Liquid—vapor equilibrium in a gravitational field
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The effect of a constant gravitational field on the existence and position of the liquid—vapor
boundary of a pure classical fluid is quantitatively discussed on the basis of two simple ntadels:

a perfect gas and incompressible liquid model, énda van der Waals fluid model. The van der
Waals equation is used as a function of reduced parameters, and it is shown that two dimensionless
parameters suffice to describe the vertical concentration profile and the liquid—vapor boundary
position. With this model, it is shown how the gravitational field induces a vertical phase separation,
an observation so common that it is usually taken for granted but not modeled. The conditions for
a gravitational field to produce gas condensation are also discussedo2@merican Association of

Physics Teachers.
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I. INTRODUCTION Il. THE SIMPLEST MODEL: PERFECT GAS AND
INCOMPRESSIBLE LIQUID
The problem of a perfect gas in uniform and nonuniform
gravitational fields was recently discussed in this joufrfal.
A generalization of this problem is the consideration of a realA. Substance in a small container
gas. One of the interesting features of a real gas is the pos- ) , ) )
sibility of condensation, that is, of the existence of liquid— Consider Fig. 1. The container can be a vertical sealed
vapor equilibrium. The discussion of classical liquid—vaporcylindrical glass tube containing a given amount of a fluid,
equilibrium in the presence of a gravitational field can belike H.O or CQ.. Given the internal volume of the container,
done satisfactorily only by using an equation of state allow-V, and the mass of the substanog, we wish to determine
ing for condensation. For this purpose, the van der Waal#he position of the liquid—vapor interfacl, for a given
equation of state is of special pedagogical interest, owing téemperature. If the height of the tubehisandVs andV, are
its simplicity. Nevertheless, the problem can also be modelethe volumes occupied by the gas and liquid phases, respec-
with simpler models for the gas and liquid phases, namelyively, then the liquid—vapor interface will be located at a
the perfect gas and the incompressible liquid, and imposingeight
the existence of equilibrium for a certain pressure at the in-
terface, the vapor or saturation pressig,. This approach ho=f_h, N
is less general, but is valid for temperatures much lower than . . -
the critical temperature of the substance. wheref,_is the volume fraction of the liquid,
The liquid—vapor equilibrium for a pure substance is usu- f =V, IV )
ally pictured as in Fig. 1, where the parameters of the cell 't~ "L° "
that will be used in the calculations are also defined. Implicitggcquse
in this picture is the existence of a const&ot almost con-
stanj grayitational figld, like on Earth, the dens_er liquid m.=p V. =m—mg=m—pg(V—V,), 3
phase being located in the lower part of the container. In the
absence of gravity, and assuming thermal equilibrium, thavherep, andpg are the phase mass densities, one can easily
liquid assumes a spherical shapanimizing the surface en- obtain that
ergy) surrounded by vapor, unless it sticks to the walls of the
container(taking a more complex shape again minimizing P~ PG
the surface energy fﬁm, (4)
In this paper, the effect of gravity on the existence and
position of the liquid—vapor boundary of a pure substance isvherep= m/V is the average density of the substance in the
quantitatively discussed on the basis of two simple modelsell. For a perfect gas phase, the vapor mass density is given
(@) a perfect gas and incompressible liquid model, émda by
van der Waals fluid model. The latter model, accounting for
intermolecular forces, offers some interesting insights when  pg=pgs = MP/RT, (5)
solved for a nonzero constant gravitational field. Some ques-
tions and problems appropriate for undergraduate courses andereM is the molar mass anB,, is the vapor pressure at
given at the end in Appendix A. the given temperature.
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Fig. 2. The phase diagram of a pure fluid.
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crease by 1 m, 10 m, and 2.2 km, respectively. These calcu-

lations show that the loss of liquid water upon moderate
Fig. 1. The cell for the study of liquid—vapor equilibrium. The cell height is heating is negligible in comparison to the predicted increase
h, and the liquid—vapor boundary is lag. due to the melting of all the Earth’'s permanent {@e the
form of glaciers, ice caps, and Greenland and Antarctic ice
sheety which would cause an estimated increase of the av-
B. Substance in a tall container erage level of~70m?
) . .. Adifferent way of changindn, is by modifying the accel-

If the heighth of the container is Iargg, the gas phase will eration of gravity, for example by means of a centrifuge. A
be mhglmogeneous, and the pressure will obey the barometrg‘amme initially atg=0 can be entirely gaseous, while once
formul it is subjected to a gravitational field, a liquid phase may

