
By David Kalinsky
Director of Customer Education,
Enea OSE Systems

Many different kinds of task
schedulers are available to
software developers of em-
bedded and real-time systems.
They range from a simple cyclic
executive that you can build
“at home,” to the many priority-
based pre-emptive schedulers
that are available commercially
and beyond.

Table 1 shows a number of
task schedulers, including the
sorts of software tasks and hard-
ware device interfaces they sup-
port. Depending on the nature
of your application and your I/O
requirements, you can choose
the appropriate one from a wide
spectrum of schedulers that will
be described here.

The endless loop
For very simple embedded
systems, the most basic way to
write application software is as
an endless loop. The activities
programmed within the loop are
executed in sequence. Branches
and nested loops are okay, as
long as when the code is done
executing, it loops back to the
beginning for another go-round.

For example (in pseudocode) :

DO FOREVER
Request Input Device make a

Measurement
Wait for the Measurement to be

ready
Fetch the Value of the Measure-

ment
Process the Value of the Measure-

ment
IF Value is Reasonable
THEN Prepare new Result using

Value
ELSE Result will be an Error Re-

port
Request Output Device deliver

the Result
Wait for the Result to be output
Con!rm that output is OK
END DO

This style of programming works
well in some simple embedded
systems, especially if the software
can complete the sequence of
code and loop around quickly
enough. But in other embedded
systems, this style of program-
ming will result in performance
that is too slow. Keep in mind
that interrupts from hardware
devices can’t be handled in this
style of programming. Devices
interact with software in the
loop only when polled.

Basic cyclic executive
In more complex embedded
systems, the idea of the end-
less loop can be extended.
These systems have hundreds
or thousands of lines of code,
so software designers like to
organise the code into sepa-
rate units referred to as tasks.
These tasks (sometimes also
called processes) should be
as independent as possible so
that they deal with separate
application issues and interact
very little with one another.

In a software design using
a basic cyclic executive, these
tasks execute in standard se-
quence within an inf initely
repeating loop, as shown in
Figure 1. This is much like the
endless loop design, but now
dealing with large tasks.

These tasks can pass infor-
mation to one another easily,
by writing and reading shared
data. That’s because every task
a lways runs to complet ion
before another task begins run-
ning. So there’s no danger of a
task getting incomplete data
from another task.

Here too, interrupts from
hardware devices can’t be han-
dled. Devices must be polled, if
they are to interact with tasks
in the loop.

In some sense, this can be
thought of as “real-time” task
scheduling, if all of the software
in the loop executes quickly and
the loop can execute repeatedly
at a very rapid rate.

Time-driven cyclic executive
For some applications, the view
of “real-time” taken by a basic
cyclic executive is not precise
enough. A basic cyclic executive
tries to run its tasks as quickly
and as often as possible. In more
sophisticated applications, pre-
cision of timing is often more
important than raw speed.

A time-driven cyclic executive
can begin to address this re-
quirement. In this scheme, one
hardware timer interrupt is used
to trigger the execution of all

tasks. The tasks execute one af-
ter another, each one running to
completion before the next one
begins. For a time-driven cyclic
executive to work correctly, the
final task in the chain of tasks
must complete its execution
before the next timer interrupt
arrives, as shown in Figure 2.
The rate of hardware timer in-
terrupts is the rate at which the
tasks must execute.

Although a hardware timer
interrupt is involved here, tasks
can still pass information to

Table 1: Some categories of task schedulers
Task scheduler
type

Task execution Device I/O

Endless loop No tasks Polled only

Basic cyclic executive As often as possible Polled only

Time-driven cyclic
executive

Single frequency Polled only

Multi-rate cyclic
executive

Multiple frequencies,
at higher precision

Polled only

Multi-rate executive
with interrupts

Multiple frequencies,
at higher precision

Polled and
interrupt-driven

Priority-based
preemptive
scheduler

Periodic and non-
periodic tasks

Polled and
interrupt-driven

Deadline scheduler Periodic and non-
periodic tasks

Polled and
interrupt-driven

1EE Times-India | February 2001 | eetindia.com

Context switch
SCHEDULING

one another easily, by writing
and reading shared data. Every
task runs to completion before
another task begins running.
Interrupts from hardware devices
(other than the timer) cannot be
handled in this style of program-
ming. Devices must be polled, if
they are to interact with tasks.

Multi-rate cyclic executive
The time-driven cyclic executive
assumes that all tasks need to
run at the same rate of repeti-
tion. But in some applications,
different tasks may need to run
at different rates.

