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The thermodynamic properties, enthalpy of vaporization, entropy, Helmholtz func-
tion, Gibbs function, but especially the heat capacity at constant volume of a
van der Waals gas (and liquid) at the phase transition are examined in two different
limit approximations. The first limit approximation is at the near-critical temperatures,
i.e., for T/Tc → 1, where Tc is the critical temperature, the other limit approximation
is at the near-zero temperatures, T → 0. In these limits, the analytical equations for
liquid and gas concentrations at saturated conditions were obtained. Although the heat
capacities at constant volume of a van der Waals gas and liquid do not depend on the
volume, they have different values and their change during the phase transition was cal-
culated. It should be noticed that for real substances the equations obtained at the near-
zero temperature are only valid for T > Ttriple point and T � Tc, which means that
found equations can be used only for substances with Ttriple point � Tc.

KEY WORDS: thermodynamics, van der Waals equation, phase transition,
heat capacities, critical temperature

1. Introduction

Many applications of thermodynamics are concerned with the behavior
of fluids and gases. Thermodynamic properties, such as internal energy and
enthalpy from which one calculates the heat and work requirements of industrial
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processes are not readily measurable. In fact nobody has ever heard of energyme-
ter, enthalpymeter or entropymeter. They can, however, be calculated from volu-
metric data using an appropriate equation of state (EOS).

Consider first an ideal gas (also called perfect gas). It is a collection of a
very large number of individual molecules that do not exert forces upon each
other (except by elastic collisions) and which are so small that they can be trea-
ted as if they were zero-volume massless points. This picture is adequate to des-
cribe the behavior of real gases only at very low pressures. The EOS for 1 mole
of an ideal gas is,

PV = RT . (1)

Here, P is the gas pressure, V is the molar volume, T is the temperature, and R

is the gas constant.
To obtain a more realistic EOS, van der Waals introduced corrections that

account for the finite volumes of the molecules and for the attractive forces
(van der Waals forces) they exert upon each other at sufficiently small distances.
In each mole of gas there is a volume (V −b) available for the free motion that is
somewhat less than the total volume. The term b is the excluded volume of the
particles per mole (sometimes called co-volume). The excluded volume is repre-
sentative of the repulsion forces among the molecules of the gas. These forces
induce a volume larger than the actual volume of the molecules, because in their
movement they do not truly touch each other.

To take into account the forces of attraction, van der Waals considered that
molecules in the bulk of gas are equally attracted in all directions by the sur-
rounding molecules, even if this is not the case for the molecules next to the wall
of the container. These molecules experience a net inward force and thus they
are decelerated when traveling in the direction of the wall. If we recall that the
kinetic theory of gases postulates that pressure is the number of collisions per
unit area and per unit time, this inward force results in fewer molecules hitting
the wall, that is, the pressure observed in a real gas must be smaller than the
pressure present in an ideal gas. The reduction in pressure will be proportional
to the number of molecules per unit volume, NA/V (NA is Avogadro number),
in the layer next to the wall, and to the number of molecules per unit volume
in the next layer, being their interactions attractive in character. Therefore, the
reduction in pressure, �P = P ′ − P (P ′ is pressure calculated from simple kine-
tic theory, known as the internal pressure of the gas), is: �P ∝ (NA/V )2, or
P ′ = P + a/V 2. Here a (together with b) is a van der Waals constant. Taking
both corrections into account leads to the well-known van der Waals equation
of state (WEOS)

(
P + a

V 2

)
(V − b) = RT . (2)
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The terms a and b are characteristic of each gas and can be obtained by
analyzing the WEOS at the critical point, i.e., zeroing the first and second deri-
vative, dP/dV and d2P/dV 2, at this point, where the P − V curve has a flat
inflection,

Pc = a

27b2
, Vc = 3b, Tc = 8a

27Rb
, zc = 3

8
. (3)

Here, Pc, Vc, and Tc are the critical values for pressure, molar volume, and
temperature, and zc is the compressibility (=PV/RT ) at the critical point.

WEOS (together with Maxwell’s principle which removes in the van der
Waals equation regions where (∂P/∂V )T > 0) represents qualitatively the beha-
vior of the real gas over the whole range of gas, vapor, and liquid. It does not
give the numerical details correctly, yet it never leads to physical non-sense, it is a
relatively simple equation, and it is widely used to illustrate the general behavior
of non-ideal gases. Other two-parameter EOS exist [1, 2], but WEOS continues
to enjoy great popularity because of the relative simplicity and very simple ideas
used. WEOS is even able to predict negative pressures, but this is another story.

If the analytical solution of the van der Waals equation is known, one can
calculate the different thermodynamic properties of real gas.

