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For most mechanisms of chemical reactions and molecu-
lar photophysical processes the time evolution of the con-
centration of the intervening species cannot be obtained
explicitly. The most commonly used methods to derive the
approximate analytical expressions are the steady-state ap-
proximation and the pre-equilibrium approximation (PEA),
also called the equilibrium approximation (1–3). This last
approximation is used when fast reversible reactions precede
slower reactions in a mechanism (1–3). General conditions
for the applicability of the PEA, as well as the corresponding
general solution, are not available in the literature, however
several specific cases have been considered (1–4).

In this article, we discuss two specific cases and then con-
sider the more general situation. It is shown that the long-
time behavior of systems subjected to pre-equilibration can
be obtained by a simple kinetic reasoning. General expres-
sions for the time evolution and respective rate constants are
derived and some applications discussed.

Pre-Equilibrium Approximation: Specific Cases

Lindemann Scheme
The PEA is often described in textbooks in connection

with the following mechanism (1–4),
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for which an exact explicit solution exists (1–4). Since this
mechanism is composed in its entirety of unimolecular steps,
the solution can be obtained by the eigenvalue method (1–
3, 5). It can be shown that the time evolution of any of the
participating species is given by a sum of three exponentials,
whose arguments are the eigenvalues of the kinetic matrix.
One of the eigenvalues, corresponding to the long-time limit
(true equilibrium) is zero, while the other two are negative,
and given by algebraic expressions involving the rate constants
of the elementary steps (1–4).

This mechanism applies to several real cases, namely
acid–base equilibrium preceding a first-order or pseudo first-
order step (1, 2), and is also the simplest model for enzyme-
catalyzed reactions and unimolecular reactions in the gas
phase (Lindemann mechanism; ref 1, 3). Conditions of ap-
plicability of the PEA approximation to this mechanism have
been discussed in detail (4). It was found that the PEA ap-
plies if (k1 + k2) >> k3 and this only after an induction period
(equilibration time) of 1�(k1 + k2). One frequently finds in
the literature a conflicting (and incorrect) statement, namely
that the PEA applies only if k2 >> k3. While this is an intui-
tive condition (several “pre-equilibrating” cycles A → B →
A must occur before the reaction can proceed as B → C), a
counter example shows it to be too restrictive. Consider the
case where k2 << k3. From the general condition (k1+ k2) >>

k3 it follows that k1 >> k3 and therefore k1 >> k2. This implies
that the equilibrium is shifted to the right. After the equili-
bration time (in this case, 1�k1), one has a practically com-
plete conversion of A into B, before any significant quantity
of C has been formed. No significant back reaction B → A is
possible, since k2 is small, but a quasi-equilibrium situation is
nevertheless attained. In this case, the equilibration time is
simply the time needed for almost complete conversion of A
into B, by an essentially irreversible reaction. Strictly speaking,
the condition k2 ≠ 0 should be specified, for an equilibrium,
however shifted, to be possible, but it makes no difference,
as shown. It is thus concluded that the condition k2 >> k3 is
only necessary if k1 is of the order or smaller than k3.

Application of the PEA yields a common rate constant
describing the long-time evolution of all three species A, B,
and C,
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assuming that [B]0 = [C]0 = 0. The overall rate constant k
can be rewritten as
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and viewed as the product of the molar fraction of reagent
molecules (A and B) present in the reactive form (B), xB, given
by k1�(k1 + k2), times the intrinsic rate constant (k3),

k x k= 3B (6)

It is of interest to note that under the conditions of
applicability of the PEA, the two eigenvalues of the system
are �(k1 + k2) and �k. One has (k1 + k2) >> k, hence after a
short period of time dominated by k1 + k2 and correspond-
ing to pre-equilibration of A and B, the system slowly evolves
according to the smaller (in modulus) eigenvalue, �k. It is
under this regime that the PEA is valid.

