
Digital Object Identifier (DOI) 10.1007/s10032-003-0102-3
IJDAR (2003)

A new graph-like classification method applied
to ancient handwritten musical symbols

João Caldas Pinto, Pedro Vieira, João M. Sousa

Technical University of Lisbon, Instituto Superior Técnico, IDMEC/IST, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

Received: 27 December 2002 / Accepted: 10 January 2003

Abstract. Several algorithms have been proposed in the
past to solve the problem of binary pattern recognition.
The problem of finding features that clearly distinguish
two or more different patterns is a key issue in the design
of such algorithms. In this paper, a graph-like recognition
process is proposed that combines a number of different
classifiers to simplify the type of features and classifiers
used in each classification step. The graph-like classifica-
tion method is applied to ancient music optical recogniti
on, and a high degree of accuracy has been achieved.

Keywords: Binary image segmentation – Binary pat-
tern recognition – Feature selection – Optical music
recognition

1 Introduction

Optical music recognition (OMR) is the process of iden-
tifying music from an image of a music score [2,4]. OMR
has many similarities with optical character recognition
(OCR) [18]. This recognition technique finds out the
characters in the image, while OMR tries to identify
the musical symbol in the image including notes, rests,
clefs, accidents, etc. When compared to classical OMR
systems, handwritten music recognition introduces ad-
ditional difficulties in recognizing music symbols. The
most important are the following: (1) notation varies
from writer to writer; (2) simple (but important) and
large changes in notation can occur in the same score;
(3) staff lines mostly do not have the same height and
are not always straight; (4) symbols are written with dif-
ferent sizes, shapes, and intensities; (5) the relative size
between different components of a musical symbol can
vary; (6) more symbols are superimposed in handwrit-
ten music than in printed music; (7) different symbols

Correspondence to: J.C. Pinto
(e-mail: jcpinto@dem.ist.utl.pt)

can appear connected to each other, and the same musi-
cal symbol can appear in separated components; and (8)
paper degradation requires specialized image-cleaning al-
gorithms. Due to these difficulties only some attempts to
tackle this problem have been found in the literature, and
works by Leplumey et al. [11] and Pèpin et al. [14] are
illustrative examples. However, the general OMR prob-
lem for printed music has been dealt with by different
authors; see, for example, [1,12,15].

This paper proposes an OMR method developed un-
der the Portuguese project ROMA (Ancient Music Opti-
cal Recognition), which intends to recover manuscripts of
ancient music scores to obtain a digital, easy-to-manage,
easy-to-conserve, and, last but not least, easy-to-handle
music heritage. The proposed system recognizes ancient
handwritten music scores to obtain a digital, easy-to-
manage version of ancient music. The methodology pro-
posed in this paper is a staged process consisting of the
following steps: (1) preprocessing of the image, (2) seg-
mentation, (3) recognition, and (4) reconstruction. The
first stage prepares the image for segmentation by clean-
ing and correcting some defaults. The segmentation di-
vides the image of the music sheet in zones of interest,
such as staff lines and bars, and isolates each musical sym-
bol. Then, the recognition classifies each musical symbol.
Finally, a process of reconstruction is needed to relate
the recognized symbols with each other and with its staff
lines and bars, creating the final description of the music.

The paper is organized as follows. Section 2 presents
the segmentation used in this paper. Section 3 presents
the recognition approach proposed in this paper, which is
divided into feature selection and classification. An appli-
cation example using music sheets from the 16th century
is described in Sect. 4. Finally, Sect. 5 concludes the pa-
per and presents guidelines for future research.

2 Segmentation

The segmentation process is the first step in OCR. This
paper extends a method developed recently for ancient
music recovery [5]. Although applied to music data, this

2 J.C. Pinto et al.: Classification of ancient handwritten musical symbols

a b

Fig. 1. Binary image of a piece of a musical sheet from the 16th century. a Before segmentation. b After segmentation

algorithm can be generalized to other types of data. The
five-step segmentation method used in this paper is exem-
plified in Fig. 1, which contains an original binary image
of a piece of a musical sheet from the 16th century.

The segmentation proposed by Pinto et al. [5] has the
following steps.

1. Identification and removal of staff lines
(a) Identification of staff lines: by using horizontal

projections and small rotations of the image, this
step finds the areas with peaks of the projections
and classifies them as staff lines.

(b) Removal of staff lines: knowing the location of the
lines, the line width is estimated, and the segments
of line whose thickness is not bigger than a certain
threshold are removed. This threshold is propor-
tional to the estimated line width and changes hor-
izontally along the image since the line thickness
also changes from left to right. Note that the re-
moval of staff lines does not damage the symbols
in Fig. 1b.

2. Localization of bar lines. Bar lines are defined as
straight lines from the top to the bottom of the staff
line. Using the vertical projection in each staff line,
the peaks that correspond to bar lines are determined.
These peaks are achieved after the application of a low
filter to the vertical projection. Then each region cor-
responding to a peak is analyzed using its horizontal
projection. Only regions with a high standard devia-
tion of the horizontal projection are classified as bar
lines.

3. Object segmentation.
(a) Labeling: each group of six connected black pixels

inside each staff line is identified and labeled.
(b) Expansion: this process completes each object that

crosses the frontier of the staff line, which contains
portions outside the staff line.

4. Removal of undesirable objects. Objects that are
too small, too big, or that intersect a text line are
removed. This last type of object uses text line search,
again using horizontal projection between staff lines.
Areas with local maxima are identified and considered
as text entering a staff line.