A modi!ed time-driven cyclic
executive, called the multi-rate
cyclic executive, can handle this
need reasonably well in cases
where a higher rate is an integer
multiple of the “base” rate.

The idea is simple. In a multi-
rate cyclic executive, the base-
rate tasks run once per timer
interrupt, and a higher rate task
runs a number of times per
timer interrupt. That number is
the integer multiple of the base
rate. The repeated executions of
the higher rate task should be
as equally spaced as possible
within the sequence of tasks
following a timer interrupt.

Often the base-rate period
is called the “major cycle,” and
higher rates identify so-called
“minor cycles.”

The example illustrated here
shows a system of 10 tasks which
execute at the base rate (for ex-
ample, 10Hz, if the timer delivers
10 interrupts per second). In ad-
dition, an eleventh task, marked
by a star, executes at 40Hz, four
times the base rate. This is done
by having the starred task appear
four times in the chain of task ex-
ecution which follows each timer
interrupt, as shown in Figure 3.

Limitations of cyclic
executives
Cyclic executives have been
shown to solve a number of
problems, while remaining
fairly simple to implement. With
the help of a hardware timer
interrupt, they can run tasks at a
regular rate. They can even run
different tasks at different rates.

Tasks can communicate with
one another through shared
data, without special concern
about data integrity. Hardware
devices (other than the timer)
are polled, rather than interrupt
driven.

The limitation that hardware
devices must be polled when
using a cyclic executive is often
a serious one. If the device is
not polled frequently enough,
important transient occurrences
might be missed. If the device is
polled too frequently, much of
the processor’s power might be
wasted. For these reasons, inter-
rupt-driven peripheral devices are
usually preferable for I/O.

Another objection to cyclic ex-
ecutives is that the timing of task
execution can’t be controlled
precisely. Even when hardware
timing is used to trigger the ex-
ecution of a chain of tasks, only
the first task in the chain has its
start time determined precisely
by hardware. The second task
in the chain starts to run when-
ever the first ends, and so on.
If these tasks contain code of
varying processor loading such
as data-dependent loops, all
later tasks in the chain will run
at times influenced by load on
previous tasks.

Even if all tasks do not contain
code of varying processor load-
ing, timing of individual tasks is
only approximate. This can be
seen in the illustrated example
of the multi-rate cyclic execu-
tive. In Figure 3, the starred task
is required to execute at a rate
of 40Hz. In other words, there
should be precisely 25ms (or
25,000microseconds) between
successive execution starts for
the starred task. If the diagram is
viewed as a circle where a com-
plete circumference represents
one 10Hz base period, then the
starred task should execute at
angles of precisely 0 degrees, 90
degrees, 180 degrees, and 270
degrees. But it does not. Some-
times it executes somewhat early,
sometimes, a tad late. It all de-
pends on when the previous task
!nished, and how long the fol-
lowing task will take. Remember,
each task must run to completion

2 eetindia.com | February 2001 | EE Times-India

and cannot be “interfered with”
in mid-execution.

Some software designers
have tried to solve these timing
problems by actually counting
machine cycles of the computer
instructions to be executed by
each task, in order to figure out
precisely how long each task
would take. Then the designer
would determine exactly how
much of a certain task could ex-
ecute before a precisely timed
task needed to run. This part
of the task would be allowed
to run, and then the precisely
timed task would be inserted for
execution, and the remainder of
the delayed task would run later.
Effectively, the task would be
cut in two. See Figure 4.

This “solution” gives rise to
several new problems:
• If the tasks involved in a mid-

task switch share some data
structures, those data could
end up in an inconsistent
state because of the mid-task
switch. This could result in
a numeric error in the out-
puts of either of the tasks
involved.

• Every time software mainte-
nance causes some code to
be changed or added in the
tasks which run before the
mid-task switch, machine
cycles need to be re-count-
ed and task timings recalcu-
lated. A task might need to
be cut apart differently for
the mid-task switch in this
new code situation.

In other words, this "solution"

is an error-prone and excruciat-
ingly tedious method of build-
ing software. Rather than a
solution, this should be offered
as an example of an attempt to
use a cyclic executive beyond its
realm of usefulness.

Cyclic executives should not
be used in situations where tim-
ing requirements are so precise
and critical that you would con-
sider "surgically" cutting a task
into two sections.

Multi-rate executive for
periodic tasks
If all tasks are periodic, but at dif-

fering rates of execution, then a
multi-rate executive can often be
better than a cyclic executive. In
such a scheduler, timer interrupts
must be delivered at a rate that
is the lowest common multiple
of all the rates of the tasks. And
at each timer interrupt (or “tick”),
tasks can be made to execute.

