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1. INTRODUCTION

Size and topology of multichromophoric nanosys-
tems critically affect their spectral properties, as well as
excited state time and space evolution. In particular,
singlet excitation energy migration and trapping have
been studied in detail in multichromophoric rings [1],
linear chain polymers [2, 3], small regular lattices [4],
dendrimers [5, 6], and photosynthetic systems [7]. Re-
cently, attention was also paid to multiphoton processes
in nanosystems, including singlet-singlet annihilation
[8–10] and triplet-triplet annihilation (TTA) [11, 12].

Triplet-triplet annihilation is an important process
that strongly influences the optical and optoelectronic
properties of a multitude of systems at relatively high
excitation intensities, like homogeneous liquid solu-
tions [13, 14], micellar solutions [11], molecular crys-
tals [15], polymers [12, 16, 17] and Langmuir–Blodgett
films [18].

TTA corresponds to the energy transfer process
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, whereby two excited molecules in
the lowest triplet state yield, upon close proximity, a
ground state molecule and an excited molecule in the
singlet state [19]. Several processes can then follow,
namely unimolecular ones, 
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 (including delayed
fluorescence and internal conversion), and 
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 (in-
tersystem crossing). A bimolecular process is also possi-
ble, namely excimer formation 
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  , where the
prime denotes an excimer electronic state. The singlet
excimer can then dissociate according to unimolecular
processes:   
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 (delayed fluorescence, internal
conversion), and   
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 (intersystem crossing).
TTA thus generates one excited singlet that yields a

ground state singlet either by internal conversion or by
delayed fluorescence, or reverts back into a triplet, di-
rectly by intersystem crossing or indirectly via excimer
formation–dissociation. As a consequence, either zero or
one triplet excitations can result from the annihilation of
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two triplets [19]. In systems with a high density of chro-
mophores, triplet motion is possible not only by molecu-
lar displacement (molecular diffusion), but also by trip-
let-triplet energy hopping [15, 19], 
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.
Like TTA, this process of energy transfer is short-
ranged, and takes place only between nearest-neigh-
bors.

The aim of this work is the study of the kinetics of
TTA and of the associated delayed fluorescence in
nanosystems (linear chains and particles) with efficient
triplet-triplet energy migration, paying special attention
to the size dependence. Two formalisms for the de-
scription of TTA are presented in some detail in Secs. 2
and 3. In Sec. 4 the survival probability for an annihi-
lating pair of triplets is introduced and a simple equa-
tion for its time-dependence in 1D systems derived. Fi-
nally, the results are summarized in Sec. 5.

2. STANDARD APPROACH TO TTA
The usual approach to describe TTA kinetics is

based on the bimolecular rate equation, in which it is
assumed that the effective annihilation rate is propor-
tional to the density of triplet excitations. This rate
equation can be written as [7, 16, 17, 19]
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where 

 

N

 

 represents the average triplet excitation densi-
ty, understood here as the number of excitations per
closed domain (a linear polymer chain, micelle, nano-
particle, etc.), 

 

k

 

 is the relaxation constant of triplet ex-
citation (1/

 

k

 

 being thus the intrinsic lifetime of the trip-
let state), and 

 

γ

 

0

 

 is the so-called annihilation constant,
having the dimensions of 1/time. The solution of Eq.
(1) is well known,
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Abstract

 

—The dynamics of triplet-triplet annihilation is theoretically studied in linear chains and nanoparti-
cles as a function of size, 

 

M

 

, the rate of excitation migration, 

 

W

 

, and the rate of excitation annihilation, 

 

V

 

. It is
shown that a sum of two exponentials is usually sufficient for fitting experimental phosphorescence and triplet-
triplet absorption decays. The first term describes the decay of domains containing initially one triplet, while
the second one reflects the disappearance of domains containing initially two triplets.

 

ìÑä 535.37



 

956

 

éèíàäÄ à ëèÖäíêéëäéèàü      ÚÓÏ 99      ‹ 6      2005

 

BERBERAN-SANTOS 

 

et al

 

.

 

where 

 

N

 

0

 

 is the initial number of triplet excitations in
the domain.

The typical picture that one has in mind when mod-
eling TTA according to Eq. (1) is as follows: First, it is
usually assumed that, as a result of strong disorder
and/or high temperature, the triplet excitations repre-
sent, in fact, molecular excitations and the rate constant

 

k

 

 has the meaning of a unimolecular decay rate. Sec-
ond, it is assumed that the excitations can diffusive
within the system. If the diffusion rate is large com-
pared to the rate of nearest-neighbor annihilation, 

 

V

 

, the
decay is annihilation-controlled, and 

 

γ

 

0

 

 = 

 

V

 

/2. On the
other hand, if 

 

V

 

 dominates over the diffusion rate, the
process is diffusion-influenced and the effective anni-
hilation constant 

 

γ

 

0

 

 is determined not only by the anni-
hilation rate, but also by the pair correlation function of
two excitations. In this case the annihilation rate is in
general time-dependent, as was discussed in detail in
several works [7, 20–25].

