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The effect of a constant gravitational field on the existence and position of the liquid–vapor
boundary of a pure classical fluid is quantitatively discussed on the basis of two simple models:~a!
a perfect gas and incompressible liquid model, and~b! a van der Waals fluid model. The van der
Waals equation is used as a function of reduced parameters, and it is shown that two dimensionless
parameters suffice to describe the vertical concentration profile and the liquid–vapor boundary
position. With this model, it is shown how the gravitational field induces a vertical phase separation,
an observation so common that it is usually taken for granted but not modeled. The conditions for
a gravitational field to produce gas condensation are also discussed. ©2002 American Association of

Physics Teachers.
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I. INTRODUCTION

The problem of a perfect gas in uniform and nonunifo
gravitational fields was recently discussed in this journa1,2

A generalization of this problem is the consideration of a r
gas. One of the interesting features of a real gas is the
sibility of condensation, that is, of the existence of liquid
vapor equilibrium. The discussion of classical liquid–vap
equilibrium in the presence of a gravitational field can
done satisfactorily only by using an equation of state allo
ing for condensation. For this purpose, the van der Wa
equation of state is of special pedagogical interest, owin
its simplicity. Nevertheless, the problem can also be mode
with simpler models for the gas and liquid phases, nam
the perfect gas and the incompressible liquid, and impos
the existence of equilibrium for a certain pressure at the
terface, the vapor or saturation pressure,Psat. This approach
is less general, but is valid for temperatures much lower t
the critical temperature of the substance.

The liquid–vapor equilibrium for a pure substance is u
ally pictured as in Fig. 1, where the parameters of the
that will be used in the calculations are also defined. Impl
in this picture is the existence of a constant~or almost con-
stant! gravitational field, like on Earth, the denser liqu
phase being located in the lower part of the container. In
absence of gravity, and assuming thermal equilibrium,
liquid assumes a spherical shape~minimizing the surface en
ergy! surrounded by vapor, unless it sticks to the walls of
container~taking a more complex shape again minimizi
the surface energy!.

In this paper, the effect of gravity on the existence a
position of the liquid–vapor boundary of a pure substanc
quantitatively discussed on the basis of two simple mod
~a! a perfect gas and incompressible liquid model, and~b! a
van der Waals fluid model. The latter model, accounting
intermolecular forces, offers some interesting insights wh
solved for a nonzero constant gravitational field. Some qu
tions and problems appropriate for undergraduate course
given at the end in Appendix A.
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II. THE SIMPLEST MODEL: PERFECT GAS AND
INCOMPRESSIBLE LIQUID

A. Substance in a small container

Consider Fig. 1. The container can be a vertical sea
cylindrical glass tube containing a given amount of a flu
like H2O or CO2. Given the internal volume of the containe
V, and the mass of the substance,m, we wish to determine
the position of the liquid–vapor interface,h0 , for a given
temperature. If the height of the tube ish, andVG andVL are
the volumes occupied by the gas and liquid phases, res
tively, then the liquid–vapor interface will be located at
height

h05 f Lh, ~1!

where f L is the volume fraction of the liquid,

f L5VL /V. ~2!

Because

mL5rLVL5m2mG5m2rG~V2VL!, ~3!

whererL andrG are the phase mass densities, one can ea
obtain that

f L5
r̄2rG

rL2rG
, ~4!

wherer̄5 m/V is the average density of the substance in
cell. For a perfect gas phase, the vapor mass density is g
by

rG5rsat5M Psat/RT, ~5!

whereM is the molar mass andPsat is the vapor pressure a
the given temperatureT.
438p/ © 2002 American Association of Physics Teachers
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B. Substance in a tall container

If the heighth of the container is large, the gas phase w
be inhomogeneous, and the pressure will obey the barom
formula1

P~u!5Psatexp~2Mgu/RT!, ~6!

where g is the acceleration of gravity, andu5z2h0 the
height above the liquid-vapor boundary. Hence, the
density will be

rG~u!5rsatexp~2Mgu/RT!, ~7!

where rsat is given by Eq.~5!. In Eq. ~4! an average gas
density is now required

r̄G5
*h0

h rG~z!dz

h2h0
5

Psat

g~h2h0! F12expS 2
Mg(h2h0)

RT D G ,
~8!

and hence Eq.~1! becomes3

h05

r̄2
Psat

g~h2h0! F12expS 2
Mg(h2h0)

RT D G
rL2

Psat

g~h2h0! F12expS 2
Mg(h2h0)

RT D G h. ~9!

