented here. In particular, the enhancement of
the electron energy diffusion due to electron–electron col-
lisions should smooth the transient features in the EEDFs
(see figure 7(e)), thereby improving the agreement between
the LEA and the accurate time-dependent description. Work
is in progress to investigate the effects of electron–electron
and electron–ion interactions on the time-dependent electron
kinetics.

We should mention that for nanosecond discharges with
strong reduced electric fields, typically above 300 Td, the elec-
tron velocity distribution can become strongly anisotropic and
nonlocal due to the continuous acceleration of high-energy
electrons, leading to the phenomenon known as runaway elec-
trons [55–57]. Approximations such as the LFA, the LEA or
the two-term expansion are inadequate for describing these
effects. To capture them accurately, a detailed kinetic descrip-
tion, such as theMC formulation within LoKI-MC used in this
work, is necessary [55].

Finally, we wish to express a differing opinion from that
reported in a recent note by [58], where the authors state that
‘the apparent reliability of calculations within the framework
of the local-mean-energy approximation model for a number
of parameters, in our opinion, only slows down progress in
modeling of gas discharge plasma.’ From our perspective, the
LEA remains a powerful method to describe the spatiotem-
poral electron kinetics in low-temperature plasmas and is valid
across a wide range of conditions. The same can be argued for
the LFA. In fact, many significant scientific and technological
advancements in gas discharges over the past decades have
relied on accurate predictions from thesemodels [9, 28, 38–46,
48], enabling the simulation of conditions where a particle-
in-cell + Monte-Carlo approach would be computationally
unfeasible. Naturally, the LEA may not yield reliable results
in regions where the mean free path for electron momentum
transfer exceeds the characteristic length for spatial variations,
such as in short glow discharges at low gas pressures, but
that does not diminish its merit in a wide range of other
conditions.
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