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Abstract

The problem of dipole–dipole energy transfer with diffusion on spherical particles is studied theoretically. Simple
approximate expressions that can be used to predict or evaluate the effect of diffusion are obtained from a detailed numerical
analysis of the diffusion equation. The results cover a wide range of situations, from the static limit to the rapid diffusion
limit, and should apply to most energy transfer processes in spherical particles. q 1998 Elsevier Science B.V. All rights
reserved.

1. Introduction

Ž .Electronic excitation energy transfer ET by the
dipole–dipole or Forster mechanism is a well-estab-¨
lished tool for the study of nanometer-sized systems

w x w xsuch as supermolecules 1–3 , macromolecules 4 ,
w x w xcolloids 5,6 , biological systems 7 and interfaces

w x8 . The probability of ET depends strongly on the
intermolecular distance, relative orientation and rela-
tive motion of donor and acceptor chromophores. In
this way, the kinetics of molecular luminescence in
the presence of ET reflects both structural and dy-
namical aspects and information on these can be
obtained from fluorescence or phosphorescence in-
tensity and anisotropy decays.

) Corresponding author. E-mail: pcd2219@alfa.ist.utl.pt

In most cases of interest, the fluorescence decay
and accompanying transfer processes occur on a time
scale much shorter than that of translational diffusion
and the system can be treated as diffusionless. There
are, however, systems where the chromophores,
whether free to move or bound to a mobile structure,
may have fast relative motion. In these cases, diffu-
sion can be significant during the chromophore’s
excited state lifetime. One such situation refers to
solute molecules located in the superficial region of
micelles. A semi-quantitative discussion of the prob-
lem, based on experimental diffusion coefficients,
showed that for typical lifetimes and moderate to
large critical radii for transfer, diffusion effects on

w xET are negligible 9 . This corresponds to most
w xexperimental cases 9–12 . However, in the opposite

situation, i.e. long lifetimes and short critical radii,
the situation approaches that of collisional quenching
w x5,6,13–15 and the role played by diffusion be-
comes essential.
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w xRecently, Matzinger et al. 16 considered this
problem in detail from a theoretical point of view.
They have written the diffusion equation for the
relative motion of two particles on the surface of a
sphere. A distance of closest approach was also
incorporated in the model. The ensemble decay laws,

Ž .for both reversible donor–donor and irreversible
Ž .donor–acceptor transfers, based on the indepen-
dent-pair approximation, were then obtained. The
diffusion equation was numerically solved and the
corresponding decay laws compared with the results
of a Monte Carlo simulation of the same problem.
Good agreement between the two methods was found.

w xThe general conclusion reached in Ref. 9 , namely
that for typical lifetimes and moderate to large criti-
cal radii for transfer diffusion effects on ET are
negligible, was confirmed.

Although quantitative results were obtained, both
numerically and by simulation, no approximate ex-
pressions that can be used to predict or evaluate the
effect of diffusion were given in the paper mentioned
w x16 .

It is the purpose of the present work to obtain
such relations for the irreversible ET case, from a
detailed numerical analysis of the previously derived

w xdiffusion equation 16 . The results obtained should
apply to other types of spherical particles, provided
the assumptions made are valid.

2. Model

We assume that excitation transfer occurs among
non-interacting chromophores lying on the surface of

Žmonodisperse spherical particles of radius R see
. ŽFig. 1 . There are two types of chromophores donors

Fig. 1. Geometry and variables for a donor–acceptor pair located
on the surface of a spherical particle.

.and acceptors which have a smaller size than that of
the particle. At the initial time ts0 only donors are
excited. ET occurs irreversibly from the excited donor
to one of the acceptors. ET and other interactions
between donors are neglected. Donor–acceptor cou-
pling mediated by the particle is also not considered.
The spherical particle concentration is chosen to be
low, so that excitation transfer between different
spherical particles can be excluded. Chromophores
are allowed to diffuse on the surface of the spherical
particle, their relative diffusion constant being Ds
D qD , where D and D are the lateral diffusionD A D A

constants of the donor and the acceptor, respectively.
Without loss of generality, the initially excited donor
can be considered to be immobile and the acceptor to
move with diffusion constant D. This allows the
characterisation of the donor–acceptor distance r by

Ž .one polar angle u only see Fig. 1

2(rs 2 R 1ycos u . 1Ž . Ž .