P(u)=Pgexp—Mgu/RT), (6)  appear (for extremely strong gravitational fields further
: : . phases might show up, such as one or more solid phases
wh.ere g is the acce;ler_aﬂon of gravity, and=z—h, the The liquid phase starts to form whes g, is large enough
ge'ght above the liquid-vapor boundary. Hence, the gag, . the pressure at the bottom of the contaiRég), equals
ensity will be . L .
the saturation pressurBg,. Taking into account that, in the
pc(U) = psarXp(—MgU/RT), (7)  absence of a gravitational field, the pressiiteand density,

where pey is given by Eq.(5). In Eq. (4) an average gas P for an ideal gas are related by E§), we obtain from Eq.
density is now required (9) an equation foiP andgpin,

h RT
_ Jwpe@dz e T [ Mg(h—hy) P=Pearr—r[1— X ~ M /RT)]. (12)
Pe= h—ho - g(h—ho) RT ) Omin

(8) For instance, to start condensing water vapor inha
=10-cm cell initially at a pressure of 08B, and at room

and hence Eq1) become®
4 temperatureg,;=5x10°ms 2.

— Psat 1—exd — Mg(h—ho)) If the container is essentially infinitdn(~) but the mass
h P g(h—hyp) RT h © of the gas is finite, then Eq12) simplifies to
0o— .
pL— &{ 1— EX[{ _ M) } Imin= Psal ph. (13
9(h—ho) RT We notice thaf,,;, is proportional to the , wherep is the
For largeh (h—hg— ), Eq.(9) simplifies to average density of the gas inside the cell §or 0. For the
P _p amount of water on the Eartbh=3x10°kgm™2, and us-
ho=———2 (100 ing Pgy (15°C)=1.7x10°Pa, one getsg,,=6x10 *
9pL ms ?<9.8mM S ?=gean
wherePy=pgh is the pressure at the bottom of the déflat
is, atz=0). I1l. THE VAN DER WAALS FLUID MODEL
An interesting application of Eq10) is the estimation of .
the effect of a change in the Earth's average temperature i 1h€ van der Waals equation
the ocean level. From E10) we have The solid, liquid, and gaseous phases of a substance are
Ahg=—AP/gp, . (11 stable only over a certain range of temperatures and pres-

o o ) sures(Fig. 2). Phase transitions ordinarily occur under equi-
For pure liquid water and an initial uniform temperature of jibrium conditions, and the boundaries in the phase diagram
15°C, an increase of 1 °C implies a drop of 1 cm in thedelineate this behavior. The solid, liquid, and vapor phases
water level! while upon heating to 50, 100, and 374 fjGst  can coexist in equilibrium only at the “triple point.” Else-
below the critical pointthe water level is predicted to de- where only two phases can coexist: the solid and the liquid
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along the fusion curve, and the liquid and the vapor along the
vaporization curve. The former appears on both theoretica 11
and experimental grounds to continue almost without limit
(several solid phases may exjdbut the vaporization curve
terminates abruptly at the critical point. At this point the
temperature, pressure, and molar volume assume characte
istic valuesT., P., andv, for any given substance.

The van der Waals equation is the simplest equation of
state that applies to both gas and liquid states, also predictin
the existence of critical and supercritical stéfés

o
)
A

=3
o

o
.p

Reduced pressure

a
P+ —
v Reduced molar volume

; ; 2

H?revp is the pressurey 1S the molar volume, and (a/U Fig. 3. Isotherms of van der Waals equation in reduced form, showing

=internal pressure) ant (co-volume are two parameters Maxwell's equal area rule to obtain the liquid—vapor equilibrium pressure,

characteristic of each substance. The paranzeteflects the  Psa, and the molar volumes of the phases in equilibrigimshed lines The

Iong-range attractive interaction&an der Waals forces number displayed next to each isotherm is the corresponding reduced tem-
i . erature.

while the parametdn reflects the short-range repulsive ones.”