The above description has limitations, which can
become rather important at very low temperatures. At
these temperatures, triplet excitations can be delocal-
ized over several molecules and form excitons [26, 27].

In this work, we will study the kinetics of TTA in
systems where triplet excitations are strongly localized
and represent molecular excitations, and where TTA is
sufficiently fast so that the overall process is diffusion-
influenced.

It follows from Eq. (2) that the phosphorescence in-
tensity, normalized to unity at 
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 = 0, 
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, can
be written as a series:
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Analogous but truncated series, containing only two
or three terms, are often used in the fitting of TTA ob-
servables like time-resolved phosphorescence or trip-
let-triplet absorption. Note that each term in Eq. (3) de-
cays exponentially with time, and the respective time
dependence is determined by the intrinsic relaxation
constant, 

 

k

 

, of triplet excitation. Only the amplitude of
each term depends on the annihilation constant, 

 

γ

 

0

 

.

3. STATISTICAL APPROACH TO TTA

A more general approach for the description of
TTA is the so-called statistical approach, used by Pail-
lotin 

 

et al

 

. [28] (see also Refs. 7 and 11). In this ap-
proach, ensembles of closed domains (e.g., non-inter-
acting polymer chains, micelles, or nanoparticles) are
considered. After pulse excitation and singlet-triplet
conversion, each domain contains, on the average, 
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0

 

triplet excitations. Distribution of excitations over do-
mains is given by the Poisson distribution. There are two
bimolecular excitation annihilation constants, 

 

γ
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 and
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, corresponding to the disappearance of one or two
triplets in the annihilation event. It is assumed that exci-
tations in different domains cannot interact with each
other. The overall annihilation constant is 
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.
After introducing the following parameters: 
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), the phosphorescence intensity,
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), is given by [28]
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where
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Note that parameters 
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 are always positive.

Both Eqs. (3) and (4) are sums of exponentials in
time, however the arguments of the exponentials in
Eq. (3) do not depend on the TTA constant, 

 

γ

 

, while the
arguments of the exponentials in Eq. (4) are also func-
tions of the TTA constant.

The dependence of coefficients 

 

b

 

p

 

 on 

 

r

 

 for two dif-
ferent values of 

 

Z

 

 (a measure of the average number of
triplet excitations per domain) is shown in Fig. 1. This
figure shows that the first two or three terms in Eq. (4)
suffice to describe the experimental decay of phospho-
rescence. In general the series in Eq. (4) is rapidly con-
vergent.

It was shown previously [28] that Eq. (4) reduces to
Eq. (2) in the limit 

 

r

 

  

 

∞

 

 (i.e., 2
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) by putting
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 and 

 

γ = 2γ0. This means that Eq. (1) is valid when
the rate of bimolecular annihilation is much smaller
than the unimolecular decay rate.

In comparison with the standard approach, the sta-
tistical approach is valid even for domains with small
dimensions and large annihilation constants, which ex-
plains the dependence on γ of the decay constants in
Eq. (4).

The form of the phosphorescence decay given by
Eq. (4) has a simple interpretation. The first term corre-
sponds to domains containing initially only one triplet,
therefore they decays exponentially with the rate con-
stant k. The second term reflects the disappearance of do-
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mains containing exactly two excitations. Each excita-
tion decays individually with the rate constant k and to-
gether with rate constant γ. The third term is the decay of
domains containing exactly three excitations. Each exci-
tation decays individually with the rate constant k and to-
gether with rate constant 3γ. The numerical coefficient 3
near γ is the number of ways (in two or three-dimension-
al cases) by which three excitations can meet in pair col-
lisions. This number is equal to number of pairs that can
be formed from three elements (the binominal coeffi-

cient), . The nth term in the series Eq. (4) is the decay
of domains containing exactly n excitations. Each exci-
tation decays individually with the rate constant k and to-

gether with the rate constant , where  = n(n – 1)/2
is equal to number of pairs that can be formed from n el-
ements.

The correctness of this interpretation is supported
by the following simple scheme: Let N1(t), N2(t), and
N3(t) be the numbers of domains containing at time t
exactly one, two, and three excitations, respectively.
Assume, for simplicity, that TTA always converts two
triplets into one triplet. In this case, and owing to TTA
and unimolecular decay, domains with three excita-
tions become domains with two excitations and do-
mains with two excitations become domains with one
excitation. Hence, the following set of rate equations
can be written:

(6a)

(6b)

(6c)

The solution of these equations is

(7a)

(7b)

(7c)

The total number of excitations, N(t), is

(8)

and can be written as a series
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The coefficients Ci depend on rate constants γ and k and
on the initial number of domains, N1(0), N2(0), N3(0),
but not on time.