For largeh (h–h0→`), Eq. ~9! simplifies to

h05
P02Psat

grL
, ~10!

whereP05 r̄gh is the pressure at the bottom of the cell~that
is, atz50!.

An interesting application of Eq.~10! is the estimation of
the effect of a change in the Earth’s average temperatur
the ocean level. From Eq.~10! we have

Dh052DPsat/grL . ~11!

For pure liquid water and an initial uniform temperature
15 °C, an increase of 1 °C implies a drop of 1 cm in t
water level,4 while upon heating to 50, 100, and 374 °C~just
below the critical point! the water level is predicted to de

Fig. 1. The cell for the study of liquid–vapor equilibrium. The cell height
h, and the liquid–vapor boundary is ath0 .
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crease by 1 m, 10 m, and 2.2 km, respectively. These ca
lations show that the loss of liquid water upon moder
heating is negligible in comparison to the predicted incre
due to the melting of all the Earth’s permanent ice~in the
form of glaciers, ice caps, and Greenland and Antarctic
sheets!, which would cause an estimated increase of the
erage level of;70 m.5

A different way of changingh0 is by modifying the accel-
eration of gravity, for example by means of a centrifuge.
sample initially atg50 can be entirely gaseous, while onc
it is subjected to a gravitational field, a liquid phase m
appear ~for extremely strong gravitational fields furthe
phases might show up, such as one or more solid pha!.
The liquid phase starts to form wheng5gmin is large enough
that the pressure at the bottom of the container,P(0), equals
the saturation pressure,Psat. Taking into account that, in the
absence of a gravitational field, the pressure,P, and density,
r, for an ideal gas are related by Eq.~5!, we obtain from Eq.
~9! an equation forP andgmin ,

P5Psat

RT

Mgminh
@12exp~2Mgminh/RT!#. ~12!

For instance, to start condensing water vapor in ah
510-cm cell initially at a pressure of 0.8Psat and at room
temperature,gmin553105 m s22.

If the container is essentially infinite (h→`) but the mass
of the gas is finite, then Eq.~12! simplifies to

gmin5Psat/ r̄h. ~13!

We notice thatgmin is proportional to the 1/r̄, wherer̄ is the
average density of the gas inside the cell forg50. For the
amount of water on the Earth,r̄h>33106 kg m22, and us-
ing Psat (15 °C)51.73103 Pa, one getsgmin5631024

m s22!9.8 m s225gEarth.

III. THE VAN DER WAALS FLUID MODEL

A. The van der Waals equation

The solid, liquid, and gaseous phases of a substance
stable only over a certain range of temperatures and p
sures~Fig. 2!. Phase transitions ordinarily occur under eq
librium conditions, and the boundaries in the phase diagr
delineate this behavior. The solid, liquid, and vapor pha
can coexist in equilibrium only at the ‘‘triple point.’’ Else
where only two phases can coexist: the solid and the liq

Fig. 2. The phase diagram of a pure fluid.
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along the fusion curve, and the liquid and the vapor along
vaporization curve. The former appears on both theoret
and experimental grounds to continue almost without lim
~several solid phases may exist!, but the vaporization curve
terminates abruptly at the critical point. At this point th
temperature, pressure, and molar volume assume chara
istic valuesTc , Pc , andyc for any given substance.

The van der Waals equation is the simplest equation
state that applies to both gas and liquid states, also predic
the existence of critical and supercritical states6–8

S P1
a

y2D ~y2b!5RT. ~14!

