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A stochastic theory of combined radiative and nonradiative transport is presented. The stochastic
approach is physically clear and versatile, allowing the consideration of the combined effect of
radiative and nonradiative transport, carried out here for the first time. The stochastic approach is
formulated for delta-pulse excitation and for the photostationary state. General equations for the
intensity, polarization, and anisotropy decays are derived. ©1997 American Institute of Physics.
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I. INTRODUCTION

Radiative transfer, i.e., the transfer of energy media
by real~as opposed to virtual! photons, is a common proces
of energy transport in astrophysics, plasmas, and in ato
and molecular luminescence. It plays an important role
solar concentrators, discharge and fluorescent lamps, sc
lation counters, and lasers.

For the purposes of this work, molecular radiative tra
fer is defined as the emission of a photon by an electronic
excited molecule, with subsequent absorption by a gro
state molecule. In assemblies of like molecules, one elem
tary process of radiative transfer leads to another, until
of two things happens:~a! the excitation energy is irrevers
ibly lost through a nonradiative path~internal conversion,
intersystem crossing, quenching,...! or, ~b! the photon es-
capes from the sample. This repeated radiative transfe
called either radiative transport or radiation trapping. Its i
portance depends on many factors: extent of spectral ove
between absorption and emission, absorption strength,
rescence quantum yield, concentration, cell size and sh
excitation and detection geometries, etc. It is particularly
portant in solutions of highly fluorescent compounds with
good absorption–emission spectral overlap, whether con
trated or in large volumes. When present, radiative trans
affects the measured fluorescence decays and spectra, a
as the fluorescence polarization. These observables are t
function of the excitation and emission wavelengths, conc
tration, and excitation and detection geometries.

A stochastic theory of radiative transport allowing t
calculation of all observables from known parameters w
recently presented.1,2 Such an approach is here refined a
extended to cases where nonradiative transport operate
parallel with radiative transport.

The stochastic approach is formulated in Sec. II A
delta-pulse excitation, the principal results being the de
laws, Eqs.~15! and ~17!. It is next shown that these deca
laws become single exponential for long times. The pho
stationary state is then briefly discussed in Sec. II B. T
anisotropy of fluorescence is discussed in Sec. II C, the ef
of radiative transport being contrasted to that of nonradia
transport. The main results in this section are Eqs.~32! and
~33!. In Sec. III, the combined effect of radiative and nonr
diative transport is discussed. General equations for the
10480 J. Chem. Phys. 107 (24), 22 December 1997 0021-9606/
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larization and anisotropy decays are derived@Eqs. ~38! and
~39!#. The main results are summarized in Sec. IV.

II. STOCHASTIC APPROACH

A. Formulation and delta-pulse response

Consider a homogeneous distribution of ground st
molecules in a given enclosure~e.g., a fluorescence cell!. Let
there be the absorption of a photon att50, according to a
given ~normalized! spatial distributionP1(r ). The excited
molecule generated at timet50 will relax to the ground
state, with a rate constantG, G being the reciprocal molecula
lifetime,

G5kr1knr5
1

t0
, ~1!

where kr and knr are the radiative and nonradiative dec
constants, respectively.

As a consequence of the decay, there is a probab
pb(l,t) that, betweent andt1dt, a photon with wavelength
l will hit the enclosure’s boundary at a given pointrb , and
will thus leave the sample~neglecting reflection!. This prob-
ability can be written as

pb~l,t !5 (
n51

`

pbn~l,t !, ~2!

wherepbn(l,t) is the probability that a photon with wave
length l will cross the boundary at pointrb betweent and
t1dt, after exactly n absorption–emission events. Th
probability can in turn be written as

pbn~l,t !5 f bn~l!gn~ t !, ~3!

where f bn(l) is the probability that a photon with wave
length l will hit the boundary at pointrb ~thus leaving the
sample!, after exactlyn absorption–emission events; an
gn(t) is the probability that annth generation molecule will
emit a photon betweent and t1dt, given that it will emit
one. Assuming that the photon propagation time is ne
gible, this probability~normalized density function! is given
by1

gn~ t !5G
~Gt !n21

~n21!!
e2Gt. ~4!
97/107(24)/10480/5/$10.00 © 1997 American Institute of Physics
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The probabilityf bn(l) is

f bn~l!5
1

4p
F0F~l!E

V
@12ab~r ,l!#Pn~r !dr , ~5!

where the integration goes over the whole volumeV of the
enclosure,F0 is the fluorescence quantum yield, the abso
tion probabilityab(r ,l) is given by

ab~r ,l!5E
0

urb2r u
k~l!exp@2k~l!x#dx, ~6!

wherek(l) is the optical density of the medium at the wav
lengthl, andPn(r ), probability that annth generation pho-
ton will be emitted atr , is

Pn~r !5E
V
E

V
...E

V
f ~r ,rn21!F0f ~rn21 ,rn22!......