The equations describing the relative diffusion of
a pair on a spherical surface, with a long-range
interaction term, which is a particular case of the

w xmore general problem of diffusion with reaction 17 ,
w xwere obtained in Ref. 16 . The donor decay is

determined by the two-particle survival probability
Ž .S u , t which satisfies the equation

E
2S u , t s D= yw u S u , t . 2Ž . Ž . Ž . Ž .u

Et

Ž .S u , t is the probability density that the excited
donor and the acceptor are at the distance r at time t
and,

D E E
2D= s sin u . 3Ž .u 2 Eu EuR sin u

This probability is time-dependent owing to both
molecular diffusion and donor–acceptor ET with rate
Ž .w u . For the dipole–dipole mechanism of ET one

has

61 R0
w u sw r sŽ . Ž . ž /t r0

1 R6
0

s , 4Ž .32t 0 2 R 1ycos uŽ .
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where t is the lifetime of the excited donor and R0 0
Ž . w xis the critical or Forster radius 18 , computed with¨

Žan orientational factor of 2r3 fast and isotropic
.rotational motion is assumed .

Ž .Eq. 2 is solved with the reflecting boundary
condition

E
2 <2pR sin u D S u , t s0 . 5Ž . Ž .usuc cEu

The physical meaning of this condition being that the
donor and acceptor cannot be nearer than the dis-
tance of closest approach

2(r s 2 R 1ycos u , 6Ž . Ž .c c

which depends on the effective radii of the donor
and acceptor.

Ž .At initial time ts0 the relative distribution of
excited donors and acceptors is random and homoge-
neous, hence

S u , 0 s1r 1qcos u . 7Ž . Ž . Ž .c

Ž .The denominator of Eq. 7 ensures the fulfilment of
the normalisation condition

p

S u , 0 sin u dus1 .Ž .H
uc

In the general case in which one donor is sur-
rounded by several acceptors positioned at the angu-
lar positions u . . . u , the excited donor survival1 N

Ž .probability density, P u . . . u , t , is expressed as a1 N

product of independent two-particle probability den-
sities because ET from the donor to one acceptor
does not depend, to a good approximation, on the
presence of other acceptors

N

P u . . . u , t s S u , t . 8Ž . Ž . Ž .Ł1 N i
is1

This approach is valid if the size of the spherical
particle is much larger than the size of chro-
mophores. Usually this condition is fulfilled.

To obtain the macroscopic decay one needs to
average the survival probability over all positions of
u , as follows:

p p

P t s PPP P u . . . u , tŽ . Ž .H HN 1 N
u uc c

=sin u du PPP sin u du . 9Ž .1 1 N N

As all the acceptors are equivalent one has

N
p N

P t s S u , t sin u du s P t , 10Ž . Ž . Ž . Ž .HN 1
uc

with

p

P t s S u , t sin u du .Ž . Ž .H1
uc

Taking into account the Poisson distribution of ac-
ceptors over spherical particles one finally obtains
the donor fluorescence decay

` N Nytrt yN0I t se e P tŽ . Ž .Ý 1N !Ns0

sexp ytrt yN 1yP t , 11Ž . Ž .� 40 1

where N is the average number of acceptors per
Ž .spherical particle. For long times and because P t1

™0 when t™`,

t
I t sexp y yN , 12Ž . Ž .½ 5t 0

which is simply the intrinsic decay multiplied by the
fraction of spheres without acceptors.

Note that the use of the Poisson distribution is
valid if the size of spherical particles is much larger
the size of chromophores and if N is much smaller
than the maximum allowed number of chromophores
T that can be placed on the spherical particle sur-
face. Otherwise one should use the binomial distribu-

w xtion 6,19

N TyN
T ! N N

B N , T s 1y .Ž .N ž / ž /N ! TyN ! T TŽ .
13Ž .

For small N and T)20, the Poisson and the bino-
Ž .mial 12 distributions give similar results for small

N. Thus, in the usual experimental conditions the
Poisson distribution is valid.

For NfT the binomial distribution must be used,
and qualitatively different results are obtained. In-
deed, in this case all allowed sites are occupied, all
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spherical particles are equivalent and the lumines-
cence kinetics become exponential:

Tt
I t sexp y y t w u , 14Ž . Ž . Ž .Ý i½ 5t 0 i

Ž .the summation in Eq. 14 being carried over all
allowed positions of the acceptors.