2. Enthalpy of vaporization Lv

The Clausius–Clapeyron equation for the saturation vapor pressure Psat
gives

dPsat

dT
= Lv

T
(
V ∗

G − V ∗
L

) . (4a)

Here, V ∗
G and V ∗

L are the molar volumes of gas and liquid under saturation
condition, respectively. Equation (4a) can be solved for Lv, to obtain,

Lv = T
(
V ∗

G − V ∗
L

) dPsat

dT
. (4b)

3. Entropy, S

An equation connecting the entropy S and the pressure is obtained from the
equation for the free energy F (F = U − T S, where U is the internal energy of
a gas; for a mnemonic method to derive and check many thermodynamic equa-
tions see [3] and references therein)

dF = −SdT − P dV. (5)
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Now, by the help of one of the Maxwell equations, i.e.,
(

∂S
∂V

)
T

= (
∂P
∂T

)
V

, we
obtain the entropy if the pressure is known:

S(T , V ) − S(T , V1) =
∫ V

V1

(
∂P

∂T

)

V

dV. (6a)

The particular solution shown in equation (6b), can be obtained if we consider
that at the saturated conditions, Psat does not depend on V , which allows wri-
ting: S(T , V ) − S(T , V1) = dPsat

dT
(V − V1), where VL � V, V1 � VG, which with

equation (4b) obtains,

Ssat(T , V ∗
G) − S(T , V ∗

L) = dPsat

dT
(V ∗

G − V ∗
L) = Lv

T
. (6b)

4. Internal energy, U

The fundamental equation of thermodynamics, which combines the first
and the second law of thermodynamics reads

T dS = dU + P dV. (7)

Another important equation is known as the T dS equation (there are two
of them), which can be derived starting with the exact differential of S =S(T , V ),
multiplying both sides by T and using the Maxwell equation,

(
∂S
∂V

)
T

= (
∂P
∂T

)
V

,
reminding that CV = T (∂S/∂T )V is the heat capacity at constant volume, [4]

T dS = CV dT + T

(
∂P

∂T

)

V

dV. (8)

Combining equations (7) and (8) we get (see for example [4])

dU = CV dT +
[
T

(
∂P

∂T

)

V

− P

]
dV. (9)

For a van der Waals gas we get,

dU = CV dT + a

V 2
dV. (10)

This means that,
(

∂U
∂V

)
T

= a

V 2 . This last expression plays a major role in ther-
modynamics, where it is usually denoted as the isothermal coefficient πT , which
equals zero for an ideal (or perfect) gas. From equation (10) we can also obtain,(

∂U
∂T

)
V

= CV (T , V ). Equation (10) and the derived relations are not valid for the
saturated vapor, even if they are valid for metastable states: oversaturated vapor
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and stretched liquids. In fact, at saturated conditions, WEOS is not described by
equation (2). At saturated conditions (see equation (9)),

dUsat = Csat,V dT +
[
T

dPsat

dT
− Psat(T )

]
dV, (11)

where Csat,V is the heat capacity of the system liquid plus saturated gas at
constant volume and at saturated conditions. In particular,

Usat(T , V ∗
G) − Usat(T , V ∗

L) =
[
T

dPsat

dT
− Psat(T )

]
(V ∗

G − V ∗
L). (12a)

Combining this equation with equation (6b) we have

Usat(T , V ∗
G) − Usat(T , V ∗

L) = Lv − Psat(T )(V ∗
G − V ∗

L). (12b)

Equations (6b) and (12b) follow from equation (4a) if it is reminded that in pro-
cesses where T and P are constants: Lv = �Q = T �S = �U + Psat�V .

5. Free energy F

From equation (5), in processes where T is constant, it follows that:(
∂F
∂V

)
T

= −P(T , V )

This equation allows calculating F if the pressure is known, through equa-
tion,

F(T , V ) − F(T , V1) = −
∫ V

V1

P(T , V )dV. (13a)

As, at the saturated conditions, Psat does not depend on V , then Fsat(T , V )−
Fsat(T , V1) = −Psat(T )(V − V1), and, in particular,

Fsat(T , V ∗
G) − Fsat(T , V ∗

L) = −Psat(T )(V ∗
G − V ∗

L). (13b)

6. Gibbs function, G

G(T , V ) = F + P(T , V )V . (14)

At the saturated conditions, the Gibbs function, Gsat(T , V ) = Fsat(T , V ) +
Psat(T )V , does not change when the volume is changing and the temperature is
kept constant, i.e., Gsat(T , V ) − Gsat(T , V1) = 0. In particular, Gsat(T , V ∗

G) −
Gsat(T , V ∗

L) = 0.
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7. Heat capacity at constant volume, CV

Applying the condition that equation (5) is a perfect differential (the second
derivative of the entropy does not depend on the order of differentiation,
∂2S/∂T ∂V = ∂2S/∂V ∂T ), we get [reminding that, CV /T = (∂S/∂T )V , and
(∂S/∂V )T = (∂P/∂T )V (a Maxwell relation)]

(
∂CV

∂V

)

T

= T

(
∂2P

∂T 2

)

V

. (15)

The van der Waals equation predicts that the pressure is a linear function of
the temperature, therefore (∂CV /∂V )T = 0 and CV does not depend on the gas
volume. As, at very large volumes, the van der Waals gas behaves like an ideal
gas, the heat capacity of the van der Waals gas equals the heat capacity of an
ideal gas, a fact that contradicts the experimental evidence [5]. This conclusion
is not valid for a saturated vapor, whose pressure depends on the temperature in
a more complicated way (see below). By the same reasons the heat capacity of a
vdW fluid does not depend on the volume. The difference between heat capaci-
ties of a van der Waals gas and a van der Waals fluid is obtained below.