5. Object merge. This step uses domain knowledge.
(a) Vertical dashes: this step uses morphological clo-

sure with a structuring element consisting of a
vertical line (vertical closure) and joins vertical
dashes with each other and with their objects.

a b c

Fig. 2. a A breve note. b Two breve notes connected. c Two
breve notes connected and separated by the labeling process

a b

Fig. 3. a A semibreve note. b A semibreve separated by the
labeling process

This method is necessary to merge objects that
are separated by ink, scan, or binarization prob-
lems.

(b) Breve merge: some objects in the data consist
of connections of the note “breve” (see Fig. 2).
Sometimes several breves are separated as verti-
cal dashes. In order to merge them without merg-
ing undesirable objects, it is necessary to perform
a severe vertical open [16] to retain only the ver-
tical dashes of the breves, followed by a vertical
closure to connect those dashes. The dashes that
are connected correspond to objects that should
be merged.

(c) Semibreve merge: the “semibreve” note, presented
in Fig. 3, is sometimes separated into two parts.
This separation is due to the six-connectivity of
the labeling process or simply to ink, scan, or bi-
narization problems. A process based on the way
the two bounding boxes intersect each other and
on the difference between the areas of each object
is used to classify the two objects as parts of the
same semibreve.

J.C. Pinto et al.: Classification of ancient handwritten musical symbols 3

World

Classifier
1

Class
group 1

…

Classifier
2.n

Class
group n

Classifier
2.1

… … … … … …

…

Fig. 4. Graph-like classification

3 Recognition

This paper proposes a new recognition process for OMR
based on a graph structure of classifiers, as depicted in
Sect. 3.1. The classifiers in the graph can be any type
of classifier, such as a simple Bayes classifier [3], neural
network classifiers [9], syntactic classifiers [7], or fuzzy
classifiers [8].

Each classifier is divided into two steps:

1. Feature extraction determines the relevant features of
the object.

2. Classification uses one of the classification methods
described above and estimates a class for the object
given the calculated features.

Note that this recognition method can be applied to
any OCR, but it was especially developed for OMR in this
paper. This method has some important characteristics:

1. Class hierarchy: the recognition process selects an ob-
ject and follows the tree from the top to the bottom
of the hierarchy. This process specializes the class of
the object as it passes through the several classifiers.
The leafs of the hierarchy are the final classes of the
overall classification algorithm. This class hierarchy
can be obtained directly from the graph of the rec-
ognizer by simply removing the classifiers’ boxes in
Fig. 4, as the graph structure of the recognizer and
the class hierarchy are strictly related.

2. Set of classifiers: where each class that is not a leaf
has one classifier, which classifies each object of that
class into one of its subclasses.

3. Set of features: each classifier is based on a set of fea-
tures, and it is important to study the optimum set,
minimal and most accurate, that leads to acceptable
results.

These issues are all related in the sense that each non-
leaf class in the hierarchy represents a decision point of

the classification process, and each decision is made by a
classifier based on a set of features. Therefore, each class
also has an associated feature map. This means that the
design of a class hierarchy must take into account the
choice of a set of features for each class as well as the
classification algorithm, i.e., the three issues must be de-
signed at the same time.

3.1 Design of a class hierarchy

The design of a class hierarchy consists of both maximiz-
ing the accuracy of the classification process and mini-
mizing the complexity of the overall algorithm. The com-
plexity is originated from two different sources: the com-
plexity of the graph, which is a measure of the number
of classes on the graph and the depth (number of steps)
of the decision process, and the complexity of each clas-
sifier, which is the complexity of the classifier algorithm
itself. This complexity comes from the intuitiveness of the
algorithm, its training needs, and the complexity of the
features associated with it, which is mainly the complex-
ity of the algorithm that computes these features. Note
that the less complex a graph is the more complex its
classifiers must be in order to achieve the same classifi-
cation accuracy.

Another issue concerning the design of the graph is
the number of different paths from the top of the hier-
archy to a given leaf. In a hierarchy where for each class
there is only one path from the top of the hierarchy to
that class, its structure is a tree instead of a graph. This
means that two classes cannot share the same descen-
dants in the hierarchy. This might seem to be the ideal
situation since the total number of paths in the graph
(in this case a tree) is not larger than the number of fi-
nal classes (leafs). However, one can reduce complexity
and raise intuitiveness by allowing some classes to share
descendants, as we will see in Sect. 3.1.1.

The design of a class hierarchy can be defined as the
grouping of leaf classes that have something in common
(mostly feature values) in superclasses. The simplest hi-
erarchy is the one with only the topmost class having the
leaf classes as subclasses. In this case, the topmost class
is associated with the single classifier of the whole graph,
which must be extremely powerful in order to achieve a
high level of accuracy. By grouping similar leaf classes in
superclasses, a simpler classifier can be defined.

The classes must be grouped by similar feature values.
Moreover, the feature values of each superclass must be as
different as possible so that the classifier distinguishing
among the superclasses can be simple. Given a feature
set, clustering algorithms can be used to find the best
groupings [9].

In summary, the design of a class hierarchy includes
the set of classifiers and features for each class. The de-
signer must group the classes and test them until good
classes are found. This search for a hierarchy consists of
the following steps:

4 J.C. Pinto et al.: Classification of ancient handwritten musical symbols

Fig. 5. Clusters obtained using the cluster by mean method

Repeat
(1) Group classes in superclasses using clustering al-
gorithms.
(2) Measure the quality of the superclasses by evalu-
ating the clusters obtained in (1).
(3) Test classifiers for the superclasses until the per-
formance of the class hierarchy is accepted.