3. Approximate results

For the conditions corresponding to the usual
Ž . Ž .experimental conditions, one can use Eqs. 2 , 10

Ž .and 11 to calculate the donor decay. Thus, the
problem reduces to the calculation of the two-par-

Ž .ticle probability S u , t . As above mentioned, this
was previously done both numerically and by Monte

w xCarlo simulation in Ref. 16 .
Ž .We tried to solve Eq. 2 with the stated initial

Ž . Ž .and boundary conditions, Eqs. 7 and 5 , respec-
tively. For this, the use of the following dimension-
less parameters and variables is convenient:

6R t0
)t s , 15aŽ .ž /2 R t 0

6Dt 2 R0
)D s , 15bŽ .2 ž /RR 0

ys1ycos u , 15cŽ .
where t ) is the reduced time and D) is the reduced
mutual diffusion coefficient.

Ž . Ž . Ž .With these changes, Eqs. 2 , 5 and 7 respec-
tively become

E E E 8
) )S y , t s D y 2yy y S ,Ž . Ž .

) 3½ 5Et E y E y y

16aŽ .

E
S s0 , 16bŽ .

E y ysyc

S y , 0 s1r 2yy , 16cŽ . Ž . Ž .c

with

2 X
) )P t s S y , t d y 16Ž . Ž . Ž .H1

yc

From published experimental data, it can be esti-
mated that the dimensionless diffusion coefficient
D) can take values up to 5000, whereas the parame-
ter y characterising the distance of closest approachc

is typically smaller than 0.03.

3.1. Slow diffusion

To obtain approximate analytical results when
Ž ) . Ž .diffusion is slow small D Eq. 16a is rewritten

as follows:

E
ˆ ˆSs AqB S , 17Ž .Ž .

)Et

ˆ ˆ ˆŽ Ž .w Žwhere A and B are operators BsD ErE y y 2y
ˆ 3. x .y ErE y and Asy8ry . The formal solution of

Ž .Eq. 17 is

ˆ )

) AtS y , t se S y , 0Ž . Ž .
t )

)ˆ ˆAŽ t yu. Auˆq e Be S y , 0 du , 18Ž . Ž .H
0

Ž .where S y, 0 is the initial distribution. Considering
ˆ ˆthat the operator B is small in comparison with A,

Ž .and using Eq. 18 , one can obtain the solution,
Ž ) .S y, t , in iterative form

S y , t ) sSŽ0. y , t ) qSŽ1. y , t )Ž . Ž . Ž .

qSŽ2. y , t ) q PPP . 19Ž . Ž .
The zeroth-order approximation is

ˆ )Ž0. ) AtS y , t se S y , 0 . 20Ž . Ž . Ž .
The first-order correction is

t )

)ˆŽ1. ) AŽ t yu. Ž0.ˆS y , t s e BS y , u du . 21Ž . Ž . Ž .H
0

The second-order correction is

t )

)ˆŽ2. ) AŽ t yu. Ž1.ˆS y , t s e BS y , u du , 22Ž . Ž . Ž .H
0

Ž X. Ž .and so on. In accordance with Eqs. 16 and 19 we
obtain the iteration row for two-particle lumines-
cence kinetics

P t ) sP Ž0. t ) qP Ž1. t ) qP Ž2. t ) q PPP .Ž . Ž . Ž . Ž .1 1 1 1

23Ž .
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ŽIf the diffusion coefficient is equal to zero static
. Ž0.Ž ) . Ž ) 3.limit then S y, t sexp y8t ry and the

w xzero-order kinetics are 6,9,16

1r3 2Ž0. ) ) ) )P t sexp yt y t G , t , 24Ž . Ž . Ž . Ž .Ž .1 3

Ž ) .where G a, t is the incomplete gamma function

`
) yz ay1G a, t s e z d z , 25Ž . Ž .H

)t

Ž . Ž .Eq. 24 is valid when y s0 or r s0 . In realc c

situations, although nonzero, y <1 and one canc
Ž .check that if y s0.02 Eq. 24 differs from thec

exact solution by less than 1%. Similar conclusions
w xwere reached by Pilling and Rice 20 for the infinite

three-dimensional case. Using the zero approxima-
Ž0.Ž ) .tions S y, t , the first two corrections to the

two-particle kinetics were calculated. The first one is

D)

Ž1. ) ) ) )P t s yt 3G 1, t y2 G 2, tŽ . Ž . Ž .½1 2

4r3 2 5) ) )q2 t G , t yG , t .Ž . Ž . Ž . 53 3

26Ž .
Ž2.Ž ) .The second one has the order P t f1

wŽ ) .2Ž ) .5r3 xO D t . Comparing the first and the sec-
ond approximations one can see that the small pa-

) Ž ) .2r3rameter is D t .
Ž . Ž .Using Eqs. 24 and 26 , we tried to construct the

approximate kinetics which would be valid up to a
dimensionless diffusion coefficient D) (1.