The heat capacities at the constant pressure and constant volume are
connected by the equation,

CP = CV − T

(
∂P

∂T

)2

V

/(
∂P

∂V

)

T

. (16)

8. Discussion

The last equation shows that CP > CV because (∂P/∂V )T < 0. In fact,
while the volume decreases, the pressure increases in all systems. The simpler
analytical solution for the pressure of a van der Waals gas and liquid tells that,

P = RT

V − b
− a

V 2
. (17)

This equation allows to obtain
(

∂P

∂V

)

T

= − RT

(V − b)2
+ 2a

V 3
< 0. (18)

For gases (gas volume) VG � b, and inequality (18) gives VG > 2a/RT .
Taking into account equation (3) we obtain, VG > 9TcVc/4T = 9Vc/4Tr , which
means that at low temperatures, the gas volume, VG, must be large enough, and
the gas phase is the only phase of the system. From now on the following dimen-
sionless reduced volume, temperature, and pressure will be used: Vr = V/Vc, and
Tr = T/Tc, Pr = P/Pc. At smaller volumes, saturated vapor, and liquid coexist.
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Now, by the aid of equations (16) and (17), and also by the aid of the last
result on VG, the following interesting expression for the heat capacity of a van
der Waals gas is obtained.

CP − CV = R

1 − VG/V
= R

1 − 9
4TrVr

. (19)

This expression shows that for a van der Waals gas: CP − CV > R. This
difference increases with decreasing gas volume.

For liquids at low temperature, VL > b and VL ∼ b, and by the aid of
equation (18) we get,

− RT

(V − b)2
+ 2a

b3
< 0. (20)

From this equation, and by the aid of equations (3), i.e., b = Vc/3, and
Rb/2a = 4/27Tc, and reminding that VL � b, the following result is obtained

Vc

3
� VL <

Vc

3

(
1 + 2

3
√

3

√
Tr

)
. (21)

This result tells that at low temperatures, the volume of the liquid, VL, is
small enough. At larger volumes, saturated vapor, and liquid can coexist.

Equation (16) with equations (17) and (21) allow the estimation of the heat
capacity for the liquid,

CP − CV = R

1 − 9×27
4Tr

(Vr − 1/3)2
, (22)

which tells that also for a van der Waals liquid CP − CV > R, and that this
difference increases with increasing liquid volume.

For intermediate volumes, where liquid and saturated gas coexist, the
volume, V , occupied by the system obeys the following relation,

Vc

3
+ 2Vc

9
√

3

√
Tr < V <

9
4
Vc/Tr . (23)

Equation (16) is not valid for saturated conditions where pressure does not
depend on the volume, i.e., here we are facing a first-order phase transition (fol-
lowing Ehrenfest’s classification) for which CP → ∞.

While the analytical solution for pressure of a van der Waals liquid and
gas is very simple (see equation 17), solutions for the vapor pressure and molar
volumes of gas and liquid under saturated conditions (at the liquid-vapor boun-
dary, Psat, V ∗

G, and V ∗
L) are usually obtained numerically [6, 7]. Analytical solu-

tions for these values are known in very limited regions of temperatures [8].
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In this paper, we obtained these solutions in the whole region of coexistence of
saturated-vapor and liquid, i.e., for temperatures from 0 K to Tc. Equation (17)
can be rewritten, using the reduced concentration, c = 1/Vr (note that C = 1/V

has the meaning of molar concentration), reduced pressure, and reduced tempe-
rature into the following form,

Pr = 8Tr

3/c − 1
− 3c2. (24)

By the aid of the Maxwell rule and WEOS, it is possible to obtain the equa-
tions for reduced liquid and gas concentrations at the gas-liquid boundary, c∗

L

and c∗
G, as well as the reduced saturated-vapor pressure, Psat,r , and the reduced

temperature, Tr , [6, 7]

ln
3/c∗

G − 1

3/c∗
L − 1

= c∗
L − c∗

G

c∗
L + c∗

G

(
3

3 − c∗
L

+ 3
3 − c∗

G

)
, (25)

Psat,r = c∗
Gc∗

L

⌊
3 − (

c∗
G + c∗

L

)⌋
, (26)

Tr = 1
8

(
c∗
G + c∗

L

) (
3 − c∗

G

) (
3 − c∗

L

)
. (27)

Note that the molar volumes in the liquid and gas states at the gas–liquid
boundary are

V ∗
L = 3b/c∗

L, V ∗
G = 3b/c∗

G. (28)

The detailed calculations for c∗
G and c∗

L are displayed in Appendix A. The solu-
tions at the near-critical temperatures, i.e., for Tr → 1, c∗

L → 1, and c∗
G → 1, for

c∗
G and c∗

L are the following,

c∗
L = 1 + 2(1 − Tr)

