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1. Introduction

The moment-generating function of a random variable X is by definition
[1,2] the integral

M(t) =
∫ ∞

−∞
f (x) et x dx, (1)

where f (x) is the probability density function (PDF) of X .
It is well known that if all moments are finite, the moment-generating func-

tion admits a Maclaurin series expansion [1–3],

M(t) =
∞∑

n=0

mn
tn

n! , (2)

where the raw moments are

mn =
∫ ∞

−∞
xn f (x) dx (n = 0, 1, . . .). (3)

The cumulant-generating function [2–4]

K (t) = ln M(t), (4)
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admits a similar expansion

K (t) =
∞∑

n=1

κn
tn

n! , (5)

where the κn are the cumulants, defined by

κn = K (n)(0) (n = 1, 2, . . .). (6)

The first four cumulants are

κ1 = m1 = µ

κ2 = m2 − m2
1 = σ 2

κ3 = 2m3
1 − 3m1m2 + m3 = γ1 σ 3

κ4 = −6m4
1 + 12m2

1m2 − 3m2
2 − 4m1m3 + m4 = γ2 σ 4,

(7)

where γ1 is the skewness and γ2 is the kurtosis. With the exception of the delta
and Gaussian cases, all PDFs have an infinite number of non-zero cumulants.

The raw moments are explicitly related to the cumulants by

m1 = κ1

m2 = κ2
1 + κ2

m3 = κ3
1 + 3κ1κ2 + κ3

m4 = κ4
1 + 6κ2

1κ2 + 3κ2
2 + 4κ1κ3 + κ4.

.....................................................

(8)

Under relatively general conditions, the moments (or the cumulants) of a
distribution define the respective PDF, as follows from the above equations. It is
therefore of interest to know how to build the PDF from its moments (or cumu-
lants). An obvious practical application is to obtain an approximate form of the
PDF from a finite set of moments (or cumulants). Some aspects of the depen-
dence of a PDF on its moments were reviewed by Gillespie [5].

In this work, explicit formulas for the calculation of a one-sided PDF from
its cumulants are obtained, and their interest and limitations discussed.

2. Computation of a one-sided PDF from its cumulants

2.1. Laplace transform of the PDF

For a one-sided PDF (i.e., defined only for x � 0) it is convenient to con-
sider not the moment-generating or characteristic functions, but instead the
closely related Laplace transform,
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G(t) = L[ f (x)] =
∫ ∞

0
f (x) e−t x dx . (9)

The respective Maclaurin series is

G(t) =
∞∑

n=0

gn

n! tn, (10)

with

gn = G(n)(0) = (−1)n mn. (11)

In this way, termwise Laplace transform inversion of equation (10) gives the
PDF in terms of its moments,

f (x) = L−1 [G(t)] =
∞∑

n=0

(−1)n mn

n! δ(n)(x), (12)

where δ(n)(x) is the nth order derivative of the delta function. Equation (12)
again shows that a PDF is completely defined by its moments. This equation,
previously obtained by Gillespie [5] in a different way, must nevertheless be
understood as a generalized function representation of the PDF [5]. Indeed,
equation (12) cannot be used to compute a PDF from its moments. To do so,
one must resort to the cumulant expansion, as will be shown.

The modified cumulant-generating function is

C+(t) = ln G(t), (13)

the key point being that this modified cumulant-generating function admits the
formal expansion

C+(t) =
∞∑

n=1

cn

n! tn, (14)

where the coefficients are again directly related to the cumulants

cn = C (n)
+ (0) = (−1)n κn. (15)
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2.2. Calculation of f (x) from the cumulants

The PDF can therefore be written as

f (x) = L−1[eC+(t)] = L−1

[
exp

( ∞∑
n=1

(−1)n κn

n! tn

)]
, (16)

assuming that the series has a sufficiently large convergence radius.
Application of the analytical inversion formula for Laplace transforms [6]

(with c = 0) to equation (16) yields

f (x) = 2
π

∫ ∞

0
Re[eC+(i t)] cos(xt) dt, (17)

and using equations (14–15), equation (17) becomes

f (x) = 2
π

∫ ∞

0
exp

(
−κ2

t2

2! + κ4
t4

4! − · · ·
)

cos

(
κ1t − κ3

t3

3! + · · ·
)

cos(xt) dt (x > 0). (18)

Two other equivalent inversion forms [6] give

f (x) = 2
π

∫ ∞

0
exp

(
−κ2

t2

2! + κ4
t4

4! − · · ·
)

sin

(
κ1t − κ3

t3

3! + . . .

)
sin(xt) dt (x > 0), (19)

f (x) = 1
π

∫ ∞

0
exp

(
−κ2

t2

2! + κ4
t4

4! − · · ·
)

cos

(
xt − κ1t + κ3

t3

3! − · · ·
)

dt (x � 0). (20)

Equations (18–20) allow – at least formally – the calculation of a one-sided PDF
from its cumulants, provided the series are convergent in a sufficiently large inte-
gration range.