Firstly, we obtained a simple function describing
Ž .the zero-order result, Eq. 24 , with high accuracy, in

) w xthe domain t g 0, 2 . This empirical function is

1r3Ž0. ) )P t sexp y1.2541 tŽ . Ž .1, ap

2r3
) )y1.13 t y0.37t . 27Ž . Ž .

Ž ) .1r3The coefficient of t is obtained by expand-
Ž . )ing Eq. 24 into a power series in t . The other two

coefficients were obtained using a least-squares cri-
) w x Ž .terion. In the interval t g 0, 2 , functions 27 and

Ž .24 are practically indistinguishable.
Ž . Ž . Ž .Secondly, Eqs. 16a , 16b and 16c were solved

) w xnumerically for D g 0, 20 . Note that chro-
mophore diffusion begins to affect the luminescence

) Ž .kinetics noticeably when D G0.2. Using Eqs. 26

Ž ) .Fig. 2. Function P t in the slow and intermediate diffusion1
Ž .cases. Comparison of the approximate solution solid line , Eq.

Ž .28 , with the exact solution obtained by numerical resolution of
Ž .the diffusion equation dashed line , for reduced diffusion coeffi-

) Ž . )cients D varying from 0 static limit to 100. The value of D
is shown next to each pair of curves.

Ž . Ž .and 27 and the numerical solution of Eqs. 16a ,
Ž . Ž .16b and 16c we constructed the approximate
function

1r3 2r3
) ) )P t sexp y1.2541 t y1.13 tŽ . Ž . Ž .�1, ap

y0.37t ) 1q1.35D)Ž .
4r3

) ) )y0.61 t D 1y0.05D .Ž . Ž . 4
28Ž .

Ž .The coefficients 0.61 and 0.05 in Eq. 28 were
obtained using a least-squares criterion. If D) F20

Ž . Žthen Eq. 28 coincides with a precision better than
.5% with the exact result obtained by the numerical

Ž .resolution of Eq. 16a in the time domain, for
Ž ) . Ž .P t G0.05 see Fig. 2 .1, ap

Our calculations show that one can also use Eq.
Ž . ) Ž .28 for values 20FD F100 see Fig. 2 if one

Ž .equates the last term in Eq. 28 to zero.

3.2. Fast diffusion

As noted above, the dimensionless diffusion coef-
ficient D) can reach values of the order of 103. It is
therefore interesting to investigate the case of a high
diffusion coefficient also.

) ŽFrom a physical point of view, if D ™` the
w x.so-called rapid-diffusion limit 21 , then the survival

Ž ) .probability S y, t cannot depend on variable y
Žthe position of the acceptor on the spherical parti-
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.cle because diffusion is so fast that the decrease of
Ž ) . Ž Ž ..the function S y, t at small y see Eq. 16a is

immediately compensated by the acceptor diffusion
Ž .from large distances yF2 . Only for finite diffu-

sion coefficients is the survival probability S a func-
tion of y. This function, although time-dependent for
short times, rapidly attains a stationary distribution,
Ž .S y . Therefore it is natural to look for the solutionst

Ž . Žof Eq. 16a as a product of two functions one
dependent only on the space coordinate, the other

.dependent on the time coordinate .

S y , t ) sS y F t ) . 29Ž . Ž . Ž . Ž .st

Ž . Ž .Insertion of Eq. 29 into Eq. 16a and integrating
Žover y, one obtains taking into account the bound-

.ary condition

d 2
)F t S y d yŽ . Ž .H st

)d t yc

82
)syF t S y d y . 30Ž . Ž . Ž .H st3yyc

Introducing the quantity

82 2
Bs S y d y S y d y , 31Ž . Ž . Ž .H Hst st3yy yc c

we obtain the solution

F t ) sexp yBt ) . 32Ž . Ž . Ž .
Ž .Note that, according to Eq. 31 , the parameter B

Ž .depends only on the shape of the function S y butst
Ž .not on S 0 .st

Ž . Ž .Introducing the solutions 32 and 29 into Eq.
Ž .16a we get

d d
y 2yy S yŽ . Ž .std y d y

1 8
q By S y s0 . 33Ž . Ž .st

) 3ž /D y

We will look for the solution of this equation in the
form of a power series in 1rD) ,

S y sSŽ0. y qSŽ1. y qSŽ2. y q PPP ,Ž . Ž . Ž . Ž .st st st st

34Ž .