3F0f ~r2 ,r1!P1~r1!drn21drn22 ...dr1 , ~7!

with f (r ,r 8), probability of absorption atr for emission at
r 8, given by

f ~r ,r 8!5E
0

`

F~l!k~l!
1

4pur2r 8u2

3exp@2k~l!ur2r 8u#dl, ~8!

whereF(l) is the normalized emission spectrum.
Equation~7! can be written as a recurrence relation,

Pn11~r !5F0E
V

f ~r ,rn!Pn~rn!drn . ~9!

From it, one obtains the spatial distribution functionpn(r ) of
the nth generation excited molecules,

pn~r !5
Pn~r !

*VPn~r !dr

5
*Vf ~r ,rn21!pn21~rn21!drn21

*V*Vf ~r ,rn21!pn21~rn21!drn21dr
5

an21~r !

ān21
,

~10!

wherean21(r ) is the probability that a photon emitted a
cording to the (n21)th generation spatial distribution wi
be absorbed atr , and ān21 is the probability that a photon
emitted according to the (n21)th generation spatial distri
bution will be absorbed somewhere within the enclosu
The spatial distributions given by Eq.~10! converge to a
stationary distribution for largen. The equation for the sta
tionary distribution of excited molecules,ps(r ), is obtained
from Eq. ~10! by taking the limitn→` on both sides.

The normalized~i.e., scaled to one fort50! decay law is

rb~l,t !5
pb~l,t !

pb~l,0!

5e2Gt (
n51

`
*V@12ab~r ,l!#Pn

0~r !dr

*V@12ab~r ,l!#P1
0~r !dr

~krt !
n21

~n21!!
,

~11!
J. Chem. Phys., Vol. 107, N
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wherePi
0(r ) stands forPi(r ) whenF051. Using Eq.~10!,

rb~l,t !5e2Gt (
n51

` S 12abn~l!

12ab1~l! D
3S *VPn

0~r !dr

*VP1
0~r !dr D ~krt !

n21

~n21!!
, ~12!

where

abi~l!5E
V
ab~r ,l!pi~r !dr . ~13!

Taking into account Eqs.~9! and~10! and the definition ofā i

@see Eq.~10!#, one has

*VPn
0~r !dr

*VP1
0~r !dr

5 )
i 51

n21

ā i , ~14!

and Eq.~12! becomes,

rb~l,t !5e2Gt (
n51

` S 12abn~l!

12ab1~l! D S )
i 51

n21

ā i D ~krt !
n21

~n21!!
.

~15!

The emission integrated over wavelengths and space d
tions is

r~ t !5e2Gt (
n51

`
*VPn

0~r !dr2*V*Vf ~r ,r 8!Pn
0~r !drdr 8

*VP1
0~r !dr2*V*Vf ~r ,r 8!P1

0~r !drdr 8

3
~krt !

n21

~n21!!

5e2Gt (
n51

`
12ān

12ā1

*VPn
0~r !dr

*VP1
0~r !dr

~krt !
n21

~n21!!
. ~16!

Using again Eq.~14!, Eq. ~16! becomes

r~ t !5e2Gt (
n51

` S 12ān

12ā1
D S )

i 51

n21

ā i D ~krt !
n21

~n21!!
. ~17!

Knowing that a stationary distribution is reached for t
higher generations (ān→ās), one gets from Eq.~17!,

r~ t !5e2Gt (
n51

` S 12ān

12ā1
D S )

i 51

n21

ā i D ~krt !
n21

~n21!!

>e2Gt (
n51

m S 12ān

12ā1
D S )

i 51

n21

ā i D ~krt !
n21

~n21!!
1e2Gt

3 (
n5m11

` S 12ās

12ā1
D S )

i 51

m

ā i D ās
n2m21 ~krt !

n21

~n21!!

5e2Gt (
n51

m S 12ān

12ā1
D S )

i 51

n21

ā i D ~krt !
n21

~n21!!