For example, if tasks need
to execute at 50Hz, 60Hz, and
100Hz, then timer interrupts must
be delivered at a rate of 300Hz.
The 100Hz task will be made
to execute on every third tick.
The 60Hz task will be made to
execute on every fifth tick. And
the 50Hz task will be made to
execute on every sixth tick.

If tasks do not need to be
time-synchronised with each
other, they could be executed
at ticks that are o"set from one
another. For example, the three
tasks above need not all be run
at tick 0. Perhaps the 100Hz task
would be run for the !rst time at
tick 0, the 60Hz task at tick 1, and
the 50Hz task at tick 2.

A simpler example is shown
in Figure 5. Here we have only
two rates, with the higher rate or
“minor cycle” being four times the
lower rate or “major cycle.”

Every task must run to comple-
tion before another task begins
running. As with cyclic execu-
tives, tasks can pass information

3EE Times-India | February 2001 | eetindia.com

to one another easily, by writing
and reading shared data. All
hardware devices (other than the
timer) must be polled.

Caution: adding interrupts
The restriction to polled hardware
devices in all the previous types
of schedulers is a serious one.
Modern hardware I/O devices
are typically interrupt driven.
But interrupt-driven devices can
cause problems of their own, if
they are not handled properly
in software.

Very often, if an interrupt
service routine (ISR) tries to pass
data to the very task it is inter-
rupting, the task may not handle
the passed data properly. For
example, a task may begin pro-
cessing some data and then an
interrupt service routine might
update the data, followed by
the task reading the data again
for purposes of further process-
ing. The net result would be that

part of the data processing in
the task is done on an old value,
and another part is done on a
new value for the same data, re-
sulting in possible inconsistent
outputs from the task.

Another example is when
a task and an interrupt service
routine communicate through a
shared data table. If an interrupt
occurs and is serviced while the
task is in the midst of reading
from the table, the task might
well read “old” data from part of
the table and “new” data from
other parts of the table. This
combination of old and new
data might lead to erroneous
results. See Figure 6.

The integrat ion of inter -
rupt-driven software with task
schedulers requires special care,
particularly in terms of informa-
tion exchange between ISRs
and tasks.

Multi-rate executive with
interrupts
One clever idea for avoiding the
pitfalls we have seen when ISRs
and tasks interact is to have the
ISRs write their input data into
one set of bu"ers, and the tasks
use data from a completely sepa-
rate set of bu"ers. At every clock
tick (of the multi-rate executive
for periodic tasks, for example),
interrupts are turned o" and in-
put data are copied from the ISR

bu"ers to the task bu"ers. Then
interrupts are turned back on,
and the tasks scheduled for that
tick are permitted to execute. This
is shown in Figure 7.

In this way, data can be trans-
ferred from ISRs to tasks without
danger of inconsistent data (since
interrupts are disabled during the
data transfer). But interrupts are
re-enabled and active while the
actual application tasks are run-
ning. This technique works when
all scheduled tasks !nish running
before the next clock tick.

This kind of scheduler be-
comes quite complex , and
should not be written as a
weekend “garage” project. With
this scheduler, every task runs
to completion before another
task begins running. As with
previous kinds of executives,
tasks can pass information to
one another easily by writing
and reading shared data.

Hardware devices are no lon-
ger restricted to polled only.
They can be interrupt-driven.
However, information delivered
by an interrupt and acquired
into software by an ISR is not
immediately passed onward
to a task for further processing.
ISR data are transferred to task
buffers only after the next timer
interrupt. In some applications,
this could be an unacceptable
delay or complication.

Getting faster response:
preemptive scheduling
The schedulers which have been
surveyed so far are called non-
preemptive, because switching
between tasks only takes place
when one task has fully com-
pleted its execution and anoth-
er task wants to start its execu-
tion (from its beginning). Faster
response can often be obtained
by going over to a “preemptive”
scheduler. With a preemptive
scheduler, switching between
tasks can take place at any point
within the execution of a task
(even when the task isn’t yet
done executing its code).

For example, when an inter-
rupt occurs, its ISR might want
to say something like “I don’t
care which task was execut-

ing before my interrupt, and I
don’t want to wait for the next
timer tick. I would like Task 67
to begin executing right now!”
A preemptive scheduler can do
this, as shown in Figure 8.

However , a pr e e m p t i v e
scheduler is orders of magni-
tude more complex than any
non-preemptive scheduler. And
such a scheduler gobbles up
lots of RAM stacks, for storage
of task “contexts” and other
task status information. Such
a scheduler could not be writ-
ten in a month of Sundays as
a “garage” project. Some com-
mercially available RTOSes often
have preemptive schedulers as
their underlying “engines.”