Here,P is the pressure,y is the molar volume, anda (a/y2

5 internal pressure) andb ~co-volume! are two parameters
characteristic of each substance. The parametera reflects the
long-range attractive interactions~van der Waals forces!
while the parameterb reflects the short-range repulsive one
The van der Waals equation is a cubic equation in the v
ume, which means that it has three solutions for a giv
pressure if the temperature,T, is less than the critical tem
peratureTc . The solutions are the molar volume of the li
uid, the molar volume of the vapor in equilibrium with th
liquid, while the third molar volume~the third root! lying
between these two has no physical meaning. IfT.Tc , only
one of these roots is real, while ifT5Tc , the three roots
merge into one. The parametersa andb can be related to the
critical pressure,Pc , the critical molar volume,yc , and the
critical temperature,Tc , Tc58a/(27Rb), Pc5a/(27b2),
yc53b.

B. The van der Waals equation in a gravitation field

As we have said, the simplest phenomenological equa
of state describing the phase transition between the liq
and vapor states is the van der Waals equation. If we in
duce the molar concentrationC51/y into Eq.~14!, we obtain

P5
RT

1/C2b
2aC2. ~15!

In a gravitational field the pressure of a fluid~gas or liq-
uid! within a vertical cell depends on the height,z, and
obeys the balance equation1,2

d

dz
P~z!52gMC~z!. ~16!

If we combine Eqs.~15! and~16!, we obtain a generalized
barometric formula in differential form:

d

dz
C~z!52

gMC~z!

RT/@12bC~z!#222aC~z!
. ~17!

We have assumed that the temperature is constant insid
cell.

If we introduce the dimensionless variables reduced gr
tational energy,Er5Mgz/(RTc), reduced concentration,c
5Cyc , reduced pressure,Pr5P/Pc , and reduced tempera
ture,Tr5T/Tc , into Eq. ~17!, and use the fact that Eq.~15!
can be written in the form

Pr5
8Tr

3/c21
23c2, ~18!
440 Am. J. Phys., Vol. 70, No. 4, April 2002
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we obtain

dc

dEr
52

c

Tr

~12c/3!2 2
9

4
c

. ~19!

Equation~19! shows that the reduced concentration profile
a function only of the reduced temperature.

It is assumed that the boundary between the two phase
at the heightz5h0 , so that the liquid in the cell is betwee
0,z<h0 and the gas is atz.h0 ~see Fig. 1!. The two phases
are in equilibrium when their pressures and chemical pot
tials are equal. The equality of pressures lets us derive f
Eq. ~18! the following equation:

8Tr

3/cL* 21
23cL*

25Psat,r5
8Tr

3/cG* 21
23cG*

2, ~20!

wherePsat,r is the reduced pressure for liquid–vapor equili
rium, andcL* andcG* are the reduced liquid and gas conce
trations at the gas–liquid boundary,z5h0 .

From the equality of the chemical potentials~molar Gibbs
energies! of the two phases, the condition that the filled are
in the PV diagram~Fig. 3! be equal can be derived~Max-
well’s rule!. From the Maxwell rule and the van der Waa
equation, it is possible to obtain8

RT ln
nG2b

nL2b
1aS 1

nG
2

1

nL
D5Psat~nG2nL!, ~21!

wherenL andnG are the molar volumes in the liquid and ga
states atz5h0 ~nG53b/cG* , nL53b/cL* ,!. In reduced vari-
ables, Eq.~21! is rewritten as

8Tr ln
3/cG* 21

3/cL* 21
19~cG* 2cL* !53Psat,r S 1

cG*
2

1

cL*
D . ~22!

If we combine Eq.~22! with the left- and right-hand sides o
Eq. ~20!, we obtain

ln
3/cG* 21

3/cL* 21
5

cL* 2cG*

cL* 1cG*
S 3

32cL*
1

3

32cG*
D . ~23!

From the same set of equations, we also obtain

Psat,r5cG* cL* @32~cG* 1cL* !#, ~24!

Fig. 3. Isotherms of van der Waals equation in reduced form, show
Maxwell’s equal area rule to obtain the liquid–vapor equilibrium pressu
Psat, and the molar volumes of the phases in equilibrium~dashed lines!. The
number displayed next to each isotherm is the corresponding reduced
perature.
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Tr5
1
8~cG* 1cL* !~32cG* ! ~32cL* !. ~25!