2.3. Particular case

If it is assumed that all cumulants but the first two are zero, equation (18)
gives

f (x) = 2
π

∫ ∞

0
exp

[
−1

2
(σ t)2

]
cos (µt) cos(xt) dt

= 1√
2πσ 2

[
1 + exp

(
2µx

σ 2

)]
exp

[
−1

2

(
x + µ

σ

)2
]

, (21)
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a PDF that for large µ/σ reduces to the Gaussian PDF. This result is however
somewhat deceptive. Indeed, the Laplace transform of equation (21) is

G(t) = 1
2

exp
[
−µt + 1

2
(σ t)2

] [
1 + er f

(
µ − σ 2t√

2σ

)

+ exp (2µt) er f c

(
µ + σ 2t√

2σ

)]
, (22)

and G(t) can be shown to possess an infinite number of nonzero cumulants. In
this way, the parameters µ and σ used in equation (22) to generate the men-
tioned PDF are not its first two cumulants. With the exception of the delta and
normal (Gaussian) distributions, all PDFs have an infinite number of nonzero
cumulants, as proved by Marcinkiewicz [7].

3. Application to the truncated Gaussian and to the exponential probability
density functions

3.1. Truncated Gaussian PDF

We now consider the truncated Gaussian (i.e., for x � 0 only) PDF. The
truncated Gaussian PDF

f (x) =
√

2
πσ 2

exp
[
−1

2

( x−µ
σ

)2
]

1 + er f
(

µ√
2σ

) , (23)

has the following Laplace transform,

G(t) =
er f c

(
σ 2t−µ√

2σ

)

er f c
(
− µ√

2σ

) exp
[
−µt + 1

2
(σ t)2

]
, (24)

and has an infinite number of non-zero cumulants. Its first cumulant (the mean)
is

κ1 = µ +
√

2
π

σ
exp

[
−1

2

(
µ
σ

)2
]

1 + er f
(

µ√
2σ

) . (25)

For t � µ/σ 2, G(t) coincides with that of a normal distribution, and

G(t) � exp
[
−µt + 1

2
(σ t)2

]
. (26)
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This equation has been used for the analysis of dynamic light-scattering
data, in order to recover the distribution of particle sizes from the autocorre-
lation function [8,9], and applies to some luminescence decays for not too long
times. The full Gaussian PDF (or a mixture of Gaussian PDFs) [10–12] and a
Gaussian PDF truncated at x0 > 0 [13] have indeed been used to describe fluo-
rescence decays, although the mathematical reason invoked for truncation below
a certain positive value x0 [13] is not correct.

3.2. Exponential PDF

Consider next the function

G(t) = 1
1 + t

. (27)

Its inverse Laplace transform is immediate,

f (x) = e−x , (28)

How is this exponential PDF recovered from its cumulants?
First, the Maclaurin expansion of C(t) gives

C(t) = ln G(t) = −t + t2

2
− t3

3
+ · · · , (29)

hence the cumulants are

κn = (n − 1)!. (30)

In this way, equation (18) gives

f (x) = 2
π

∫ ∞

0
exp

(
− t2

2
+ t4

4
− · · ·

)
cos

(
t − t3

3
+ · · ·

)
cos(xt) dt . (31)

Using

−1
2

ln(1 + t2) = − t2

2
+ t4

4
− · · · , (32)

and

arctan t = t − t3

3
+ t5

5
· · · , (33)

one indeed obtains

f (x) = 2
π

∫ ∞

0

cos xt

1 + t2
dt = e−x . (34)
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Note however that both series in equations (32) and (33) diverge for t > 1,
and therefore the use of truncated series (i.e., with a finite number of cumu-
lants, whatever their number) in equation (31) does not asymptotically yield the
correct PDF. This difficulty may in principle be overcome by the use of Padé
approximants [14,15].

4. Discussion and conclusions

In the above, it was implicitly assumed that all moments and cumulants
were finite. For some PDFs, however, not all moments and cumulants are finite.
For the Lévy PDFs, for instance, only m1 can be (but is not always) finite. In
these cases, the cumulant series expansion is not valid, and equations (18–20)
do not apply. Even when all cumulants are finite, the Marcinkiewicz theorem
and the eventual finite convergence radii of the Maclaurin series for the cum-
ulants put some limitations on the practical use of equations (18–20). Neverthe-
less, equations (18–20) show the explicit connection between a one-sided PDF
and its cumulants, and allow a formal calculation of the PDF. Direct approxi-
mate computation, on the other hand, may not be feasible without the use of
further numerical techniques such as Padé approximants.

A question that immediately arises from the consideration of the present
results is on their applicability or suitable extension to two-sided PDFs. This will
be addressed in a forthcoming paper.
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