The van der Waals equation is a cubic equation in the vol-

ume, which means that it has three solutions for a given

pressure if the temperaturg, is less than the critical tem- W€ obtain
peratureT.. The solutions are the molar volume of the lig- dc c
uid, the molar volume of the vapor in equilibrium with the  Gg =~ 7, g - (19

liquid, while the third molar volume&the third rooj lying —_—— =
; ; (1-c/3)c 4

between these two has no physical meanin@. T, only

one of these roots is real, while #=T,., the three roots Equation(19) shows that the reduced concentration profile is

merge into one. The parametersindb can be related to the a function only of the reduced temperature.

c

critical pressurePc, the critical molar Vo|umevc, and the It is assumed that the bOUndary between the two phases is
critical temperatureT., T.=8a/(27Rb), P.=a/(27b?), atthe heighz=h,, so that the liquid in the cell is between
=3b. 0<z=hg and the gas is a&>h, (see Fig. 1 The two phases

are in equilibrium when their pressures and chemical poten-
tials are equal. The equality of pressures lets us derive from

B. The van der Waals equation in a gravitation field Eq. (18) the following equation:
As we have said, the simplest phenomenological equation 8T, —3¢c* 2= :L_ * 2
o . . . * 3C|_ PS&U * 3CG 1 (20)
of state descrlblng the phase transition between the liquid 3/cf —1 3lcg—1

and vapor states is the van der Waals equation. If we |ntro

duce the molar concentrati@= 1/v into Eq.(14), we obtain wherePsy is the reduced pressure for liquid—vapor equilib-

rium, andc; andcg are the reduced liquid and gas concen-
_ RT ) trations at the gas—liquid boundag hy.

—acC”. (15 From the equality of the chemical potentiésolar Gibbs
energieg of the two phases, the condition that the filled areas
in the PV diagram(Fig. 3) be equal can be derivelax-
well’s rule). From the Maxwell rule and the van der Waals
equation, it is possible to obt&in

In a gravitational field the pressure of a fluigas or lig-
uid) within a vertical cell depends on the heigh, and
obeys the balance equatioh

Vg VL

d
d—ZP(Z)Z—QMC(Z)- (16) RTIn_C
V- b
wherev, andvg are the molar volumes in the liquid and gas
states az=h, (vg=3b/cg, v =3b/c] ,). In reduced vari-
d C(2)=— gMC(z) 17 ables, Eq(21) is rewritten as
dz RT/[1-bC(z)]?—2aC(z)" 3ick
We have assumed that the temperature is constant inside the 8T, In 3lct _+9(C’é_ct):3psatr(g_ E) (22
cell.

If we introduce the dimensionless variables reduced gravilf we combine Eq(22) with the left- and right-hand sides of
tational energyE,=Mgz/(RT.), reduced concentratiom;  Ed. (20), we obtain

3 3
+ . (23

+a Psal va—v1), (21)

If we combine Eqs(15) and(16), we obtain a generalized
barometric formula in differential form:

=Cu,, reduced pressur®, =P/P., and reduced tempera- 3/CG 1 CL_CE
ture, T,=T/T., into Eq.(17), and use the fact that E¢L5)

* * _ A% _ A%
can be written in the form S/CL CL tCgl3—-cL 3-Cg
8T From the same set of equations, we also obtain
— r _ 2
Pregrc—1 3¢ (18 Paaty =% Cf [3— (c5+¢f)], (24)
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and 25 P
3
T =3(ch+cf)(3—c&) (3—cf). (25) T

The following equation of mass conservation should be §
added to Eqs(23)—(25):
Vapor

=6h, (26) Liquid

ho h
j C,_(z)dz+f Cg(2)dz

whereC is the average molar concentration in the cell &nd 05
is its height. In reduced variables, E§6) reads 1 L
2

Er(hO) Er(h) 0 N e —
f CL(Er)dEr—i_f CG(Er)dEr ¥
Er(ho)

Reduced concentrati

-0.6 0.4 -0.2 0 0.2 0.4 0.6

O .
Reduced height at the vapor-liquid boundary

3pgh — Mgh)
=—=(Cv)| ==, (27) Fig. 4. Reduced concentration of water, vs the relative height from the
8P RT. vapor-liquid boundary for three reduced temperatufes;0.99(1), 0.7 (2),
wherep is the average mass density of the fluid in the cell.2"d 0-53).
Equations(19), (23), (24), (25), and(27) determine the po-
sition of the boundary between the two phases and of th
liquid and gas density vertical profiles. A solution is thus
obtained as a function of the two dimensionless parameter
T, and Cv.)(Mgh/RT.)=Py/P.. The quantityP, is as
before equal tggh [but not necessarily the pressure at theq 653 the average concentration is subcritica<0.5).
bottom, P(0), because a furt_her contributidh(h) must be  ;yeq1 join at the critical temperaturd,., but excluding
added. The parameteP,/P, is therefore a reduced hydro- s noint, the volume of vapor always exceeds that of the
static pressure. The paramefgr controls the shape of the |iquid. Supercritical curve@ diverge and the volume of va-
reduced concentration profile, while the parame®gr/P.  por goes to zero as the temperature increases. The behavior
defines the position of the boundary with respect to the botof curves3, where the average concentration is smaller than
tom of the cell. For a giverT,, the same position can be the critical concentration, is qualitatively the exact inverse of
obtained with a small concentration and a tall cell, or with athe behavior of curveg. Here the vapor has the tendency to
large concentration and a small cell, because it is the productccupy the entire cell with an increase in temperature, while
Ch that matters for the attainment B, at a given height. the liquid vanishes at temperatures smaller than the critical.
The fact that two independent dimensionless parameters N Fig. 6 the molar fraction of liquid water versus the top
suffice to describe the problem, and their respective formféduced gravitational energdylgh/RT, is shown for a re-
can be obtained by an application of Buckingham’s Pi theoduced temperaturd,=0.95, near the critical point. The
rem of dimensional analysts!!as outlined in Appendix B. single curves are determined by three different average con-
centration values: curvehas an average concentration equal

