Journal of Mathematical Chemistry Vol. 38, No. 4, November 2005 (© 2005) DOI: 10.1007/s10910-005-6909-z

Properties of the Mittag-Leffler relaxation function

Mário N. Berberan-Santos

Centro de Química-Física Molecular, Instituto Superior Técnico, 1049-001 Lisboa, Portugal E-mail: berberan@ist.utl.pt

Received 26 April 2005; revised 27 May 2005

The Mittag-Leffler relaxation function, $E_{\alpha}(-x)$, with $0 \leq \alpha \leq 1$, which arises in the description of complex relaxation processes, is studied. A relation that gives the relaxation function in terms of two Mittag-Leffler functions with positive arguments is obtained, and from it a new form of the inverse Laplace transform of $E_{\alpha}(-x)$ is derived and used to obtain a new integral representation of this function, its asymptotic behaviour and a new recurrence relation. It is also shown that the fastest initial decay of $E_{\alpha}(-x)$ occurs for $\alpha = 1/2$, a result that displays the peculiar nature of the interpolation made by the Mittag-Leffler relaxation function between a pure exponential and a hyperbolic function.

KEY WORDS: Mittag-Leffler function, Laplace transform, relaxation kinetics

AMS (MOS) classification: 33E12 Mittag-Leffler functions and generalizations, 44A10 Laplace transform

1. Introduction

The Mittag-Leffler function $E_{\alpha}(z)$, named after its originator, the Swedish mathematician Gösta Mittag-Leffler (1846–1927), is defined by [1–4]

$$E_{\alpha}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + 1)},$$
(1)

where z is a complex variable and $\alpha \ge 0$ (for $\alpha = 0$ the radius of convergence of equation (1) is finite, and one has by definition $E_0(z) = 1/(1-z)$). The Mittag-Leffler function is a generalization of the exponential function, to which it reduces for $\alpha = 1$, $E_1(z) = \exp(z)$. For $0 < \alpha < 1$ it interpolates between a pure exponential and a hyperbolic function, $E_0(z) = 1/(1-z)$. The precise nature of this interpolation is the subject of the present study. The Mittag-Leffler function obeys the following relations [3]:

$$E_{1/n}(z^{1/n}) = e^{z} \left[n - \sum_{k=1}^{n-1} \frac{\Gamma(1-k/n,z)}{\Gamma(1-k/n)} \right] \quad n = 2, 3, \dots,$$
(2)

0259-9791/05/1100-0629/0 © 2005 Springer Science+Business Media, Inc.

$$E_{m\alpha}(z^m) = \frac{1}{m} \sum_{k=0}^{m-1} E_{\alpha}(z \ e^{2\pi i k/m}) \quad m = 2, \ 3, \dots .$$
(3)

It follows that $E_{1/2}(z) = \exp(z^2)\operatorname{erfc}(-z)$ and $E_2(z) = \cosh(\sqrt{z})$. An explicit expression for any rational value of the parameter $\alpha = m/n$ can be obtained from equations (2) and (3).

The generalized Mittag-Leffler function is [3]

$$E_{\alpha,\beta}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + \beta)},$$
(4)

so that $E_{\alpha,1}(z) = E_{\alpha}(z)$. In the simplest form $\alpha, \beta \ge 0$. Algorithms for the computation of the generalized Mittag-Leffler function were recently discussed [5].

There has been much recent interest in the Mittag-Leffler and related functions in connection with the description of relaxation phenomena in complex physical and biophysical systems [6–18], namely within the framework of fractional (non-integer) kinetic equations. In this work, and having in view the applications of this function to relaxation phenomena, the discussion will be generally restricted to $E_{\alpha}(-x)$ that corresponds to a relaxation function when x is a nonnegative real variable (usually standing for the time) and $0 \le \alpha \le 1$.

2. Basic relation

Using equations (1) and (4), $E_{\alpha}(-x)$ can be written in terms of two Mittag-Leffler functions with positive arguments,

$$E_{\alpha}\left(-x\right) = E_{2\alpha}\left(x^{2}\right) - x \ E_{2\alpha,1+\alpha}\left(x^{2}\right).$$
(5)

A particular case of equation (3) follows immediately from equation (5),

$$E_{2\alpha}\left(x^{2}\right) = \frac{E_{\alpha}\left(x\right) + E_{\alpha}\left(-x\right)}{2}.$$
(6)

It also follows from equation (5) that

$$E_{\alpha}(-i\omega) = E_{2\alpha}(-\omega^2) - i\omega E_{2\alpha,1+\alpha}(-\omega^2), \qquad (7)$$

a result that will be used in the next section.