The following equation of mass conservation should
added to Eqs.~23!–~25!:

F E
0

h0
CL~z!dz1E

h0

h

CG~z!dzG5C̄h, ~26!

whereC̄ is the average molar concentration in the cell andh
is its height. In reduced variables, Eq.~26! reads

F E
0

Er ~h0!

cL~Er !dEr1E
Er (h0)

Er (h)

cG~Er !dEr G
5

3r̄gh

8Pc
5~C̄yc!S Mgh

RTc
D , ~27!

wherer̄ is the average mass density of the fluid in the c
Equations~19!, ~23!, ~24!, ~25!, and ~27! determine the po-
sition of the boundary between the two phases and of
liquid and gas density vertical profiles. A solution is th
obtained as a function of the two dimensionless parame
Tr and (C̄yc)(Mgh/RTc)5P0 /Pc . The quantityP0 is as
before equal tor̄gh @but not necessarily the pressure at t
bottom,P(0), because a further contributionP(h) must be
added#. The parameterP0 /Pc is therefore a reduced hydro
static pressure. The parameterTr controls the shape of th
reduced concentration profile, while the parameterP0 /Pc
defines the position of the boundary with respect to the b
tom of the cell. For a givenTr , the same position can b
obtained with a small concentration and a tall cell, or with
large concentration and a small cell, because it is the pro
C̄h that matters for the attainment ofPsat at a given height.

The fact that two independent dimensionless parame
suffice to describe the problem, and their respective fo
can be obtained by an application of Buckingham’s Pi th
rem of dimensional analysis,9–11 as outlined in Appendix B.

IV. RESULTS AND DISCUSSION

Using Eqs.~24!–~26!, cL* , cG* , andPsat are first obtained
as a function of the reduced temperature~see Fig. 3!. These
reduced concentrations are then used as initial condition
the integration of Eq.~19! along the positive and negativ
directions of thez axis, starting fromz5h0 . In this way, the
profilescG(z) andcL(z) are generated. After this integratio
the mass conservation, Eq.~27!, is used to computeh0 , that
is, the position of the gas–liquid boundary inside the cel

In Fig. 4 the reduced concentration of liquid and gase
water is shown versus the reduced heightMgz/RTc at the
vapor–liquid boundary for three reduced temperatures,Tr

50.99, 0.7, and 0.5. From the figure it can clearly be s
how the concentration of the two phases changes around
boundary atz5h0 ~see Fig. 1!. For temperatures signifi
cantly lower than the critical one, no changes in liquid co
centration with the height are observed, that is, the liquid
almost incompressible.

In Fig. 5 the volume fraction of water as a function
reduced temperature is shown for a tube of 10 cm height
for g59.8 ms22, a situation that corresponds to a top r
duced gravitational energyMgh/RTc53.331026. The three
pairs of curves~dashed for vapor, continuous line for liquid!
441 Am. J. Phys., Vol. 70, No. 4, April 2002
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correspond to different average molar concentrations.
curves1, the average reduced concentration along the tub
equal to the critical concentration (c̄51). For curves2 the
average concentration is supercritical (c̄51.5), while for
curves3 the average concentration is subcritical (c̄50.5).
Curves1 join at the critical temperature,Tc , but excluding
this point, the volume of vapor always exceeds that of
liquid. Supercritical curves2 diverge and the volume of va
por goes to zero as the temperature increases. The beh
of curves3, where the average concentration is smaller th
the critical concentration, is qualitatively the exact inverse
the behavior of curves2. Here the vapor has the tendency
occupy the entire cell with an increase in temperature, wh
the liquid vanishes at temperatures smaller than the criti

In Fig. 6 the molar fraction of liquid water versus the to
reduced gravitational energyMgh/RTc is shown for a re-
duced temperatureTr50.95, near the critical point. The
single curves are determined by three different average c
centration values: curve1 has an average concentration equ
to 1

2 of the critical concentration, curve2 has c̄50.45, and
curve3 hasc̄50.4. It can be clearly seen that by increasi
the gravitational field, we go from a single gas phase t

Fig. 4. Reduced concentration of water,c, vs the relative height from the
vapor-liquid boundary for three reduced temperatures,Tr50.99~1!, 0.7 ~2!,
and 0.5~3!.

