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In the Classroom
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Recently, Swiegers, noticing the educational value of
the many analogies between human behavior and chemi-
cal behavior, proposed to apply the principles of chemical
kinetics to population growth problems (1). Among the
many human phenomena that have an analogy with
chemical kinetics [some of them have been collected and
elaborated in Formosinho’s book (2)] are our countries’
inflation rates and the devaluation of car worth with time.
The inflation rate problem will be treated in the present
paper in a detailed way, as it offers an interesting anal-
ogy with chemical kinetics; and the car devaluation prob-
lem will be presented and solved as a normal chemical
kinetic problem, where the order of the rate law and the
value of the rate constant are derived.

Inflation Rate

Many people nowadays are worried about the infla-
tion rate of their country and about the concomitant de-
clining value of their money. Rapid and elementary esti-
mations are brought up and tested with the aim of estab-
lishing the declining value of a given capital with infla-
tion, that is, with the growing prices of the wares on the
market.

Method
After one year at the constant annual inflation rate,

k, where inflation means the price index on the market, a
price P0 will have the following value form:

P1 = P0 (1 + k) (1)

after two years

P2 = P1 (1+k) = P0 (1 + k)2 (2)

and so on. Thus, after t years its real value will be

Pt = P0 (1 + k)t (3)

The time period, t2, the prices take to double when k
= 0.05 yr–1 (i.e., the approximate actual yearly inflation
rate in Italy and Portugal) can be easily estimated by the
aid of the logarithmic form of expression 3 with Pt = 2P0

t2 = ln 2/ln (1 + k) = 14.21 yr (4)

This means that, with the given inflation rate, k, our
money will have lost half of its value after nearly 14 years.
Thus the time t2 can be also considered as the time, t1/2, a
given amount of capital takes to lose half its value.

Now, if the time interval (the whole year or some por-
tion of it) is small enough to satisfy the condition k<<1,
eq 3 can be rearranged into the following form (this means

the inflation rate is calculated in a continuous way):
Pt = P0?exp[t·ln(1+k)] = P0?exp(kt) (5)

as for a small enough k, ln(1+k) = k. The final expressions
for Pt and t2, then, are

Pt = P0?ekt (6)

t2 = ln 2/k (7)

Discussion
Equation 6 with a negative exponent and concentra-

tion brackets around first and second P is the well-known
integrated form of a first-order reaction rate for the con-
sumption of a reactant P, while with a negative k, t2 of eq
7 becomes t1/2, the half-time for P consumption (Pt = 0.5?P0).
Economically speaking, a negative exponential in eq 6
specifies either deflation processes (the contrary of infla-
tion: the prices go down) for prices or capital devaluation
during inflation periods. In this case t2 becomes t1/2, the
half-time for devaluation of money or prices.

By analogy with chemical kinetics (see eq 6), the in-
flation lifetime < t > can be defined as the time required
for the value of the wares to rise to e times P0 (or the value
of the money to decay 1/e times P0); that is, < t > = 1/k.

It has to be noticed that while in chemical kinetics k
can assume any positive constant value, the same is not
valid in economics for inflation and deflation processes.
Let us find out, numerically, when eq 6 can be used, with
a negative exponent, for capital devaluation prognosis. Let
us study this problem by comparing the outcome of eqs 4
(exact) and 7 (approximate), considering the half-time, t1/2,
for capital devaluation because this economic aspect has
a more direct analogy with chemical kinetics. The evolv-
ing difference between t1/2 (eq 4) and t1/2 (eq 7) can be bet-
ter understood if the following set of different k?t values
is considered (where t stands for a generic time, usually
one year).

  k?t t1/2 (eq 4)/t t1/2 (eq 7)/t
0.8 1.179 0.866
0.08 9.006 8.664
0.008 86.99 86.64
0.0008 866.8 866.4
0.00008 8664.7 8664.3

The first impressive difference between the two t1/2
values clearly means that, for high inflation rates, devalu-
ation and chemical kinetic problems are formally very
different from each other. The growing similarity between
the two t1/2 values with decreasing inflation rates means
that low inflation rates or inflation measured over short
periods and first-order chemical reactions are formally
similar problems and can be treated by the aid of the same
mathematical relationship. Practically, the formal meet-
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ing point between inflation rates and reaction rates (eqs
3 and 6) is at k?t  ≤ 0.01.

Car Devaluation

The devaluation of our cars as they get old is the other
problem that shows some interesting similarities with
chemical reaction kinetics. Furthermore, it should not be
forgotten that the aging of a car is basically a (complex)
chemical process. In the following lines are shown the
prices of two different models of European cars: a com-
pact FIAT, F (FIAT Uno 70, 1376 cc), and a standard
Mercedes, M (Mercedes 250 TD SW 2497 cc). The prices
(inflation included) of these models were followed for 7
years, from 1986 until 1993 (4). (In 1994 both models dis-
appeared from the market.). The 1986 price was taken as
the zero point. The prices for F and M are given below in
millions of Italian Lire (L = Lire × 10{6).

Time (yr)
0 1 2 3 4 5 6 7

L(F) 13.7 12.2 10.1 8.9 7.8 5.5 4.8 4.0
L(M) 45.0 39.9 34.9 31.1 27.3 23.6 19.8 16.0

When this paper was written, 1650 Lire ~$1, but this is
rapidly changing. Time (yr) is the age of the new (yr = 0)
or used (yr > 0) car. Thus the price at yr = 0 is the price of
a new car in 1993, while the price at yr = 7 is the price of
a used 1986 car (4).

The price half-time, t1/2, of these two models (the time
it takes a price to halve its initial value) tells us that the
value of the two cars follows a zeroth-order kinetics

[P0] – [P] = k?t (8)
with

t1/2
 = [P0] / 2?k (9)

where [P0] can be considered the actual price of the 1993
car. These prices fall to half of their original value in 4.5
yr for F and 5.5 yr for M. This means (by the aid of eq 9)
that k(F) ≅ 1.5 L/yr and k(M) ≅ 4.1 L/yr. Plotting price [P]
versus t, shown in Figure 1, allows us to derive the fol-
lowing more accurate values for k: k(F) = 1.43 L/yr and
k(M) = 4.06 L/yr.

The linear correlations of the data show the follow-
ing correlation coefficients, r, and standard deviation of
estimate, s (ln[P] shows a linear correlation with nearly
similar r but worse s): r(F) = .992 and s(F) = 0.47; r(M) =
0.998 and s(M) = 0.69.

Figure 1 shows that expensive cars lose value at a

Figure 1: Evolution of compact (j) and expensive (p) car prices along
the years.

higher specific rate than small compact cars and that
after 11–12 years both cars can be acquired at nearly
the same price. In reality, car models are removed from
the market after a number of years of devaluation and
are replaced by new models, and the cycle starts all over
again.

Conclusion

The inflation rate problem and the car devaluation
problem show interesting formal similarities between eco-
nomics and chemical kinetics. Capital devaluation dur-
ing periods of very low inflation rates follows a kinetic
relation formally similar to that followed by first-order
reactions in chemical kinetics, whereas car devaluation
follows a kinetic relation formally similar to a zeroth-order
chemical kinetic relationship. Normally car devaluation
is much faster than money devaluation in those countries
where inflation rates are rather modest.
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