1/2 + 2
5
(1 − Tr) − 13

25
(1 − Tr)

3/2 + 0.115(1 − Tr)
2, (29)

c∗
G = 1 − 2(1 − Tr)

1/2 + 2
5
(1 − Tr) + 13

25
(1 − Tr)

3/2 + 0.207(1 − Tr)
2, (30)

1
2

(
c∗
L + c∗

G

) = 1 + 2
5
(1 − Tr) + 0.161(1 − Tr)

2. (31)

where equation (29) is valid for 0 � Tr � 1 (see figure 1, dotted line), equation
(30) is, instead, valid for 0.46 < Tr � 1 (see figure 2, dotted line), and equation
(31) is valid for 0.25 < Tr � 1 (see figure 3, dotted line).
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1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

1-T r

C* L

Figure 1. Dependence of the reduced liquid concentration, C∗
L

, on the reduced temperature, Tr :
exact numerical solution (solid line), equation (29) (near-critical temperature limit, dotted line), and
equation (32) (low-temperature limit, dashed line). Solid and dotted lines are practically coincident
(in the limits of figure precision).

Appendix B will show that at the near-zero temperatures, Tr → 0, c∗
L → 3,

c∗
G → 0:

c∗
L = 3

2

(
1 +

√
1 − 32

27
Tr

)
, (32)

c∗
G = 3c∗

L

e(3 − c∗
L)

exp
(

− 1
1 − c∗

L/3

)
, (33)

1
2

(
c∗
L + c∗

G

) = 3
2

− 4
9
Tr − 0.15T 2

r . (34)

Equation (32) is valid for 0 � Tr < 0.7 (see figure 1, dashed line), equation
(33) is, instead, valid for 0 � Tr < 0.33 (see figure 2, dashed line), and equation
(34) is valid for 0 � Tr < 0.64 (see figure 3, dashed line). These results are obtai-
ned from the fitting procedure. Equations (29)–(34) together with equations (26)
and (28) allow calculating the change of thermodynamic functions at saturated
conditions. Note that the values of the thermodynamic functions depend on the
combination of two products (V ∗

G − V ∗
L)dPsat/dT and Psat(T )(V ∗

G − V ∗
L). Taking

into account equations (26) and (28), we have,

Psat
(
V ∗

G − V ∗
L

) = 3bPcPr

(
1
c∗
G

− 1
c∗
L

)
= 3bPc

(
3 − c∗

G − c∗
L

) (
c∗
L − c∗

G

)
. (35)
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0.001

0.01

0.1

1

0 0.2 0.4 0.6

1-T r

C* G

Figure 2. Dependence of the reduced gas concentration, C∗
G

, on the reduced temperature, Tr : exact
numerical solution (solid line), equation (30) (near-critical temperature limit, dotted line), and equa-
tion (33) (near-critical temperature limit, dashed line).

1

1.25

1.5

0                   0.2                   0.4                  0.6                  0.8                   1

1-T r

(C* L +C* G )/2

Figure 3. Dependence of (C∗
G

+ C∗
L
)/2 on the reduced temperature, Tr : exact numerical solution

(solid line), equation (31) (near-critical temperature limit, dotted line), and equation (34) (near-
critical temperature limit, dashed line).

8.1. Thermodynamic functions at near-critical temperature

At the near-critical temperatures, equations (35), (29), and (30) give

Psat
(
V ∗

G − V ∗
L

) = 12bPc (1 − Tr)
1/2 − 318bPc

25
(1 − Tr)

3/2 + O
[
(1 − Tr)

2
]
.

(36a)
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For the big O-notation see note.1 Note that bPc = RTc/8 according to equation
(3). Therefore, equation (36a) can be rewritten as

Psat
(
V ∗

G − V ∗
L

) = 3
2
RTc (1 − Tr)

1/2 − 318RTC

25 × 8
(1 − Tr)

3/2 + O
[
(1 − Tr)

2
]
.

(36b)

At the same temperatures,

Psat,r = 1 − 4(1 − Tr) + 4.8(1 − Tr)
2, 0.46 < Tr � 1, (37)

1
c∗
G

− 1
c∗
L

= 4(1 − Tr)
1/2 + 194

25
(1 − Tr)

3/2 + O
[
(1 − Tr)

2
]

(38)

and

dPsat,r

dTr

= 4 − 9.6(1 − Tr). (39)

Thus, the other product,

(
V ∗

G − V ∗
L

) dPsat

dT
= 3b

(
1
c∗
G

− 1
c∗
L

)
Pc

Tc

dPsat,r

dTr

(40)

can be rewritten as (remind that bPc = RTc/8)

(
V ∗

G − V ∗
L

) dPsat

dT
= 48b

Pc

Tc

(1 − Tr)
1/2 + O

[
(1 − Tr)

3/2
]

= 6R (1 − Tr)
1/2 + O (1 − Tr)

3/2 . (41)

Thus, at near-critical temperature, the enthalpy of vaporization, Lv, is tempera-
ture dependent [see equation (4)],

Lv = T
(
V ∗

G − V ∗
L

) dPsat

dT
= 6RTC (1 − Tr)