The description of these steps is presented in the next
three sections.

3.1.1 Clustering classes. In this step, sets of classes with
similar feature values are defined using clustering algo-
rithms. A class is defined as a collection of objects (mu-
sical objects in this paper) and can be clustered by mean
and by instances.

In clustering by mean, first the mean of each feature
for each class is computed using a set of objects in the
training set belonging to that class. Thus, each class is
represented by its respective mean and constitutes one
instance for the clustering algorithm. The clustering al-
gorithm produces clusters of points in the feature space,
where each point corresponds to one class. The clusters
represent superclasses, and the cluster points represent
subclasses of each superclass. Figure 5 represents three
classes in a feature space with two hypothetical features.
Each class has a mean in the feature space, represented
by a black square. Two clusters are created considering
only three points: one point per class.

In clustering by instances, each object of a class con-
stitutes an instance of the clustering algorithm. The clus-
tering algorithm produces clusters of points in the fea-
ture space, where each point corresponds to one object.
One cluster may include objects from different classes,
and two objects of the same class can belong to differ-
ent clusters. This situation is presented in Fig. 6, where
objects belonging to two classes are distributed by three
clusters. Clustering by instances does not induce the set
of superclasses and subclasses directly as in clustering by
mean. This paper introduces the following two methods
of extracting a class hierarchy from the results of the al-
gorithm:

1. MAX extraction. First, one superclass is defined per
cluster. Each original class is a subclass of one and

Fig. 6. Clustering using the cluster by instances method

only one superclass, which is the one where the cluster
has more objects.

2. COUNT extraction. Again, one superclass is defined
per cluster. When the number of objects inside a su-
perclass cluster is above a certain threshold, called an
instance threshold, each original class is a subclass of
a superclass. If the instance threshold is equal to zero,
every class that has at least one object in a superclass
cluster is a subclass of that superclass.

Some important observations must be made:

1. Remember that a superclass always has one cluster
associated with it. This means that a superclass con-
tains a set of objects from the training set. However,
while in cluster by mean a superclass contains all the
objects of its subclasses, in cluster by instances a su-
perclass contains only the objects of its cluster, which
may not be the total set of objects of its subclasses.
Recall that in cluster by instances each subclass may
be distributed by several superclasses. This point is
very important when creating classifiers to distinguish
between superclasses (see Sect. 3.1.3). In Fig. 6, the
classifier distinguishes between clusters 1, 2, and 3 but
not class A from class B. Instead, it distinguishes be-
tween part of class A, part of class B, and two other
parts of classes A and B together. This means that
this method induces classifiers that distinguish differ-
ent parts inside one class.

2. Cluster by means induces a simpler tree-like hierarchy
and is normally used first. It assumes that each class
has its objects distributed closely to a center (mean)
in the chosen feature space. If it does not produce
good clusters (see Sects. 3.1.2 and 3.1.3), either the
chosen feature set should be changed or a more so-
phisticated method of clustering by instances should
be chosen.

3. Cluster by instances is mostly used in cases where
the objects of one or more classes are distributed
around several centers. When more clusters (super-
classes) than (sub)classes are defined, this method is
preferable to clustering by mean. In Fig. 6, for in-
stance, clusters 1 and 3 can immediately classify an
object.

4. Clustering by instances can also be used to test clus-
tering by mean; see Sect. 3.1.2.

J.C. Pinto et al.: Classification of ancient handwritten musical symbols 5

Several clustering algorithms can be used such as k-
means clustering [3], isodata [14], linear vector quanti-
zation [3], neural networks [9], or fuzzy clustering [8].
These methods produce a set of clusters that contain sim-
ilar objects. The similarity is measured using the distance
between two objects in the feature space. Each feature in-
duces its distance measure, depending on a numeric value
or a discrete value. The combination of the different fea-
ture distances can be made by several methods such as
the Manhattan or euclidean distances [6].

3.1.2 Measuring clusters. When a set of superclasses is
defined from a set of classes, the performance of this set
must be measured. Then the quality of the clusters cre-
ated is also being measured. In general, the best cluster
set is the one that induces the simplest classifier with
maximum accuracy. Several quality measures are pre-
sented below.

1. Mean intraset distance – the mean distance between
two objects of the same cluster in the feature space
[2]. The lower the intraset distance, the better the
cluster set, i.e., clusters are better when the feature
values of their objects are very similar. The intraset
distance for a given cluster c is defined as:

Dc
intra =

1
M (M − 1)

×
∑

i

∑

j �=i

d2 (xi, xj)

where d2 (xi, xj) is the distance between two objects
in the feature space and M is the number of objects
in cluster c. The mean intraset distance is given by:

Dintra =
1

Nc
×

∑

c

Dc
intra

where Nc is the number of clusters in the cluster set.
2. Mean interset distance – the mean distance between

two objects from different clusters in the feature space
[2]. The bigger the interset distance, the better the
cluster set, i.e., clusters are better when they are well
separated in the feature space. The interset distance
for two given clusters c1 and c2 is defined as:

Dc1,c2
inter =

1
M1M2

×
M1∑

i

M2∑

j

d2 (xi, xj)

where M1 and M2 are the number of objects in clus-
ters c1 and c2, respectively. The mean interset dis-
tance is given by:

Dinter =
1

Nc (Nc − 1)
×

∑

c1

∑

c2 �=c1

Dc1,c2
inter

3. Intraset/interset distance – a combination of both
quality measures and defined as [3]:

Dintra/inter =

∑
c

Dc
intra

∑
c1

∑
c2 �=c1

Dc1,c2
inter

Fig. 7. Clustering by means (clusters M1 and M2) and by
instances (clusters I1 and I2). Example of how clustering by
instances separates the clusters created by the clustering by
mean

The lower the intraset/interest measure, the better
the cluster set.