It follows from the comparison of Eqs. (9) and (4)
that the time dependent multipliers in Eq. (4) reflect the
kinetics of disappearance of domains containing exact-
ly one, two, three, and so on excitations, respectively.

Like the standard approach, the statistical approach
does not give any information on how the annihilation
constant in a domain (polymer chain, nanoparticle, etc.)
depends on the rate of excitation diffusion (i.e., the fre-
quency of hops between nearest-neighbor chro-
mophores in the domain, W), on the rate of nearest-
neighbor annihilation, V, and on the size (for example,
the number of segments, M, in the polymer chain) and
dimension of the domain. To our knowledge, the first
and single attempt to answer some of these questions
was done in [29], for the case of a one-dimensional lat-
tice and V = ∞.

4. SURVIVAL PROBABILITY FOR 
AN ANNIHILATING PAIR OF TRIPLETS

The survival probability for an annihilating pair of

triplets, (t), diffusing in one-dimensional structures
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Fig. l. Dependence of coefficients bp on r for two different
values of Z (proportional to the average number of triplet
excitations per domain): Z = 2 (a) and Z = 4 (b). Numbers
next to the curves are values of p.
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(e.g., a polymer chain with M chromophores) was calcu-
lated in Ref. 29. It was assumed that the excitation jumps
between neighboring lattice sites with a unit time proba-
bility W; when two excitations meet at the same site they
immediately annihilate, i.e., the annihilation rate is infi-
nite, V = ∞. Solution of the master equation for uniform
initial excitation in a one-dimensional lattice (a chain),
with M � 1, and Wt � l is

(10)

Note the important fact that Eq. (10) depends on the
combination of parameters Wt/M2. 

The asymptotes of the survival probability at short
and long times are

(11)

The long time asymptote can be obtained from simple
considerations. On the average, each of two excitations
can freely move in half of the chain, whose size is M/2.
After collision in the middle of the chain, one or two ex-
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citations disappear. Therefore, to a first approximation,
the motion of every excitation is equivalent to motion
along a chain of length M/2 that contains a quencher at
one end. The rate of excitation quenching at this end is
infinite, V = ∞. The kinetics of excitation decay in this
case was previously obtained [30] and its long time as-
ymptote for large M is (8/π2)exp(–π2Wt/M2). This as-
ymptote coincides with asymptote Eq. (11) to a numeri-
cal coefficient.

Based on the interpretation of series Eq. (4), and com-
paring the long time asymptote Eq. (11) with the second
term of series Eq. (4), we obtain the dependence of the
annihilation rate constant, γ, on the unit time probability
of jump between nearest-neighbor sites, W, and on the
size of a one-dimensional lattice (a chain), M,

(12)

Indeed, the annihilation rate constant should decrease
as the size of the domain increases.

After careful numerical calculations of Eq. (10) and
taking into account the asymptotes (11), we obtained the

approximate equation for (t),

(13)

which reproduces the exact solution (10) with high pre-
cision (better 2%) at all times (see Fig. 2). Equation
(13) gives the correct time dependence of the second
term in Eq. (4). The higher terms in Eq. (13) decrease
faster, first two terms suffice to describe the experi-
mental decay of phosphorescence.

5. CONCLUSION

In this paper, triplet-triplet annihilation was studied.
In particular, the dependence of annihilation rate con-
stant on nanoparticle size, M, on the rate of excitation
migration, W, and on the rate of excitation annihilation,
V, was obtained in 1D systems.

We showed that the usual TTA observables (phos-
phorescence, triplet-triplet absorption), are well de-
scribed by a sum of two exponentials. The first term de-
scribes the decay of domains containing exactly one ex-
citation, while the second one reflects the
disappearance of domains containing exactly two exci-
tations. The higher terms of the infinite series expan-
sion, describing domains containing three or more ex-
citations, decay much faster and can be omitted (espe-
cially in the case of relatively low intensity excitation).

In Sect. 4, the diffusion-influenced limit (V � W) was
considered where the rate of nearest-neighbor annihila-
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Fig. 2. Survival probability for an annihilating pair of exci-

tations in a linear lattice, (t), for V/W = ∞. Exact solu-
tion Eq. (10) (solid line 1) and approximations: Dotted lines
2 and 3 are the approximate decay function Eq. (13) and the
long time asymptote Eq. (11), respectively.
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tion, V, dominates over the diffusion rate, W. In the op-
posite case (annihilation-controlled limit, W � V), the
diffusion rate is large compared to the rate of nearest-
neighbor annihilation, and the distribution of excitations
over the domains is homogeneous (diffusion displace-
ment of triplet excitation during the lifetime, ,
large compared to the size of the domains, Ma, i.e.,

 > M; here D is diffusion constant, D ≈ Wa2, and
a is a distance between heighboring lattice sites). The
statistical approach is in such a case valid, γ = V and
Eq. (4) applies.
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