to 3 of the critical concentration, curv2 hasc=0.45, and
curve3 hasc=0.4. It can be clearly seen that by increasing
Using Eqs(24)_(26), C"L‘ , Cé, and Py are first obtained the gravitational field, we go from a Single gas phase to a
as a function of the reduced temperat(see Fig. 3. These
reduced concentrations are then used as initial conditions in
the integration of Eq(19) along the positive and negative 1
directions of thez axis, starting fronz=hg. In this way, the
profilescg(z) andc, (z) are generated. After this integration, 0.8+
the mass conservation, E@7), is used to computh,, that g
is, the position of the gas—liquid boundary inside the cell. £
In Fig. 4 the reduced concentration of liquid and gaseousg
water is shown versus the reduced heiyhgzZ/RT, at the g o4
vapor-liquid boundary for three reduced temperatuilgs, 3 S
=0.99, 0.7, and 0.5. From the figure it can clearly be seen” T2
how the concentration of the two phases changes around th %2 h

Eorrespond to different average molar concentrations. For
curvesl, the average reduced concentration along the tube is
%’qual to the critical concentratiom£1). For curves2 the
average concentration is supercritical=(1.5), while for

V. RESULTS AND DISCUSSION

06 £ =

boundary atz=h, (see Fig. 1 For temperatures signifi- 3 “
cantly lower than the critical one, no changes in liquid con- o ¢ + t ! o
centration with the height are observed, that is, the liquid is 0.4 0.5 0.6 0.7 0.8 0.9 1
almost incompressible. Reduced Temperature

In Fig. 5 the volume fraction of water as a function of ) o
reduced temperature is shown for a tube of 10 cm height anlag. 5. The volume fractions of liquid and gaseous water vs the reduced

for =9.8ms2 a situation that corresponds to a top re- temperature], , for three different values of the average reduced concen-
9=9. ’ p p tration,c=1 (1), c=1.5(2), andc=0.5 (3). Dashed lines are the vapor

du_Ced gravitational energylgh/RTc=3:3>< 1076_- The thre? curves while continuous lines are the liquid curves. The acceleration of
pairs of curvegdashed for vapor, continuous line for liquid gravity is 9.8 ms2, and the cell height is 10 cm.
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1 APPENDIX A: SUGGESTED QUESTIONS AND
PROBLEMS

0.8 1 (1) Consider pure wateor any other pure substancén

the presence of a gravitational field, the solid, liquid, and
0.6 - gaseous states may coexist in the laboratory for several tem-
peratures, while the phase rule states that this coexistence
occurs for a single temperature, the triple point. Why does
0.4 1 this coexistence occur?
(2) Use the van der Waals equation and Maxwell’s rule to
0.2 - redraw Fig. 3. In particular, obtain the two-phase region
boundary line. For this purpose, choose an appropriate set of
3 values of the reduced molar volume of the lig@ghat are
0 - T the minimum and maximum valugsand find for each the
0.01 0.1 1 10 reduced molar volume of the vapor by solving E&3) nu-
Reduced Gravitational Energy merically. Then use Eg24) to obtain the corresponding re-
duced pressure. Also discuss the meaning of negative pres-
Fig. 6. The molar fraction of liquid water vs the reduced gravitational en-gres.
ergy Mgh/RT, at a reduced tem_pgratur'é,,:'l'_/Tczo.QS, for three differ- (3) Use Fig. 6 to obtain the angular frequency of a centri-
ent average reduced concentratias 0.5(1), ¢=0.45(2), andc=0.4(3.  f,qe when the liquid—vapor interface first appears. The ra-
dius of the centrifuge is 5 m and the height of the sample