Given these three quality measures one can compare dif-
ferent cluster sets in order to choose the one that best
aggregates the classes into superclasses. The cluster sets
can be easily compared when only the number of clusters
varies. However, to compare cluster sets with different
feature spaces, the distance between two objects must be
normalized, which can be done by:

1. Feature distance normalization. When one feature is
substituted by another, the feature distance measure
must be normalized in order to compare the distances
of two different features.

2. Combinatory distance normalization. When the num-
ber of features changes, the combinatory distance
measure must be normalized. Note that simple Man-
hattan or euclidean distances cannot be used since
they grow with the dimension of the feature space.

Figure 8 in Sect. 4.1 shows an example of a comparison
table for several cluster sets, varying only the number of
clusters.

The quality of a cluster set obtained using the cluster
by mean method can be measured by using the cluster
by instances method. This last method is applied to the
same number of clusters obtained using the cluster by
means. For instance, if eight classes are clustered into
three superclasses using clustering by mean, then three
superclasses can be clustered into three clusters by using
clustering by instances. If these three clusters correspond
to the three superclasses (one cluster per superclass only),
then this is a good cluster set. If the three superclasses
are distributed by more than one of the three clusters,
then there is some mixture between classes in the cluster
set and the cluster set is not acceptable. In Fig. 5, for in-
stance, a clustering by instances would maintain the clus-
ters created using the clustering by mean method. How-
ever, in Fig. 7, the clustering by instances separates the
clusters obtained using the clustering by mean method.

6 J.C. Pinto et al.: Classification of ancient handwritten musical symbols

3.1.3 Testing classifiers. When a cluster set is accepted
as a good one by the quality measures defined in
Sect. 3.1.2, it is necessary to derive a classifier that at-
tributes one of the superclasses defined by the clusters to
an object. Two simple classifiers are:

1. Nearest prototype classifier: this classifier is computed
using the mean of the objects defined in the feature
space of each cluster [6]. An object is classified in the
superclass that minimizes the distance of its mean to
the object.

2. MAP (maximum a posteriori) classifier: this classifier
is computed using the mean µ and standard deviation
σ of the objects in the feature space of each cluster
[6]. An object is classified in the superclass where the
probability of the object belonging to that class is
greater than its belonging to any other class:

�
ω = argmaxω P (ω|x) · P (ω)

where P (ω) is the probability of a superclass being
related to the other superclasses, which are estimated
by the number of objects in the cluster over the total
number of objects in the training set; P (ω|x) is the
probability of having the class ω when x is given with:

P (ω|x) ∼ N (µ, σ) ,

Other classifiers using, e.g., neural networks or fuzzy clas-
sifiers can be obtained. However, already having a feature
set that divides the superclasses fairly well, it is sufficient
to use very simple classifiers, such as the two presented,
to achieve good results.

In order to test the quality of the classifier (and, there-
fore, the cluster set), a testing set of objects must be used.
The number of objects classified in each class is counted,
and confusion matrices are produced. The lines of these
matrices correspond to the input classes (classes that the
objects belong to) and the columns correspond to the
output classes (classes in which the objects are classi-
fied). The value of line i and column j corresponds to
the number or percentage of objects from input class i
that were classified in output class j. The classifiers be-
ing tested distinguish superclasses, and thus the output
classes are also always superclasses. Two types of confu-
sion matrices have been used:

1. Standard confusion matrix: where the input and the
output classes are the same, and the superclasses are
created by the clustering process [10]. This matrix
presents the percentage of well-classified and misclas-
sified objects.

2. Detailed confusion matrix: the input classes of this
matrix are the subclasses of the superclasses cre-
ated, which gives the percentage of well-classified and
misclassified objects discriminated by each subclass.
With this matrix it is possible to know which sub-
classes are fully well classified and which are sepa-
rated into two or more superclasses. In this case, the
class hierarchy is changed by adding subclasses to the
superclasses that were misclassified. Suppose that a

superclass A has subclasses A1 and A2, and super-
class B has subclasses B1 and B2. Furthermore, a cer-
tain classifier sometimes classifies class B1 in super-
class A. Then the class hierarchy should be changed
such that superclass A is divided into the subclasses
A1, A2, and B1, and superclass B is divided into sub-
classes B1 and B2. Note that this procedure should
only be done when the same classifier is used in the
final recognition graph.

3.1.4 Automating the methodology. The methodology
presented in Sects. 3.1.1, 3.1.2, and 3.1.3 was developed
manually for the OMR application in this paper. How-
ever, it is possible to automate this process, as proposed
in the following algorithm, which can be applied to OCR
problems in general.

Algorithm: design of a class hierarchy
Input: classes, features, classifier types, training set, test
set
Output: class hierarchy (superclasses, classifiers, and se-
lected features)
Steps:

1. For each subset of features, cluster the classes into
superclasses in the feature space for different numbers
of superclasses by using the training set.

2. Choose the cluster sets that evaluate above a certain
threshold using the quality measures and the normal-
izing distance measures in the test set.