630

3. Inverse Laplace transform

A simple form of the inverse Laplace transform of $E_{\alpha}(-x)$ can be obtained by the method outlined in [17]. Briefly, the three following equations can be used for the direct inversion of a function I(x) to obtain its inverse H(k),

$$H(k) = \frac{e^{ck}}{\pi} \int_0^\infty [\operatorname{Re}[I(c+i\omega)]\cos(k\omega) - \operatorname{Im}[I(c+i\omega)]\sin(k\omega)]d\omega, \qquad (8)$$

$$H(k) = \frac{2e^{ck}}{\pi} \int_0^\infty \operatorname{Re}[I(c+i\omega)]\cos(k\omega)d\omega \quad k > 0,$$
(9)

$$H(k) = -\frac{2\mathrm{e}^{ck}}{\pi} \int_0^\infty \mathrm{Im}[I(c+\mathrm{i}\omega)]\sin(k\omega)\mathrm{d}\omega \quad k > 0.$$
(10)

where c is a real number larger than c_0 , c_0 being such that I(z) has some form of singularity on the line $\operatorname{Re}(z) = c_0$ but is analytic in the complex plane to the right of that line, i.e., for $\operatorname{Re}(z) > c_0$.

Using equation (7), application of equation (9) to $E_{\alpha}(-x)$ with c = 0, implying $0 \leq \alpha \leq 1$, yields a general relation for its inverse Laplace transform $H_{\alpha}(k)$,

$$H_{\alpha}(k) = \frac{2}{\pi} \int_0^\infty E_{2\alpha}(-\omega^2) \cos(k\omega) d\omega \quad k > 0, \quad 0 \le \alpha \le 1,$$
(11)

hence, for instance

$$H_1(k) = \frac{2}{\pi} \int_0^\infty \cosh(i\omega) \cos(k\omega) d\omega = \frac{2}{\pi} \int_0^\infty \cos(\omega) \cos(k\omega) d\omega = \delta(k-1),$$
(12)

$$H_{1/2}(k) = \frac{2}{\pi} \int_0^\infty e^{-\omega^2} \cos(k\omega) d\omega = \frac{1}{\sqrt{\pi}} e^{-k^2/4},$$
 (13)

$$H_{1/4}(k) = \frac{2}{\pi} \int_0^\infty e^{\omega^4} \operatorname{erfc}(\omega^2) \cos(k\omega) d\omega, \qquad (14)$$

$$H_0(k) = \frac{2}{\pi} \int_0^\infty \frac{\cos(k\omega)}{1+\omega^2} d\omega = e^{-k}.$$
 (15)

Another integral representation of $H_{\alpha}(k)$, based on the Lévy one-sided distribution $L_{\alpha}(k)$ [8], was obtained by Pollard [19] (see also [17,18]),

$$H_{\alpha}(k) = \frac{1}{\alpha} k^{-(1+\frac{1}{\alpha})} L_{\alpha}\left(k^{-\frac{1}{\alpha}}\right).$$
(16)

If equation (8) is used instead of equation (9), and taking into account equation (7),

$$H_{\alpha}(k) = \frac{1}{\pi} \int_0^{\infty} \left[E_{2\alpha}(-\omega^2) \cos(k\omega) + \omega E_{2\alpha,1+\alpha}(-\omega^2) \sin(k\omega) \right] d\omega \quad 0 \le \alpha \le 1.$$
(17)

This form is less simple than equation (11), but is (formally) necessary for finding the asymptotic expansion of $E_{\alpha}(-x)$, as will be done in Section 5.

4. Complete monotonicity

It is known [19,20] that $E_{\alpha}(-x)$ is completely monotonic for $x \ge 0$ if $0 \le \alpha \le 1$, i.e., that

$$(-1)^n \frac{\mathrm{d}^n E_\alpha(-x)}{\mathrm{d}x^n} \ge 0, \quad x \ge 0, \quad 0 \le \alpha \le 1.$$
(18)

We remark here that this result follows immediately from

$$(-1)^n \frac{\mathrm{d}^n E_\alpha(-x)}{\mathrm{d}x^n} = \int_0^\infty k^n H_\alpha(k) \mathrm{e}^{-kx} \mathrm{d}k,\tag{19}$$

by noting that $H_{\alpha}(k) > 0$ for $k \ge 0$ if $0 \le \alpha \le 1(H_{\alpha}(k))$ is a probability density function), as could be conjectured simply by plotting the function $H_{\alpha}(k)$ for several values of α . Demonstration that $H_{\alpha}(k) > 0$ for $k \ge 0$ is direct for $0 \le \alpha \le$ 1/2, using equation (11) and knowing that $E_{\alpha}(-x)$ ($\alpha \le 1$) is always positive and decreases monotonically. General demonstrations for $0 \le \alpha \le 1$ were given by Feller [20] and Pollard [19].