Monomer–Excimer Scheme
A slightly more complex mechanism is
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This mechanism applies, for instance, to monomer–excimer
kinetics, where A is an excited monomer and B is an excimer.
The exact, explicit solution is again known (4, 6). Applica-
tion of the PEA approximation now yields
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assuming that [B]0 = [C]0 = [D]0 = 0. In the monomer–
excimer case, this situation corresponds to the so-called high-
temperature behavior (6), where a fast equilibrium in the
excited state exists, and for which a single exponential decay
(after a short induction period) with a common decay time
for both monomer and excimer is predicted (6). The equation
for the rate constant k, given by eq 11, can be rewritten as
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and it can be viewed as the weighted sum of the rate con-
stants k3 and k4 of the two consumption paths, the weight-
ing factors being the molar fractions of reactive molecules
(B and A, respectively) in each of the paths,

= +k x k x k3 4B A (13)

Pre-Equilibrium Approximation: General Case

We now consider the general case of a fast pre-equilib-
rium (by means of unimolecular or pseudo-unimolecular in-
ternal steps) involving a number of species Ai (i = 1, 2, ...,
n), each of which may in turn react to yield other species
not participating in the fast pre-equilibrium, by means of out-
going steps, as shown in Scheme I.

It is assumed that the internal steps are of the type,

   Ak  +  BlAi  +  Bj   

where the Bi are only involved in internal steps, and do not
significantly change their concentrations with time, while the
Ai also participate in outgoing steps of the type

   Cj  +  �Ai   

Based on the specific results discussed above, it seems rea-
sonable to suppose that the general form of the long-time
rate constant k obtained by the PEA will be,
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where the xi are the equilibrium molar fractions of the Ai,

xi
i

i
i

n

1

=

=
∑

A

A

[ ]

[ ] (15)

and the Γi are the respective rate constants for the outgoing,
irreversible steps, as shown in Scheme 1. The molar fractions
xi can be related to the equilibrium constants of the internal
steps.

A simple proof that eq 14 is correct is as follows: For
any of the Ai (i = 1, 2, ..., n), the following rate equation
holds,
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where ri is the global rate for Ai resulting from all internal
steps (unimolecular or pseudo-unimolecular). Summing all
rate eqs 16, one gets
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Now, ∑i ri = 0 for all times, since the total number of moles
of the Ai is conserved for internal reactions, and eq 17 be-
comes
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After the time lapse needed for equilibration, eq 15 must
hold, and eq 18 becomes
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Scheme I. Generalized scheme for the outgoing, irreversible steps,
where Γi are the rate constants. The products are not shown.
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Since the equilibrium molar fractions xi are time-indepen-
dent (this would not be true in general if the Bi significantly
changed their concentrations with time), a single exponen-
tial decay of ∑i [Ai] follows from eq 19,
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where the rate constant k is given by eq 14, and [Ai]eq stands
for the concentration of Ai upon full equilibration, in the ab-
sence of outgoing steps. Since, from eq 15, [Ai]  is proportional
to ∑i [Ai], one finally has
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again with k given by eq 14. A more general derivation of eq
14 is given in ref 7.

Note that one cannot assume that after the equilibration
time one will have exactly ri = 0 (i = 1, 2, ..., n) in eq 16,
otherwise the equilibrium mole fractions would not be time-
independent, since the disappearance rates Γi are in general
different for each species. This observation serves to stress that
the fast equilibration not only occurs at the early stages of the
reaction, just before the PEA becomes valid, but keeps going
at latter times, maintaining a state of (dynamic) equilibrium.

The validity of eq 21 rests on the assumption of a fast
pre-equilibration process, with respect to the characteristic
times of the outgoing processes. These are given by the in-
verse of the rate constants Γi. The internal pre-equilibrium
must therefore be attained in a time considerably shorter than
the smallest 1�Γi.

A still more general situation can be envisaged if outgo-
ing bimolecular steps of the following type

   Ck  +  �Ai  +  Aj   

are also allowed. In such a case eq 16 becomes
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and eq 17 becomes
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Instead of eq 19, one now has,
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whose solution is
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where,
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If  k2 = 0, eq 25 reduces to eq 20, which has the familiar
form of the elementary first-order reaction  A → P. If, on the
other hand, k1 = 0, then eq 25 becomes,
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which has now the familiar form of the elementary second-
order reaction 2A → P. The more general eq 25 corresponds
to mixed first- and second-order kinetics, occurring for in-
stance in triplet state decay kinetics in solution, where uni-
molecular decay and triplet–triplet annihilation compete (6).