1/2 + O
[
(1 − Tr)

3/2
]
. (42)

Notice that Landau and Lifshiz obtained this same temperature dependence in
another way [9]. From equation (6b), for the entropy, we obtain (at T ≈ Tc)

Ssat(T , V ∗
G) − S(T , V ∗

L) = Lv

T
= 6R (1 − Tr)

1/2 + O
[
(1 − Tr)

3/2
]
. (43)

1The big O notation or asymptotic notation is a mathematical notation used to describe the asymp-
totic behavior of functions. Its purpose is to characterize a function’s behavior for very large, or very
small, inputs in a simple but rigorous way that enables comparison to other functions. An asympto-
tic expansion is a formal series, which has the property that truncating the series after a finite num-
ber of terms provides an approximation to a given function as the argument of the function tends
toward a particular, often, finite point. Big O notation (in mathematics) is usually used to charac-
terize the residual term of a truncated infinite series, and especially of an asymptotic series.
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Equation (43) can be obtained from equation (42) noticing that Lv = T (S2 −S1)

at T = const.
For the free energy we have [see equation (13b)],

Fsat(T , V ∗
G) − Fsat(T , V ∗

L) = −Psat(T )(V ∗
G − V ∗

L)

= −12bPc (1 − Tr)
1/2 + O

⌊
(1 − Tr)

3/2
⌋

= −3
2
RTc (1 − Tr)

1/2 + O
[
(1 − Tr)

3/2
]
. (44)

For the internal energy [see equation (12b)],

Usat(T , V ∗
G) − Usat(T , V ∗

L) = Lv − Psat(V
∗
G − V ∗

L)

= 36bPc (1 − Tr)
1/2 + O

⌊
(1 − Tr)

3/2
⌋

= 9
2
RTc (1 − Tr)

1/2 + O
[
(1 − Tr)

3/2
]
. (45)

Equations (43)–(45) agree with equation �F = �U − T �S obtained from
F = U − T S at saturated conditions and T = const.

For the heat capacity at constant volume, we get from equations (15) and
(37), and reminding that T = TcTr ,

(
∂Csat,V

∂V

)

T

= T

(
∂2Psat

∂T 2

)

V

≈ 9.6
T

T 2
c

Pc. (46)

Here, the sign ≈ means that number coefficient 9.6 is not exact. After inte-
gration of this equation, we obtain

Csat,V (V ∗
G, T ) − Csat,V (V ∗

L, T ) ≈ 9.6
T

T 2
c

Pc(V
∗
G − V ∗

L), 0.46 < Tr � 1. (47)

This equation can be written, taking into account equations (28), (38), and
bPc = RTc/8, as,

Csat,V (V ∗
G, T ) − Csat,V (V ∗

L, T ) ≈ 9.6
T

T 2
c

3bPc(1/c∗
G − 1/c∗

L) ≈ 9.6
3
2
R (1 − Tr)

1/2 .

(48)

Note that Csat,V (V ∗
G, T ) is equal to the heat capacity of an ideal gas (CV (V ∗

G, T ) =
iR/2 where i is the number of degrees of freedom of a gas molecule) and
Csat,V (V ∗

L, T ) is the heat capacity of the van der Waals liquid, C
liq
V . Thus, the

expression for C
liq
V , which does not change at VL < V ∗

L , is

C
liq
V = i

2
R − 9.6

3
2
R (1 − Tr)

1/2 . (49)
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Table 1
CP/J K−1 mol−1 values in the solid, liquid, and gas phases [10]. In the third column are the

theoretical gas values.

Substance Gas Gas (theoretical) Liquid Solid

Aluminum 21.38 20.8 24.21 24.35
Carbon 20.838 20.8 8.527 (graphite) 6.113 (diamond)
Methanol 43.89 33.2 81.6
Ethanol 65.44 33.2 111.46
Benzene 81.67 33.2 136.1
Chlorine 33.91 29.1
Iodine 54.44 29.1 36.90
Lead 20.79 20.8 25.40
Mercury 20.786 20.8 27.983
Sodium 20.79 20.8 28.24
NaCl 29.1 50.50
Sulphur 23.673 20.8 23.6 (monoclin.) 22.64 (rhombic)
Zinc 20.79 20.8 25.40
Water 33.58 33.2 75.291 37.8 (ice, 0◦C)

At the critical temperature, V ∗
L = V ∗

G, CV (V ∗
G, T ) = CV (V ∗

L, T ), and the
liquid cannot be distinguished from the gas. At lower temperature, the change of
phase from liquid to gas should be considered, and the heat capacity jumps to
another value (we are facing a phase transitions of the first order), and we have
obtained the value of this jump. Thus, at the phase transition the heat capacity
of a liquid is smaller than the heat capacity of a gas. This fact could be explained
considering that the translational and rotational motions are relatively frozen in
a liquid. In reality, forgetting van der Waals, the heat capacity of a liquid (as
well as the heat capacity of a solid) is larger that the heat capacity of a gas (see
table 1). The theoretical gas values in table 1 were obtained with equation, CP =
CV + R = R(i + 2)/2, which is valid for an ideal gas; here i equals the number
of degrees of freedom, and only translational and rotational degrees of freedom
have been taken into account.