. - . .., tube is 10 cm. Calculate this frequency for the reduced con-
single liquid phase, passing through a two-phase liquid¢entrationsc=0.5, 0.45, and 0.4. What will be the molar

vapor system. The appearance of qul_Jid begins first in_ a SYStaction of liquid if the frequency is doubled?
tem with a higher average concentratiearvel). From Fig. (4) As shown in Appendix B, two dimensionless param-
6 it is evident that at very high gravitational fields almost all eters define the position of the' liquid—vapor boundary. Ob-

molecules are in the liquid statenole fraction equal to tain a general graphical solution in the form of a plotlbf
unity), that is, the gas immediately above the interface is so
rarefied as to be negligible vs I1, (one curve for each value dfl;), and as a three-

Whenever the top pressurB(h), is negligible with re- dimensional plot of I, vsII, andlls.
spect to the hydrostatic pressuPy, the value of the top

reduced gravitational energy for which the liquid phase first
appearsEX(h), is given by APPENDIX B: DETERMINATION OF THE NUMBER

AND TYPE OF THE DIMENSIONLESS
Mgh _ 3 Psay 59 PARAMETERS FROM BUCKINGHAM'S Pl
T (28) 511
RT. 8 ¢ THEOREM
and is thus inversely proportional to the average concentra-
tion of the substance in the cell, cf. EQ.3).

Molar Fraction of Liquid

EX(h)=

For the present problem, the liquid—vapor boundary posi-
tion h, (distance to the bottom of the celWill be a function

of the following independent quantities: fluid critical param-
V. CONCLUSIONS etersP, andT,, fluid average mass densipy cell heighth,

In this work, the effect of gravity on the existence and acceleratloi of gravity g, temperature T, and. ho
position of the liquid—vapor boundary of a pure substance™ f(Pc:Tc,p,h,g,T). The number of parameters is thus
was quantitatively discussed on the basis of two simple mod3€ven, while four dimensional base quantities appear: Mass,
els: (a) a perfect gas and incompressible liquid model, andV. length,L, time, T, and temperatured. The number of
(b) a van der Waals fluid model. The first model is a speciadimensionless groups is therefore #=3. Indeed, a general
case of the latter, for temperatures much lower than the critidimensionless group must obey
cal temperature. For the second model, it was shown thatthe 17— )10 070 g0
results can be obtained in terms of only two independent '
dimensionless parameters: The reduced temperature controls ~ =[hy]2[P ][ TI¢[p]9[h1¢[g]"[ T’
the reduced concentration vertical profile; and the reduced P _ _ -
hydrostatic pressure determines the position of the liquid— =(LAMLT 2 ML HULALT (0",
vapor boundary. The reduced concentration vertical profile, (B1)
deflneq byT, . apprOX|mat_er reflects the shape of th? COIMe-y here the exponentsb,c,... arearbitrary constants. Hence,
sponding van der Waals isotherm, because the vertical coor-
dinate is a monotonic function of the pressure. ho\*/pgh\?/ T\”

Another interesting result of the present treatment is the h P T/ (B2)
possibility of directly describing the appearance of the famil- ¢ ¢ )
iar vertical phase separation in the cell. Without the introducWherea, B, andy are again arbitrary constants, and one may
tion of a gravitational field in the laws governing the behav-therefore use the following three dimensionless grolips
ior of a fluid, the appearance of the phase boundary needs te(hg/h), I1,=(pgh/P.), andll;=(T/T.), related by
be assumed. It also allows us to quantitatively discuss the _
conditions under which a gravitational field will induce con- F(ITy,1T2,115)=0 (B3
densation of a gas. or by
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ho =aAT hy, wherea is the cubical expansion coefficient, should be added
ny=-—= f(HZ,H3), (B4) to Eqg. (11). Using hy=3000 m(average ocean depthand the known
h dependence of water density with temperature, the thermal expansion con-
The functionsF(x,y,z) and f(x,y) are not obtainable by triputior_1 amounts to+45 cm for a temperat_ure rise from 15 °C to 16 °C.
dimensional analvsis. This smple calcu_latlon assumes_ a uniform vyater temperature and
y pressure, irrespective of depth, which is unrealistic.
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CONSERVATION LAWS

The principles of conservation of momentum and conservation of energy were, understandably,
confused in the 17th century. All significant scientific notions are initially “seen through a dlass
darkly,” even though science teachers frequently expect students to immediately see them through
an overhead slide clearly.
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