Discussion and Applications

A Probabilistic View
It is interesting to note that the form of eq 14 can be

understood on the grounds of a simple probabilistic argu-
ment: In a situation of fast equilibration, each species Ai can
be viewed as a specific state of an abstract entity A, that is
continuously changing between these states and can be found
in each with probability xi. In this way, the rate constant for
the decay of A (outgoing steps) will be the weighted sum of
the decay rate constants of all states, the weighting factor be-
ing the respective probability.

In some cases, the species A is real, and the Ai are its
states. For instance, in a gas phase unimolecular reaction, an
energized molecule with a given vibrational energy content
frequently redistributes this energy among the normal modes,
sampling many isoenergetic vibrational states, each with a
specific reaction rate (1, 3). Also, in the computation of the
rate constant of an elementary reaction, it is usually assumed
that a Boltzmann distribution is maintained throughout the
reaction; that is, that a fast equilibration with the thermal
reservoir exists. In this case, a continuum of states is usually
assumed, and the summation in eq 14 is replaced by an in-
tegral, as is done in the usual expression for the rate constant
of an elementary bimolecular reaction according to the col-
lision theory (1–3).

The existence of a fast pre-equilibrium allows us there-
fore to qualitatively view the ensemble of the Ai species (i =
1, 2, …, n) as a single species, given their fast interconver-
sion by means of unimolecular or pseudo-unimolecular steps.
This imaginary species reacts according to familiar rate laws,
eqs 20, 25, and 26, their form being dictated by the type of
the outgoing elementary steps.
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A Case with Unimolecular Outgoing Steps
and Multiple Equilibria

As a specific application of eq 14, consider the simplest
mechanism for noncompetitive enzyme inhibition (8, 9),

   ES (KS)E  +  S   

   ESI (KI)ES  +  I   

   E  +  PES   
kP

where E is the free enzyme, S is the substrate, ES is the en-
zyme–substrate complex, I is the inhibitor, ESI is the enzyme–
substrate–inhibitor complex, and P is the reaction product.
The equilibrium constants KS and KI are given by

=KS
EE S
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[ ][ ]
[ ] (27)

ES I

ESI
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[ ][ ]
[ ]
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It is assumed, as usual, that the substrate concentration
is much higher than the total enzyme concentration, [S] >>
[E]t and that it does not change significantly in the time range
of the kinetic experiment. Under the PEA assumption (which
is not obeyed in some enzymatic systems), the species in fast
internal equilibrium are S, ES, and ESI, and the unimolecu-
lar outgoing step is the last reaction of the mechanism. After
the fast pre-equilibration period, and as long as [S] is essen-
tially constant, the product concentration evolves with time
according to

P S S[ ] = [ ] −( ) [ ]−e ktkt1 (29)

where the rate constant k is, from eq 14,
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and xES is the fraction of substrate present as ES
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where x′ES is the fraction of enzyme present as ES,
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one finally gets for the rate constant
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and for the rate of product formation v,
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This relation is also obtained by application of the steady-
state approximation (8), the only difference being that KS is
replaced by the Michaelis constant.

A Case with Bimolecular Outgoing Steps
As a specific application of eq 26, consider the mecha-

nism for decomposition of hydroperoxyl radicals in aqueous
solution (10),

   H+  +  O2
−HO2   

   HO2
−  +  O2HO2  +  O2

−   
kb

   H2O2  +  O2HO2  +  HO2   
ka

where the acid–base equilibrium is fast compared to the dis-
proportionation reactions (10). The interconverting species
are in this case the hydroperoxyl radical, HO2, and the su-
peroxide radical, O2

�, by means of the first (reversible) reac-
tion, and the two outgoing steps are the other two reactions,
both bimolecular. The rate constant k2 of eq 26 is now
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where x1 and x2 are the equilibrium mole fractions of HO2
and O2

�, respectively, and K is the acidity equilibrium constant

[ ]+H [ ]−O
=

[ ]2
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Conclusions

The pre-equilibrium approximation is one of several use-
ful approximation methods that allow one to go from complex
systems of differential equations (the kinetic rate equations)
to simple explicit solutions. Its discussion in textbooks is usu-
ally limited to a few particular cases. This paper presents a
more general view of the pre-equilibrium approximation,
along with the respective solution. Apart from the examples
chosen, many other situations, chemical or photophysical, can
be envisaged where eqs 14, 21, and 25 will be useful.
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