8.2. Thermodynamic functions at low-temperature limit

In the other limit, at near zero temperatures, we have from equations (35)
and (B4),

Psat
(
V ∗

G − V ∗
L

) = 3bPc

(
3 − c∗

G − c∗
L

) (
c∗
L − c∗

G

) = 8bPc

T

Tc

+ O(T 2
r ). (50)

While from equations (26), (28)–(34) one can obtain

c∗
G = 81

8eTr

exp
(

− 27
8Tr

)
, (51)
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Psat,r = c∗
G

3
2

(
1 +

√
1 − 32

27
Tr

)
8
9
Tr

∼= 8
3
c∗
GTr = 27

e
exp

(
− 27

8Tr

)
. (52)

This result (equation (52)) can also be obtained from the Clausius–Clapeyron
equation (4a) if the enthalpy of vaporization, Lv, is not temperature-dependent
and equals 27RTC/8.

At very low temperatures (Tr → 0) and with equations (51) and (52) we
have

dPsat,r

dTr

= 27 × 27
8e

1
T 2

r

exp
(

− 27
8Tr

)
, (53)

d2Psat,r

dT 2
r

= 27 × 27 × 27
64e

1
T 4

r

exp
(

− 27
8Tr

)
. (54)

Notice that, due to the condition Tr → 0, a term has been dropped in equation
(54).

(
V ∗

G − V ∗
L

) dPsat

dT
= 3b

(
1
c∗
G

− 1
c∗
L

)
Pc

Tc

dPsat,r

dTr

∼= 3b
Pc

Tc

1
c∗
G

dPsat,r

dTr

= 27b
Pc

Tc

1
Tr

= 27R

8Tr

. (55)

Thus, at near-zero temperature (T → 0 K, bPc = RTc/8) we have

Lv = T
(
V ∗

G − V ∗
L

) dPsat

dT
= 27bPc = 27

8
RTC, (56)

i.e., the enthalpy of vaporization does not depend on the temperature, and, as it
must be, the entropy of a gas is larger than the entropy of a liquid:

Ssat(T , V ∗
G) − Ssat(T , V ∗

L) = Lv

T
= 27R

8Tr

. (57)

As WEOS does not take into account quantum effects, equation (57)
contradicts the Nernst theorem (third law of thermodynamics): S(T ) approaches
a finite limit at T = 0, which does not depend on specifics of processes that
brought the system to the T = 0 state. Notice that the same problem holds for
an ideal gas, where S(T , V2) − S(T , V1) = Rln(V2/V1).

Fsat(T , V ∗
G) − Fsat(T , V ∗

L) = −Psat(T )(V ∗
G − V ∗

L) = −8bPcTr = −RT, (58)

i.e., the free energy of a gas is equal to the free energy of a liquid at T → 0,

Usat(T , V ∗
G) − Usat(T , V ∗

L) = Lv − Psat(V
∗
G − V ∗

L) = 27
8

RTC − RT, (59)
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i.e., the internal energy of a gas is larger then the free energy of a liquid. The
equations (57)–(59) agree with equation �F = �U − T �S obtained from F =
U − T S at saturated conditions and T = const.

The change of the heat capacities at the phase change (liquid → gas) is,

Csat,V (V ∗
G, T ) − Csat,V (V ∗

L, T ) = 27 × 27 × 27
64eT 2

r T
exp

(
− 27

8Tr

)
Pc(V

∗
G − V ∗

L). (60)

At low temperature, V ∗
G � V ∗

L , the van der Waals gas behaves as an ideal
gas, and the perfect gas law is valid, PsatV

∗
G = RT . Using this circumstances and

taking into account equation (52), we obtain

Csat,V (V ∗
G, T ) − Csat,V (V ∗

L, T ) = 27 × 27
64

T 2
c

T 2
R. (61)

That means that the difference of heat capacities of a van der Waals gas
and liquid at constant volume and at very low temperatures increases. This result
contradicts again the Nernst theorem, according to which, CV = 0 at T = 0 K.
The same contradiction exists for an ideal gas, whose heat capacity does not
depend on the temperature and it equals iR/2. If we were to use for the heat
capacity of a van der Waals gas the classical value Csat

G (V ∗
G, T ) = iR/2 (at low

temperature the van der Waals gas behaves as an ideal gas), we would obtain,
using equation (61) (for V < V ∗

L), that the heat capacity of a van der Waals
liquid C

liq
V can be negative. That means that the van der Waals equation (as

any classical theory that does not take into account quantum effects. Some of
these effects have recently been treated in [11]) gives no correct (even qualitative)
results for the heat capacities at very low temperatures.