5. Behaviour near the origin

Any relaxation function I(x) can be written as

$$I(x) = \exp\left(-\int_0^x k(u) du\right),$$
(20)

where k(x) is a x-dependent rate coefficient. When the relaxation is exponential, k(x) is obviously constant. For the Mittag-Leffler relaxation function,

$$k(x) = -\frac{d}{dx} \ln E_{\alpha}(-x) = \frac{1}{E_{\alpha}(-x)} \sum_{n=0}^{\infty} \frac{(n+1)(-x)^n}{\Gamma(1+\alpha+\alpha n)},$$
(21)

whose initial value is finite and close to unity,

$$k(0) = \int_0^\infty k H_\alpha(k) \mathrm{d}k = \frac{1}{\Gamma(1+\alpha)}.$$
(22)

It follows nevertheless from equation (22) that the fastest initial decay occurs for $\alpha = \frac{1}{2}$, a result hitherto unnoticed, and that shows the peculiar nature of the interpolation between a pure exponential and a hyperbolic function performed by the Mittag-Leffler relaxation function.

6. Asymptotic behaviour

Expansion of equation (17) in a power series gives

$$H_{\alpha}(k) = \frac{1}{\pi} \sum_{n=0}^{\infty} a_n(\alpha) k^n, \quad 0 \le \alpha < 1,$$
(23)

with

$$a_0(\alpha) = \int_0^\infty E_{2\alpha}(-\omega^2) \mathrm{d}\omega.$$
 (24)

The Laplace transform of equation (23) is the asymptotic expansion of $E_{\alpha}(-x)$,

$$E_{\alpha}(-x) = \frac{1}{\pi} \sum_{n=0}^{\infty} \frac{a_n(\alpha)}{x^{n+1}}, \quad 0 \le \alpha < 1.$$
(25)

Since $a_0(\alpha) \neq 0$ for $0 \leq \alpha < 1$, the Mittag-Leffler relaxation function has a hyperbolic (x^{-1}) asymptotic decay for $0 \leq \alpha < 1$, and an exponential decay only for $\alpha = 1$. The cross-over between the initial exponential-like decay and the asymptotic hyperbolic decay occurs at a value of x that is the shorter, the smaller the α . It follows from equation (25) that $E_{\alpha}(-x^2)$ asymptotically decays as x^{-2} , hence equation (24) is clearly convergent for $0 \leq \alpha < 1/2$.

7. A recurrence relation

By taking the Laplace transform of equation (11), a recurrence relation is obtained,

$$E_{\alpha}(-x) = \frac{2x}{\pi} \int_0^{\infty} \frac{E_{2\alpha}(-\omega^2)}{x^2 + \omega^2} d\omega, \quad 0 \le \alpha \le 1.$$
(26)

This relation works in the opposite way of equation (6), and allows the direct calculation of $E_{\alpha}(-x)$ from $E_{2\alpha}(-x^2)$. In this way, it follows, for instance, that

$$E_1(-x) = \frac{2x}{\pi} \int_0^\infty \frac{\cosh(i\omega)}{x^2 + \omega^2} d\omega = e^{-x},$$
(27)

$$E_{1/2}(-x) = \frac{2x}{\pi} \int_0^\infty \frac{e^{-\omega^2}}{x^2 + \omega^2} d\omega = e^{x^2} \operatorname{erfc}(x),$$
(28)

$$E_{1/4}(-x) = \frac{2x}{\pi} \int_0^\infty \frac{e^{\omega^4} \operatorname{erfc}(-\omega^2)}{x^2 + \omega^2} d\omega.$$
(29)

The asymptotic behaviour of $E_{\alpha}(-x)$ also follows directly from equation (26) for large $x(\alpha < 1)$.

8. Integral representations

The starting point is the known Laplace transform of $E_{\alpha}(-x^{\alpha})$, $J_{\alpha}^{\alpha}(s)$, which can be obtained in closed form directly from the definition,

$$J_{\alpha}^{\alpha}(s) = \int_0^{\infty} E_{\alpha}(-x^{\alpha}) e^{-sx} dx = \frac{s^{\alpha-1}}{1+s^{\alpha}}.$$
(30)

Application of inversion equation (9) to equation (30) yields

$$E_{\alpha}(-x^{\alpha}) = \frac{2}{\pi} \sin(\alpha \pi/2) \int_0^{\infty} \frac{\omega^{\alpha-1} \cos(x\omega)}{1 + 2\omega^{\alpha} \cos(\alpha \pi/2) + \omega^{2\alpha}} d\omega,$$
(31)

hence a new integral representation for the Mittag-Leffler relaxation function is

$$E_{\alpha}(-x) = \frac{2}{\pi} \sin(\alpha \pi/2) \int_0^\infty \frac{\omega^{\alpha-1} \cos(x^{1/\alpha}\omega)}{1 + 2\omega^{\alpha} \cos(\alpha \pi/2) + \omega^{2\alpha}} d\omega.$$
(32)

Analogous representations are obtained with equations (8) and (10).