Fig. 5. The volume fractions of liquid and gaseous water vs the redu
temperature,Tr , for three different values of the average reduced conc
tration, c̄51 ~1!, c̄51.5 ~2!, and c̄50.5 ~3!. Dashed lines are the vapo
curves while continuous lines are the liquid curves. The acceleration
gravity is 9.8 m s22, and the cell height is 10 cm.
441Berberan-Santos, Bodunov, and Pogliani



id
y

al

s

rs

tr

nd
c
o
n
ia
ri
t t
en
tr
ce
id
file
re
oo

th
il

uc
v
s
th

n-

nd
tem-
nce
es

to
on
et of

-
res-

tri-
ra-
ple
on-
r

-
b-

si-

-

s
ass,

l

,

ay

en
single liquid phase, passing through a two-phase liqu
vapor system. The appearance of liquid begins first in a s
tem with a higher average concentration~curve1!. From Fig.
6 it is evident that at very high gravitational fields almost
molecules are in the liquid state~mole fraction equal to
unity!, that is, the gas immediately above the interface is
rarefied as to be negligible.

Whenever the top pressure,P(h), is negligible with re-
spect to the hydrostatic pressureP0 , the value of the top
reduced gravitational energy for which the liquid phase fi
appears,Er

0(h), is given by

Er
0~h!5

Mgh

RTc
5

3

8

Psat,r

c̄
, ~28!

and is thus inversely proportional to the average concen
tion of the substance in the cell, cf. Eq.~13!.

V. CONCLUSIONS

In this work, the effect of gravity on the existence a
position of the liquid–vapor boundary of a pure substan
was quantitatively discussed on the basis of two simple m
els: ~a! a perfect gas and incompressible liquid model, a
~b! a van der Waals fluid model. The first model is a spec
case of the latter, for temperatures much lower than the c
cal temperature. For the second model, it was shown tha
results can be obtained in terms of only two independ
dimensionless parameters: The reduced temperature con
the reduced concentration vertical profile; and the redu
hydrostatic pressure determines the position of the liqu
vapor boundary. The reduced concentration vertical pro
defined byTr , approximately reflects the shape of the cor
sponding van der Waals isotherm, because the vertical c
dinate is a monotonic function of the pressure.

Another interesting result of the present treatment is
possibility of directly describing the appearance of the fam
iar vertical phase separation in the cell. Without the introd
tion of a gravitational field in the laws governing the beha
ior of a fluid, the appearance of the phase boundary need
be assumed. It also allows us to quantitatively discuss
conditions under which a gravitational field will induce co
densation of a gas.

Fig. 6. The molar fraction of liquid water vs the reduced gravitational
ergy Mgh/RTc at a reduced temperature,Tr5T/Tc50.95, for three differ-
ent average reduced concentrations,c̄50.5 ~1!, c̄50.45~2!, andc̄50.4 ~3!.
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APPENDIX A: SUGGESTED QUESTIONS AND
PROBLEMS

~1! Consider pure water~or any other pure substance!. In
the presence of a gravitational field, the solid, liquid, a
gaseous states may coexist in the laboratory for several
peratures, while the phase rule states that this coexiste
occurs for a single temperature, the triple point. Why do
this coexistence occur?

~2! Use the van der Waals equation and Maxwell’s rule
redraw Fig. 3. In particular, obtain the two-phase regi
boundary line. For this purpose, choose an appropriate s
values of the reduced molar volume of the liquid~what are
the minimum and maximum values?!, and find for each the
reduced molar volume of the vapor by solving Eq.~23! nu-
merically. Then use Eq.~24! to obtain the corresponding re
duced pressure. Also discuss the meaning of negative p
sures.

~3! Use Fig. 6 to obtain the angular frequency of a cen
fuge when the liquid–vapor interface first appears. The
dius of the centrifuge is 5 m and the height of the sam
tube is 10 cm. Calculate this frequency for the reduced c
centrations,c50.5, 0.45, and 0.4. What will be the mola
fraction of liquid if the frequency is doubled?

~4! As shown in Appendix B, two dimensionless param
eters define the position of the liquid–vapor boundary. O
tain a general graphical solution in the form of a plot ofP1

vs P2 ~one curve for each value ofP3!, and as a three-
dimensional plot ofP1 vs P2 andP3 .