3. Induce classifiers for the classifier types using the
training set.

4. Compute the confusion matrices for each cluster set
and for each induced classifier, i.e., test the class hi-
erarchies using the test set.

5. Choose the “best” class hierarchy, considering the fol-
lowing measures:
(a) The number of misclassifications; fewer misclassi-

fications is preferred.
(b) The number of induced copies of subclasses in su-

perclasses: a subclass sub1 from superclass sup1
is induced to be copied to a superclass sup2 (to
become a subclass of sup2) if the percentage of
misclassifications of sub1 in sup2 (in comparison
with the number of correct classifications) exceeds
a certain threshold; fewer induced copies is pre-
ferred.

(c) The simplicity of the classifier (for instance, k-
nearest neighbors) is computationally less efficient
than the nearest prototype classifier; simpler clas-
sifiers are preferred.

(d) The size and computational complexity of the fea-
ture set; fewer and simpler (more efficient) fea-
tures are preferred.

6. Change the hierarchy by including the induced copies
of subclasses into superclasses.

J.C. Pinto et al.: Classification of ancient handwritten musical symbols 7

Fig. 8. Comparison of quality measures for different cluster
sets

a b

Fig. 9. Two cluster sets: a four clusters and b five clusters

4 Case studied

The design of a class hierarchy proposed in this paper
was applied to an OMR problem, namely, a set of hand-
written musical symbols, for a particular ancient notation
from the 16th century, which is part of the book MM37
– Canto Chão from the Library of Coimbra University.
The class hierarchy divides the set of handwritten musi-
cal symbols into several subclasses. It will be seen that
simple features and simple decision rules can solve the
problem completely. For illustration purposes two steps
of the algorithm are presented. The first corresponds to
the first clustering operation based on the bounding box
width. The second step presents the feature evaluation
procedure for clustering a particular subclass obtained in
the first step.

The musical notation under study has 27 classes cor-
responding to musical objects including, e.g., figures,
clefs, and rests. Some important objects were shown in

Table 1. Classes and number of objects of the OMR problem
in the training set

Class Number of objects

Semibreve (gen) 1039
Breve (gen) 329
F Clef (right) 101
F clef (left) 93
Ligature (2 bre) 55
Rest (breve) 50
Minim (tail up) 29
Minim (tail down) 26
Flat 23
Dot 23
C Clef 21
Bar line 19
Tail (breve) 18
Rest (semibreve) 17
Ligature (3 bre) 10
F clef (total) 10
Filled breve 9
Filled semibreve 4
Suspension top 3
Ligature (5 bre) 2
Finale 1
Breve (long tail) 1
Quavers (2) 0
Sharp 0
Crotchet (tail up) 0
Crotchet (tail down) 0
Ligature (5 bre) 0

Total: 1883

Table 2. Standard confusion matrices using four clusters

Nearest prototype Maximum a posteriori
classifier classifier

Cl0 Cl1 Cl2 Cl3 Cl0 Cl1 Cl2 Cl3
Cl0 250 12 0 2 Cl0 254 8 0 2
Cl1 65 1529 0 12 Cl1 142 1390 0 74
Cl2 0 0 1 0 Cl2 0 0 1 0
Cl3 0 0 0 12 Cl3 0 0 0 12
No. of misclassifications: 91 No. of misclassifications: 126

Figs. 1, 2, and 3. The classes and number of objects are
presented in Table 1.

4.1 Clustering the overall set of musical objects

The k-means clustering algorithm and a feature set with
only the bounding box width feature are used to divide
the set of classes, considering that the simplest class hi-
erarchy divides the simplest features at the top and the
most complicated at the bottom. We tested from three
up to nine clusters. The results for the quality measures
presented in Sect. 3.1.2 are shown in Fig. 8.

8 J.C. Pinto et al.: Classification of ancient handwritten musical symbols

Breve: Filled Breve:

Semibreve: Filled Semibreve:

F clef (left):

Fig. 10. Original images of musical symbols from the class BB NS Box

Table 3. Detailed confusion matrices using four clusters

Nearest prototype Maximum a posteriori
classifier classifier
Cl0 Cl1 Cl2 Cl3 Cl0 Cl1 Cl2 Cl3

Cl0 ↓ ↓
F clef (left) 81 11 0 1 85 7 0 1
C clef 20 1 0 0 20 1 0 0
Flat 23 0 0 0 23 0 0 0
Dot 23 0 0 0 23 0 0 0
Rest (breve) 50 0 0 0 50 0 0 0
Rest (semibreve) 17 0 0 0 17 0 0 0
Bar line 18 0 0 1 18 0 0 1
Tail (breve) 18 0 0 0 18 0 0 0
Cl1 ↓ ↓
Filled breve 3 6 0 0 5 4 0 0
Filled semibreve 0 4 0 0 0 4 0 0
Ligature (2 bre) 0 48 0 7 0 7 0 48
F clef (right) 0 101 0 0 0 101 0 0
Suspension top 0 3 0 0 0 2 0 1
Minim (tail up) 0 29 0 0 1 28 0 0
Minim (tail down) 0 26 0 0 0 26 0 0
F clef (total) 0 5 0 5 0 0 0 10
Breve (longtail) 0 1 0 0 0 1 0 0
Breve (gen) 59 270 0 0 125 203 0 1
Semibreve (gen) 3 1036 0 0 11 1014 0 14
Cl2 ↓ ↓
Finale 0 0 1 0 0 0 1 0
Cl3 ↓ ↓
Ligature (3 bre) 0 0 0 10 0 0 0 10
Ligature (5 bre) 0 0 0 2 0 0 0 2