Ž1.Ž ) . Ž ) . Ž2.Ž ) . Ž ) 2 .where S t sO 1rD , S t sO 1rD ,st st

and so on. As it was noted, for a very large diffusion
Ž ) .coefficient D ™` the function is not dependent

on y and therefore, in the zeroth-order approxima-
Ž .tion, it follows from Eq. 33 that

SŽ0. y s1r 2yy . 35Ž . Ž . Ž .st c

Ž .Introducing this value into Eq. 31 we have

BŽ0.s 2qy ry2 . 36Ž . Ž .c c

Ž . Ž .Inserting the power series, Eq. 34 , into Eq. 33
we obtain the equation for the first-order approxima-
tion

d d
Ž1.y 2yy S yŽ . Ž .std y d y

1 8
Ž .0 Ž0.q B y S y s0 37Ž . Ž .st

) 3ž /D y

with

d
Ž .1S y s0 .Ž .std y ysyc

The solution of this equation is

1 1 1
Ž1.S y s qŽ .st

) 2D 2yy yyŽ .c

C y11
q ln yyC , 38Ž .22

with

4
Ž0.C sB y q ,1 c 2yc

and

3 C y11
C s q ln 2 .2 4 2

Ž . Ž .Inserting the function S y , Eq. 38 , obtainedst
Ž .with precision up to the first order, into Eq. 31 , and

taking into account the condition y <1, a morec

exact value of B is obtained:

2 2 ln 1ryŽ .c
Bs 1y . 39Ž .2 ) 2ž /y D yc c
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So, as the minimum distance r between donors andc

acceptors is connected with the parameter y by thec

equation r 2 s2 R2 y ,c c

4 6 2 2R R ln 2 R rrŽ .0 c
Bs8 1y . 40Ž .4ž / ž /r 8 Dt rc 0 c

Ž .We see from Eq. 40 that the small parameter in the
6 Ž 2 2 . Ž 2 .case of fast diffusion is R ln 2 R rr r Dt r .0 c 0 c

Ž ) .The rapid-diffusion limit results independent of D
is attained when the second term is negligible.

Knowing parameter B, we can calculate the two-
Ž X.particle function from Eq. 16

P t ) sexp yAyBt ) , 41Ž . Ž . Ž .1

where

22
exp yA s S y d ys1y 42Ž . Ž . Ž .H st

) 2D yy cc

and

2
Af <1 . 43Ž .

) 2D yc

Using the Poisson distribution of acceptors, one ob-
tains for the decay

)B tI t sexp ytrt exp yN 1ye . 44Ž . Ž . Ž . Ž .� 40

Thus, the average decay takes a form identical to that

Ž ) .Fig. 3. Function P t in the fast diffusion case. Comparison of1
Ž . Ž .the approximate solution solid line , Eq. 46 , with the exact

solution obtained by numerical solution of the diffusion equation
Ž . )dashed line , for reduced diffusion coefficients D varying from
100 to 1000. The value of D) is shown next to each pair of
curves.

Fig. 4. Fast diffusion case. Dependence of parameter A appearing
Ž . )in Eq. 46 on D and on y . The value of y is shown next toc c

each curve.

of a quenching process with a time-independent rate
w xconstant 5,6 . The rate constant is in this case,

t ) R6
0

ksB s . 45Ž .4 2t 8t r R0 c

Ž . Ž . Ž .Eqs. 16a , 16b and 16c were solved numeri-
cally for D) G100. Indeed, if D) G100 the two-
particle decay can be written with good accuracy as

P t ) sexp yAyBt ) , 46Ž . Ž . Ž .1

where A and B are numerical parameters, see Fig. 3.
) ŽThese parameters depend on D and y see Figs. 4c

. Ž .and 5 . If y increases r increases then the param-c c

eter A decreases and the parameter B increases.
Parameter B was obtained with a numerical preci-
sion "1, and the precision of parameter A was
"0.01. The dependence of parameters A and B on

Fig. 5. Fast diffusion case. Dependence of parameter B appearing
Ž . )in Eq. 46 on D and on y . The value of y is shown next toc c

each curve.
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Table 1
Numerical parameters b , b , b , and a0 1 2

y b b b ac 0 1 2

y50.01 192 0.322 5.9=10 9.7
y50.02 191.5 0.320 6.1=10 8.7
y50.03 190 0.310 8.0=10 7.8

the dimensionless diffusion coefficient D) were
Ž ) .approximated by the functions 100FD F1000

2
) )Bsb qb D y500 yb D y500 , 47aŽ . Ž . Ž .0 1 2

As0.143
a

q .0.45 9
) y3 )100 D r100 q10 D r100Ž . Ž .