With a preemptive scheduler,
hardware devices can be either
polled or interrupt-driven. In-
formation delivered by an inter-
rupt and acquired into software
by an ISR can be immediately
passed onward to a task for
further processing.

Caution: preemptive sched-
ulers bring up new issues

Preemptive schedulers o"er
the software developer many
benefits, beyond what can be
achieved with simpler “home-
made” schedulers. But their
sophistication brings up new
issues, of which a software de-
veloper must be aware.

One of these is the matter of
which tasks may be preempted
and which may not? The answer
is to assign a priority number to
each task. Tasks of higher priority
can preempt tasks of lower prior-
ity. But tasks with lower priority
cannot preempt tasks of higher
priority. A preemptive scheduler
needs to be told the priority of
each task that it can schedule.

A second issue that a soft-
ware developer must consider
is: tasks that can be preempted,
and which can preempt oth-
ers, cannot be allowed to pass
information to one another by
writing and reading shared data.
The simple methods for passing
information between tasks that
worked with non-preemptive
schedulers no longer work with
preemptive schedulers.

4 eetindia.com | February 2001 | EE Times-India

The problem in passing infor-
mation between tasks by writing
and reading shared data can be
described as follows (see Figure
9): if one task preempts another
while the second task is in the
midst of reading from a shared
data table, the second task might
read “old” data from part of the
table and “new” data from an-
other part of the table after the
!rst (preempting) task writes new
data into the table. This combina-
tion of old and new data might
lead to erroneous results.

This is, in fact, the same prob-
lem that occurs if an ISR and a
task try to communicate by writ-
ing and reading shared data, as
discussed earlier.

In order to help the software
developer prevent these prob-
lems, an operating system that
has a preemptive scheduler
should provide mechanisms for
passing information between
tasks (and also to/from ISRs). The
mechanisms provided vary in
di"erent operating systems. For
example, most RTOSes provide
a message queue mechanism
and semaphores. RTOSes meet-
ing the OSEK standard that is
gaining popularity in automotive
applications provide mecha-
nisms called resources, events,
alarms, and messages. In some
RTOSes, the message queues
are “global” entities (all tasks
can perform all operations on
them); in others, the message
queues are “owned” entities
(only the “owner” task can
get the messages). Figure 10

shows an interrupt-triggered
task delivering a message to a
task it has preempted, using a
message queue.

One of these mechanisms
must be used every time informa-
tion is to be passed between
tasks, in order to ensure reli-
able delivery in a preemptible
environment.

Deadline scheduling
Users of o"-the-shelf, prior-
ity-based preemptive schedulers
sometimes have the following
objection: “where do I tell the
scheduler what are the deadlines
for my tasks, so that the scheduler
will make sure they’re met?” The
fact of the matter is that you can’t
tell these schedulers about task
deadlines. They don’t want that
kind of information. All they want
to be told is each task’s prior-
ity; they do all of their their task
scheduling based on the priority
numbers. The mapping between
deadlines and priorities is not
often straightforward. Rate
monotonic analysis can be used
in certain situations, but it’s of-
ten downright impossible to be
sure that tasks will meet their
deadlines if you use a prior-
ity-based preemptive scheduler
with fixed task priorities.

An alternative kind of pre-
emptive task scheduler is called
a deadline scheduler. This kind
of scheduler tries to give execu-
tion time to the task that is most
quickly approaching its dead-
line. This is typically done by the
scheduler changing priorities

of tasks on-the-fly as they ap-
proach their individual dead-
lines. The popular, commercially
available off-the-shelf RTOSes
don’t offer deadline scheduling.
But you can see how they work
and build one of your own (see
Ellison’s book in References).

Spectrum of schedulers
This has been just a short in-
troduction to the world of task
schedulers. Depending on the
nature of your application and
your I/O requirements, you can
choose from a wide spectrum
of schedulers. They range from
a simple cyclic executive that
you can build “at home,” to the
many full-featured, priority-based

preemptive schedulers available
commercially, and to even more
sophisticated schedulers.

References
Ball, Stuart. R. Embedded Mi-

croprocessor Systems-Real World
Design. Boston: Newnes, 1996.

Laplante, P. A. Real-Time Sys-
tems Design and Analysis-An
Engineer’s Handbook. New York:
IEEE Press, 1997.

Ellison, Karen S. Developing
Real-Time Embedded Software
in a Market-Driven Company.
New York: John Wiley & Associ-
ates, 1994.

Email Send inquiry

5EE Times-India | February 2001 | eetindia.com