J.C. Pinto et al.: Classification of ancient handwritten musical symbols 9

Table 4. Standard confusion matrices using five clusters

Nearest prototype classifier Maximum a posteriori classifier
Cl0 Cl1 Cl2 Cl3 Cl4 Cl0 Cl1 Cl2 Cl3 Cl4

Cl0 1572 19 0 1 63 Cl0 1558 33 0 1 63
Cl1 5 70 0 0 0 Cl1 0 75 0 0 0
Cl2 0 0 1 0 0 Cl2 0 0 1 0 0
Cl3 0 0 0 2 0 Cl3 0 0 0 2 0
Cl4 0 1 0 0 149 Cl4 0 1 0 0 149
No. of misclassifications: 89 No. of misclassifications: 98

Table 5. Detailed confusion matrices using five clusters

Nearest prototype classifier Maximum a posteriori classifier
Cl0 Cl0 Cl1 Cl2 Cl3 Cl4 Cl0 Cl1 Cl2 Cl3 Cl4
Cl0 ↓ ↓
Filled breve 9 0 0 0 0 9 0 0 0 0
Filled semibreve 4 0 0 0 0 4 0 0 0 0
F clef (left) 40 0 0 1 52 40 0 0 1 52
F clef (right) 101 0 0 0 0 99 2 0 0 0
C clef 11 0 0 0 10 11 0 0 0 10
Suspension top 2 1 0 0 0 2 1 0 0 0
Minim (tail up) 29 0 0 0 0 29 0 0 0 0
Minim (tail down) 26 0 0 0 0 26 0 0 0 0
Breve (longtail) 1 0 0 0 0 1 0 0 0 0
Breve (gen) 327 1 0 0 1 326 2 0 0 1
Semibreve (gen) 1022 17 0 0 0 1011 28 0 0 0
Cl1 1022 ↓ ↓
Ligature (3 bre) 0 10 0 0 0 0 10 0 0 0
Ligature (2 bre) 5 50 0 0 0 0 55 0 0 0
F clef (total) 0 10 0 0 0 0 10 0 0 0
Cl2 ↓ ↓
Finale 0 0 1 0 0 0 0 1 0 0
Cl3 ↓ ↓
Ligature (5 Bre) 0 0 0 2 0 0 0 0 2 0
Cl4 ↓ ↓
Flat 0 0 0 0 23 0 0 0 0 23
Dot 0 0 0 0 23 0 0 0 0 23
Rest (breve) 0 0 0 0 50 0 0 0 0 50
Rest (semibreve) 0 0 0 0 17 0 0 0 0 17
Bar line 0 1 0 0 18 0 1 0 0 18
Tail (breve) 0 0 0 0 18 0 0 0 0 18

Table 6. Quality measures for the two clusters created

Quality measure Manhattan Euclidean
Intraset distance 7.00 5.59
Interset distance 30.45 23.46
Intraset/interset 0.46 0.48

The best relation between intraset and interset dis-
tances is obtained using four and five clusters. The hier-
archies obtained using these numbers of clusters is pre-
sented in Fig. 9.

Then the nearest prototype and MAP classifiers were
tested. The confusion matrices using these methods are
presented in Tables 2–5.

By analyzing the results in the confusion matrices,
the hierarchy with five clusters using the MAP classifier
is chosen based on the following:

1. The number of wrong classifications is inferior in the
five-cluster hierarchy.

2. The MAP classifier obtained a classification accuracy
of 100% in cluster 1. In cluster 0, both MAP and
NP classifiers diminish their accuracy, due mostly to
misclassifications of semibreves.

This problem will be solved changing the class hierarchy.
Note that semibreves were often misclassified in cluster
1 and F clefs (left), and C clefs were often misclassified
in cluster 4. Considering these misclassifications, the sub-
class semibreve has been added to the superclass cluster1,
and subclasses F clef (left) and C clef have been added

10 J.C. Pinto et al.: Classification of ancient handwritten musical symbols

Breve: Filled Breve:

Semibreve: Filled Semibreve:

F clef (left):

Fig. 11. Musical symbols of the class BB NS Box after vertical closure and horizontal open

Breve: Filled Breve:

Semibreve: Filled Semibreve:

F clef (left):

Fig. 12. Musical symbols of the class BB NS Box, after vertical closure, horizontal open, and contour evaluation

Table 7. Classification results for the BB NS Box problem

Situation Training set Test set Accuracy (%) Accuracy (%) Accuracy (%)
NP MAP k-NN (k = 3)

Training set 28 pages 28 pages 99.57 99.71 99.78
1381 objects 1381 objects

Half division 14 pages 14 pages 99.24 99.54 99.54
723 objects 658 objects

1-out 27 × 28 pages 1 × 28 pages 99.59 99.60 99.68

J.C. Pinto et al.: Classification of ancient handwritten musical symbols 11

Table 8. Confusion matrices for the classifiers MAP, NP, and k-NN

MAP Square Losangle NP Square Losangle k-NN Square Losangle
Square 163 3 Square 165 1 Square 163 3
Losangle 0 492 Losangle 4 488 Losangle 0 492

to the superclass cluster 4. With these new classes, when
an object is classified in cluster 1, it may also be a semi-
breve, and if it is classified in cluster 4, it may also be an
F clef (left) or a C clef.