The previously known integral representation for $E_{\alpha}(-x^{\alpha})$,

$$E_{\alpha}(-x^{\alpha}) = \frac{\sin(\alpha\pi)}{\pi} \int_0^{\infty} \frac{k^{\alpha-1}}{1+2k^{\alpha}\cos(\alpha\pi)+k^{2\alpha}} e^{-xk} dk, \qquad (33)$$

was obtained from the Bromwich inversion integral [5]. It follows from equation (33) that

$$E_{\alpha}(-x) = \frac{\sin(\alpha\pi)}{\pi} \int_0^\infty \frac{k^{\alpha-1}}{1 + 2k^{\alpha}\cos(\alpha\pi) + k^{2\alpha}} e^{-x^{1/\alpha}k} dk.$$
(34)

Performing an integration by parts, equation (34) can be rewritten as

$$E_{\alpha}(-x) = 1 - \frac{1}{2\alpha} + \frac{x^{1/\alpha}}{\pi} \int_0^{\infty} \arctan\left(\frac{k^{\alpha} + \cos(\alpha\pi)}{\sin(\alpha\pi)}\right) e^{-x^{1/\alpha}k} dk.$$
(35)

Equation (34) can be used to compute the numerical coefficient of the leading term of the asymptotic expansion of $E_{\alpha}(-x)$. Equation (24) becomes

$$a_0(\alpha) = \frac{\alpha}{\pi} \Gamma(\alpha) \sin(2\alpha\pi) \int_0^\infty \frac{k^{\alpha-1}}{1 + 2k^{2\alpha} \cos(2\alpha\pi) + k^{4\alpha}} \mathrm{d}k, \quad \alpha < \frac{1}{2}.$$
 (36)

634

9. Conclusions

The Mittag-Leffler relaxation function, $E_{\alpha}(-x)$, with $0 \leq \alpha \leq 1$, which arises in the description of complex relaxation processes, was studied. From equation (5) that gives the relaxation function in terms of two Mittag-Leffler functions with positive arguments, the inverse Laplace transform of $E_{\alpha}(-x)$ was obtained, equation (11), and used to derive a new integral representation of this function, equation (32), its asymptotic behaviour, equations (25) and (36), and a new recurrence relation, equation (26). It was also shown that the fastest initial decay of $E_{\alpha}(-x)$ occurs for $\alpha = 1/2$, a result hitherto unnoticed, and that shows the peculiar nature of the interpolation between a pure exponential and a hyperbolic function performed by the Mittag-Leffler relaxation function.

References

- [1] G.M. Mittag-Leffler, C. R. Acad. Sci. Paris (Ser. II) 136 (1903) 70.
- [2] G.M. Mittag-Leffler, C. R. Acad. Sci. Paris (Ser. II) 137 (1903) 554.
- [3] A. Érdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, *Higher Transcendental Functions*, Vol. III (McGraw-Hill, New York, 1955).
- [4] K.S. Miller, Integral Transform. Spec. Funct. 1 (1993) 41.
- [5] R. Gorenflo, J. Loutchko and Y. Luchko, Fract. Calc. Appl. Anal. 5 (2002) 491.
- [6] W.G. Glöckle and T.F. Nonnenmacher, Biophys. J. 68 (1995) 46.
- [7] R. Hilfer and L. Anton, Phys. Rev. E 51 (1995) R848.
- [8] K. Weron and M. Kotulski, Physica A 232 (1996) 180.
- [9] K. Weron and A. Klauzer, Ferroelectrics 236 (2000) 59.
- [10] R. Metzler and J. Klafter, Phys. Rep. 339 (2000) 1.
- [11] R. Hilfer, Chem. Phys. 284 (2002) 399.
- [12] R.K. Saxena, A.M. Mathai and H.J. Haubold, Astrophys. Space Sci. 282 (2002) 281.
- [13] R. Metzler and J. Klafter, J. Non-Cryst. Solids 305 (2002) 81.
- [14] R. Metzler and J. Klafter, Biophys. J. 85 (2003) 2776.
- [15] L. Sjögren, Physica A 322 (2003) 81.
- [16] D.S.F. Crothers, D. Holland, Y.P. Kalmykov and W.T. Coffey, J. Mol. Liquids 114 (2004) 27.
- [17] M.N. Berberan-Santos, J. Math. Chem. 38 (2005) 165.
- [18] M.N. Berberan-Santos, J. Math. Chem. 38 (2005) 265.
- [19] H. Pollard, Bull. Am. Math. Soc. 54 (1948) 1115.
- [20] W. Feller, Trans. Am. Math. Soc. 67 (1949) 98.