47bŽ .
ŽThe parameter A in the limit of the attained numeri-

.cal precision, "0.01 does not practically depend on
D). Obviously, the value of parameter A depends on
the time needed to reach the stationary distribution
Ž .S y . The greater the diffusion coefficient, thest

Ž .smaller this time and the parameter A see Fig. 3 .
Numerical parameters a, b , b , and b depend on0 1 2

y and are given in Table 1.c

4. Large particle limit: contact with two-dimen-
sional ET

If the radius of the spherical particles is increased,
2Ž .while keeping the surface concentration Nr 4pR

Ž .sn constant, one can use in Eq. 11 the two-par-
Ž ) .ticle function P t calculated only for the short-1

Ž . Ž .time domain. Using Eqs. 24 and 26 we obtain, in
the slow diffusion limit and leaving only the leading
terms in the power series,

2 11r3
) ) ) )P t 1yG t q t 1yD 48Ž . Ž . Ž . Ž .1 ž /3 2

and finally obtain

1r3 4t 1 R t0
I t sexp yc 1.2541 yŽ . ž /ž /½ t 32 R t0 0

Dt t0
q2 , 49Ž .2 5tR 00

where cspR2 n is the average number of acceptors0

in a circle of radius R .0
Ž .In Eq. 49 , the first term in the square brackets

Ž 1r3.A t is recognised as the static ET on a plane.
Ž .The second one is a correction to the first R <R0

due to the fact that ET takes place on a sphere and
not in a plane. Naturally, this term disappears when
R™`. The third term is the correction due to
molecular diffusion on the plane. Note that the sec-
ond and third terms have the same time dependence
Ž .A t but opposite sign. Thus, these terms can com-

Ž .pensate each other in certain conditions. Eq. 49 can
be used, for example, in ET kinetics in vesicles.

Ž .Concerning the rapid-diffusion limit D™` , we
Ž . Ž .note that Eqs. 40 and 44 are valid if the second
Ž . Žterm in Eq. 40 is smaller than unity or

6 Ž 2 2 . 4.R ln 2 R rr <8 Dt r . If R increases, this con-0 c 0 c

dition becomes more and more stringent. In the limit
R™`, it cannot be satisfied for any reasonable
diffusion constant. This stems from the fact that the
solution of the stationary diffusion equation in two-
dimensional space is proportional to ln R and tends
to infinity when R™`. Thus, the rapid-diffusion
limit cannot exist for an infinite plane, as opposed to

w xthe situation in an infinite volume 21 . However, as
Ž Ž ..discussed above Eq. 45 , the rapid-diffusion limit

can be realised in a finite two-dimensional system.

5. Conclusions

In most nanometer-sized systems, the fluores-
cence decay and accompanying transfer processes
occur on a time scale much shorter than that of
translational diffusion and a static picture is appro-
priate. There are, however, systems where diffusion
can be significant during the chromophore’s excited
state lifetime. One such situation refers to solute
molecules located in the superficial region of mi-

˚2celles, for which diffusion coefficients of 1–10 A rns
Ž .apply. With long lifetimes tens of nanoseconds and

˚Ž .short critical radii F20 A , the role played by
diffusion becomes essential.

w xRecently, Matzinger et al. 16 considered in de-
tail the problem of dipole–dipole energy transfer in
micelles with diffusion. Although quantitative results
were obtained, both by the numerical resolution of
the diffusion equation and by Monte Carlo simula-
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tion, no simple approximate expressions that can be
used to easily predict or evaluate the effect of diffu-
sion were given. It was the purpose of the present
work to obtain such relations for the irreversible ET
case. From a detailed numerical analysis of the
diffusion equation, an approximate form of the donor

Ž Ž . Ž . Ž ..decay law Eqs. 11 , 28 and 46 was obtained.
These results cover a wide range of reduced diffu-

Ž ) w x.sion coefficients D g 0, 1000 , and should apply
to most ET processes in spherical particles.
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