The final hierarchy can be considered a very good one
since (1) the clusters are well separated, as can be seen
in the cluster quality measures (Fig. 8); (2) the set of
subclasses with more than one superclass is small (only
semibreve, F clef (left) and C clef are divided); and (3)
with the final hierarchy a simple MAP classifier achieves
an accuracy of nearly 100% (eight misclassifications out
of 1883; 99.58% accuracy).

4.2 Clustering a specific superclass

The work of subdividing the classes obtained in Sect. 4.1
was class-specific. In most cases, a promising feature or
set of features was selected and tested, using that feature
set with the two abovementioned classifiers and also the
k-nearest neighbor (k-NN) [6]. Sometimes we recurred
to image transformations, as morphological filtering [16],
before feature calculation.

The superclass called BB NS Box, the clustering
tests, the classifiers produced, and the classification tests
are presented below. Figure 1 shows examples of original
images of musical symbols belonging to the BB NS Box
class.

The square-like objects were separated from the
losangle-like objects, and the final class hierarchy of the
class BB NS Box has two subclasses: BB NSB Square
and BB NSB Losangle. In order to distinguish between
them, some morphological transformations were per-
formed on the images in Fig. 10. First, to close all objects
with a hole in the middle, we used vertical closure with
a structuring element of 25 pixels in one column. Then,
to eliminate vertical dashes that are unnecessary for the
separation, a horizontal opening with a structuring ele-
ment of ten pixels in one line has been applied. The result
of applying these transformations is shown in Fig. 11.

In order to distinguish between squares [the class con-
taining the objects breve, filled breve, and F clef (left)]
and losangles (the class with the objects semibreve and
filled semibreve), a code based on the contour of the im-
ages is used. First, a morphological transformation is ap-
plied to find the contour. The result is depicted in Fig. 12.

The number of transitions of a given type found in
the contour is used as a feature. Following the contour
pixel by pixel, eight types of transitions can be found that
consist of eight possible directions: left (0◦), up (90◦), up-
left (45◦), and so on. The directions can be reduced to
four, since, for instance, 0◦ is similar to 180◦. In general,
square objects have mostly 0◦ and 90◦ transitions, while

Table 9. Classification results for the ROMA problem

Situation Training set Test set Accuracy (%)
NP

Training set 28 pages 28 pages 98.23
1883 objects 1883 objects

Half division 14 pages 14 pages 96.74
975 objects 908 objects

1-out 27 × 28 pages 1 × 28 pages 97.00

losangle objects have mostly 45◦ and 135◦ transitions.
In this example, the feature consists of counting 45◦ and
135◦ transitions.

The quality measures for the two clusters, squares and
losangles, are presented in Table 6, where the Manhat-
tan distance measure presents slightly better results, and
thus it is chosen as distance measure.

Classification tests for the three types of classifiers are
shown in Table 7.

The accuracy of the three types of classifiers is pre-
sented for three different situations:

• Training set – the accuracy of the classifier on all the
training sets, consisting of 28 pages.

• Half division – uses half of the total set of pages for
training and the other half for testing.

• 1-out – performs 28 tests, using 27 pages for training
and the remaining page for testing in each test. The
test is performed for all 28 pages. The results shown
are the combination of the 28 tests performed.

The confusion matrices for the three classifiers, MAP, NP,
and k-NN, is presented in Table 8 for the half-division test
case.

The MAP classifier is chosen because it gives better
accuracy than the NP classifier, and the better accuracy
of the k-NN classifier does not justify its greater com-
plexity.

4.3 Overall results

The global recognition system proposed in this paper
was applied to the overall book MM37 studied under
the ROMA project. Table 9 presents the results ob-
tained for this problem. The situations are the same as
in the BB NS Box case. The confusion matrix for the
half-division test case is presented in Table 10.

These results show that a high accuracy of the
recognition system designed can be obtained using the
methodology proposed in this paper. The output of the
system is a normalized music sheet with the original staff
printed using straight staff lines and normalized musical

12 J.C. Pinto et al.: Classification of ancient handwritten musical symbols

Table 10. Classification results for the global ROMA recognition system. A: Breve (gen), B: F clef (left), C: Filled breve, D:
Filled semibreve, E: Semibreve (gen), F: Suspension top, G: F clef (right), H: Minim (tail up), I: Minim (tail down), J: C clef,
K: F clef (total), L: Ligature (3 bre), M: Ligature (2 bre), N: Bar line, O: Dot, P: Rest (semibreve), Q: Rest (breve), R: Tail
(breve), S: Flat, T: Finale, U: Ligature (5 bre)

A B C D E F G H I J K L M N O P Q R S T U
A 144 2 1 0 2 0 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0
B 6 33 0 0 1 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0
C 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 497 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 45 0 0 0 2 0 0 0 0 0 0 0 0 0 0
H 0 1 0 0 0 0 0 19 0 0 2 0 0 0 0 0 0 0 0 0 0
I 0 1 0 0 0 0 0 0 16 0 0 0 1 0 0 0 0 0 0 0 0
J 1 0 0 0 0 0 1 0 0 13 0 0 0 0 0 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0
M 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0
N 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0
P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0
Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0
R 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 5 0 0 0
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0
T 0
U 0

Fig. 13. Normalized music sheet

symbols. An example is shown in Fig. 13. For each class
of musical symbol (figure), a normalized figure was set.
When the system classifies an object in one class, that
object is substituted by the normalized figure of its class
in the normalized sheet image.