Note that for real substances at T → 0, there is no liquid-vapor transition,
there is only solid-vapor transition (see figure 4); for water, solid-liquid transition
exist also at T < Tc. Thus, equations obtained at the near-zero temperature could
only be applied in the temperature interval Ttriple point < T � Tc (WEOS des-
cribes liquid-vapor phase transition only). That means that these equations can
be used for substances with Ttriple point � Tc. For a list of critical temperatures
and triple point temperatures see table 2. It can be seen that for real substances,
the inequality Ttriplepoint � Tc is never fulfilled.

9. Conclusions

The equations for reduced liquid and gas concentrations at saturated condi-
tions, for the changes of enthalpy of vaporization, entropy, Helmholtz function,
Gibbs function, and the heat capacity at constant volume of a van der Waals gas
(liquid) during the phase transition were obtained in two different limit approxi-
mations. The first limit approximation is at the near-critical temperatures, i.e., for
T → Tc, the other limit approximation is at the near-zero temperatures, T → 0.
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P

Liquid

Gas

Ttriple point
T

Solid State

0

Pc

Tc

Figure 4. A nonspecific phase diagram, which resembles more to a phase diagram for carbon
dioxide than to a phase diagram for water, where the solid-liquid curve has a negative slope. For
sheer curiosity CO2 has its triple point at T = 216.8 K and P = 5.11 bar.

Table 2
Critical temperatures, Tc, and triple point temperatures, Tt [10, 12–14]∗.

Substance Tc/K Tt /K

Hydrogen, H2 32.98 13.81
Helium, 3He 3.35 –
Helium, 4He 5.1953 2.18 (λ point)
Nitrogen, N2 126.19 63.2
Oxygen, O2 154.58 54.4
Neon, Ne 44.49 24.56
Argon, Ar 150.7 83.8
Methane, CH4 190.56 88.7
Ammonia, NH3 405.40 195.49
Water, H2O 647.4 273.16
Carbon dioxide, CO2 304.21 216.6
Hg >1800 234.3156

∗ The most recent data have been chosen.

Although the heat capacities at constant volume of a van der Waals gas and
liquid do not depend on volume, these heat capacities have different values and
their change during the phase transition was calculated. It was obtained that at
near-critical temperatures, the heat capacity of a gas is larger than the heat capa-
city of a liquid, and the difference between these heat capacities decreases to zero
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as (1 − T/Tc)
1/2 when the temperature increases and approaches to critical tem-

perature.
Results obtained at near-zero temperatures are interesting only from a theo-

retical point of view because for real substances, the obtained equations are only
valid in the temperature interval Ttriple point < T � Tc, i.e., for substances with
Ttriple point � Tc. Such substances are, actually, missing.

Appendix A: solution at near-critical temperatures (Tr → 1, c∗
L → 1, c∗

G → 1)

To solve equation (25) parametrically let us introduce the new variables, x+
and x− [5], which allow rewriting equation (25) as equation (A3)

x+ = 1
3/c∗

L − 1
, (A1)

x− = 1
3/c∗

G − 1
. (A2)

ln
x+
x−

= (x+ − x−)(x+ + x− + 2)

2x+x− + x+ + x−
. (A3)

Setting both sides of this equation equal to 2y the solution (A5) is obtained

ln
x+
x−

= 2y, (A4)

x+ = e2yx−, and x− = e−2yx+. (A5)

The final result could be written as: x± = e±yf (y), with f (y) given by,

f (y) = y cosh y − sinh y

sinh y cosh y − y
. (A6)

Or

x+ = 2eyy(e−y + e−y) − ey + a−y

e2y − e−2y − 4y
. (A7)

The equation for x− is obtained from the inspection of equations (A5) and (A7).
Taking into account equations (A1) and (A2) we have

c∗
L = 3

1 + 1/x+
= 3

1 + 1
2 e−y e2y−e−2y−4y

y(ey+e−y)−ey+e−y

. (A8)
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At the near critical temperature, y � 1, and with the help of Mathematica
[15] the following series can be written,

c∗
L = 1 + 2

3
y + 2

45
y2 − 8

135
y3 + 2

576
y4 + 272

42525
y5 + 4

18225
y6 + O(y7). (A9)

By the same way, one can obtain the following two equations for c∗
G,

c∗
G = 3

1 + 1/x−
= 3

1 + 1
2 ey e2y−e−2y−4y

y(ey+e−y)−ey+e−y

, (A10)

c∗
G = 1 − 2

3
y + 2

45
y2 + 8

135
y3 − 2

576
y4 − 272

42525
y5 + 4

18225
y6 + O(y7).