1e2GtS 12ās

12ā1
D S )

i 51

m
ā i

ās
D (

n5m11

`
~kr āst !

n21

~n21!!
o. 24, 22 December 1997
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5e2GtF (
n51

m S 12ān

12ā1
D S )

i 51

n21

ā i D ~krt !
n21

~n21!!

2S 12ās

12ā1
D S )

i 51

m
ā i

ās
D (

n51

m
~kr āst !

n21

~n21!! G
1S 12ās

12ā1
D S )

i 51

m
ā i

ās
D e~kr ā s2G!t, ~18!

showing that a long time exponential, with lifetime

ts5
t0

12āsF0
, ~19!

is asymptotically attained. The approximation made in E
~18! is of course the better, the higherm. A similar approxi-
mation holds for Eq.~15!. The usefulness of this approac
has been demonstrated.3 It is interesting to note that Eqs
~15! and~17! are formally identical to the decay law derive
before from a kinetic scheme considering only macrosco
populations.4

B. Continuous excitation „photostationary state …

For nonsaturating excitation conditions, one may a
obtain the steady-state intensities from Eqs.~15! and ~17!,

I b~l!

I 0b
5F~l! (

n51

`

@12abn~l!#S )
i 51

n21

ā i DF0
n21, ~20!

I b

I 0b
5

Fb

F0
5 (

n51

`

~12ābn!S )
i 51

n21

ā i DF0
n21, ~21!

I

I 0
5

F

F0
5 (

n51

`

~12ān!S )
i 51

n21

ā i DF0
n21

5~12ā1!1~12ā2!F0ā11... . ~22!

The meaning of the equations is apparent from the expan
explicitly shown for Eq.~22!. Equations~20!–~22! can be
converted into finite sums by means of approximations si
lar to those carried out for Eq.~17!.

C. Fluorescence anisotropy

It is well known that nonradiative transport decreases
ensemble fluorescence anisotropy. For a pair of rando
oriented and nonrotating molecules, and for the Fo¨rster dipo-
lar mechanism, Galanin calculated in 19505 that the acceptor
fluorescence anisotropy is only 4% of that of the donor. T
result was later shown to be in fact the zero-time value of
indirectly excited molecule anisotropy.6 In any event, neglec
of the contribution of indirectly excited molecules to the e
semble anisotropy is a good and frequent approximation
nonradiative transport studies, where theoretical efforts c
centrate on the calculation of the survival probability of t
directly excited molecules. This calculation is difficult o
account of the possibility of return of the excitation. Neve
theless, good approximations,7 experimentally tested,8,9 are
available.
J. Chem. Phys., Vol. 107, N
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The situation with radiative transport is, in a sense,
opposite of that with nonradiative transport. In fact, and o
ing to its long-ranged nature, the return of excitation h
negligible probability. On the other hand, the contribution
indirectly excited molecules to the overall anisotropy is co
siderable, and cannot be neglected: The radiative mecha
has a higher orientational selectivity than the nonradiat
one.10

For the purposes of computing the effect of radiati
transport on fluorescence anisotropy, we consider only
sults for directions contained in the horizontal plane~includ-
ing the usual front-face and right-angle geometries!, for
which the anisotropy of fluorescence takes the highest va
We further suppose that molecular rotational motion is n
ligible during the lifetime and that the exciting photons car
vertical polarization.

We start with the calculation of the depolarization due
the radiative transfer of the electronic excitation energy.
conform with usage, we writer 0 ~fundamental anisotropy!
for the anisotropy of first generation molecules, implyin
that r 15r 0 . The anisotropy of second generation molecul
indirectly excited by reabsorption, will be

r 25br 0 , ~23!

whereb is the depolarization factor (b,1). As mentioned,
the probability of return of the excitation to the original mo
ecule is negligible, and therefore the anisotropy of fluor
cence of molecules belonging to thenth generation is ob-
tained by repeated application of Eq.~23!,

r n5bn21r 0 ~n51,2,...!. ~24!

A quantum electrodynamical calculation of the depolariz
tion factor b, by Andrews and Juzeliūnas,10 gave b50.28
~an identical value is obtained from classic
electrodynamics1!. This value may be compared to that
the nonradiative dipole–dipole transfer mechanism, wh
is5,6,10b50.04. The polarization retained after one transfe
thus seven times greater for the radiative case, precluding
mentioned, the common approximation in nonradiative tra
port of neglecting the contribution of higher order gene
tions.