5 Conclusions

This paper proposes a graph-like classification method
that was applied to the recognition of music in ancient
manuscripts, characterized by a specific notation. The
classification method includes an elaborate and domain-
specific process of image segmentation and the construc-
tion of a class hierarchy associated with recognizers that
distinguish between clusters of classes based on selected
object features. A new method for the search of opti-
mal graph hierarchy (manual and automated) and for the
classification algorithms themselves has been proposed.

Future work includes the complete automation of
recognition graph building, the generalization of the de-
veloped techniques to other notations, the development
of other techniques to deal with specific difficulties of
such notations, and the use of these systems to produce
a digital library of ancient music.

Acknowledgements. We would like to thank BGUC (Bib-
lioteca Geral da Universidade de Coimbra) and Prof. José
Maria Pedrosa Cardoso for their contributions to this project.
This project is supported by the Portuguese National Project

J.C. Pinto et al.: Classification of ancient handwritten musical symbols 13

PRAXIS/C/EEI/12122/1998 and by the Programa de Fi-
nanciamento Plurianual de unidades de I&D (POCTI), do
Quadro Comunitário de Apoio III.

References

1. Armand J-P (1993) Musical score recognition: a hierar-
chical and recursive approach. Second international con-
ference on document analysis and recognition, ICDAR,
Tsukuba Science City, Japan

2. Bainbridge D, Carter N (1997) Automatic recognition of
music notation. In: Bunke H, Wang P (eds) Handbook of
optical character recognition and document image anal-
ysis, World Scientific, Singapore, pp 557–603

3. Banks S (1990) Signal processing, image processing and
pattern recognition. Prentice-Hall, New York

4. Blostein D, Baird HS (1992) A critical survey of music
image analysis. In: Baird HS, Bunke H, Yamamoto K
(eds) Structured document image analysis, Springer,
Berlin Heidelberg New York, pp 405–434

5. Pinto JC, Vieira P, Ramalho M, Mengucci M, Pina P,
Muge F (2000) Ancient music recovery for digital li-
braries. Fourth European conference on research and ad-
vanced technology for digital libraries, ECDL 2000, Lis-
bon, pp 24–35

6. Duda RO, Hart PE (1973) Pattern recognition and scene
analysis. Wiley, New York

7. Ferraté G, Pavlidis T, Sanfeliu A, Bunke H (eds) (1988)
Syntactic and structural pattern recognition. NATO ASI
Series, vol 45. Springer, Berlin Heidelberg New York

8. Hoppner F, Klawonn F, Kruse R, Runkler T (1999)
Fuzzy cluster analysis: methods for classification, data
analysis and image recognition. Wiley, New York

9. Jang JSR, Sun C-T, Mizutani E (1997) Neuro fuzzy and
soft computing: a computational approach to learning
and machine intelligence. Prentice-Hall, New York

10. Kohavi R, Provost F (1998) Glossary of terms. Editorial
for the special issue on applications of machine learning
and the knowledge discovery process, 30:271-274

11. Leplumey J, Camillerapp J, Lorette G (1993) A ro-
bust detector for music staves. Second international con-
ference on document analysis and recognition, ICDAR,
Tsukuba City Science, Japan

12. Ng KC, Boyle RD (1996) Recognition and reconstruc-
tion of primitives in music scores. Image Vision Comput
14:39–46

13. Patterson DW (1996) Artificial neural networks: theory
and applications. Prentice-Hall, New York

14. Pépin F, Randriamahefa R, Fluhr C, Philipp S, Coc-
querez JP (1993) Printed music recognition. Second in-
ternational conference on document analysis and recog-
nition, ICDAR, Tsukuba City Science, Japan

15. Rossant F (2002) A global method for music symbol
recognition in typeset music sheets. Pattern Recogn Lett
23:1129–1141

16. Serra J (1982) Image analysis and mathematical mor-
phology, vol 1. Academic, London

17. Yu FT, Jutamulia S (eds) Optical pattern recognition.
Cambridge University Press, Cambridge

18. Wang PS (1977) Handbook of optical character recog-
nition and document image analysis. World Scientific,
Singapore

Pedro Vieira was born in Lisbon,
Portugal in 1977. He graduated from
Universidade Técnica de Lisboa, Por-
tugal in 2000. He works in an in-
formation systems development com-
pany and conducts research in pat-
tern recognition applied to docu-
ment analysis and recognition at ID-
MEC/Instituto Superior Técnico.

Caldas Pinto was born in Leiria,
Portugal in 1951 and graduated from
Instituto Superior Técnico, Lisbon in
1974. He received his PhD in control
systems in Manchester in 1983. He
is associate professor at the Instituto
Superior Técnico. His research inter-
ests include image processing and pat-
tern recognition, principally with re-
spect to old documents, and vision-
based control chiefly as it applies to
robotics.

João Miguel da Costa Sousa was
born in 1966 in Lisbon, Portugal. He
graduated from the Technical Univer-
sity of Lisbon in 1989 and received
his M.Sc. degree in mechanical engi-
neering from that institution in 1992.
He received his PhD in electrical en-
gineering from the Delft University of
Technology, The Netherlands, in 1998.
He is currently assistant professor at
the Instituto Superior Técnico, Tech-
nical University of Lisbon. His main

research interests include fuzzy-model-based control, intelli-
gent control, optimization and fuzzy decision making, and
classification. He is an associate editor of the IEEE Trans-
actions on Fuzzy Systems.