APPENDIX B: DETERMINATION OF THE NUMBER
AND TYPE OF THE DIMENSIONLESS
PARAMETERS FROM BUCKINGHAM’S PI
THEOREM 9–11

For the present problem, the liquid–vapor boundary po
tion h0 ~distance to the bottom of the cell! will be a function
of the following independent quantities: fluid critical param
etersPc andTc , fluid average mass densityr̄, cell heighth,
acceleration of gravity g, temperature T, and h0

5 f (Pc ,Tc ,r̄,h,g,T). The number of parameters is thu
seven, while four dimensional base quantities appear: M
M , length,L, time, T, and temperature,u. The number of
dimensionless groups is therefore 72453. Indeed, a genera
dimensionless group must obey

P5M0 L0 T0 u0

5@h0#a @Pc#
b@Tc#

c @ r̄#d@h#e @g# f@T# i

5~L !a~M L21 T22!b~u!c~M L23!d~L !e~L T22! f~u! i ,

~B1!

where the exponentsa,b,c,... arearbitrary constants. Hence

P5S h0

h D aS r̄gh

Pc
D bS T

Tc
D g

, ~B2!

wherea, b, andg are again arbitrary constants, and one m
therefore use the following three dimensionless groupsP1

5(h0 /h), P25( r̄gh/Pc), andP35(T/Tc), related by

F~P1 ,P2 ,P3!50 ~B3!

or by

-

442Berberan-Santos, Bodunov, and Pogliani
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P15
h0

h
5 f ~P2 ,P3!. ~B4!

The functionsF(x,y,z) and f (x,y) are not obtainable by
dimensional analysis.
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berberan@ist.utl.pt

1M. N. Berberan-Santos, E. N. Bodunov, and L. Pogliani, ‘‘On the ba
metric formula,’’ Am. J. Phys.65, 404–412~1997!.

2F. G. E. Pantellini, ‘‘A simple numerical model to simulate a gas in
constant gravitational field,’’ Am. J. Phys.68, 61–68~2000!.

3From the equation,r̄gh1P(h)5rLgh01Psat, the following simpler
equation to computeh0 can be obtained~Psat is known from experiment!:

h05XH r̄2
Psat

gh F12expS2 Mg(h2h0)

RT DGJYrLC h.

4The thermal expansion of liquid water, by itself, more than compens
this small decrease when heating from 15 to 16 °C. Taking into acco
the variation of density with temperature, a further term2(DrL/rL) h0
443 Am. J. Phys., Vol. 70, No. 4, April 2002
il:

-

s
nt

5aDT h0, wherea is the cubical expansion coefficient, should be add
to Eq. ~11!. Using h053000 m ~average ocean depth!, and the known
dependence of water density with temperature, the thermal expansion
tribution amounts to145 cm for a temperature rise from 15 °C to 16 °C
This simple calculation assumes a uniform water temperature
pressure, irrespective of depth, which is unrealistic.5

5IPCC, Climate Change 2001: The Scientific Basis. Contribution of Wo
ing Group 1 to the Third Assessment Report of the Intergovernme
Panel on Climate Change~Cambridge U.P., Cambridge, 2001!, p. 648.

6J. de Boer, ‘‘van der Waals in his time and the present revival. Open
address,’’ Physica~Utrecht! 73, 1–27~1974!.

7A. A. Mills, ‘‘The critical transition between the liquid and gaseous co
ditions of matter,’’ Endeavour19, 69–75~1995!.

8J. Lekner, ‘‘Parametric solution of the van der Waals liquid–vapor co
istence curve,’’ Am. J. Phys.50, 161–163~1982!.

9P. W. Bridgman,Dimensional Analysis~Yale U.P., New Haven, 1931!, pp.
36–47.

10W. J. Remillard, ‘‘Applying dimensional analysis,’’ Am. J. Phys.51, 137–
140 ~1983!.

11J. M. Supplee, ‘‘Systems of equations versus extended reference se
dimensional analysis,’’ Am. J. Phys.53, 549–552~1985!.
CONSERVATION LAWS

The principles of conservation of momentum and conservation of energy were, understandably,
confused in the 17th century. All significant scientific notions are initially ‘‘seen through a glass
darkly,’’ even though science teachers frequently expect students to immediately see them through
an overhead slide clearly.
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