(A11)

Let us now take equation (27)

1
8

(
c∗
G + c∗

L

) (
3 − c∗

G

) (
3 − c∗

L

) = Tr . (A12)

Inserting the series (A9) and (A11) into equation (A12), we obtain an equation
with precision till O(y7)

1 − 1
9
y2 + 1

75
y4 − 946

63785
y6 = 1 − (1 − Tr). (A13)

Introducing the new variable,

x2 = 1 − Tr (A14)

we obtain from equation (A13), with precision till y4 (inclusive),

1 − 1
9
y2 + 1

75
y4 = 1 − x2. (A15)

The solution of this equation is

y2 = 25 −
√

625 − 2700x2

6
. (A16)

With precision till x5, we obtain

y2 = 9x2 + 243
25

x4 + O(x5) (A17)

or

y = 3x

(
1 + 27

50
x2

)
+ O(x4). (A18)
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Let us introduce this equation into formula (A9). With precision till y4 (or x4)
we obtain

c∗
L = 1 + 2

3
y + 2

45
y2 − 8

135
y3 + O(y4)

= 1 + 2
3

[
3x

(
1 + 27

50
x2

)]
+ 2

45
(3x)2 − 8

135
(3x)3 + O(x4)

= 1 + 2x + 2
5
x2 − 13

25
x3 + O(x4). (A19)

Comparing equations (A9) and (A8) for c∗
L and c∗

G, we immediately have,

c∗
G = 1 − 2x + 2

5
x2 + 13

25
x3 + O(x4). (A20)

From the fitting procedure, we got that with precision better than 1%,

c∗
L = 1 + 2x + 2

5
x2 − 13

25
x3 + 0.115x4, (A21)

c∗
G = 1 − 2x + 2

5
x2 + 13

25
x3 + 0.207x4, (A22)

1
2

(
c∗
L + c∗

G

) = 1 + 2
5
x2 + 0.161x4. (A23)

Equation (A21) is valid for 0 � Tr � 1 (always! see figure 1), equation (A22) is
valid for 0.46 <Tr � 1 (see figure 1), and equation (A23) is valid for 0.25 <Tr � 1
(see figure 2). These validity limits, as well as the coefficients 0.115 and 0.207 in
equations (A21) and (A22), were obtained by fitting the numerical calculations
and equations (A21) and (A22).

Appendix B: solution at near-zero temperatures (Tr → 0, c∗
L → 3, c∗

G → 0)

(i) To obtain an equation for c∗
L in this limit, let us use equation (25) from

[7] [here equation (27)],

1
8

(
c∗
G + c∗

L

) (
3 − c∗

G

) (
3 − c∗

L

) = Tr . (B1)

If Tr → 0, c∗
G → 0 and equation (1) takes the form

3
8
c∗
L

(
3 − c∗

L

) = Tr . (B2)
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The solution of this equation is

c∗
L = 3

2

(
1 +

√
1 − 32

27
Tr

)
. (B3)

Comparison with the numerical calculations follows that equation (B3) is
valid with precision better 1% at 0�Tr <0.7 (see figure 1, dashed line). Expres-
sing equation (B3) as a second order series in Tr , we notice that the following
equation is valid with a precision better than 1% throughout the interval 0 �
Tr < 0.46

c∗
L = 3 − 8

9
Tr − 0.3T 2

r . (B4)

Coefficient 0.3 was obtained by fitting equation (B4) with numerical calculations.
(ii) To obtain an equation for c∗

G in the limit Tr → 0, we shall use equation
(23) of [7] [here equation (25)]

ln
3/c∗

G − 1

3/c∗
L − 1

= c∗
L − c∗

G

c∗
L + c∗

G

(
3

3 − c∗
L

+ 3
3 − c∗

G

)
. (B5)

The numerical calculations allows to obtain that c∗
G < 2 × 10−3 and c∗

L > 2.6
if Tr < 0.34. At these temperatures, equation (B5) can be rewritten as

ln
3/c∗

G − 1

3/c∗
L − 1

=
(

3
3 − c∗

L

+ 1
)

. (B6)

Or,

3
c∗
G

= 1 +
(

3
c∗
L

− 1
)

exp
(

3
3 − c∗

L

+ 1
)

. (B7)

Equation (B7) can be obtained thanks to the following series of rearrange-
ments,

3/c∗
G−1

3/c∗
L−1 = exp

(
3

3−c∗
L

+ 1
)

→ 3
c∗
G

− 1 =
(

3
c∗
L

− 1
)

exp
(

3
3−c∗

L
+ 1

)
.

Due to the exponential term (c∗
L ≈ 3), the unity in right-hand side of equation

(B7) is small in comparison with the second right-hand term. Now, as, 3
c∗
G

=(
3
c∗
L

− 1
)

exp
(

3
3−c∗

L
+ 1

)
, equation (B8) is retrieved,

c∗
G = 3c∗

L

e(3 − c∗
L)

exp
(

− 1
1 − c∗

L/3

)
. (B8)

Introducing the equation (B3) into equation (B8), we obtain the dependence
of c∗

G on Tr in the low temperature limit. Comparison with the numerical cal-
culations shows that equation (B8) together with equation (B3) is valid with an
error smaller than 1% at 0 � Tr < 0.33 (see figure 2, dashed line).
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(iii) As the concentration of gas is very small at the low temperature limit,
then, 1

2

(
c∗
L + c∗

G

) ≈ 1
2c∗

L. Thus, from equation (B4), we get,

1
2

(
c∗
L + c∗

G

) = 3
2

− 4
9
Tr − 0.15T 2

r . (B9)

Comparison with the numerical calculations shows that this equation is
valid with an error smaller than 1% at 0 � Tr < 0.64 (see figure 3, dashed line).
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