For excitation with vertically polarized light, the defin
tion of anisotropy is

r ~ t !5
I i~ t !2I'~ t !

I i~ t !12I'~ t !
, ~25!

where the parallel and perpendicular intensities are meas
for a direction at right angle with the excitation, and co
tained in the horizontal plane. The denominator of Eq.~25! is
usually proportional to the intensity emitted in all direction
An alternative measure of linear polarization is the polari
tion p, appropriate for light beams,

p~ t !5
I i~ t !2I'~ t !

I i~ t !1I'~ t !
, ~26!

where the denominator is the intensity emitted in the dir
tion of measurement. In most fluorescence experiments,
isotropy is a more useful parameter than polarization,
o. 24, 22 December 1997
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10483Berberan-Santos, Nunes Pereira, and Martinho: Stochastic theory of transport
cause the denominator is proportional to the intensity de
and simpler expressions result. When several incohe
sources are present~e.g., a mixture of fluorescent com
pounds!, both polarization and anisotropy can be expres
as a sum of contributions, the weight of each being the fr
tion of the intensity emitted in all directions~anisotropy!, or
the fraction of the intensity emitted in the direction of me
surement~polarization!.

When radiative transport is present, the denominato
Eq. ~25! is no longer proportional to the intensity decay.
fact, the symmetry of the emitting ensemble is lowered, a
a complicated positional pattern of polarizations emerg
Both anisotropy and polarization become local quantit
~i.e., relative to the measurement pointrb!. From the experi-
mental point of view, Eq.~25! can still be used. But from the
theoretical one, information is limited to the decay at a giv
boundary point, Eqs.~15! or ~17!, which is proportional to
I i(t)1I'(t) and not toI i(t)12I'(t) ~both measured atrb!.
Polarization, as given by Eq.~26!, is therefore of more direc
meaning. Nevertheless, given that anisotropy is the par
eter used in the absence of radiative transport, it is impor
to obtain a generalized, albeit local anisotropy, that will
duce to the usual result in the limiting situation of negligib
radiative transport. To do so, one takes into account the
lation between the local anisotropy and local polarization

p5
3r

21r
, ~27!

or

r 5
2p

32p
. ~28!

The total polarization is first obtained,

pb~l,t !5 (
n51

`

abn~l,t !pn , ~29!

wherepn is the polarization of thenth generation. From Eqs
~24! and ~27!,

pn5
3bn21r 0

21bn21r 0
. ~30!

The fractional contributionabn(l,t) is

abn~l,t !5
I bn~l,t !

I b~l,t !

5

@12abn~l!#S )
i 51

n21

ā i D ~krt !
n21

~n21!!

(
n51

`

@12abn~l!#S )
i 51

n21

ā i D ~krt !
n21

~n21!!

. ~31!

The polarization is therefore

pb~l,t !
J. Chem. Phys., Vol. 107, N
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(
n51

`

@12abn~l!#S )
i 51

n21

ā i D ~krt !
n21

~n21!!

3bn21r 0

21bn21r 0

(
n51

`

@12abn~l!#S )
i 51

n21

ā i D ~krt !
n21

~n21!!

.

~32!

Finally, the anisotropy is received from Eq.~28!,

r b~l,t !

5r 0

(
n51

`

@12abn~l!#S )
i 51

n21

ā i D S 1

21bn21r 0
D ~krbt !n21

~n21!!

(
n51

`

@12abn~l!#S )
i 51

n21

ā i D S 1

21bn21r 0
D ~krt !

n21

~n21!!

.

~33!

By a reasoning similar to that of Eq.~17!, it may be shown
that for long times the anisotropy becomes

r b~l,t !>r 0 exp@2āS~12b!krt#. ~34!

Similarly, the polarization will be

pb~l,t !> 3
2 r 0 exp@2āS~12b!krt#. ~35!

It should be stressed that the reabsorption probabili
of Eqs. ~32!–~33! must be computed with an absorptio
probability whose orientational dependence is that of a ra
ating electric dipole, and not that of an isotropic emitt
because it is now assumed that molecular rotation is fro
during the lifetime. However, the results are expected no
greatly differ.

III. COMBINED RADIATIVE AND NONRADIATIVE
TRANSPORT

A. Importance of nonradiative transport

The contribution of nonradiative energy transport h
been completely neglected up to now. Nonradiative transp
will be present whenever the average distance between
ecules is smaller or of the order of the Fo¨rster radius for
self-transfer. Because some of the parameters that favo
diative transport, like high absorption–emission spec
overlap and high molecular radiative constant, also fa
nonradiative transport by the dipole–dipole mechanism,
Förster radius for self-transfer tends to be significant. It
therefore important to discuss the effect of nonradiat
transport on the macroscopic observables like the fluo
cence intensity decay, quantum yield, and anisotropy de

In a system where both mechanisms are operative,
neglecting coherence, the excitation will perform a series
short range hops by the nonradiative mechanism, alterna
with long distance jumps by the radiative one. What conc
sions can be drawn from this picture? First, it is well know
that the ensemble decay law is unaffected by pure nonra
tive transport.11 In this way, each series of short hops w
not change the decay probability of that subensemble. S
ond, because the hops are performed locally, the excita
spread during the lifetime does not exceed a few Fo¨rster
o. 24, 22 December 1997
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radii, and cannot change significantly the spatial distribut
of the generations considered in the radiative model. Ano
consequence of the nonradiative hops is the efficient
domization of the orientation of the emitting dipole. In th
way, and depending on the importance of the nonradia
mechanism, the assumption of isotropic emission may
appropriate even in cases where molecular rotation is in
nificant during the excited state lifetime. All these consid
ations lead to the conclusion that nonradiative transp
leaves the decay law practically unchanged.

B. Fluorescence anisotropy

As regards the anisotropy decay, the contribution of n
radiative transport may be quite important. Invoking ag
the model of a series of short hops alternating with lo
jumps, a strong depolarization is expected for each serie
hops. Nonradiative transport will therefore contribute to t
anisotropy decay. When significant, it may even be the do
nant mechanism. It is thus of interest to obtain an expres
for the combined effect of radiative and nonradiative tra
port. To do so, we try to modify the anisotropy decay f
pure radiative transport, Eq.~33!. Following thenth radiative
step, an (n11)th generation molecule is excited~at a certain
time tn11!. Owing to the nonradiative hops, there is a pro
ability G(t2tn11) that the excitation will remain in tha
molecule. If the next radiative jump (n11→n12) occurs
from the initially excited molecule, one may still apply th
depolarization equation~23!. If, on the other hand, the radia
tive jump originates from an indirectly excited molecule
the nonradiative mechanism, total depolarization is expec
In this way, the emission probability for polarized emissi
will be, for each radiative step,g1(t)G(t), whereg1(t) is
given by Eq.~4! andG(t) is the probability that the excita
tion is in the directly excited molecule, when nonradiati
transport is operative. The functionG(t) is given by several
theoretical treatments.7 In this way, the probability of emis-
sion of polarized radiation by annth generation molecule
will be

~36!

while the population of that generation will continue to
proportional togn(t). Hence, Eq.~24! is replaced by

r n~ t !5bn21r 0

gn8~ t !

gn~ t !
, ~37!

and Eqs.~32! and ~33! by
J. Chem. Phys., Vol. 107, N
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pb~l,t !

5

(
n51

`

@12abn~l!#S )
i 51

n21

ā i D S 3~bF0!n21r 0gn8~ t !

21
gn8~ t !

gn~ t !
bn21r 0

D
(
n51

`

@12abn~l!#S )
i 51

n21

ā i DF0
n21gn~ t !

,

~38!

r b~l,t !

5r 0

(
n51

`

@12abn~l!#S )
i 51

n21

ā i D S ~bF0!n21gn8~ t !

21
gn8~ t !

gn~ t !
bn21r 0

D
(
n51

`

@12abn~l!#S )
i 51

n21

ā i D S F0
n21gn~ t !

21
gn8~ t !

gn~ t !
bn21r 0

D .

~39!

It must be remarked that the above considerations
formulas are not completely general. A unified treatment
the problem of combined radiative and nonradiative transp
that includes the continuous variation from ther 26 interac-
tion to the r 22 interaction10,12 is wanting. We considered
only the combined effect of the~extreme cases of! radiative
and nonradiative~dipole–dipole! processes. This is neverthe
less expected to be valid for most situations.

IV. CONCLUSIONS

A stochastic theory of combined radiative and nonrad
tive transport has been presented. This approach is physi
clear and versatile, allowing the consideration of the co
bined effect of radiative and nonradiative transport, carr
out here for the first time.
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